JP2005069237A - Control method of fuel injection device - Google Patents

Control method of fuel injection device Download PDF

Info

Publication number
JP2005069237A
JP2005069237A JP2004359316A JP2004359316A JP2005069237A JP 2005069237 A JP2005069237 A JP 2005069237A JP 2004359316 A JP2004359316 A JP 2004359316A JP 2004359316 A JP2004359316 A JP 2004359316A JP 2005069237 A JP2005069237 A JP 2005069237A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
cylinders
fuel injection
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004359316A
Other languages
Japanese (ja)
Inventor
Takashi Sakasai
隆 逆井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2004359316A priority Critical patent/JP2005069237A/en
Publication of JP2005069237A publication Critical patent/JP2005069237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of fuel injection to reduce the exhaust quantity of white smoke generated immediately after the starting by adjusting a fuel injection period and an injection quantity by each cylinder of an electronic control-type unit injector used in a diesel engine. <P>SOLUTION: In this control method of fuel injection device of the diesel engine, the fuel is successively supplied to each of cylinders, and the injection period and the injection quantity are controlled by each cylinder to reduce the exhaust quantity of white smoke generated at low temperature and immediately after the starting. Specific two groups are formed on the basis of the order of ignition of cylinders, the unignited cylinder is discriminated, and the supply of the fuel to the group of the unignized cylinders is stopped. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料噴射装置の制御方法に係わり、特にはディ−ゼルエンジンに用いられる電子制御式ユニットインジェクタの各気筒ごとに燃料噴射時期、噴射量を変えることの出来る燃料噴射装置で、始動直後に発生する白煙の排出量を制御する燃料噴射装置の制御に関する。   The present invention relates to a method for controlling a fuel injection device, and more particularly to a fuel injection device capable of changing the fuel injection timing and injection amount for each cylinder of an electronically controlled unit injector used in a diesel engine. The present invention relates to the control of a fuel injection device that controls the amount of white smoke generated in the engine.

従来、ディ−ゼルエンジンに用いられている電子制御式ユニットインジェクタ燃料噴射制御装置を説明する。図7はエンジンの電子制御式ユニットインジェクタ燃料噴射装置の全体システム図を示す。図1において、ユニットインジェクタ10への燃料供給回路は、フィ−ドポンプ11により、燃料を図示されてない燃料タンクより吸い上げ、燃料送り回路12を通り、各気筒に配設されたユニットインジェクタ10に圧送される。ユニットインジェクタ10に入つた燃料はカム軸30で加圧され、エンジンに必要な量だけ燃焼室内に噴射し、残つた燃料は燃料戻り回路13を通り、図示されてない燃料タンクに戻る。   An electronically controlled unit injector fuel injection control device conventionally used in a diesel engine will be described. FIG. 7 shows an overall system diagram of an electronically controlled unit injector fuel injection device for an engine. In FIG. 1, a fuel supply circuit to a unit injector 10 sucks fuel from a fuel tank (not shown) by a feed pump 11, passes through a fuel feed circuit 12, and is pumped to a unit injector 10 disposed in each cylinder. Is done. The fuel entering the unit injector 10 is pressurized by the camshaft 30 and injected into the combustion chamber by an amount necessary for the engine, and the remaining fuel passes through the fuel return circuit 13 and returns to a fuel tank (not shown).

各気筒のユニットインジェクタ10にはソレノイドバルブ10aが取着されている。ソレノイドバルブ10aの開閉により燃料噴射量および燃料噴射時期が決まる、燃料噴射量および燃料噴射時期の制御はクランクシャフト回転速度センサ50、気筒判別センサ51、エンジン水温センサ53およびアクセクセルペダル43の開度らの、それぞれの信号をコントロ−ルユニット40で処理し制御する。例えば、4サイクル、直列6気筒、着火順序1,5,3,6,2,4のエンジンの制御を図8で説明する。   A solenoid valve 10a is attached to the unit injector 10 of each cylinder. The fuel injection amount and fuel injection timing are determined by opening and closing the solenoid valve 10a. The fuel injection amount and fuel injection timing are controlled by the crankshaft rotation speed sensor 50, the cylinder discrimination sensor 51, the engine water temperature sensor 53, and the opening degree of the accelerator pedal 43. These signals are processed and controlled by the control unit 40. For example, the control of the engine of four cycles, in-line six cylinders, and firing order 1, 5, 3, 6, 2, 4 will be described with reference to FIG.

図8はクランク軸およびカム軸から発生するパルス波形の関係を説明する図である。4サイクルなので、クランク軸1回転(360度)に対し、カム軸は1/2回転(180度)回転する関係にある、クランク軸の第1気筒が上死点(圧縮)にある時、第6気筒は上死点(排気)にある。気筒の判別はカム軸で行い、着火順序に従つている。即ちクランク軸の第1気筒が上死点(圧縮)にある時、カム軸が第1気筒のパルス波形と合わせているので気筒の判別が出来るようになつている。なおクランク軸には1回転(360度)の間に36のパルス波形(1パルス波形あたり10度)が等間隔に発生するようにしている。クランク軸のパルス波形はエンジン回転速度の検出と同時に、クランク軸の角度位置も検出している。   FIG. 8 is a diagram for explaining the relationship between pulse waveforms generated from the crankshaft and the camshaft. Since there are four cycles, the camshaft is ½ rotation (180 degrees) with respect to one rotation of the crankshaft (360 degrees). When the first cylinder of the crankshaft is at top dead center (compression), The six cylinders are at top dead center (exhaust). The cylinder is discriminated by the camshaft and follows the firing order. That is, when the first cylinder of the crankshaft is at top dead center (compression), the camshaft is matched with the pulse waveform of the first cylinder so that the cylinder can be discriminated. Note that 36 pulse waveforms (10 degrees per pulse waveform) are generated at equal intervals during one rotation (360 degrees) on the crankshaft. The crankshaft pulse waveform detects the angular position of the crankshaft simultaneously with the detection of the engine speed.

カム軸には1回転(360度)で6個のパルス波形が等間隔に、また何気筒目か判断出来るように、基準信号のパルス波形がついている。   The camshaft is provided with a reference signal pulse waveform so that six pulse waveforms can be determined at equal intervals in one rotation (360 degrees) and the number of cylinders can be determined.

クランク軸の回転速度および角度位置、カム軸の気筒の判別のパルス波形の信号により燃料噴射時期、噴射量の制御がおこなわれる。燃料噴射時期はクランク軸の角度位置およびカム軸の気筒の判別の信号で各気筒の噴射時期が決まる。又噴射量はアクセルペダル43の開度、クランク軸の回転速度の信号により、コントロ−ルユニット40の内部の図示されない電源供給装置からユニットインジェクタ10のソレノイドバルブ10aへの通電時間により決まる。   The fuel injection timing and the injection amount are controlled by a signal of a pulse waveform for discriminating the rotational speed and angular position of the crankshaft and the cylinder of the camshaft. The fuel injection timing is determined by the angular position of the crankshaft and the signal for discriminating the cylinder of the camshaft. The injection amount is determined by the energization time from the power supply device (not shown) inside the control unit 40 to the solenoid valve 10a of the unit injector 10 according to the opening degree of the accelerator pedal 43 and the rotation speed of the crankshaft.

従来の電子制御式ユニットインジェクタの燃料噴射時期、噴射量は各気筒共、変えることなく、同じ制御でおこなつている。また、このような、順次着火する気筒への燃料噴射を変化させる燃料噴射装置の制御方法には、例えば、特許文献1のようなものがある。   The fuel injection timing and the injection amount of the conventional electronically controlled unit injector are controlled by the same control without changing in each cylinder. Further, for example, Patent Document 1 discloses a method for controlling the fuel injection device that changes the fuel injection to the sequentially ignited cylinders.

特開平3−185239号公報Japanese Patent Laid-Open No. 3-185239

エンジンの高出力化および排気ガスNOx の低減対策として、燃焼ガス圧力、燃焼温度を下げるための有効な手段として、圧縮比を下げたり、噴射時期遅延を行うことが多い。しかしながら、始動性の悪化および始動白煙の排出の問題を伴うことが多い。   As measures for increasing engine output and reducing exhaust gas NOx, as an effective means for lowering the combustion gas pressure and combustion temperature, the compression ratio is often lowered or the injection timing is delayed. However, it often involves a problem of startability deterioration and discharge of starting white smoke.

特に低温時の始動はスタ−タで始動後、初めに着火した気筒に引続き、着火順序の通り正確に着火しないことが多く、未着火気筒もあれば、着火気筒もあり不規則で、これを繰り返すため、全気筒完爆の吹き上がり迄に時間がかかる。また初爆後未着火気筒が多い場合には、始動操作を繰り返すことになる。   Especially when starting at low temperatures, after starting with a starter, the cylinder that ignited first is often not ignited exactly in the order of ignition, and there are some unignited cylinders and some ignited cylinders. Since it repeats, it takes time to blow up all cylinders. When there are many unignited cylinders after the first explosion, the starting operation is repeated.

白煙は始動時および始動直後に排出し、燃焼室が低温の状態での燃焼のため、不完全燃焼を起しアセトアルデヒドやホルムアルデヒドが発生し、強い刺激臭を伴う。また未着火気筒の燃料は油滴の状態で排気ガスに混って排出されるため白煙発生の原因となる。白煙はないことが理想であるが、あつても消失までの時間をより短くすることが課題である。   White smoke is discharged at the start and immediately after the start, and combustion occurs in a low temperature state of the combustion chamber, resulting in incomplete combustion, acetaldehyde and formaldehyde, and a strong irritating odor. Further, since the fuel in the unignited cylinder is discharged in the form of oil droplets mixed with the exhaust gas, white smoke is generated. Ideally, there should be no white smoke, but the challenge is to reduce the time to disappear.

本発明は上記従来の問題点の燃料噴射装置の制御方法に係わり、特にはディ−ゼルエンジンに用いられる電子制御式ユニットインジェクタの各気筒ごとに燃料噴射時期、噴射量を変えて、始動直後に発生する白煙の排出量を低減させる燃料噴射の制御方法の改良を目的とする。   The present invention relates to a conventional method for controlling a fuel injection device, and particularly, immediately after starting by changing the fuel injection timing and the injection amount for each cylinder of an electronically controlled unit injector used in a diesel engine. The purpose is to improve the control method of fuel injection to reduce the amount of white smoke generated.

上記目的を達成するために、燃料噴射装置の制御方法の発明では、低温時、始動直後に発生する白煙の排出量を低減させるため、各気筒に順次燃料を供給し、各気筒の噴射時期、噴射量を制御するディ−ゼルエンジンの燃料噴射装置の制御方法において、気筒着火順序により所定の2グル−プを形成し、かつ未着火気筒を判別し、着火しない気筒のグル−プへ燃料の供給を停止することにしている。   In order to achieve the above object, in the invention of the control method of the fuel injection device, in order to reduce the amount of white smoke generated immediately after start-up at low temperatures, fuel is sequentially supplied to each cylinder, and the injection timing of each cylinder is In the control method of the fuel injection device of the diesel engine for controlling the injection amount, the predetermined two groups are formed according to the cylinder ignition order, the unignited cylinders are discriminated, and the fuel is supplied to the groups of cylinders that are not ignited. The supply will be stopped.

上記の制御方法によれば、低温時、始動直後に発生する白煙の排出量の低減は、各気筒に順次燃料を供給し、各気筒の噴射時期、噴射量を制御するディ−ゼルエンジンの燃料噴射制御方法において、気筒着火順序により所定の2グル−プを形成し、かつ未着火気筒を判別し、着火しない気筒のグル−プへの燃料の供給を停止する。これにより着火しない気筒のグル−プへの燃料の供給が停止されているので、未燃の燃料がなくなるとともに、他の着火している気筒のグル−プは、気筒あたりの燃料噴射量が、略2倍となるので、燃焼温度も高くなる。その結果未燃の燃料が少なくり、白煙の排出量を低減することができるとともに、水温の上昇も速くなるため燃焼が安定し白煙の消失までの時間をより短くするこことが出来る。   According to the above control method, the amount of white smoke generated immediately after starting at low temperatures is reduced by supplying fuel to each cylinder sequentially and controlling the injection timing and injection amount of each cylinder. In the fuel injection control method, the predetermined two groups are formed according to the cylinder firing order, the unignited cylinders are discriminated, and the supply of fuel to the groups of cylinders that are not ignited is stopped. As a result, the supply of fuel to the group of cylinders that do not ignite is stopped, so there is no unburned fuel, and the group of other ignited cylinders has a fuel injection amount per cylinder, Since it is approximately doubled, the combustion temperature is also increased. As a result, the amount of unburned fuel is reduced, the amount of white smoke discharged can be reduced, and the temperature of the water is increased rapidly, so that combustion is stabilized and the time until the white smoke disappears can be further shortened.

以下に、本発明に係わるエンジンの燃料噴射装置の制御方法につき図面を参照して説明する。なお、エンジンの燃料噴射量装置の構成は従来例の図7と同一のため説明は省略する。以下一実施例として、直列6気筒エンジンの始動および始動直後の制御方法を図1のフロ−チャ−ト図で説明する。   Hereinafter, a control method for a fuel injection device for an engine according to the present invention will be described with reference to the drawings. The configuration of the engine fuel injection amount device is the same as that of FIG. As an example, the inline 6-cylinder engine is started and the control method immediately after the start is described with reference to the flowchart of FIG.

本発明の理解を容易にするために、まずエンジンの始動から完爆、自立運転を図2において説明する。まず始動から完爆の吹き上がり迄に至るまで過程を説明すると、始動S1はスタ−タで始動後、エンジンのクランキンで回転速度が上がり初爆S2に至る、初爆で着火した気筒に引続き、直列6気筒の着火順序1,5,3,6,2,4で着火する。その際エンジン回転速度の変動があるが、時間経過と共に少なくなり、完爆の吹き上がりS3迄に至る。目標回転速度はローアイドルとして、当初より設定している。また、図中のN1:始動可能回転速度,N2:始動用目標回転速度,N3:自立運転用目標回転速度下限値,N4:自立運転用目標回転速度上限値は制御の判断値として、当初より設定し、対象エンジン毎にテスト結果から設定する。   In order to facilitate understanding of the present invention, first, the complete explosion and the self-sustaining operation from the start of the engine will be described with reference to FIG. First, the process from the start to the completion of the complete explosion will be explained. After the start S1 is started with the starter, the rotation speed is increased with the engine crankin and the initial explosion S2 is followed. The in-line 6 cylinders are ignited in the firing order 1, 5, 3, 6, 2, 4. At that time, there is a fluctuation in the engine rotation speed, but it decreases with the passage of time and reaches the completion of the complete explosion until S3. The target rotation speed is set from the beginning as low idle. In the figure, N1: startable rotation speed, N2: target rotation speed for start, N3: target rotation speed lower limit value for autonomous operation, and N4: target rotation speed upper limit value for autonomous operation are used as control judgment values from the beginning. Set from the test results for each target engine.

次に本発明のエンジンの始動の作動を図1のフロ−チャ−ト図に従い説明する。ステップ1ではスタ−トSWを入力する。ステップ2ではエンジン水温センサ53から水温(TW)をコントロ−ルユニット40に入力する。ステップ3では水温に応じて、噴射時期,噴射量の初期設定をする。なお水温と噴射時期,噴射量の関係は、例えば、図3に示す通り縦軸に噴射時期、横軸に水温をとり、水温と噴射時期との関係は、点線の通り水温が低くなれば、噴射時期を進ませる。同様に縦軸に噴射量、横軸に水温をとり、水温と噴射量との関係は、実線の通り水温が低くなれば、噴射量は多くする事を制御の判断値として、当初より対象エンジン毎にテスト結果から設定しコントロ−ルユニット40の図示しない、記憶装置に記憶させておく。   Next, the starting operation of the engine of the present invention will be described with reference to the flowchart of FIG. In step 1, the start SW is input. In step 2, the water temperature (TW) is input from the engine water temperature sensor 53 to the control unit 40. In step 3, the injection timing and the injection amount are initially set according to the water temperature. The relationship between the water temperature, the injection timing, and the injection amount is, for example, as shown in FIG. 3, the vertical axis is the injection timing, the horizontal axis is the water temperature, and the relationship between the water temperature and the injection timing is as follows: Advance the injection timing. Similarly, the injection amount is plotted on the vertical axis, and the water temperature is plotted on the horizontal axis. The relationship between the water temperature and the injection amount is that the target engine from the beginning with the injection amount increasing as the control judgment value if the water temperature decreases as shown by the solid line. The test result is set for each time and stored in a storage device (not shown) of the control unit 40.

次にステップ4ではエンジン回転速度(NE)をクランク軸回転速度センサ50より入力する。ステップ5ではエンジン回転速度の変動(角速度)により初めに着火した気筒を認識する、例えば図5に示す通り縦軸に回転速度変動(角速度)、横軸に経過時間をとり、着火順序1,5,3,6,2,4に従つて回転速度変動を見ると、2気筒目および4気筒目は圧縮によるエンジンクランキングの回転速度変動Naがある。経過時間S1の時、1気筒目が初めて着火すると、燃焼による回転速度変動がNbまで大きくなる。この時カム軸30の気筒判別センサ51およびクランク軸回転速度センサ−50の回転速度変動の変化(NaからNbへ)の信号がコントロ−ルユニット40に送られ、1気筒目が初めて着火したことが認識される。その後5気筒目および6気筒目が引き続き着火した時には実線Bの通りになるが、着火しない時には点線のCの通りになる。   Next, at step 4, the engine rotational speed (NE) is input from the crankshaft rotational speed sensor 50. In step 5, the cylinder that first ignited is recognized by the fluctuation of the engine speed (angular speed). For example, as shown in FIG. 5, the vertical axis represents the rotational speed fluctuation (angular speed) and the horizontal axis represents the elapsed time. , 3, 6, 2 and 4, the second cylinder and the fourth cylinder have a rotation speed fluctuation Na of engine cranking due to compression. When the first cylinder is ignited for the first time at the elapsed time S1, the rotational speed fluctuation due to combustion increases to Nb. At this time, signals of changes in rotational speed fluctuations (from Na to Nb) of the cylinder discrimination sensor 51 and the crankshaft rotational speed sensor 50 of the camshaft 30 are sent to the control unit 40, and the first cylinder is ignited for the first time. Be recognized. After that, when the fifth and sixth cylinders continue to be ignited, the result is as shown by a solid line B, but when not ignited, the result is as shown by a dotted line C.

ステップ6では、その後に続く気筒の噴射時期と噴射量を各水温TW,エンジン回転速度NEより制御する。噴射時期と水温および噴射量と水温との関係は前記図3の通り行い、噴射時期および噴射量と回転速度との関係は、例えば、図4に示す通り縦軸に噴射時期、横軸に回転速度をとり、噴射時期と回転速度との関係は、点線の通り回転速度を高くなれば、噴射時期を進ませる。同様に縦軸に噴射量、横軸に回転速度をとり、噴射量と回転速度との関係は、実線の通り回転速度が高くなれば、噴射量を多くする事を制御の判断値として、当初より対象エンジン毎にテスト結果から設定しコントロ−ルユニット40の図示しない、記憶装置に記憶させておく。この記憶に応じて制御する。   In step 6, the subsequent cylinder injection timing and injection amount are controlled from each water temperature TW and engine speed NE. The relationship between the injection timing, the water temperature, the injection amount, and the water temperature is performed as shown in FIG. 3, and the relationship between the injection timing, the injection amount, and the rotation speed is, for example, as shown in FIG. As for the relationship between the injection timing and the rotation speed, the injection timing is advanced if the rotation speed is increased as shown by the dotted line. Similarly, the injection amount is plotted on the vertical axis and the rotational speed is plotted on the horizontal axis, and the relationship between the injection amount and the rotational speed is initially set as a control judgment value to increase the injection amount if the rotational speed increases as shown by the solid line. Further, it is set from the test result for each target engine and stored in a storage device (not shown) of the control unit 40. Control is performed according to this memory.

ステップ7では、エンジン回転速度NEが始動可能回転速度N1より多いか、否かを判定している。この判定は例えば始動可能回転速度N1が300rpmを超えた時は次のステップ8に進み、300rpm以下の時は再びステップ6に戻る。始動可能回転速度N1は制御の判断値として、当初より対象エンジン毎にテスト結果から設定しコントロ−ルユニット40の図示しない、記憶装置に記憶させておく。   In step 7, it is determined whether or not the engine rotational speed NE is higher than the startable rotational speed N1. This determination proceeds to the next step 8 when the startable rotation speed N1 exceeds 300 rpm, for example, and returns to step 6 again when it is 300 rpm or less. The startable rotation speed N1 is set as a control judgment value from the test result for each target engine from the beginning, and stored in a storage device (not shown) of the control unit 40.

ステップ8では、全筒エンジン回転速度NE,水温TWにより噴射時期と噴射量により制御する。全気筒について、前記の図3および図4により制御する。ステップ9は、エンジン回転速度NEが始動用目標回転速度N2より多いか、否かを判定している。この判定は例えばエンジン回転速度が始動回転速度N2が675rpmを超えた時は次のステップ10に進み、675rpm以下の時は再びステップ8に戻る。始動用目標回転速度N2は制御の判断値として、当初より、対象エンジン毎にテスト結果から設定しコントロ−ルユニット40の図示しない、記憶装置に記憶させておく。以上が始動から完爆の吹き上がり迄の制御方法である。   In step 8, control is performed based on the injection timing and the injection amount based on the all-cylinder engine rotational speed NE and the water temperature TW. All cylinders are controlled by the above-described FIG. 3 and FIG. Step 9 determines whether or not the engine rotational speed NE is higher than the starting target rotational speed N2. For example, this determination proceeds to the next step 10 when the engine rotation speed N2 exceeds 675 rpm, and returns to step 8 when the engine rotation speed N2 is less than 675 rpm. The starting target rotational speed N2 is initially set as a control judgment value from the test result for each target engine and stored in a storage device (not shown) of the control unit 40. The above is the control method from the start to the complete explosion.

次に本発明の燃料噴射装置の制御方法の白煙の排出量低減の作動を図6のフロ−チャ−ト図に従い説明する。ステップ10では、実測水温TWが設定水温TW1より高いか、否かを判定している。この判定は例えば設定温度TW1が10℃を超えた時は次のステップ11Bに進み、10℃以下の時は次のステップ11Aに進む。設定温度TW1の10℃は白煙対策の制御の判断値として、当初より、対象エンジン毎にテスト結果から設定しコントロ−ルユニット40の図示しない、記憶装置に記憶させておく。   Next, the operation of reducing the amount of white smoke emission in the control method for the fuel injection device of the present invention will be described with reference to the flowchart of FIG. In step 10, it is determined whether or not the actually measured water temperature TW is higher than the set water temperature TW1. For example, when the set temperature TW1 exceeds 10 ° C., the process proceeds to the next step 11B. When the set temperature TW1 is 10 ° C. or less, the process proceeds to the next step 11A. A set temperature TW1 of 10 ° C. is initially set as a judgment value for white smoke countermeasure control from the test results for each target engine and stored in a storage device (not shown) of the control unit 40.

ステップ11Aでは減筒運転しているか、否かを判定してる。減筒運転とは例えば6気筒エンジンで、3気筒着火し、残り3気筒は着火しないで運転する事をいう。減筒運転している場合には、ステップ16へ、減筒運転してない場合にはステップ12Aへ、進む。ステップ12Aではエンジン回転速度NE変動により着火してない気筒があるか、否かを判定してる。前述の始動時のステップ5と同様、カム軸30の気筒判別センサ51およびクランク軸回転速度センサ−50の回転速度の変動の大きさで判断する。即ち着火していない気筒があれば、回転速度の変動は小さく、着火している気筒は回転速度の変動は大きくなる。着火していない気筒がある場合はステップ13Aへ進み、着火してない気筒がない場合、即ち全気筒着火の場合はステップ19へ進む。   In step 11A, it is determined whether or not a reduced cylinder operation is being performed. The reduced-cylinder operation refers to, for example, a 6-cylinder engine that is ignited by 3 cylinders and the remaining 3 cylinders are operated without being ignited. If the reduced-cylinder operation is being performed, the process proceeds to step 16; otherwise, the process proceeds to step 12A. In step 12A, it is determined whether or not there is a cylinder that is not ignited due to fluctuations in the engine speed NE. As in the above-described step 5 at the time of starting, the determination is made based on the magnitude of fluctuations in the rotational speeds of the cylinder discrimination sensor 51 of the camshaft 30 and the crankshaft rotational speed sensor-50. That is, if there is a cylinder that is not ignited, the fluctuation of the rotational speed is small, and the cylinder that is ignited has a large fluctuation of the rotational speed. If there is a cylinder that has not been ignited, the process proceeds to step 13A, and if there is no cylinder that has not been ignited, that is, if all cylinders have been ignited, the process proceeds to step 19.

ステップ13Aでは未着火気筒番号を確認する、気筒別判別センサ51の検出信号で、どの気筒かを判別、確認する。ステップ14Bは未着火気筒を含む前3気筒又は後3気筒の噴射を停止、例えば1気筒目が未着火気筒の時、1気筒目,2気筒目,3気筒目の噴射を停止、前3気筒が噴射を停止したことになる。ステップ19ではステップ12Aより着火してない気筒がない場合、即ち全気筒着火の場合は前3気筒又は後3気筒あらかじめ設定した側の噴射を停止し、次のステップ16へ進む。   In step 13A, an unignited cylinder number is confirmed, and a cylinder detection sensor 51 detects and confirms which cylinder. Step 14B stops the injection of the front three cylinders or the rear three cylinders including the unignited cylinder. For example, when the first cylinder is the unignited cylinder, the injection of the first cylinder, the second cylinder, and the third cylinder is stopped. Stopped the injection. In step 19, if there is no cylinder that has not ignited from step 12A, that is, if all cylinders are ignited, the injection of the pre-set three cylinders or the rear three cylinders is stopped, and the process proceeds to the next step 16.

ステップ16では実測のエンジン回転速度NEが自立運転用目標回転速度下限値N3と同じか、下限値以下か、否かを判定してる。下限値以下の時はステップ15に進み、下限値を超えいる時はステップ17へ進む。ステップ15は噴射指令値を上げる、噴射量を多くして、回転速度を上げる指令を出し、再びステップ16に進む。ステップ17では実測のエンジン回転速度NEが自立運転用目標回転速度上限値N4と同じか、上限値以下か、否かを判定してる。上限値以下の時は再びステップ10に進み、上限値を超えいる時はステップ18へ進む。ステップ18では噴射指令値を下げる、噴射量を少なくして、回転速度を下げる指令を出し、再びステップ17に進む。   In step 16, it is determined whether or not the actually measured engine rotational speed NE is the same as the target rotational speed lower limit value N3 for autonomous operation or less than the lower limit value. When the value is below the lower limit value, the process proceeds to step 15, and when the value exceeds the lower limit value, the process proceeds to step 17. In step 15, a command for increasing the injection command value, increasing the injection amount, and increasing the rotational speed is issued, and the process proceeds to step 16 again. In step 17, it is determined whether or not the actually measured engine speed NE is the same as the target rotation speed upper limit value N4 for independent operation or less than the upper limit value. When it is below the upper limit value, the process proceeds to step 10 again, and when the upper limit value is exceeded, the process proceeds to step 18. In step 18, a command for lowering the injection command value, decreasing the injection amount, and lowering the rotational speed is issued, and the process proceeds to step 17 again.

ステップ11Bは減筒運転しているか、否かを判定してる。減筒運転している場合にはステップ12Bへ、減筒運転してない場合にはステップ13Bへ進む。ステップ12Bは噴射を停止している気筒の噴射開始する。ステップ13Bは通常制御、全気筒噴射し通常の制御をする。ステップ20で終了。   In step 11B, it is determined whether or not the reduced cylinder operation is being performed. If the reduced-cylinder operation is being performed, the process proceeds to step 12B, and if not, the process proceeds to step 13B. Step 12B starts the injection of the cylinder that has stopped the injection. Step 13B performs normal control and normal control by injecting all cylinders. End in step 20.

以上説明したように、本発明によれば、始動時、水温に応じて噴射時期、噴射量を初期設定し、エンジン回転速度入力後、初めに着火した気筒を検出するとともに、その後に続く気筒の噴射時期、噴射量を各気筒毎に水温、エンジン回転速度により制御するので、初めに着火した気筒に引続き、着火順序が確実、正確になり、全気筒完爆の吹き上がり迄の時間が短くなり、かつ始動操作を繰り返すことがなくなるので、始動性が改善できる。また、低温時、始動直後に発生する白煙の排出量の低減は、各気筒に順次燃料を供給し、各気筒の噴射時期、噴射量を制御するディ−ゼルエンジンの燃料噴射制御方法において、気筒着火順序により所定の2グル−プを形成し、かつ未着火気筒を判別し、着火しない気筒のグル−プへの燃料の供給を停止する。これにより着火しない気筒のグル−プへの燃料の供給が停止されるので、未燃の燃料がなくなり、他の着火している気筒のグル−プは、気筒あたりの燃料噴射量が、略2倍となるので、燃焼温度も高くなり、その結果未燃の燃料が少なくり、白煙の排出量を低減することができ、白煙の消失までの時間をより短くするという優れた効果が得られる。   As described above, according to the present invention, at the time of start-up, the injection timing and the injection amount are initially set according to the water temperature, and after the engine rotational speed is input, the first ignited cylinder is detected and the subsequent cylinders are detected. Since the injection timing and injection amount are controlled by the water temperature and engine speed for each cylinder, the ignition sequence is ensured and accurate following the cylinder that ignited first, and the time until the complete explosion of all cylinders is shortened. In addition, since the starting operation is not repeated, the startability can be improved. Further, the reduction of the amount of white smoke generated immediately after starting at low temperatures is achieved by supplying fuel to each cylinder sequentially, and controlling the injection timing and injection amount of each cylinder. The predetermined two groups are formed according to the cylinder firing order, the unignited cylinders are discriminated, and the supply of fuel to the groups of cylinders that are not ignited is stopped. As a result, the supply of fuel to the groups of cylinders that do not ignite is stopped, so that there is no unburned fuel, and the groups of other ignited cylinders have a fuel injection amount per cylinder of about 2. As a result, the combustion temperature is also increased, resulting in less unburned fuel, the reduction of white smoke emission, and the excellent effect of shortening the time until the white smoke disappears. It is done.

本発明の燃料噴射装置の制御方法の始動のフロ−チャ−ト図をしめす。FIG. 2 is a flowchart of starting the fuel injection device control method according to the present invention. エンジンの始動から完爆および自立運転を説明する図である。It is a figure explaining complete explosion and independent operation from starting of an engine. 水温と噴射量、噴射時期の関係を説明する図である。It is a figure explaining the relationship between water temperature, injection amount, and injection timing. 回転速度と噴射量、噴射時期の関係を説明する図である。It is a figure explaining the relationship between a rotational speed, injection amount, and injection timing. 時間と回転速度変動の関係を説明する図である。It is a figure explaining the relationship between time and a rotational speed fluctuation | variation. 本発明の燃料噴射装置の制御方法の白煙の排出量低減のフロ−チャ−ト図をしめす。FIG. 2 is a flowchart for reducing white smoke emission in the control method of the fuel injection device according to the present invention. エンジンの電子制御式ユニットインジェクタ燃料噴射装置の全体システム図をしめす。An overall system diagram of an electronically controlled unit injector fuel injection system for an engine is shown. クランク軸およびカム軸から発生するパルス波形の関係を説明する図である。It is a figure explaining the relationship of the pulse waveform which generate | occur | produces from a crankshaft and a cam shaft.

符号の説明Explanation of symbols

10 ユニットインジェクタ、10a
ソレノイドバルブ、11 フィ−ドポンプ、12 燃料送り回路、13 燃料戻り回路、20 クランク軸、30
カム軸、40 コントロ−ルユニット、43 アクセルペダル、50 クランクシャフト回転速度センサ、51 気筒判別センサ、53 エンジン水温センサ。
10 Unit injector, 10a
Solenoid valve, 11 feed pump, 12 fuel feed circuit, 13 fuel return circuit, 20 crankshaft, 30
Cam shaft, 40 control unit, 43 accelerator pedal, 50 crankshaft rotation speed sensor, 51 cylinder discrimination sensor, 53 engine water temperature sensor.

Claims (1)

低温時、始動直後に発生する白煙の排出量を低減させるため、各気筒に順次燃料を供給し、各気筒の噴射時期、噴射量を制御するディ−ゼルエンジンの燃料噴射装置の制御方法において、気筒着火順序により所定の2グル−プを形成し、かつ未着火気筒を判別し、着火しない気筒のグル−プへの燃料の供給を停止することを特徴とする燃料噴射装置の制御方法。
In a control method for a fuel injection device of a diesel engine, fuel is supplied sequentially to each cylinder in order to reduce the amount of white smoke emitted immediately after starting at low temperatures, and the injection timing and injection amount of each cylinder are controlled. A control method for a fuel injection device, wherein two predetermined groups are formed according to a cylinder ignition order, an unignited cylinder is discriminated, and supply of fuel to a group of cylinders that are not ignited is stopped.
JP2004359316A 2004-12-13 2004-12-13 Control method of fuel injection device Pending JP2005069237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359316A JP2005069237A (en) 2004-12-13 2004-12-13 Control method of fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359316A JP2005069237A (en) 2004-12-13 2004-12-13 Control method of fuel injection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12044095A Division JPH08296477A (en) 1995-04-24 1995-04-24 Control method for fuel injection device

Publications (1)

Publication Number Publication Date
JP2005069237A true JP2005069237A (en) 2005-03-17

Family

ID=34420462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359316A Pending JP2005069237A (en) 2004-12-13 2004-12-13 Control method of fuel injection device

Country Status (1)

Country Link
JP (1) JP2005069237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059663A1 (en) * 2006-11-16 2008-05-22 Yanmar Co., Ltd. Method of controlling internal combustion engine
JP2008128016A (en) * 2006-11-16 2008-06-05 Yanmar Co Ltd Control method of internal combustion engine
JP2011510205A (en) * 2008-01-22 2011-03-31 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of starting internal combustion engine having a plurality of combustion chambers, computer program, and internal combustion engine
JP2013096334A (en) * 2011-11-02 2013-05-20 Mitsubishi Electric Corp Engine controller and engine control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059663A1 (en) * 2006-11-16 2008-05-22 Yanmar Co., Ltd. Method of controlling internal combustion engine
JP2008128016A (en) * 2006-11-16 2008-06-05 Yanmar Co Ltd Control method of internal combustion engine
JP4616818B2 (en) * 2006-11-16 2011-01-19 ヤンマー株式会社 Control method for internal combustion engine
US8096286B2 (en) 2006-11-16 2012-01-17 Yanmar Co., Ltd. Method of controlling internal combustion engine
JP2011510205A (en) * 2008-01-22 2011-03-31 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of starting internal combustion engine having a plurality of combustion chambers, computer program, and internal combustion engine
US8904985B2 (en) 2008-01-22 2014-12-09 Robert Bosch Gmbh Method for starting an internal combustion engine with start-stop function
JP2013096334A (en) * 2011-11-02 2013-05-20 Mitsubishi Electric Corp Engine controller and engine control method

Similar Documents

Publication Publication Date Title
JP5786679B2 (en) Start control device for compression self-ignition engine
JP4616818B2 (en) Control method for internal combustion engine
US20120204827A1 (en) Method, control unit, and internal combustion engine having cylinder deactivation for a start-stop operation having direct start
US5809973A (en) Control device and control method for internal-combustion engine
JP2006112263A (en) Exhaust emission control device for internal combustion engine
CN101520013B (en) Spark-ignition direct-injection cold start strategy using high pressure start
US7478625B1 (en) Engine cranking system with cylinder deactivation for a direct injection engine
JP2005042723A (en) Start-up fuel-control system for internal combustion engine
JP4670710B2 (en) Engine starter
JP4135643B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP5168065B2 (en) Diesel engine control device and diesel engine control method
JP2004028046A (en) Starting control device for internal combustion engine
JP5887877B2 (en) Start control device for compression self-ignition engine
JP3257430B2 (en) Exhaust heating device
JP2009156045A (en) Fuel injection control device of engine
JP2005069237A (en) Control method of fuel injection device
JPH11280522A (en) Start control device for cylinder injection engine
JP2002047976A (en) Fuel injection controller of diesel engine
JP2006017082A (en) Control device for internal combustion engine
JP4329589B2 (en) Engine starter
JPH08296477A (en) Control method for fuel injection device
JP5831168B2 (en) Start control device for compression self-ignition engine
JP3856091B2 (en) Fuel injection control device for multi-cylinder engine
JP2004340135A (en) Method for starting internal combustion engine in automobile
JP5834699B2 (en) Start control device for compression self-ignition engine