JP2005071825A - Conductive paste, wiring board, and its manufacturing method - Google Patents

Conductive paste, wiring board, and its manufacturing method Download PDF

Info

Publication number
JP2005071825A
JP2005071825A JP2003300632A JP2003300632A JP2005071825A JP 2005071825 A JP2005071825 A JP 2005071825A JP 2003300632 A JP2003300632 A JP 2003300632A JP 2003300632 A JP2003300632 A JP 2003300632A JP 2005071825 A JP2005071825 A JP 2005071825A
Authority
JP
Japan
Prior art keywords
particles
melting point
low
metal
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300632A
Other languages
Japanese (ja)
Other versions
JP4268476B2 (en
Inventor
Koji Nishi
浩二 西
Original Assignee
Kyocera Corp
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, 京セラ株式会社 filed Critical Kyocera Corp
Priority to JP2003300632A priority Critical patent/JP4268476B2/en
Publication of JP2005071825A publication Critical patent/JP2005071825A/en
Application granted granted Critical
Publication of JP4268476B2 publication Critical patent/JP4268476B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste having low resistance and capable of achieving high connection reliability, and to provide a wiring board using it. <P>SOLUTION: This conductive paste contains: low-melting-point metal A particles 5a containing at least tin and having melting points below 230°C; low-melting-point metal B particles 5b containing at least tin and having melting points lower than those of the particles 5a; low-resistance metal particles 5c having melting points over 230°C; and a resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、少なくとも樹脂を含有する絶縁基板と、導電性ペーストを充填してなるビアを具備する配線基板において、ビアの低抵抗化と接続信頼性を向上できる導電性ペーストに関するものである。 The present invention includes an insulating substrate containing at least a resin, a wiring board having a via formed by filling a conductive paste, to a conductive paste capable of improving low resistance and connection reliability of the via.

近年、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を含む絶縁基板の表面に配線層を形成した、いわゆるプリント基板が配線基板や半導体素子等の電気素子を搭載したパッケージ等に適用されている。 Recently, epoxy resin, the surface of the insulating substrate containing a thermosetting resin such as phenol resin to form a wiring layer, a so-called printed circuit board is applied to a package such as an electrical device mounted such as a wiring board or a semiconductor device. このようなプリント基板において配線層を形成する方法としては、絶縁基板の表面に銅箔を接着した後、これをエッチングして配線回路を形成する方法、または配線回路に形成された銅箔を絶縁基板に転写する方法、絶縁基板の表面に金属メッキ法によって回路を形成する方法等が用いられている。 As a method of forming a wiring layer in such a printed circuit board, after bonding the copper foil on the surface of the insulating substrate, a method for forming a wiring circuit which is etched or copper foil formed in the wiring circuit, insulation method of transferring a substrate, and a method of forming a circuit by metal plating on the surface of the insulating substrate is used. また、配線の多層化に伴い、異なる層間の配線層をビアによって電気的に接続することも行われている。 Along with multi-layered wiring it has been made be electrically connected by a via wiring layers of different layers. このビアは一般的に配線基板の絶縁基板の所定の箇所にドリル等でビアホールを開けた後に、ビアホール内の内壁にメッキ等を施して形成される。 The vias after opening the via holes by a drill or the like at predetermined positions of the insulating substrate generally wiring board are formed by plating or the like on the inner wall of the via hole.

しかしながら、上記のような方法ではメッキ処理を施すのに用いられる薬品が高価であり、処理時間も長いなど生産性と経済性に難がある。 However, in the method described above it is expensive chemicals used to apply the plating process, such as a long processing time a difficulty in productivity and economic efficiency. また、内壁にメッキを施して形成されたビアは、多層構造の場合には任意の層間に形成するために一層毎にレジスト形成、メッキ、剥離研磨を行う必要があり、更なる生産性と経済性の悪化となる。 Also, vias formed by plating on the inner wall, the resist formed on the first layer each to form any layers in the case of a multi-layer structure, the plating, it is necessary to perform the peeling polishing, further productivity and economy the sex of deterioration. 配線層の密度を向上するために多層構造の任意の層間に導通をとる導通機構としては、問題がある。 The conduction mechanism obtain conductivity in any layers of the multilayer structure to increase the density of the wiring layer, there is a problem.

このような問題に対して、銀、銅、ハンダなどの金属粉末と熱硬化性樹脂や活性剤とを混合した導体ペーストを用い、これを絶縁基板の表面に塗布したり、ビアホール内に充填し、積層して多層化する方法がある(特許文献1、2参照)。 To solve this problem, silver, copper, a metal powder and a thermosetting resin or active agent and conductive paste obtained by mixing such as solder, which or is applied to the surface of the insulating substrate, filling in the via hole , there is a method of multilayer laminated (see Patent documents 1 and 2).

ビア用の導電性ペーストは、一般には金属粉末と熱硬化性樹脂との混合物からなるものであるが、特許文献1の導電性ペーストでは、導電性ペースト中の熱硬化性樹脂成分の量が22.9%と多く、またビアの金属粉末間の接触性が充分でないために、ビアの導電率が低いという問題があった。 Conductive paste for the via is generally is made of a mixture of a metal powder and a thermosetting resin, a conductive paste Patent Document 1, the amount of the thermosetting resin component in the conductive paste 22 many a .9% and for contact resistance between the metal powder of the via is not sufficient, the conductivity of the vias is low.

また、特許文献2の導電性ペーストでは、熱硬化性樹脂成分の量を減少させているため、初期のビアの抵抗は低いものの、ビアの金属粒子同士の結合力が十分でなく、熱サイクル等により、ビアの抵抗が変化するという問題があった。 Further, the conductive paste Patent Document 2, since the reduce the amount of the thermosetting resin component, although the initial resistance of the via is low, not enough bonding strength of the metal particles of the vias, thermal cycling, etc. by, there has been a problem that the resistance of the via is changed.

このような問題に対して、導電性ペーストにCuなどの粉末とともに、Pb−Snなどの低融点半田を含有させて、Cu粒子同士を半田によって接続させ、ビアの導電率を高めることも提案されている(特許文献3参照)。 To solve this problem, in the conductive paste with powder such as Cu, contain a low melting point solder such as Pb-Sn, to connect the Cu particles with each other by soldering, also it has been proposed to enhance the conductivity of the vias and it has (see Patent Document 3).
特開平8−315637 JP-A-8-315637 特許第2603053 Patent No. 2603053 特開2002−109956 Patent 2002-109956

しかしながら、配線基板中のビア構造の核となるCu粒子表面への低融点半田の濡れ性が十分でなかったり、Cu粒子同士を接続する低温半田のネッキングが不充分な場合には、信頼性が不十分で、ヒートサイクル等でネッキングが切れ、電気抵抗の上昇や、最悪の場合、断線を引き起こすという問題があった。 However, or low melting point solder wettability is poorly into the nucleus to become Cu particle surface of the via structures in the wiring board, when the low temperature solder necking connecting the Cu grains is insufficient, reliability insufficient, expired necking in the heat cycle, etc., rise and electrical resistance, in the worst case, there is a problem that cause the disconnection.

本発明はこのような問題を解消し、低抵抗で、高い接続信頼性を実現する導電性ペースト及びそれを用いた配線基板を提供することを目的とするものである。 The present invention solves this problem, a low resistance, it is an object to provide a wiring board using the same and a conductive paste to achieve high connection reliability.

本発明の導電性ペーストは、少なくとも錫を含有し、融点が230℃以下の低融点金属A粒子と、錫を含有し、低融点金属A粒子よりも融点が低い低融点金属B粒子と、低抵抗金属粒子と、樹脂とを含有することを特徴とする。 The conductive paste of the present invention contains at least tin, the low melting point metal A particle melting point of 230 ° C. or less, and containing tin, the low melting point metal B particles having a melting point lower than the low melting point metal A particles, low and resistance metal particles, characterized by containing a resin.

また、本発明の導電性ペーストは、低抵抗金属粒子が少なくともCu、Ag、Auから選ばれる一種を含有することが望ましい。 The conductive paste of the present invention, it is desirable that the low-resistance metal particles contain one kind selected at least Cu, Ag, from Au.

また、本発明の導電性ペーストは、低融点金属A粒子の平均粒子径が低融点金属B粒子の平均粒子径よりも大きいことが望ましい。 The conductive paste of the present invention, the average particle diameter of the low melting point metal A particle is larger than the average particle diameter of the low melting point metal B particles is desirable.

また、本発明の導電性ペーストは、低融点金属B粒子の平均粒径が低融点金属A粒子の平均粒径の80%以下であることが望ましい。 The conductive paste of the present invention, it is preferable average particle diameter of the low melting point metal B particles is less than 80% of the average particle diameter of the low melting point metal A particles.

また、本発明の導電性ペーストは、樹脂が熱硬化性樹脂であることが望ましい。 The conductive paste of the present invention, it is desirable that the resin is a thermosetting resin.

また、本発明の導電性ペーストは、樹脂が、トリアリルイソシアヌレートを含有することが望ましい。 The conductive paste of the present invention, the resin, it is desirable to include triallyl isocyanurate.

また、本発明の導電性ペーストは、低融点金属A粒子の含有量をM1、低融点金属B粒子の含有量をM2、低抵抗金属粒子の含有量をM3としたとき、(M2)/(M1+M2)が30〜80%、(M3)/(M1+M2+M3)が40〜60%の関係を満足することが望ましい。 The conductive paste of the present invention, when the content of the low melting point metal A particles M1, the content of the low melting point metal B particles M2, was the content of the low-resistance metal particles M3, (M2) / ( M1 + M2) is 30~80%, (M3) / (M1 + M2 + M3) it is desirable to satisfy the 40% to 60% of the relationship.

また、本発明の導電性ペーストは、低融点金属A粒子と低融点金属B粒子の融点の差が10℃以上であることが望ましい。 The conductive paste of the present invention, it is desirable that the difference between the melting point of the low melting point metal A particles and the low melting point metal B particles is 10 ° C. or higher.

また、本発明の導電性ペーストは、低融点金属B粒子が、Biを含有していることが望ましい。 The conductive paste of the present invention, the low melting point metal B particles, it is desirable to contain the Bi.

また、本発明の導電性ペーストは、低融点金属A粒子、低融点金属B粒子、低抵抗金属粒子の含有量が合計で85〜95質量%、樹脂の含有量が5〜15質量%であることが望ましい。 The conductive paste of the present invention, the low melting point metal A particles, low melting point metal B particles, 85 to 95 wt% content of the low-resistance metal particles in total, the amount of resin is 5 to 15 wt% it is desirable.

このような導電性ペーストを、例えば、配線基板等に用いることにより、高信頼性で低抵抗のビアを形成することができる。 Such a conductive paste, for example, by using the wiring board or the like, it is possible to form a low resistance vias reliable.

また、本発明の配線基板は、少なくとも樹脂を含有する絶縁基板と配線層とが積層され、該配線層間を電気的に接続するために前記絶縁基板内にビアを具備してなる配線基板であって、前記ビアが、以上説明した導電性ペーストを充填して形成されたことを特徴とする。 The wiring board of the present invention, at least a resin and an insulating substrate containing a wiring layer are stacked, there the wiring substrate on which the composed comprises a via in the insulating substrate to electrically connect the wiring layers Te, the via, characterized in that it is formed by filling a conductive paste described above.

以上説明した導電性ペーストを使用して配線基板を作製することにより、ビアの抵抗を小さくできるとともに、ビアや電気的接続構造の接続信頼性を向上させることができ、電気抵抗の低い配線を有し、信頼性に優れた配線基板を提供できる。 By manufacturing the wiring substrate using the conductive paste described above, chromatic with possible to reduce the resistance of the via, it is possible to improve the connection reliability of the vias and an electrical connection structure, the lower wiring electric resistance and it can provide an excellent wiring board reliability.

また、本発明の配線基板の製造方法は、少なくとも熱硬化性樹脂を含有する未硬化あるいは半硬化状態の絶縁基板にビアホールを形成する工程と、前記ビアホールに、上記の導電性ペーストを充填した後、前記ビアホール形成部を含む前記絶縁基板の表面に導体層を被着形成する工程と、該絶縁基板を積層して一体化した後、該積層物を前記熱硬化性樹脂の硬化温度に加熱して一括硬化する工程とを具備することを特徴とする。 Further, the method of manufacturing the wiring board of the present invention includes the steps of forming a via hole in an uncured or semi-cured state insulating substrate containing at least a thermosetting resin, in the via hole after filling the conductive paste the insulating surface of the substrate to the conductive layer and the step of depositing formed, was integrated by laminating the insulating substrate, and heating the laminated material to the curing temperature of the thermosetting resin including the via hole formation portion characterized by comprising the step of curing collectively Te.

このような配線基板の製造方法では、一括硬化することにより逐次硬化時に発生する配線基板内層部と外層部の材料物性の変化を低減できるとともに、硬化に関わる工程時間を短縮させることができ、さらに、低抵抗で、接続信頼性に優れた配線基板を提供できる。 In such a wiring board manufacturing method of, it can be shortened can be reduced changes in material properties of the wiring board inner layer section and outer layer sections generated sequentially during curing by bulk curing, the process time involved in curing, further , low resistance, can provide excellent wiring board connection reliability.

本発明の導電性ペーストは、少なくとも錫を含有し、融点が230℃以下の低融点金属A粒子と、錫を含有し、低融点金属A粒子よりも融点が低い低融点金属B粒子と、低抵抗金属粒子と、樹脂とを含有することを特徴とする。 The conductive paste of the present invention contains at least tin, the low melting point metal A particle melting point of 230 ° C. or less, and containing tin, the low melting point metal B particles having a melting point lower than the low melting point metal A particles, low and resistance metal particles, characterized by containing a resin.

このように融点の異なる2種以上の低融点金属を用いることで、1種類の低融点金属を用いた場合に比べ、太く、強固な導電性粒子同士の接続構造が実現され、低抵抗のビアを実現できる導電性ペーストを提供できる。 Thus, by using two or more kinds of low melting point metal having different melting points, one compared with the case of using the low melting point metal, thick, connecting structure between strong and conductive particles is achieved, the low resistance vias It can provide a conductive paste can be realized.

また、本発明の導電性ペーストは、低抵抗金属粒子が少なくともCu、Ag、Auから選ばれる一種を含有することが望ましい。 The conductive paste of the present invention, it is desirable that the low-resistance metal particles contain one kind selected at least Cu, Ag, from Au. これらの金属あるいは合金は低抵抗であり、導電性ペーストに含有させることで、低抵抗なビア、電気的接続構造を提供することができる。 These metals or alloys are low resistance, by including in the conductive paste, it is possible to provide a low resistance via an electrical connection structure.

また、本発明の導電性ペーストは、低融点金属A粒子の平均粒子径が低融点金属B粒子の平均粒子径よりも大きいことが望ましい。 The conductive paste of the present invention, the average particle diameter of the low melting point metal A particle is larger than the average particle diameter of the low melting point metal B particles is desirable.

このように、低融点金属B粒子よりも高温で溶融する低融点金属A粒子の平均粒子径を低融点金属B粒子の平均粒子径よりも大きくすることで、低抵抗金属粒子同士を接続する低融点金属A粒子により形成される接続構造を太く、強固にすることができ、また、低融点金属Bがより低温で、より広範囲の低抵抗金属粒子、及び低融点金属A粒子を濡らすことが可能になる。 Thus, by greater than an average particle diameter of the average particle diameter of the low melting point metal A particles which melt at a temperature higher than the low melting point metal B particles low melting point metal B particles, low connecting resistance metal particles with each other thick connection structure formed by melting metal a particles can be strengthened, and the low melting point metal B is at a lower temperature, it can be wetted broader low-resistance metal particles, and the low melting point metal a particles become. また、低融点金属B粒子の数も増加するために、さらにその効果は顕著になる。 Further, in order to the number of low melting point metal B particles also increases, the effect becomes remarkable more.

また、本発明の導電性ペーストは、低融点金属B粒子の平均粒径が低融点金属A粒子の平均粒径の80%以下であることが望ましい。 The conductive paste of the present invention, it is preferable average particle diameter of the low melting point metal B particles is less than 80% of the average particle diameter of the low melting point metal A particles.

このように、低融点金属B粒子の平均粒径を低融点金属A粒子の平均粒径の80%以下とすることで、低融点金属B粒子と低融点金属A粒子の平均粒径の差に起因して発生する前述した効果は、より顕著になり、接続信頼性に優れたビアや電気的接続構造を作製することができる。 Thus, the average particle diameter of the low melting point metal B particles by 80% or less of the average particle diameter of the low melting point metal A particles, the difference in the average particle diameter of the low melting point metal B particles and the low melting point metal A particles aforementioned effect occurs due to becomes more pronounced, it is possible to produce an excellent vias and electrical connection structure connection reliability.

また、本発明の導電性ペーストは、樹脂が熱硬化性樹脂であることが望ましい。 The conductive paste of the present invention, it is desirable that the resin is a thermosetting resin.

このような導電性ペーストでは、温度が加わり金属による電気的導電経路が形成されるに従い、熱硬化性樹脂も硬化し、剛性が増加して、ビアや電気的接続構造が変形しにくくなるため、熱応力や外力の印加によるビアや電気的接続構造の変形を抑制でき、ビアや電気的接続構造の接続信頼性を向上させることができる。 In such a conductive paste, in accordance with an electrical conductive path by the metal joined by temperature are formed, a thermosetting resin is also cured, increased stiffness, since the vias and electrical connection structure is less likely to deform, it can suppress deformation of the vias and electrical connection structure by the application of thermal stress and external forces, thereby improving the connection reliability of the vias and an electrical connection structure.

また、本発明の導電性ペーストは、樹脂が、トリアリルイソシアヌレートを含有することが望ましい。 The conductive paste of the present invention, the resin, it is desirable to include triallyl isocyanurate.

トリアリルイソシアヌレートは、軟化点が低いことから、導電性ペーストを低粘度に調整してスクリーン印刷等によるビアホールへの充填性を高めボイドの発生をなくすことができるために、導電性金属同士の接点を確実に確保できる。 Triallyl isocyanurate, since the low softening point, in order to be able to a conductive paste is adjusted to a low viscosity eliminate voids enhance the filling of the via holes by screen printing or the like, between the conductive metal the contact can be reliably ensured.

また、本発明の導電性ペーストは、低融点金属A粒子の含有量をM1、低融点金属B粒子の含有量をM2、低抵抗金属粒子の含有量をM3としたとき、(M2)/(M1+M2)が30〜80%、(M3)/(M1+M2+M3)が40〜60%の関係を満足することが望ましい。 The conductive paste of the present invention, when the content of the low melting point metal A particles M1, the content of the low melting point metal B particles M2, was the content of the low-resistance metal particles M3, (M2) / ( M1 + M2) is 30~80%, (M3) / (M1 + M2 + M3) it is desirable to satisfy the 40% to 60% of the relationship.

このように、(M2)/(M1+M2)を30%以上にすることで低抵抗金属粒子への低融点金属A粒子の被覆面積を広げることができ、また、80%以下とすることで低抵抗金属粒子同士の接続構造を太く、強固に形成することができるために、ビアや電気的接続構造の抵抗を低くできるとともに、ビアや電気的接続構造の接続信頼性を向上させることができる。 Thus, (M2) / (M1 + M2) to be able to widen the coverage of the low melting point metal A particles to the low-resistance metal particles by more than 30%, and low resistance by 80% or less thicker connection structure between metallic particles, in order to be able to firmly formed, it is possible to reduce the resistance of the vias and electrical connection structure, it is possible to improve the connection reliability of the vias and an electrical connection structure.

また、(M3)/(M1+M2+M3)を40%以上にすることで、低抵抗である低抵抗金属粒子が増えるために、ビアの電気抵抗を低くでき、また、(M3)/(M1+M2+M3)を60%以下にすることで、低抵抗金属粒子同士を接続するネッキングを太く強固に形成することができるために、ビアや電気的接続構造の抵抗を低くできるとともに、ビアや電気的接続構造の接続信頼性を向上させることができる。 Further, (M3) / (M1 + M2 + M3) to by 40% or more, in order to low-resistance metal particles with low resistance is increased, it can be lowered electrical resistance of the via, also 60 (M3) / (M1 + M2 + M3) % by below, in order to be able to thicker firmly form the necking for connecting the low-resistance metal particles together, it is possible to reduce the resistance of the vias and electrical connection structure, connection reliability of the vias and electrical connection structure it is possible to improve the resistance.

また、本発明の導電性ペーストは、低融点金属A粒子と低融点金属B粒子の融点の差が10℃以上であることが望ましい。 The conductive paste of the present invention, it is desirable that the difference between the melting point of the low melting point metal A particles and the low melting point metal B particles is 10 ° C. or higher.

低融点金属A粒子と低融点金属B粒子の融点の差を10℃以上とすることで、低融点金属A粒子と低融点金属B粒子の軟化、溶融の開始温度に比較的長い時間差を設けることができ、低融点金属Bが低抵抗金属粒子表面、低融点金属A粒子表面を十分に濡らすことができる。 By the difference of the low melting point metal A particles and low melting point metal B particles melting point 10 ° C. or more, softening of the low melting point metal A particles and low melting point metal B particles, providing a relatively long time difference to the start temperature of the molten can be a low melting point metal B is a low-resistance metal particle surfaces, a low-melting metal a particle surfaces can be wetted sufficiently. そのため、低融点金属B及び低融点金属Aを介した低抵抗金属粒子同士の接続が、より容易に発生し、ビアや電気的接続構造の接続信頼性を向上させることができる。 Therefore, connection of the low-resistance metal particles with each other via the low-melting metal B and the low-melting metal A is more easily generated, thereby improving the connection reliability of the vias and an electrical connection structure.

また、本発明の導電性ペーストは、低融点金属B粒子が、Biを含有していることが望ましい。 The conductive paste of the present invention, the low melting point metal B particles, it is desirable to contain the Bi. 低融点金属B粒子に、Biを含有させることで、溶融後の低融点金属Bの粘性を低下させることができるため、低融点金属Bの低抵抗金属粒子及び低融点金属A粒子への濡れ性を向上させることができ、ビアや電気的接続構造の接続信頼性を向上させることができる。 The low melting point metal B particles, by incorporating the Bi, it is possible to reduce the viscosity of the low melting point metal B after melting, wettability to the low-resistance metal particles and low melting point metal A particles of the low melting point metal B it can be improved, thereby improving the connection reliability of the vias and an electrical connection structure.

また、本発明の導電性ペーストは、低融点金属A粒子、低融点金属B粒子、低抵抗金属粒子の含有量が合計で85〜95質量%、樹脂の含有量が5〜15質量%であることが望ましい。 The conductive paste of the present invention, the low melting point metal A particles, low melting point metal B particles, 85 to 95 wt% content of the low-resistance metal particles in total, the amount of resin is 5 to 15 wt% it is desirable.

このように、低融点金属A粒子、低融点金属B粒子、低抵抗金属粒子などの導電性粉末の量を85質量%以上とし、樹脂の量を15質量%以下にすることで導電性金属同士の接点を確実に確保することができるために、導電経路が確保され、ビアや電気的接続構造の抵抗を小さくすることができる。 Thus, the low melting point metal A particles, low melting point metal B particles, the amount of conductive powder such as a low-resistance metal particles and 85 mass% or more, the conductive metal to each other by the amount of resin below 15 wt% in order to be able to secure the contacts reliably, electrically conductive path is secured, it is possible to reduce the resistance of the vias and electrical connection structure. また、導電性粉末の量を95質量%以下とし、樹脂の量を5質量%以上にすることで導電性ペーストの粘度を適正にでき、例えば、スクリーン印刷等により、ビアホールへ導電性ペーストを充填する際に、充填性を高めることができ、ボイドの発生をなくすことができる。 Further, the amount of conductive powder and 95 mass% or less, can the amount of resin the viscosity of the conductive paste properly by more than 5 wt%, for example, by screen printing or the like, filled with a conductive paste to the via hole when, it is possible to enhance the filling property, it can be eliminated occurrence of voids.

また、本発明の配線基板は、少なくとも樹脂を含有する絶縁基板と配線層とが積層され、該配線層間を電気的に接続するために前記絶縁基板内にビアを具備してなる配線基板であって、前記ビアが、以上説明した導電性ペーストを充填して形成されたことを特徴とする。 The wiring board of the present invention, at least a resin and an insulating substrate containing a wiring layer are stacked, there the wiring substrate on which the composed comprises a via in the insulating substrate to electrically connect the wiring layers Te, the via, characterized in that it is formed by filling a conductive paste described above.

このような導電性ペーストでは、加熱処理を行った場合、まず、低融点金属Bが軟化、溶融し、低抵抗金属粒子表面と低融点金属A表面とを、軟化、溶融した低融点金属Bが、濡らし、低抵抗金属粒子表面と低融点金属A粒子表面の少なくとも一部に低融点金属Bの層が形成される。 In such a conductive paste, when subjected to heat treatment, first, the low-melting metal B is softened, and molten, low-resistance metal particles surface and the low-melting-point metal A surface, softening, low melting metal B which is melted , wet, a layer of low melting point metal B is formed on at least a portion of the low-resistance metal particles surface and the low melting point metal a particle surface.

このように、低抵抗金属粒子と、低融点金属A表面とに、軟化、溶融して低粘度となった低融点金属Bが付着することで、低抵抗金属同士、低融点金属A粒子同士あるいは、低抵抗金属粒子と低融点金属Aとは軟化、溶融した低融点金属Bを介して接触することになる。 Thus, the low-resistance metal particles, into a low-melting-point metal A surface, softened, melted and that the low-melting-point metal B became a low viscosity is deposited, low-resistance metal between, or a low melting point metal A grains , the low-resistance metal particles and a low melting metal a softening will contact via the low melting point metal B which is melted.

そして温度が上がるにつれて、低融点金属Bは、さらに粘度が低下して、低抵抗金属粒子、低融点金属A粒子の表面に広がっていく。 The increasing temperature, low melting point metal B further is reduced viscosity, low-resistance metal particles, spreads on the surface of the low melting point metal A particles.

そして低融点金属A粒子の融点に達すると、低融点金属Aが軟化、溶融して、低融点金属Bに覆われた低抵抗金属粒子同士を強固に接続するネッキングを形成する。 When it reaches the melting point of the low melting point metal A particles, low melting point metal A is softened and melted to form a necking of firmly connecting the low-resistance metal particles having been covered with the low melting point metal B. このとき、低融点金属Aは低融点金属Bよりも高融点であるために、同じ温度であれば、低融点金属Aは低融点金属Bよりも高粘度の流体となるため、変形量は小さくなり、Cu粒子同士を構造的、電気的に強固に接続することができる。 At this time, since the low melting point metal A is a high melting point than the low melting metal B, if the same temperature, since the low melting point metal A is to be of higher viscosity than the low-melting metal B fluid, the amount of deformation is small becomes, the Cu particles are structurally, can be electrically connected firmly. この低融点金属Aによる接続は低融点金属Aの変形が少ないために、低融点金属Aの原料形状を反映した形となり、比較的太く、強固な低融点金属粒子同士の接続構造が実現される。 For this connection by the low melting point metal A variant of the low-melting-point metal A is small, becomes a shape that reflects the raw shape of the low melting point metal A, relatively thick, the connection structure of the solid low melting point metal particles with each other can be realized . また、配線基板のビアと、ビアの上下に設けられた配線層の界面においても同様の機構が発現し、ビアのみならず、ビアと配線層との接続信頼性が改善される。 Further, a via wiring substrate, a similar mechanism is also at the interface between the wiring layer provided on the top and bottom of the via is expressed and not via only, connection reliability between the via and the wiring layer can be improved.

以上説明した導電性ペーストを使用して配線基板を作製することにより、ビアの抵抗を小さくできるとともに、ビアや電気的接続構造の接続信頼性を向上させることができ、電気抵抗の低い配線を有し、信頼性に優れた配線基板を提供できる。 By manufacturing the wiring substrate using the conductive paste described above, chromatic with possible to reduce the resistance of the via, it is possible to improve the connection reliability of the vias and an electrical connection structure, the lower wiring electric resistance and it can provide an excellent wiring board reliability.

また、本発明の配線基板の製造方法は、少なくとも熱硬化性樹脂を含有する未硬化あるいは半硬化状態の絶縁基板にビアホールを形成する工程と、前記ビアホールに、上記の導電性ペーストを充填した後、前記ビアホール形成部を含む前記絶縁基板の表面に導体層を被着形成する工程と、該絶縁基板を積層して一体化した後、該積層物を前記熱硬化性樹脂の硬化温度に加熱して一括硬化する工程とを具備することを特徴とする。 Further, the method of manufacturing the wiring board of the present invention includes the steps of forming a via hole in an uncured or semi-cured state insulating substrate containing at least a thermosetting resin, in the via hole after filling the conductive paste the insulating surface of the substrate to the conductive layer and the step of depositing formed, was integrated by laminating the insulating substrate, and heating the laminated material to the curing temperature of the thermosetting resin including the via hole formation portion characterized by comprising the step of curing collectively Te.

このような配線基板の製造方法では、一括硬化することにより逐次硬化時に発生する配線基板内層部と外層部の材料物性の変化を低減できるとともに、硬化に関わる工程時間を短縮させることができ、さらに、低抵抗で、接続信頼性に優れた配線基板を提供できる。 In such a wiring board manufacturing method of, it can be shortened can be reduced changes in material properties of the wiring board inner layer section and outer layer sections generated sequentially during curing by bulk curing, the process time involved in curing, further , low resistance, can provide excellent wiring board connection reliability.

本発明の導電性ペーストは、例えば、配線基板のビアを形成するために用いられ、図1(a)に示すように、絶縁層1に形成されたビアホール3に導電性ペースト5を充填し、ビアホール3の上下に配線層7を形成した後、加熱することにより、図1(c)に示すようにビア9を形成し、ビア9の上面に形成された配線層7aと、ビアの下面に形成された配線層7bとを電気的に接続するものである。 The conductive paste of the present invention, for example, be used to form a via of the wiring board, as shown in FIG. 1 (a), filled with a conductive paste 5 in the via hole 3 formed in the insulating layer 1, after forming the wiring layer 7 on the top and bottom of the via hole 3, by heating, to form vias 9 as shown in FIG. 1 (c), a wiring layer 7a formed on the upper surface of the via 9, the lower surface of the via the formed wiring layer 7b is intended to electrically connect.

本発明の導電性ペーストは、図1(a)に示すように、少なくとも錫を含有し、融点が230℃以下の低融点金属A粒子5aと、少なくとも錫を含有し、低融点金属A粒子5aよりも融点が低い低融点金属B粒子5bと、融点が230℃を超える低抵抗金属粒子5cと、樹脂(図示せず)とで構成されている。 The conductive paste of the present invention, as shown in FIG. 1 (a), at least a tin containing a low melting point metal A particles 5a melting point of 230 ° C. or less, and contains at least tin, low melting point metal A particle 5a and a low melting metal B particles 5b having a melting point lower than a low-resistance metal particles 5c having a melting point greater than 230 ° C., is composed out with resin (not shown).

なお、図1では樹脂は省略したが、ビアホール3内の低融点金属A粒子5aと、低融点金属B粒子5bと、低抵抗金属粒子5cなどの導電性粒子を除く部分を、樹脂が占めている。 Although in FIG. 1 resin was omitted, and a low melting metal A particle 5a in the via hole 3, and the low melting point metal B particles 5b, a portion excluding the conductive particles, such as low-resistance metal particles 5c, the resin is occupied there.

導電性ペースト5に含まれる低抵抗金属粒子5cは、加熱処理時には、溶融しないため、導電経路であるビア9の核、あるいは骨格となる材料であり、低抵抗を有するものであり、このような低抵抗金属粒子5cとしては、低融点金属A粒子5a及び低融点金属B粒子5bよりも高融点の金属を用いる。 Low-resistance metal particles 5c contained in the conductive paste 5, during heat treatment, because it does not melt, the nucleus of the via 9 is a conductive path, or a material comprising a skeleton, those having a low resistance, like this the low-resistance metal particles 5c, using a high melting point metal than the low melting point metal a particles 5a and the low melting point metal B particles 5b.

特に、安価で、低抵抗で、Snとの脆い金属間化合物をつくりにくい点からCuが望ましい。 In particular, inexpensive, low-resistance, Cu from the viewpoint of not easily made brittle intermetallic compound of Sn is preferable. また、低抵抗で耐酸化性に優れる点からAgが望ましく、低抵抗で耐酸化性、耐薬品性に優れる点からAuが望ましい。 Further, Ag is preferable because of its good oxidation resistance at low resistance, oxidation resistance at low resistance, Au is desirable from the viewpoint of excellent chemical resistance. また、これらの粉末を混合してもよく、これらの合金であってもよい。 It is also possible to mix these powders may be alloys.

低融点金属A粒子5a並びに低融点金属B粒子5bは、いずれも少なくとも錫を含有し、融点が230℃以下の金属からなり、導電性ペースト5の加熱処理時に、時間差をおいて、軟化、溶融し、変形することで、ビア9の核あるいは骨格となる低抵抗金属粒子5cと、ビア9に接する配線層7とを接続する機能を有するものである。 Low melting metal A particles 5a and the low melting point metal B particles 5b may contain both at least tin, the melting point is from 230 ° C. or less of the metal, during the heat treatment of the conductive paste 5, with a time difference, softening, melting and, by deformation, and it has a function of connecting the low-resistance metal particles 5c as a core or backbone of the via 9, a wiring layer 7 in contact with the vias 9.

低融点金属B粒子5bは、低融点金属A粒子5aと低抵抗金属5cの表面を濡らす機能を発現するために、また、低抵抗金属粒子5cを結合させ、ネッキングを太く強くする為に、低融点金属A5a粒子よりも低融点であることが重要であり、特に両者の融点の差を10℃以上とすることで、ビア9の抵抗を下げ、信頼性の高いビア9を有する配線基板を容易に作製することができる。 Low melting metal B particles 5b, in order to express the function of wetting the surface of the low melting point metal A particles 5a and the low-resistance metal 5c, also to bind the low-resistance metal particles 5c, in order to strongly thicker necking, low it is important that lower melting point than the metal A5a particles, in particular by the difference between the melting point and 10 ° C. or higher, lowering the resistance of the via 9, facilitates the wiring board having a highly reliable vias 9 it can be made to.

低融点金属A粒子5aと低融点金属B粒子5bは、ビアホール3の上下に配置された配線層7とビアの核となる低抵抗金属粒子5cとにスムーズに濡れ広がり、これらを結合させる機能を有している。 Low melting metal A particles 5a and the low-melting metal B particles 5b are smoothly spreading in a low-resistance metal particles 5c to be vertically arranged wiring layer 7 and the via nuclear via hole 3, the function of coupling these It has.

本発明の低融点金属B粒子5bは、低融点金属A粒子5aより先に溶け、低抵抗金属粒子5c表面と低融点金属A粒子5a表面とを溶融した低融点金属B粒子5bが濡らし、例えば、低融点金属B粒子5bの層を形成するなどして、接続ポイントを増加させるものである。 Low melting metal B particles 5b of the present invention, soluble before the low melting point metal A particles 5a, the low melting point metal B particles 5b melted a low-resistance metal particles 5c surface and a low melting metal A particles 5a surface wetting, e.g. , and the like to form a layer of low melting point metal B particles 5b, and increases the connection point. 従って、低融点金属B粒子5bの数を増加させる為に、低融点金属B粒子5bの平均粒子径は低融点金属A粒子5aより小さいことが望ましい。 Therefore, in order to increase the number of low melting point metal B particles 5b, it is desirable average particle diameter of the low melting point metal B particles 5b is smaller than the low melting point metal A particle 5a.

特に、低融点金属B粒子5bの平均粒径が低融点金属A粒子5aの平均粒径の80%以下であることが望ましく、さらに50%以下であることが望ましい。 In particular, it is desirable average particle diameter of the low melting point metal B particles 5b is equal to or less than 80% of the average particle diameter of the low melting point metal A particle 5a, more desirably 50% or less.

また、樹脂は導電経路を保護、保持する能力に優れた硬化した後に剛性が高くなる熱硬化性樹脂を用いることが望ましい。 Further, the resin it is desirable to use a thermosetting resin rigidity increases after curing with excellent conductive path protection, the ability to retain.

また、熱硬化性樹脂は、未硬化の状態においては導電性ペーストを低粘度に調整して、スクリーン印刷等によるビアホール3への充填性を高めボイドの発生を低減させるため、トリアリルイソシアヌレートを含有することが望ましい。 Further, thermosetting resin, and preparing a conductive paste in uncured state to a low viscosity, to reduce the occurrence of voids increases the filling of the via hole 3 by screen printing or the like, triallyl isocyanurate desirably it contains.

また、本発明の導電性ペースト5では、低抵抗金属5cへの低融点金属A粒子5aの被覆面積を広げ、低抵抗金属粒子5c同士を接続するネッキングを太く強固に形成する機能を有し、そのために、(M2)/(M1+M2)が30〜80%であることが望ましく、さらに50〜80%であることが望ましい。 Moreover, the conductive paste 5 of the present invention has a function of expanding the coverage of the low melting point metal A particle 5a to the low resistance metal 5c, forming strong thick necking connecting the low-resistance metal particles 5c each other, Therefore, it is desirable, it is desirable that further 50-80% is the 30~80% (M2) / (M1 + M2).

また、本発明の導電性ペースト5は、低抵抗金属粒子5c同士の接点を増加させ、ビア9の電気抵抗を低下させ、低抵抗金属粒子5c同士を接続するネッキングを太く強固に形成するために、(M3)/(M3+M1+M2)が40〜60%であることが望ましい。 The conductive paste 5 of the present invention increases the contact between the low-resistance metal particles 5c, reduces the electrical resistance of the via 9, in order to thicker firmly form the necking for connecting the low-resistance metal particles 5c each other , (M3) / (M3 + M1 + M2) is desirably 40 to 60%.

また、本発明の低融点金属A粒子5aと低融点金属B粒子5bは、低融点金属B粒子5bが低融点金属A粒子5aより先に溶け、低抵抗金属粒子5c表面と低融点金属A粒子5a粒子表面とを溶融した低融点金属B粒子5bが濡らし、低融点金属B粒子5bの層を形成する機能を有しており、低融点金属A粒子5aがその形状を維持した状態で、低融点金属B粒子5bが変形することが望ましく、低融点金属A粒子5aと低融点金属B粒子5bとの融点の差が10℃以上であることが望ましい。 Further, the low melting point metal A particles 5a and the low-melting metal B particles 5b of the present invention, a low melting metal B particles 5b is dissolved before the low melting point metal A particles 5a, the low-resistance metal particles 5c surface and the low melting point metal A particles low melting metal B particles 5b wets melted and 5a particle surface, has a function of forming a layer of a low melting point metal B particles 5b, in a state where low melting point metal a particles 5a have maintained their shape, low it is desirable that the melting point metal B particles 5b are deformed, the difference in melting point between the low melting point metal a particles 5a and the low-melting metal B particles 5b is desirably not 10 ° C. or higher.

また、本発明の低融点金属B粒子5bは、他の導電性粒子を濡らすためにBiを含有していることが望ましい。 Further, the low melting point metal B particles 5b of the present invention, desirably contains a Bi to wet the other conductive particles.

また、本発明の導電性ペーストは、スクリーン印刷等により導電性ペーストをビアホール3へ埋め込む際に、充填性を高め、ボイドの発生をなくすために、導電性粉末を85〜95質量%と、熱硬化性樹脂を5〜15質量%含有することが望ましい。 The conductive paste of the present invention, when embedding a conductive paste by screen printing or the like to the via hole 3, enhance the filling property, in order to eliminate the formation of voids, and 85 to 95 wt% of the conductive powder, heat the curable resin desirably contains 5 to 15 wt%.

また、本発明の配線基板は、少なくとも樹脂を含有する絶縁基板1と、絶縁基板1の表面または内部に形成された複数層の配線層と、該配線層間を電気的にビア9で接続されてなるもので、以上説明した導電性ペーストを用いてビア9が形成されたものである。 The wiring board of the present invention, at least the insulating substrate 1 containing a resin, and a plurality of layers of the wiring layer formed inside or on the surface of the insulating substrate 1, is connected to the wiring layers in the electrically via 9 become as one in which the vias 9 are formed by using a conductive paste described above.

次に、本発明の配線基板の製造方法について説明する。 Next, a method for manufacturing the wiring board of the present invention.

先ず、図2(a)に示すように、半硬化状の絶縁基板1に、UV−YAGレーザ、エキシマレーザ、CO レーザなどのレーザ加工機で穴あけ加工を施し、ビアホール3を設ける。 First, as shown in FIG. 2 (a), a semi-cured insulating substrate 1, UV-YAG laser, subjected to drilling by a laser processing machine such as an excimer laser, CO 2 laser, provided via hole 3.

次に、図2(b)に示すように、そのビアホール3内に導電性ペースト5を充填する。 Next, as shown in FIG. 2 (b), filling the conductive paste 5 in the via hole 3.

次に、図2(c)に示すように、導電性ペースト5を充填したビアホール3の片側あるいは両端部に、樹脂フィルム9に接着剤11を介して接着された金属箔からなる配線層7を位置あわせし、60〜150℃で加熱し、4.0〜8.0MPaの圧力で加圧する。 Next, as shown in FIG. 2 (c), the conductive paste 5 on one side or both end portions of the via hole 3 was filled, the wiring layer 7 made of a metal foil which is bonded via an adhesive 11 to the resin film 9 position and together, and heated at 60 to 150 ° C., pressurized with a pressure of 4.0~8.0MPa. そして、図2(d)に示すように、接着剤11と共に樹脂フィルム9をはがすことで配線層7が絶縁基板1に埋設される。 Then, as shown in FIG. 2 (d), the wiring layer 7 is embedded in the insulating substrate 1 by peeling the resin film 9 with adhesive 11.

このようにして作製された図2(e)に示すような配線ユニットaを複数作製し、図3(f)に示すように積層させ、一括して絶縁層中の熱硬化性樹脂が硬化する温度、例えば、180〜250℃に加熱し、1〜10MPaの圧力で加圧することにより、図3(g)に示すような配線基板Aを作製することができる。 Thus the wiring unit a as shown in FIG. 2 (e) which is manufactured by a plurality prepared, are stacked as shown in FIG. 3 (f), curing the thermosetting resin of the insulating layer are collectively temperature, for example, heated to 180 to 250 ° C., by pressurizing at a pressure of 1 to 10 MPa, it is possible to manufacture a wiring board a as shown in FIG. 3 (g).

なお、この加熱に伴い、加熱前には、図1(a)に示すように絶縁基板1のビアホール3に充填されていた導電性ペースト5の低融点金属A粒子5aと、低融点金属B粒子5bと、低抵抗金属粒子5cとが変化していく。 In line with this heating, before heating, the low melting point metal A particles 5a of the conductive paste 5 filled in the via hole 3 of the insulating substrate 1 as shown in FIG. 1 (a), the low melting point metal B particles and 5b, and the low-resistance metal particles 5c will change.

まず、図1(b)に示すように低融点金属B粒子5bが軟化し始め、変形し、低融点金属A粒子5aと、低抵抗金属粒子5cと、配線層7とを結合し始める。 First, the low-melting metal B particles 5b as shown in FIG. 1 (b) begins to soften, deform and starts to bind the low melting point metal A particles 5a, the low-resistance metal particles 5c, and a wiring layer 7.

さらに、温度が上昇するに従い、低融点金属A粒子5aが変形し、図2(c)に示すように、低融点金属B粒子5bと、低抵抗金属粒子5cと、配線層7との間に太く、強固な結合を形成する。 Further, as the temperature rises, the low-melting metal A particle 5a is deformed, as shown in FIG. 2 (c), a low-melting metal B particles 5b, and the low-resistance metal particles 5c, between the wiring layer 7 thick, to form a strong bond.

かくして、本発明の導電性ペースト5を用いて、低抵抗で、信頼性の高いビア9が形成され、図3(g)に示すような、高性能で、信頼性の高い配線基板Aを作製することができる。 Thus, by using the conductive paste 5 of the present invention, a low resistance, reliable vias 9 are formed, as shown in FIG. 3 (g), a high performance, making a highly reliable wiring board A can do.

なお、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。 The present invention is not limited to the above embodiments, and various modifications are possible without departing from the scope of the invention. 例えば、2種以上の融点が230℃以下の低抵抗金属を含有している場合は、230℃を超える低融点金属を含有していてもかまわない。 For example, if two or more melting points are contained 230 ° C. or less of the low-resistance metal it is may also contain a low melting point metal exceeding 230 ° C.. また、3種以上の低融点金属を用いてもよいことは言うまでもない。 Also, it may of course be used three or more low melting point metal.

また、配線基板Aの形態は、例えば、コア基板の表面に微細配線層を形成したものなどにも用いることができるのは当然である。 Further, the form of the wiring substrate A, for example, can also be used such as the surface of the core substrate obtained by forming a fine wiring layer is natural.

表1に示す配合比で、低抵抗金属粒子5cである銅粉末と、表1に示す組成の低融点金属A粒子5aと、低融点金属B粒子5bと、樹脂の混合物をプロペラ式攪拌機にて混練し、導電性ペースト5を作製した。 In compounding ratio shown in Table 1, the copper powder which is a low-resistance metal particles 5c, a low-melting metal A particles 5a having the composition shown in Table 1, and the low melting point metal B particles 5b, a mixture of resin with a propeller stirrer kneaded, to prepare a conductive paste 5.

なお、樹脂はトリアリルイソシアヌレート樹脂と、触媒としての過酸化物PH25Bとの混合物を用い、トリアリルイソシアヌレート樹脂と過酸化物PH25Bとの混合比は、95:5体積%とした。 The resin is the mixing ratio of the triallyl isocyanurate resin, with a mixture of peroxide PH25B as catalyst, and triallyl isocyanurate resin and peroxide PH25B is 95: 5% by volume.

また、低融点金属A粒子5aと、低融点金属B粒子5bの粒径も表1に示す範囲で変化させた。 Further, the low melting point metal A particles 5a, the particle size of the low melting point metal B particles 5b also was varied as shown in Table 1.

このようにして、作製した導電性ペースト5を以下の工程に用いて、テスト用配線基板を作製した。 In this way, by using the conductive paste 5 was manufactured in the following steps, to prepare a test wiring board.

まず、30μm厚みのPPE(ポリフェニレンエーテル)からなる半硬化状の絶縁基板1に、UV−YAGレーザ加工機で100μmの穴あけ加工を施し、ビアホール3を形成した。 First, the semi-cured insulating substrate 1 made of 30μm thick PPE (polyphenylene ether), subjected to drilling of 100μm in UV-YAG laser processing machine to form a via hole 3.

次に、表1に示す導電性ペースト5をビアホール3に充填した。 It was then filled with a conductive paste 5 shown in Table 1 to the via hole 3.

次に、この絶縁基板1に形成されたビアホール3の表裏面にパターン化された厚み10μmの銅箔からなる配線層7を150℃、6.0MPaで転写した。 Next, a wiring layer 7 made of a copper foil patterned thickness 10μm on both surfaces of the via hole 3 formed on the insulating substrate 1 0.99 ° C., was transferred in 6.0 MPa.

次に、上記のようにして作製した絶縁基板1を、それぞれのビアホール3と配線層7が電気的に接続されるように6層かさね、位置合わせして、230℃に加熱し、5.0MPaの圧力をかけ、積層した。 Next, the insulating substrate 1 manufactured as described above, and each of the via hole 3 wiring layer 7 is overlaid six layers so as to be electrically connected, are aligned, and heated to 230 ° C., 5.0 MPa applying a pressure of, it was laminated.

導通信頼性の評価は、初期導通抵抗と試料を温度が−55℃の条件で30分、125℃の条件で30分を1サイクルとする温度サイクル試験(TCT)を行い、1000サイクル後のビア9の導通抵抗を測定し、試験前後の導通抵抗の変化率を比較することにより評価した。 Conduction reliability evaluation performs the initial conduction resistance and 30 minutes samples under conditions of a temperature of -55 ° C., a temperature cycle test for 30 minutes as one cycle under the condition of 125 ° C. (TCT), after 1000 cycles via 9 measures the conduction resistance of was evaluated by comparing the rate of change of the conduction resistance before and after the test.

表1に、ビア一穴当りの初期導通抵抗と試験前後の導通抵抗変化率を示す。 Table 1 shows the conduction resistance change rate before and after the test to the initial conduction resistance per via one hole.

本発明の範囲外である一種類のみの低融点金属を用いた試料No. Samples with low melting point metal only one type is outside the scope of the present invention No. 1、2ではビア9の初期抵抗が10×10 −6 Ωcm以上と高くなり、また、ビア9の熱サイクル試験後の抵抗変化率も5.4%以上と高くなった。 The initial resistance of 1 in the via 9 is as high as 10 × 10 -6 Ωcm or higher, the rate of change in resistance after heat cycle test of the via 9 was also as high as 5.4% or more.

また、2種類の低融点金属を用いてはいるものの、2種類のうち高融点を有する低融点金属の融点が230℃を超える試料No. Further, 2 although the type of which is using a low-melting-point metal, a sample low-melting metal melting having two refractory of exceeding 230 ° C. No. 3でも、ビア9の初期抵抗が13.2×10 −6 Ωcm以上と高くなり、また、ビア9の熱サイクル試験後の抵抗変化率も6.7%以上と高くなった。 Any 3, as high as the initial resistance of the via 9 13.2 × 10 -6 Ωcm or more, and were higher resistivity variation after the thermal cycle test of the via 9 also 6.7% or more.

一方、本発明の導電性ペースト5を用いた試料No. On the other hand, the samples using the conductive paste 5 of the present invention No. 4〜21では、いずれも、10×10 −6 Ωcm以下の初期抵抗、5%以下の導通抵抗変化率を有しており、抵抗の低い、高信頼性のビア9となることが判る。 In 4-21, both, 10 × 10 -6 Ωcm or less of the initial resistance, has a conduction resistance change rate of 5% or less, low resistance, it can be seen that a highly reliable vias 9.

低融点金属A粒子5aと低融点金属B粒子5bの融点の差を変化させた試料No. Samples were varied difference in melting point of the low melting point metal A particles 5a and the low-melting metal B particles 5b No. 5、6では、低融点金属A粒子5aと低融点金属B粒子5bの融点の差が5℃である試料No. In 5,6, samples the difference between the melting point of the low melting point metal A particles 5a and the low-melting metal B particles 5b is 5 ° C. No. 5よりも、10℃である試料No. Than 5, is 10 ° C. Sample No. 6の方が初期抵抗、熱サイクル後の抵抗変化率ともに優れている。 Who 6 initial resistance, has excellent resistance change rate both after heating cycle.

また、低融点金属A粒子5aと低融点金属B粒子5bの平均粒子径を変化させた試料No. In Sample No. with varied average particle diameter of the low melting point metal A particles 5a and the low-melting metal B particles 5b 6〜8の結果から、低融点金属B粒子5bの平均粒径が低融点金属A粒子5aの平均粒径よりも小さい方が初期抵抗、熱サイクル後の抵抗変化率ともに優れていることがわかる。 From the results of 6-8, it can be seen that better average particle diameter of the low melting point metal B particles 5b is smaller than the average particle diameter of the low melting point metal A particle 5a is excellent initial resistance, the resistance change rate both after heating cycle . 低融点金属B粒子5bの平均粒径が低融点金属A粒子5aの平均粒径の80%である試料No. Sample Mean particle size of the low-melting-point metal B particles 5b is 80% of the average particle diameter of the low melting point metal A particle 5a No. 7では初期抵抗、導通抵抗変化率が低下しており、更に、低融点金属B粒子5bの平均粒径が低融点金属A粒子5aの平均粒径の50%である試料No. In 7 the initial resistance, the conduction resistance change rate has decreased, further, the sample No. average particle size of the low-melting-point metal B particles 5b is 50% of the average particle diameter of the low melting point metal A particle 5a 8では更に初期抵抗、導通抵抗変化率が低下した。 In 8 further initial resistance, the conduction resistance change rate was lowered.

また、低融点金属A粒子5aの含有量をM1、低融点金属Bの含有量をM2としたとき、(M2)/(M1+M2)の比率、即ち、低融点金属A粒子5aと低融点金属B粒子5bの比率を変化させた試料No. Further, the content of the low melting point metal A particle 5a M1, when the content of the low melting point metal B was M2, (M2) / (M1 + M2) ratio, i.e., the low-melting metal A particles 5a and the low-melting metal B sample was varied the ratio of particles 5b No. 9〜13では、(M2)/(M1+M2)が30〜80%の試料No. In 9~13, (M2) / (M1 + M2) 30 to 80% of the samples No. 8〜12が、より低い初期抵抗、導通抵抗変化率を示した。 8 to 12, a lower initial resistance, showed the conduction rate of resistance change.

また、低融点金属A粒子5aの含有量をM1、低融点金属B粒子5bの含有量をM2、低抵抗金属粒子の含有量をM3としたとき、(M3)/(M1+M2+M3)の比率、即ち、低抵抗金属粒子と、低融点金属A粒子5aと低融点金属B粒子5bとの和の比率を変化させた試料No. Further, the content of the low melting point metal A particle 5a M1, when the content of the low melting point metal B particles 5b M2, was the content of the low-resistance metal particles M3, the ratio of (M3) / (M1 + M2 + M3), i.e. , a low-resistance metal particles was varied the ratio of the sum of the low melting point metal a particles 5a and the low-melting metal B particles 5b sample No. 14〜17では、(M2)/(M1+M2)が40〜60%の試料No. In 14~17, (M2) / (M1 + M2) 40 to 60% of the samples No. 15、16が、より低い初期抵抗、導通抵抗変化率を示した。 15 and 16, a lower initial resistance, showed the conduction rate of resistance change.

また、樹脂量を3〜20質量%の範囲で変化させた試料No. In Sample the resin amount is varied in the range of 3 to 20 wt% No. 18〜21では、樹脂が5〜15質量%である試料No. In 18 to 21, the sample resin is 5 to 15 wt% No. 17〜20で低い初期抵抗、導通抵抗変化率を示した。 17-20 with a low initial resistance, showed the conduction rate of resistance change.

また、低融点金属B粒子5bにBiを含有している試料については、低融点金属B粒子5bにBiを含有していない試料No. As for the sample containing Bi in the low melting point metal B particles 5b, does not contain Bi in the low melting point metal B particles 5b Sample No. 4よりも、初期抵抗、導通抵抗変化率が低くなる傾向にあった。 Than 4, the initial resistance, the conduction resistance change rate tended to be lower.

本発明の導電性ペーストが加熱され、ビアとなる模式図である。 The conductive paste of the present invention is heated, it is a schematic diagram which is a via. 本発明の配線基板の作製方法を示す工程図である。 It is a process diagram showing a method for manufacturing a wiring board of the present invention. 本発明の配線基板の作製方法を示す工程図である。 It is a process diagram showing a method for manufacturing a wiring board of the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

1・・・・絶縁基板3・・・・ビアホール5・・・・導電性ペースト5a・・・低融点金属A粒子5b・・・低融点金属B粒子5c・・・低抵抗金属粒子7・・・・配線層9・・・・樹脂フィルム11・・・接着剤a・・・・配線ユニットA・・・・配線基板 1 ... insulating substrate 3 ... via hole 5 ... conductive paste 5a · · · low melting metal A particle 5b · · · low melting metal B particles 5c · · · low-resistance metal particles 7 .. · wiring layer 9 ... resin film 11 ... adhesive a ... wiring unit A ... wiring board

Claims (12)

  1. 少なくとも錫を含有し、融点が230℃以下の低融点金属A粒子と、少なくとも錫を含有し、低融点金属A粒子よりも融点が低い低融点金属B粒子と、融点が230℃を超える低抵抗金属粒子と、樹脂とを含有することを特徴とする導電性ペースト。 Contains at least tin, and a melting point of the low melting point metal A particle of 230 ° C. or less, at least tin containing a low melting point metal B particles having a melting point lower than the low melting point metal A particles, low resistance having a melting point greater than 230 ° C. conductive paste characterized by containing the metal particles, and a resin.
  2. 低抵抗金属粒子が少なくともCu、Agから選ばれる少なくとも一種を含有することを特徴とする請求項1に記載の導電性ペースト。 Low-resistance metal particles of at least Cu, a conductive paste according to claim 1, characterized in that it contains at least one selected from Ag.
  3. 低融点金属A粒子の平均粒子径が低融点金属B粒子の平均粒子径よりも大きいことを特徴とする請求項1又は2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2 average particle diameter of the low melting point metal A particles being greater than the average particle diameter of the low melting point metal B particles.
  4. 低融点金属B粒子の平均粒径が低融点金属A粒子の平均粒径の80%以下であることを特徴とする請求項1乃至3のうちいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein an average particle diameter of the low melting point metal B particles is less than 80% of the average particle diameter of the low melting point metal A particles.
  5. 樹脂が熱硬化性樹脂であることを特徴とする請求項1乃至4のうちいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4 resin characterized in that it is a thermosetting resin.
  6. 樹脂が、トリアリルイソシアヌレートを含有することを特徴とする請求項1乃至5のうちいずれかに記載の導電性ペースト。 Resin, conductive paste according to any one of claims 1 to 5, characterized in that it contains triallyl isocyanurate.
  7. 低融点金属A粒子の含有量をM1、低融点金属B粒子の含有量をM2、低抵抗金属粒子の含有量をM3としたとき、(M2)/(M1+M2)が30〜80%、(M3)/(M1+M2+M3)が40〜60%の関係を満足することを特徴とする請求項1乃至6のうちいずれかに記載の導電性ペースト。 When the content of the low melting point metal A particles M1, the content of the low melting point metal B particles M2, was the content of the low-resistance metal particles M3, (M2) / (M1 + M2) is 30 to 80%, (M3 ) / (M1 + M2 + M3) 40 to 60% conductive paste according to any one of claims 1 to 6, characterized by satisfying the relation.
  8. 低融点金属A粒子と低融点金属B粒子の融点の差が10℃以上であることを特徴とする請求項1乃至7のうちいずれかに記載の導電性ペースト。 Low melting point metal A particles and the low-melting metal B difference in the melting point of the particles, characterized in that at 10 ° C. or more claims 1 to 7 conductive paste according to any one of.
  9. 低融点金属B粒子が、Biを含有することを特徴とする請求項1乃至8のうちいずれかに記載の導電性ペースト。 Low melting point metal B particles, the conductive paste according to any one of claims 1 to 8, characterized by containing Bi.
  10. 低融点金属A粒子、低融点金属B粒子、低抵抗金属粒子の含有量が合計で85〜95質量%、樹脂の含有量が5〜15質量%であることを特徴とする請求項1乃至9のうちいずれかに記載の導電性ペースト。 Low melting point metal A particles, low melting point metal B particles, 85 to 95 wt% content of the low-resistance metal particles in total, to claim 1, wherein the content of the resin is characterized in that 5 to 15 mass% 9 the conductive paste according to any one of.
  11. 少なくとも樹脂を含有する絶縁基板と配線層とが積層され、該配線層間を電気的に接続するために前記絶縁基板内にビアを具備してなる配線基板であって、前記ビアが、請求項1乃至10のうちいずれかに記載の導電性ペーストを充填して形成されたことを特徴とする配線基板。 At least a resin and an insulating substrate containing a wiring layer is laminated, a wiring substrate formed by comprising a via in the insulating substrate to electrically connect the wiring layers, the vias claim 1 wiring board characterized by being formed by filling a conductive paste according to any one of to 10.
  12. 少なくとも熱硬化性樹脂を含有する未硬化あるいは半硬化状態の絶縁基板にビアホールを形成する工程と、前記ビアホールに請求項1乃至10のうちいずれかに記載の導電性ペーストを充填する工程と、前記絶縁基板の表面に導体層を形成する工程と、前記絶縁基板を積層して一体化した後、前記熱硬化性樹脂の硬化温度に加熱して一括硬化する工程とを具備することを特徴とする配線基板の製造方法。 A step of filling and forming a via hole in an uncured or semi-cured state insulating substrate containing at least a thermosetting resin, a conductive paste according to any one of claims 1 to 10 in the via hole, wherein forming a conductive layer on the surface of the insulating substrate, it was integrated by laminating the insulating substrate, characterized by comprising the step of simultaneously cured by heating to curing temperature of the thermosetting resin a method for manufacturing a wiring board.
JP2003300632A 2003-08-25 2003-08-25 Conductive paste, wiring board and manufacturing method thereof Active JP4268476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300632A JP4268476B2 (en) 2003-08-25 2003-08-25 Conductive paste, wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300632A JP4268476B2 (en) 2003-08-25 2003-08-25 Conductive paste, wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005071825A true JP2005071825A (en) 2005-03-17
JP4268476B2 JP4268476B2 (en) 2009-05-27

Family

ID=34405482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300632A Active JP4268476B2 (en) 2003-08-25 2003-08-25 Conductive paste, wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4268476B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042696A (en) * 2005-08-01 2007-02-15 Furukawa Circuit Foil Kk Laminated circuit board
JP2008010858A (en) * 2006-05-30 2008-01-17 Mitsubishi Plastics Ind Ltd Multilayer printed circuit board with cavity portion
JP2008227012A (en) * 2007-03-09 2008-09-25 Mitsubishi Plastics Ind Ltd Multilayer wiring board
JP2008235833A (en) * 2007-03-23 2008-10-02 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring board
JP2008244091A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
JP2008244061A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
WO2009069273A1 (en) 2007-11-28 2009-06-04 Panasonic Corporation Electrically conductive paste, and electrical and electronic device comprising the same
JP2011199250A (en) * 2010-02-25 2011-10-06 Panasonic Corp Multilayer wiring substrate, and method for producing multilayer wiring substrate
US8110749B2 (en) 2008-05-30 2012-02-07 Fujitsu Limited Printed wiring board
US8119925B2 (en) 2008-05-30 2012-02-21 Fujitsu Limited Core substrate and printed wiring board
US8152953B2 (en) 2008-05-30 2012-04-10 Fujitsu Limited Method of making printed wiring board and method of making printed circuit board unit
US8182923B2 (en) * 2008-04-23 2012-05-22 Panasonic Corporation Conductive paste and mounting structure using the same
WO2012086140A1 (en) * 2010-12-21 2012-06-28 パナソニック株式会社 Multilayer wiring substrate, production method for multilayer wiring substrate, and via paste
WO2012090402A1 (en) * 2010-12-29 2012-07-05 パナソニック株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
JP2013235807A (en) * 2012-05-04 2013-11-21 Samsung Electro-Mechanics Co Ltd Conductive resin composition, multilayer ceramic capacitor including the same, and method for manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609850B2 (en) * 2005-08-01 2011-01-12 古河電気工業株式会社 Multilayer circuit board
JP2007042696A (en) * 2005-08-01 2007-02-15 Furukawa Circuit Foil Kk Laminated circuit board
JP2008010858A (en) * 2006-05-30 2008-01-17 Mitsubishi Plastics Ind Ltd Multilayer printed circuit board with cavity portion
JP2008227012A (en) * 2007-03-09 2008-09-25 Mitsubishi Plastics Ind Ltd Multilayer wiring board
JP2008235833A (en) * 2007-03-23 2008-10-02 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring board
JP2008244061A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
JP2008244091A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
US8540903B2 (en) 2007-11-28 2013-09-24 Panasonic Corporation Electrically conductive paste, and electrical and electronic device comprising the same
WO2009069273A1 (en) 2007-11-28 2009-06-04 Panasonic Corporation Electrically conductive paste, and electrical and electronic device comprising the same
EP2216790A1 (en) * 2007-11-28 2010-08-11 Panasonic Corporation Electrically conductive paste, and electrical and electronic device comprising the same
EP2216790A4 (en) * 2007-11-28 2010-12-15 Panasonic Corp Electrically conductive paste, and electrical and electronic device comprising the same
US20110049439A1 (en) * 2007-11-28 2011-03-03 Takayuki Higuchi Electrically conductive paste, and electrical and electronic device comprising the same
US8182923B2 (en) * 2008-04-23 2012-05-22 Panasonic Corporation Conductive paste and mounting structure using the same
US8110749B2 (en) 2008-05-30 2012-02-07 Fujitsu Limited Printed wiring board
US8119925B2 (en) 2008-05-30 2012-02-21 Fujitsu Limited Core substrate and printed wiring board
US8152953B2 (en) 2008-05-30 2012-04-10 Fujitsu Limited Method of making printed wiring board and method of making printed circuit board unit
JP2011199250A (en) * 2010-02-25 2011-10-06 Panasonic Corp Multilayer wiring substrate, and method for producing multilayer wiring substrate
WO2012086140A1 (en) * 2010-12-21 2012-06-28 パナソニック株式会社 Multilayer wiring substrate, production method for multilayer wiring substrate, and via paste
WO2012090402A1 (en) * 2010-12-29 2012-07-05 パナソニック株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
CN102884872A (en) * 2010-12-29 2013-01-16 松下电器产业株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
JP2013235807A (en) * 2012-05-04 2013-11-21 Samsung Electro-Mechanics Co Ltd Conductive resin composition, multilayer ceramic capacitor including the same, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4268476B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US5906042A (en) Method and structure to interconnect traces of two conductive layers in a printed circuit board
EP1267596B1 (en) Multilayer printed circuit board comprising a ceramic substrate
US5948533A (en) Vertically interconnected electronic assemblies and compositions useful therefor
JP4279893B2 (en) Manufacturing method of circuit component built-in module
EP1250033B1 (en) Printed circuit board and electronic component
EP1267597A2 (en) Printed wiring board with embedded electric device and method for manufacturing printed wiring board with embedded electric device
US7091593B2 (en) Circuit board with built-in electronic component and method for manufacturing the same
US5837119A (en) Methods of fabricating dendritic powder materials for high conductivity paste applications
JP3401767B2 (en) Multilayer ceramic substrate and its manufacturing method
US5562973A (en) Ceramic multi-layer wiring board
JP3598060B2 (en) Circuit component module, manufacturing method thereof, and radio device
JP3709882B2 (en) The manufacturing method and the circuit module
US5627344A (en) Multilayer ceramic circuit substrate, process for producing the same, and electrically conductive material for use in multilayer ceramic circuit substrate
US6710261B2 (en) Conductive bond, multilayer printed circuit board, and method for making the multilayer printed circuit board
US8158503B2 (en) Multilayer interconnection substrate and method of manufacturing the same
CN101454852B (en) Ceramic electronic component and method for manufacturing same
US8063315B2 (en) Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
CN100378969C (en) Intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate
US6848178B2 (en) Enhancement of current-carrying capacity of a multilayer circuit board
US20040208933A1 (en) Method for manufacturing multilayer circuit board
JP3236818B2 (en) Manufacturing method of the head protection multilayer wiring board
JP3051700B2 (en) Manufacturing method of the head protection multilayer wiring board
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
US6373000B2 (en) Double-sided circuit board and multilayer wiring board comprising the same and process for producing double-sided circuit board
US20060042826A1 (en) Circuit board, multi-layer wiring board method for making circuity board, and method for making multi-layer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Effective date: 20081017

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081027

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081226

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090127

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20140227