JP2005066586A - Charged particulate water - Google Patents

Charged particulate water Download PDF

Info

Publication number
JP2005066586A
JP2005066586A JP2003425862A JP2003425862A JP2005066586A JP 2005066586 A JP2005066586 A JP 2005066586A JP 2003425862 A JP2003425862 A JP 2003425862A JP 2003425862 A JP2003425862 A JP 2003425862A JP 2005066586 A JP2005066586 A JP 2005066586A
Authority
JP
Japan
Prior art keywords
water
fine particle
charged fine
particle water
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003425862A
Other languages
Japanese (ja)
Other versions
JP4608207B2 (en
Inventor
Hiroshi Suda
洋 須田
Toshiyuki Yamauchi
俊幸 山内
Narimasa Iwamoto
成正 岩本
Yasunori Matsui
康訓 松井
Shigekazu Azusawa
茂和 小豆沢
Takayuki Nakada
隆行 中田
Tomonori Tanaka
友規 田中
Tomohiro Yamaguchi
友宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003425862A priority Critical patent/JP4608207B2/en
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to CN2004800098625A priority patent/CN1774301B/en
Priority to US10/552,743 priority patent/US7473298B2/en
Priority to KR1020057018662A priority patent/KR100661069B1/en
Priority to EP04734926A priority patent/EP1666156B1/en
Priority to AT04734926T priority patent/ATE552913T1/en
Priority to EP11192173A priority patent/EP2428278A3/en
Priority to PCT/JP2004/007593 priority patent/WO2004105958A1/en
Priority to CN201210145613.5A priority patent/CN102794256B/en
Priority to TW093115047A priority patent/TW200505802A/en
Publication of JP2005066586A publication Critical patent/JP2005066586A/en
Application granted granted Critical
Publication of JP4608207B2 publication Critical patent/JP4608207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide charged particulate water having high adsorbing properties, long life in air though radicals are contained and capable of obtaining adsorbing properties and an action due to the radicals in an extremely effective manner. <P>SOLUTION: This charged particulate water has a nanometer particle size and contains the radicals. Chemically unstable radicals are added to the charged particulate water finely divided into a nanometer size to extend the life of the charged particulate water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、静電霧化装置などによって生成される帯電微粒子水、つまりは帯電しているとともに微粒子とされている帯電微粒子水に関するものである。   The present invention relates to charged fine particle water generated by an electrostatic atomizer or the like, that is, charged fine particle water that is charged and fine.

水に電荷を付与することによって生成される帯電微粒子水は、空中に放出されると吸着性が高いこと、レイリー分裂によって微細化されやすいことなどが知られている。このような帯電微粒子水の特徴を生かし、特開平13−170514号公報には、ナノメータサイズの粒子径の帯電微粒子水を効率のよい集塵剤として利用した例が示されている。   It is known that charged fine particle water generated by applying electric charge to water has high adsorptivity when released into the air, and is easily refined by Rayleigh splitting. Taking advantage of such characteristics of charged fine particle water, Japanese Patent Application Laid-Open No. 13-170514 shows an example in which charged fine particle water having a particle size of nanometer size is used as an efficient dust collecting agent.

一方、活性化学種であるラジカルは、化学的に反応性が高くて悪臭成分の分解無臭化などに効果的であることが知られている。しかし、活性であるが故に、非常に不安定な物質で空気中では短寿命であり、臭気成分と反応する前に消滅してしまうために十分な効果を得ることが困難であった。   On the other hand, radicals, which are active chemical species, are known to be highly chemically reactive and effective in decomposing and deodorizing malodorous components. However, since it is active, it is a very unstable substance, has a short life in the air, and disappears before reacting with the odor component, so that it is difficult to obtain a sufficient effect.

また、より効果を高める目的で、ラジカルを含んだ微粒子水を用いることによって空気浄化などを試みたものが特開昭53−141167号公報、特開平07−24245号公報、特開平13−96190号公報などに示されている。ただし、これらの例ので微粒子水は、その粒子径がミクロンサイズであり、これ故に空間への拡散性が不十分で、離れたところにある室内の壁面や、衣服、カーテンなどに付着した臭気成分を十分に消臭することができなかった。
特開平13−170514号公報 特開昭53−141167号公報 特開平07−24245号公報 特開平13−96190号公報
Further, for the purpose of enhancing the effect, those which tried air purification by using fine particle water containing radicals are disclosed in JP-A-53-141167, JP-A-07-24245, and JP-A-13-96190. It is shown in the gazette. However, in these examples, the fine particle water has a micron particle size, and therefore is not sufficiently diffusible into the space, and odorous components attached to indoor walls, clothes, curtains, etc. Could not be sufficiently deodorized.
Japanese Patent Laid-Open No. 13-170514 JP-A-53-141167 Japanese Patent Laid-Open No. 07-24245 Japanese Patent Laid-Open No. 13-96190

本発明は上記の従来の問題点に鑑みて発明したものであって、高い吸着性を備えるとともにラジカルを含んでいるにもかかわらず空気中での寿命が長く、吸着性及びラジカルを含有することによる作用をきわめて有効に得ることができる帯電微粒子水を提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned conventional problems, and has a high adsorptivity and has a long life in air despite containing radicals, and contains adsorptivity and radicals. It is an object of the present invention to provide charged fine particle water in which the effect of the above can be obtained very effectively.

上記課題を解決するために本発明に係る帯電微粒子水は、ナノメータサイズの粒子径で且つラジカルを含んでいることに特徴を有している。化学的に不安定なラジカルをナノメータサイズに微細化された帯電微粒子水に含有させることによって、長寿命化したものであり、このために空間内への拡散を大量に行うことができて、室内の壁面や、衣服、カーテンなどに付着した悪臭成分などに効果的に作用し、無臭化することができる。   In order to solve the above problems, the charged fine particle water according to the present invention is characterized by having a particle size of nanometer size and containing radicals. By incorporating chemically unstable radicals into charged fine particle water that has been refined to nanometer size, the life has been extended. It effectively acts on malodorous components adhering to the wall surface of clothes, clothes, curtains, etc., and can be made non-brominated.

ナノメータサイズの粒子径とするのは、これより大きいミクロンオーダーのサイズになると、移動度が小さく、空聞内への拡散が困難となるためであるが、更に好ましくは、粒子径が3〜100nm(電気移動度が0.1〜0.001cm2/vsec)が望ましい。粒子径が3nm未満になると、帯電微粒子水の寿命が極端に短くなってしまって室内の隅々まで帯電微粒子水がいきわたることが困難となるからであり、特に障害物などがある場合は尚更困難となる。また、粒子径が100nmを超えると後述の人の肌の保湿性能の確保が困難となる。100nm程度といわれている肌の角質層の隙間からの帯電微粒子の浸透が困難となるからである。 The reason why the particle size is nanometer size is that when the size is larger than the micron order, the mobility is small and the diffusion into the air is difficult. More preferably, the particle size is 3 to 100 nm. (Electric mobility is preferably 0.1 to 0.001 cm 2 / vsec). If the particle diameter is less than 3 nm, the life of the charged fine particle water becomes extremely short, and it becomes difficult for the charged fine particle water to reach every corner of the room, especially when there are obstacles. It becomes. On the other hand, when the particle diameter exceeds 100 nm, it becomes difficult to ensure the moisture retention performance of the human skin described later. This is because it becomes difficult for the charged fine particles to penetrate from the gap between the stratum corneum of the skin which is said to be about 100 nm.

含有するラジカルは、どのようなものでもよいが、ヒドロキシルラジカル、スーパーオキサイド、一酸化窒素ラジカル、酸素ラジカルが好ましい。反応性も高く、また大気中の酸素や水蒸気から生成されるためにラジカル原材料を用いる必要もなくて、ラジカル含有状態の確保が容易となる。   Any radical may be contained, but a hydroxyl radical, a superoxide, a nitric oxide radical, and an oxygen radical are preferable. The reactivity is high, and since it is generated from oxygen or water vapor in the atmosphere, it is not necessary to use a radical raw material, and it is easy to ensure a radical-containing state.

ちなみに、粒子径がμmオーダーのものであると、含まれる活性種が殆どなく、また帯電微粒子水が有する電荷量もきわめて低く、また、対向電極を接地し、水に負電圧を加えた場合には、マイナスイオン効果も期待することができるものの、その効果は低く、実際上、湿度調整に有効なだけである。   By the way, when the particle size is of the order of μm, there are almost no active species contained, the amount of charged fine particle water is very low, and when the counter electrode is grounded and a negative voltage is applied to the water Although the negative ion effect can be expected, the effect is low, and it is practically effective only for humidity adjustment.

上記ラジカルに加えて酸性化学種を含有させると、代表的な悪臭成分であるアミン化合物などのアルカリ性臭気成分に対しより効果的に作用させることができる。   When an acidic chemical species is contained in addition to the above radicals, it can more effectively act on alkaline odor components such as amine compounds which are typical malodorous components.

酸性化学種としては、どのようなものでもよいが、窒素酸化物や有機酸であると、大気中の窒素や二酸化炭素から生成することができるために、原材料を添加することなく、酸性化学種含有状態の確保が容易となる。   Any kind of acidic chemical species can be used. However, since nitrogen oxides and organic acids can be generated from nitrogen and carbon dioxide in the atmosphere, acidic chemical species can be used without adding raw materials. It is easy to ensure the contained state.

硝酸、硝酸水和物、亜硝酸、亜硝酸水和物であってもよい。これらである場合、帯電微粒子水を弱酸性に保つことが可能で、アルカリ性臭気成分への作用だけでなく、人の肌への浸透、保湿への効果を併せ持つことになる。   It may be nitric acid, nitric acid hydrate, nitrous acid, or nitrous acid hydrate. In these cases, the charged fine particle water can be kept weakly acidic, and not only acts on alkaline odor components, but also has effects on penetration into human skin and moisturizing.

帯電微粒子水の帯電極性は、特に限定はされないが、マイナスに帯電させることによって、脱臭作用だけでなく、いわゆるマイナスイオン効果として知られるストレス低減効果をも併せ持つことができる上に、ナノメータサイズのものであるために、通常のマイナスイオンよりも高い効果を得ることができる。   The charging polarity of the charged fine particle water is not particularly limited, but it can have not only a deodorizing action but also a stress reducing effect known as a so-called negative ion effect by charging it negatively, and it is of nanometer size. Therefore, an effect higher than that of normal negative ions can be obtained.

本発明に係るナノメータサイズの粒子径に霧化された帯電微粒子水は、どのような装置で生成してもよいが、静電霧化装置、殊に水を搬送する多孔質体で構成された搬送体と、搬送体で搬送される水に電圧を印加する水印加電極と、上記搬送体と対向する位置に配された対抗電極と、上記水印加電極と対向電極との間に高電圧を印加する電圧印加部とからなり、搬送体で保持される水と対向電極との間に印加される高電圧によって水を帯電微粒子水とするものを好適に用いることができる。   The charged fine particle water atomized to a nanometer size particle diameter according to the present invention may be generated by any device, but is composed of an electrostatic atomization device, particularly a porous body that transports water. A high voltage is applied between the transport body, a water application electrode for applying a voltage to the water transported by the transport body, a counter electrode disposed at a position facing the transport body, and the water application electrode and the counter electrode. A device that includes a voltage application unit to be applied and that uses water as charged fine particle water by a high voltage applied between water held by the carrier and the counter electrode can be suitably used.

このような静電霧化装置において、多孔質体の材質、形状、対向電極極との距離、印加する電圧値、電流値などを制御することで、目的とするナノメータサイズの粒子径の粒子を容易に得ることができる。   In such an electrostatic atomizer, by controlling the material and shape of the porous body, the distance from the counter electrode electrode, the voltage value to be applied, the current value, etc., particles having a target nanometer size particle diameter can be obtained. Can be easily obtained.

なお、得られた帯電微粒子の粒子径は、微分型電気移動度計測器(DMA/ワイコフ興業製)を用いて電気移動度として計測し、ストークスの法則に基づいて粒子径に換算している。このようにすることで粒子径の正確な測定が可能となるとともに、上記の静電霧化装置の構造や運転条件に粒子径の制御についてのフィードバックが可能となり、目的とするナノメータサイズの粒径を得ることがはじめて可能となった。   In addition, the particle diameter of the obtained charged fine particles is measured as electric mobility using a differential electric mobility measuring instrument (manufactured by DMA / Wyckoff Kogyo), and converted to the particle diameter based on Stokes' law. This makes it possible to accurately measure the particle size, and allows feedback on the control of the particle size to the structure and operating conditions of the electrostatic atomizer described above. Became possible for the first time.

帯電微粒子の粒子径が3nm以上である場合、3nm未満である時よりもその寿命は明らかに長寿命化される。アルミ容器内に帯電微粒子を取り込んで粒子数の変化を微分型電気移動度計測器(DMA)を用いて測定することで、20nm付近の粒子径をもつ帯電微粒子水イと1nmの粒子径の帯電微粒子水ロの粒子数とその寿命を求めた結果を図1に示す。なお、20nmの粒子径の微粒子水イは、後述の実施例で示した静電霧化装置を用いて生成し、1nmの粒子径の微粒子水ロはコロナ放電電極を用いて生成した。   When the particle diameter of the charged fine particles is 3 nm or more, the lifetime is obviously longer than when the charged fine particles are less than 3 nm. By charging charged fine particles into an aluminum container and measuring the change in the number of particles using a differential electric mobility meter (DMA), charged fine particles having a particle size of about 20 nm and charging with a particle size of 1 nm are obtained. FIG. 1 shows the results of obtaining the number of particles and the life of the particles. The fine particle water having a particle diameter of 20 nm was generated using the electrostatic atomizer shown in the examples described later, and the fine particle water having a particle diameter of 1 nm was generated using a corona discharge electrode.

帯電微粒子水は、室内に放出する場合、特に限定するものではないが、0.1g/hr以上の量を噴霧することが望ましい。なお、この量は静電霧化装置内のタンク水の減少量で測定した。   The charged fine particle water is not particularly limited when discharged into the room, but it is desirable to spray an amount of 0.1 g / hr or more. This amount was measured as the amount of tank water in the electrostatic atomizer.

帯電微粒子水に含まれるラジカルの分析は、帯電微粒子をスピントラップ剤が含まれた溶液に導入することによってラジカルを安定化した後、電子スピン共鳴スペクトル法(ESR)によって測定することができる。   Analysis of radicals contained in the charged fine particle water can be measured by electron spin resonance spectroscopy (ESR) after stabilizing the radicals by introducing charged fine particles into a solution containing a spin trap agent.

また帯電微粒子水に含まれる酸性化学種に関しては、帯電微粒子を純水中に導入した後、イオンクロマトグラフィーによって測定することができる。   The acidic chemical species contained in the charged fine particle water can be measured by ion chromatography after introducing the charged fine particles into pure water.

また、帯電微粒子水内の酸性化学種に関しては、その他に、ドリフトチューブ型イオン移動度/質量分析装置によっても計測することができる。   In addition, the acidic chemical species in the charged fine particle water can also be measured by a drift tube type ion mobility / mass spectrometer.

本発明に係る帯電微粒子水は、ラジカルを含有する上に粒子径がナノメータサイズであるために、空気中に放出された時の寿命が長くて拡散性が大であり、これ故に室内の壁面、カーテン、衣類などの付着臭を効率良く且つ効果的に消臭することできる。また、細菌、カビ菌、ウイルスなどに対しても効果的に作用し、不活性化することができる。さらに、花粉などのアレルゲンに対しても効果的に作用し、不活性化することができる。また、人肌に対して高い保湿性能を得ることができる。   Since the charged fine particle water according to the present invention contains radicals and the particle diameter is nanometer size, it has a long life when released into the air and has a large diffusivity. Adherent odors such as curtains and clothes can be efficiently and effectively deodorized. In addition, it can effectively act against bacteria, fungi, viruses, etc., and can be inactivated. Furthermore, it can act effectively on allergens such as pollen and can be inactivated. Moreover, high moisture retention performance can be obtained for human skin.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図2は本発明に係る帯電微粒子水の生成に用いることができる静電霧化装置の一例を示すもので、
水溜め部1と、下端を水溜め部1内の水に浸している複数本の多孔質体からなる棒状の搬送体2と、これら搬送体2の保持及び水に対する電圧の印加のための水印加電極4と、絶縁体からなる保持部6によって保持されているとともに上記複数本の搬送体2の先端部と対向する対向部を備えている対向電極3と、上記水印加電極4と対向電極3との間に高電圧を印加する電圧印加部5とからなるもので、対向電極3と水印加電極4は共にカーボンのような導電材を混入した合成樹脂やSUSのような金属で形成されている。
Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. FIG. 2 shows an example of an electrostatic atomizer that can be used for generation of charged fine particle water according to the present invention.
A water reservoir 1, a rod-shaped transport body 2 composed of a plurality of porous bodies whose lower ends are immersed in water in the water reservoir 1, and a water mark for holding the transport body 2 and applying a voltage to water The counter electrode 3 which is held by the additional electrode 4, the holding unit 6 made of an insulator and is opposed to the tip of the plurality of transport bodies 2, the water application electrode 4 and the counter electrode The counter electrode 3 and the water application electrode 4 are both formed of a synthetic resin mixed with a conductive material such as carbon or a metal such as SUS. ing.

また、上記搬送体2は多孔質体で形成されてその上端が針状に尖った針状霧化部となっているもので、複数本、図示例では6本の搬送体2が水印加電極4に取り付けられている。これら搬送体2は水印加電極4の中央5を中心とする同心円上に等間隔で配置されて、上部が水印加電極4よりも上方に突出し、下部は下方に突出して上記水溜め部1内に入れられた水と接触する。   The transport body 2 is formed of a porous body and has a needle-like atomizing portion with an upper end pointed like a needle. A plurality of transport bodies 2 in the example shown in the drawing are water application electrodes. 4 is attached. These transport bodies 2 are arranged at equal intervals on a concentric circle centered on the center 5 of the water application electrode 4, the upper part projects upward from the water application electrode 4, and the lower part projects downward to form the inside of the water reservoir 1. Contact with water.

対向電極3は、中央に開口部を有するとともに、この開口部の縁が上方から見た時、前記複数本の搬送体2の上端の針状霧化部を中心とする複数の同一径の円弧Rを他の円弧で滑らかにつないだものとなっている。対向電極3を接地し、水印加電極4に電圧印加部5を接続して高電圧を印加するとともに、多孔質体で形成されている搬送体2が毛細管現象で水を吸い上げている時、搬送体2の上端の針状霧化部が印加電極4側の実質的な電極として機能すると同時に、対向電極3の上記円弧Rが実質的な電極として機能するものである。電圧印加部5としては、700〜1200V/mmの電界強度を与えることができるものが好ましい。   The counter electrode 3 has an opening at the center, and when the edge of the opening is viewed from above, a plurality of arcs having the same diameter centered on the needle-like atomizing portions at the upper ends of the plurality of transport bodies 2 R is smoothly connected with other arcs. When the counter electrode 3 is grounded, the voltage application unit 5 is connected to the water application electrode 4 and a high voltage is applied, and the carrier 2 formed of a porous body sucks water by capillary action, The needle-like atomization part at the upper end of the body 2 functions as a substantial electrode on the application electrode 4 side, and the arc R of the counter electrode 3 functions as a substantial electrode. As the voltage application part 5, what can give the electric field strength of 700-1200 V / mm is preferable.

そして、上記搬送体2は上述のように毛細管現象で水を先端にまで運ぶことができる多孔質体で形成されているのであるが、ここでは気孔率が10〜60%、粒子径が1〜100μm、先端針状部の断面形状がφ0.5mm以下の多孔質セラミックを用いているとともに、対向電極3が接地され且つ水印加電極4にマイナスの電圧が印加される場合、使用する水のpH値でマイナスに帯電する等電位点を有する材料からなるものを使用している。なお、水のpH値が7であるならば、シリカを主成分とするものを好適に用いることができる。   And the said conveyance body 2 is formed with the porous body which can carry water to a front-end | tip by capillarity as mentioned above, Here, the porosity is 10 to 60%, and the particle diameter is 1 to 1. When a porous ceramic having a cross-sectional shape of 100 μm and a tip needle-like portion of φ0.5 mm or less is used, the counter electrode 3 is grounded, and a negative voltage is applied to the water application electrode 4, the pH of the water to be used A material made of a material having an equipotential point that is negatively charged in value is used. In addition, if the pH value of water is 7, what has a silica as a main component can be used suitably.

このような材質を選択しているのは次の理由による。すなわち、霧化させる水が例えば水道水、地下水、電解水、pH調整水、ミネラルウォーター、ビタミンCやアミノ酸等の有用成分が入った水、アロマオイルや芳香剤や消臭剤等が添加されている水等に、Ca,Mg等のミネラル成分が入った水である時、毛細管現象で搬送体の先端部まで引き上げられた時、空気中のCO2と反応し、搬送体の先端部にCaCO3,MgO等として析出付着して静電霧化が起こり難くなってしまうが、使用する水のpH値でマイナスに帯電する等電位点を有する材料からなるものを使用した場合、水印加電極4にマイナスの電圧を印加した状態で水と多孔質セラミックである搬送体2とが接触した時、シラノール基の乖離によって搬送体2が図3に示すようにマイナスに帯電し、対向電極方向が図中の白抜き矢印で示す方向である時、多孔質セラミックである搬送体2中の毛細管内の水は静電ポテンシャルの分布(ゼータ電位を図中Zで示す)を持つものとなって電気二重層が形成され、図中イで示す方向のいわゆる電気浸透流が発生するものであり、Ca,Mg等の陽イオンは電位の低い水印加電極4の方に向かう。つまり、水は搬送体2内を毛細管現象で対向電極3方向に引き上げられるが、水が含んでいるCa,Mg等の陽イオンは対向電極3側に向かわないために、搬送体2の先端で空気中のCO2と反応し、搬送体の先端部にCaCO3,MgO等として析出付着するという事態を招くことがないものである。図中Sは電気浸透流の流速がゼロになる面(滑り面)を示している。 The reason why such a material is selected is as follows. That is, for example, tap water, ground water, electrolyzed water, pH-adjusted water, mineral water, water containing useful components such as vitamin C and amino acids, aroma oil, fragrance, deodorant, etc. are added as the water to be atomized. When water that contains mineral components such as Ca, Mg, etc., when it is pulled up to the tip of the carrier by capillary action, it reacts with CO 2 in the air, and CaCO is formed at the tip of the carrier. 3 , it becomes difficult to cause electrostatic atomization due to deposition and adhesion as MgO or the like, but when using a material having an equipotential point that is negatively charged at the pH value of the water used, the water application electrode 4 When a negative voltage is applied to water and the carrier 2 made of a porous ceramic comes into contact with each other, the carrier 2 is negatively charged as shown in FIG. Inside white When the direction is indicated by the arrow, the water in the capillary tube in the carrier 2 that is a porous ceramic has a distribution of electrostatic potential (the zeta potential is indicated by Z in the figure), and an electric double layer is formed. A so-called electroosmotic flow is generated in the direction indicated by A in the figure, and cations such as Ca and Mg are directed toward the water application electrode 4 having a low potential. That is, water is pulled up in the transport body 2 in the direction of the counter electrode 3 by capillarity, but the cations such as Ca and Mg contained in the water do not go to the counter electrode 3 side. It does not cause a situation in which it reacts with CO 2 in the air and precipitates and adheres as CaCO 3 , MgO or the like to the tip of the carrier. In the figure, S indicates a surface (sliding surface) where the flow velocity of the electroosmotic flow becomes zero.

対向電極3が接地され且つ水印加電極4にプラスの電圧が印加される場合には、使用する水のpH値でプラスに帯電する等電位点を有する材料からなる多孔質セラミックを搬送体2に使用する。なお、水のpH値が7であるならば、アルミナを主成分とするものを好適に用いることができる。この場合、図4に示すように、電位の高い水印加電極4方向に流れる電気浸透流の陰イオンの流れに伴ってCa,Mg等の陽イオンも水印加電極4の方に向かう。従って、この場合においても、Ca,Mg等の陽イオンは対向電極3側に向かわないために、搬送体2の先端で空気中のCO2と反応し、搬送体の先端部にCaCO3,MgO等として析出付着するという事態を招くことがないものである。 When the counter electrode 3 is grounded and a positive voltage is applied to the water application electrode 4, a porous ceramic made of a material having an equipotential point that is positively charged with the pH value of the water used is applied to the carrier 2. use. In addition, if the pH value of water is 7, what has an alumina as a main component can be used suitably. In this case, as shown in FIG. 4, cations such as Ca and Mg also move toward the water application electrode 4 along with the flow of anions of the electroosmotic flow flowing in the direction of the water application electrode 4 having a high potential. Accordingly, in this case as well, since cations such as Ca and Mg do not go to the counter electrode 3 side, they react with CO 2 in the air at the tip of the carrier 2 and CaCO 3 , MgO at the tip of the carrier. As a result, it does not cause a situation of deposition and adhesion.

いずれにせよ、水溜め部1内の水に搬送体2を接触させて毛細管現象で水を吸い上げさせ、さらに対向電極3を接地するとともに水印加電極4に電圧印加部5を接続して、水印加電極4に電圧を印加した時、この電圧が搬送体2の針状霧化部に位置する水にレイリー分裂を起こさせることができる高電圧であれば、搬送体2の上端の針状霧化部において水はレイリー分裂を起こして霧化する。静電霧化がなされるわけであり、この時、静電霧化で生じるミストは、電界強度が700〜1200V/mmである時、3〜100nmの粒子径を有するナノメータサイズのものとなるとともに、ラジカル(ヒドロキシラジカル、スーパーオキサイド等)を持ち、且つ強い電荷量を持ったものとなる。   In any case, the carrier 2 is brought into contact with the water in the water reservoir 1 to suck up the water by capillary action, and the counter electrode 3 is grounded and the voltage application unit 5 is connected to the water application electrode 4 to When a voltage is applied to the additive electrode 4, if this voltage is a high voltage that can cause Rayleigh splitting in the water located in the needle-like atomization portion of the carrier 2, the needle-like mist on the upper end of the carrier 2 In the conversion section, water undergoes Rayleigh splitting and atomizes. At this time, when the electric field strength is 700 to 1200 V / mm, the mist generated by electrostatic atomization is of nanometer size having a particle diameter of 3 to 100 nm. , Having radicals (hydroxy radical, superoxide, etc.) and having a strong charge.

ところで、700〜1200V/mmの電界強度を与えた時、粒子径が3〜20nmのミストと粒子径が30〜50nmのミストが多く発生するが、電界強度を高くすると、粒子径が小さくなる方向にシフトすることが観察でき、また電界強度900V/mmで16〜20nmの粒子径を持つミストを多く発生させた場合に、上記の各効果が特に有効に現れた。   By the way, when an electric field strength of 700 to 1200 V / mm is applied, a mist with a particle size of 3 to 20 nm and a mist with a particle size of 30 to 50 nm are often generated. The above effects were particularly effective when a large amount of mist having a particle diameter of 16 to 20 nm at an electric field strength of 900 V / mm was generated.

ちなみに搬送体2としては、前述のように、気孔率が10〜60%、粒子径が1〜100μm、先端針状部の先端断面形状がφ0.5mm以下の多孔質セラミックを用いると、粒子径が揃ったミストを発生させることができ、特に気孔率が40%、粒子径が1〜3μm、針状霧化部の先端断面形状がφ0.25mmの時に900V/mmの電界強度を与えた時、16〜20nmの粒子径を持つミストを多く発生させることができた。   Incidentally, as described above, when the porous body having a porosity of 10 to 60%, a particle diameter of 1 to 100 μm, and a tip cross-sectional shape of the tip needle-like portion of φ0.5 mm or less is used as the carrier 2, When the electric field strength of 900 V / mm is given when the porosity is 40%, the particle diameter is 1 to 3 μm, and the tip cross-sectional shape of the needle-like atomization part is φ0.25 mm A large amount of mist having a particle diameter of 16 to 20 nm could be generated.

なお、搬送体2は多孔質セラミックからなるものに限定されるものではなく、たとえばフェルトなどを用いてもよい。ただし、粒子径が揃ったミストを発生させるという点では多孔質セラミックが有利である。   In addition, the conveyance body 2 is not limited to what consists of porous ceramics, For example, felt etc. may be used. However, porous ceramic is advantageous in that it generates mist having a uniform particle size.

そして、このようなナノメータサイズの帯電微粒子水は、脱臭、花粉が持つ花粉症を引き起こす物質の不活性化、空気中のウイルスや菌の不活性化、空気中の黴の除去及び抗黴効果といった作用を有することが確認できた。   And such nanometer-sized charged fine particle water can be used for deodorization, inactivation of pollen-causing substances, inactivation of viruses and fungi in the air, removal of soot in the air, and antifungal effect. It was confirmed to have an action.

すなわち、水印加電極4が負電極となるようにした状態で上記の静電霧化装置によって得られた帯電微粒子水が、微分型電気移動度計測器による測定で図5に示す粒径分布で示されるもの、つまり20nm付近をピークとして、10〜30nmに分布を持つものであり、また、生成される帯電微粒子水の量が水溜め部1内の水の減少量による測定でO.5g/hrであり、帯電微粒子水中のラジカルの電子スピンスペクトル法による測定チャートが図6に示されるもの(図中Aはラジカルの検出ピーク、Bは標準物質である酸化マンガンのピーク)であり、さらに帯電微粒子水中のドリフトチューブ型イオン移動度/質量分析装置で測定された各種イオンの分析結果が図7に示すものである時、この帯電微粒子水を用いて確認することができた効果について、以下に記す。なお、図6から明らかなように、この帯電微粒子水はラジカルを含有する上に、図7から明らかなように、大気中の窒素や二酸化炭素から生成されたと考えられる窒素酸化物や有機酸といった酸性種を多く含有したものとなっている。   That is, the charged fine particle water obtained by the above electrostatic atomizer in a state where the water application electrode 4 is a negative electrode has a particle size distribution shown in FIG. 5 as measured by a differential electric mobility meter. In other words, it has a distribution of 10 to 30 nm with a peak at around 20 nm, and the amount of charged fine particle water produced is O.D. as measured by the amount of water decrease in the water reservoir 1. 5 g / hr, and a measurement chart of the radicals in the charged fine particle water by the electron spin spectrum method is shown in FIG. 6 (in the figure, A is a radical detection peak, B is a peak of manganese oxide which is a standard substance), Furthermore, when the analysis results of various ions measured with a drift tube type ion mobility / mass spectrometer in charged fine particle water are as shown in FIG. 7, the effect that can be confirmed using this charged fine particle water, Described below. As is clear from FIG. 6, the charged fine particle water contains radicals and, as is clear from FIG. 7, such as nitrogen oxides and organic acids considered to be generated from nitrogen and carbon dioxide in the atmosphere. It contains a lot of acidic species.

まず、3Lチャンバー内における10ppmのアセトアルデヒドを上記帯電微粒子水で1時間処理すると、60%の減少が確認された。その測定結果を図8に示す。図中αが上記帯電微粒子水で処理した場合、βが粒子径1nmの帯電微粒子水で処理した場合を、γが何も処理しなかった場合である。   First, when 10 ppm of acetaldehyde in a 3 L chamber was treated with the charged fine particle water for 1 hour, a reduction of 60% was confirmed. The measurement results are shown in FIG. In the figure, α is treated with the charged fine particle water, β is treated with charged fine particle water having a particle diameter of 1 nm, and γ is not treated at all.

このような、脱臭効果は、臭気ガスが帯電微粒子中のラジカルとの化学反応で無臭化されることでなされるものであると考えられる。下記はラジカルとアセトアルデヒドをはじめとする各種臭気との脱臭反応式である。OHはヒドロキシラジカルを示す。   Such a deodorizing effect is considered to be achieved by the odor gas being non-brominated by a chemical reaction with radicals in the charged fine particles. The following is a deodorization reaction formula of radicals and various odors including acetaldehyde. OH represents a hydroxy radical.

アセトアルデヒド CH3CHO+6・OH+O2→2CO2+5H2
アンモニア 2NH3+6・OH→N2+6H2
酢酸 CH3COOH+4・OH+O2→2CO2+4H2
メタンガス CH4+4・OH+O2→CO2+H2
一酸化炭素 CO+2・OH→CO2+H2
一酸化窒素 2NO+4・OH→N2+2O2+2H2
ホルムアルデヒド HCHO+4OH→CO2+3H2
また、上記帯電微粒子水に黴菌を曝したところ、黴残存率は60分後には0%となる結果を得ることができた。OHラジカルが黴の菌糸を分解するために抗黴効果を得られるものと考えられる。
Acetaldehyde CH 3 CHO + 6 · OH + O 2 → 2CO 2 + 5H 2
Ammonia 2NH 3 + 6 · OH → N 2 + 6H 2
Acetic acid CH 3 COOH + 4 · OH + O 2 → 2CO 2 + 4H 2
Methane gas CH 4 + 4.OH + O 2 → CO 2 + H 2
Carbon monoxide CO + 2 · OH → CO 2 + H 2
Nitric oxide 2NO + 4 · OH → N 2 + 2O 2 + 2H 2
Formaldehyde HCHO + 4OH → CO 2 + 3H 2
Moreover, when the koji mold was exposed to the above charged fine particle water, the result that the koji residual rate became 0% after 60 minutes could be obtained. It is thought that the anti-wrinkle effect can be obtained because the OH radical decomposes the mycelium of the cocoon.

また、上記の帯電微粒子水に杉花粉から抽出した抗原Cry j1,Cry j2を曝露させてELISA試験を行ったところ、図9に示すように、抗原量が初期状態(blank)から半減するという結果を得ることができた。   Further, when the ELISA test was carried out by exposing the antigens Cry j1 and Cry j2 extracted from cedar pollen to the above charged fine particle water, as shown in FIG. 9, the result was that the antigen amount was halved from the initial state (blank). Could get.

また、上記静電霧化装置から上記帯電微粒子水が内部に供給される円筒容器(φ55×200mm)内に一端開口から噴霧器にてウイルス溶液を噴霧し、他端開口からウイルスをインピンジャーで回収してプラーク法により抗ウイルス効果を確認したところ、回収溶液中のプラーク数はウイルスを単にマイナスイオンに曝した場合よりも少なくなる結果を得ることができた。   In addition, the virus solution is sprayed with a sprayer from one end opening into a cylindrical container (φ55 × 200 mm) into which the charged fine particle water is supplied from the electrostatic atomizer, and the virus is collected with an impinger from the other end opening. When the antiviral effect was confirmed by the plaque method, it was found that the number of plaques in the recovered solution was smaller than that obtained when the virus was simply exposed to negative ions.

また、大腸菌O−157を上記帯電微粒子水に曝露させたところ、30分後には不活性化率が100%となる結果を得ることができた。これは帯電微粒子水中の活性種が菌体表面のタンパクを変成し、菌体の増殖を抑制するためと考えられる。   Further, when E. coli O-157 was exposed to the charged fine particle water, a result that the inactivation rate became 100% after 30 minutes could be obtained. This is presumably because the active species in the charged fine particle water denatures the protein on the surface of the cells and suppresses the growth of the cells.

さらに、肌への保湿性に関して、肌に直接微粒子水を暴露した後の肌の含水量を評価したところ、図10にホで示すように、ブランクの場合(図中ヘ)よりも保湿時間が長くなったことが確認された。   Furthermore, regarding the moisture retention on the skin, the moisture content of the skin after directly exposing fine water to the skin was evaluated. As shown in FIG. It was confirmed that it became longer.

また、マイナスの電荷を持つ帯電微粒子水において、冷水後の体温上昇試験を行ったところ、図11にトで示すように、通常の粒子径1nmのマイナスイオンの場合(チ)よりも体温上昇速度の向上が確認された。図中ヌは帯電微粒子水を含まない場合である。   Further, in a charged fine particle water having a negative charge, a body temperature increase test after cold water was conducted. As shown in FIG. 11, the rate of increase in body temperature was higher than that in the case of a normal ion having a particle diameter of 1 nm (h). Improvement was confirmed. In the figure, “nu” represents a case where charged fine particle water is not included.

酸性種として、硝酸、硝酸水和物、亜硝酸、亜硝酸水和物の少なくとも1つ以上を含有させるようにしてもよい。これらを含有させた場合、帯電微粒子水は弱酸性を保つことになり、アルカリ性臭気成分への作用だけでなく、人の肌への浸透や保湿の点で有意な効果を有するものとなる。   As the acidic species, at least one of nitric acid, nitric acid hydrate, nitrous acid, and nitrous acid hydrate may be contained. When these are contained, the charged fine particle water maintains weak acidity, and has not only an effect on the alkaline odor component but also a significant effect in terms of penetration into human skin and moisture retention.

なお、粒子径が3nmより小さい場合及び粒子径が50nmを超える場合、上記のような抗原の不活性化といった作用はあまり得ることができなかった。また粒子径が3〜50nmというきわめて小さい帯電微粒子水は、空気中の湿度調整という点に関して殆ど影響を与えることはない。   In addition, when the particle diameter was smaller than 3 nm and when the particle diameter exceeded 50 nm, the effect of inactivating the antigen as described above could not be obtained so much. In addition, the extremely small charged fine particle water having a particle diameter of 3 to 50 nm has little influence on the adjustment of humidity in the air.

(a)(b)は本発明に係る帯電微粒子水の特性を示す説明図である。(a) (b) is explanatory drawing which shows the characteristic of the charged fine particle water based on this invention. 同上の帯電微粒子水の生成に供する静電霧化装置の一例の分解斜視図である。It is a disassembled perspective view of an example of the electrostatic atomizer used for the production | generation of the charged fine particle water same as the above. 同上の動作の説明図であるIt is explanatory drawing of operation | movement same as the above. 同上の他例の動作説明図である。It is operation | movement explanatory drawing of the other example same as the above. 同上の静電霧化装置で生成した帯電微粒子水の粒子径分布計測結果を示す特性図である。It is a characteristic view which shows the particle diameter distribution measurement result of the charged fine particle water produced | generated with the electrostatic atomizer same as the above. 同上の静電霧化装置で生成した帯電微粒子水中のラジカルの電子スペクトル(ESR)チャートである。It is an electron spectrum (ESR) chart of the radical in the charged fine particle water produced | generated with the electrostatic atomizer same as the above. (a)は同上の静電霧化装置で生成した帯電微粒子水中の質量スペクトルチャート、(b)は分子量と化学式とイオン数との説明図である。(a) is a mass spectrum chart in charged fine particle water generated by the electrostatic atomizer described above, and (b) is an explanatory diagram of molecular weight, chemical formula and number of ions. 同上の耐電微粒子水によるチャンバー内のアセトアルデヒド分解性能測定結果を示す特性図である。It is a characteristic view which shows the acetaldehyde decomposition | disassembly performance measurement result in the chamber by the electrical resistant fine particle water same as the above. 同上の帯電微粒子水による杉花粉抗原のELISA試験による不活性評価結果の特性図である。It is a characteristic view of the inactivation evaluation result by the ELISA test of the cedar pollen antigen by the same charged fine particle water. 同上の帯電微粒子水による冷水負荷後の肌角質層の導電率の特性図である。It is a characteristic view of the electrical conductivity of a skin stratum corneum after the cold water load by the charged fine particle water same as the above. 同上の帯電微粒子水による冷水負荷後の手指温度の特性図である。It is a characteristic view of finger temperature after the cold water load by the charged fine particle water same as above.

Claims (7)

ナノメータサイズの粒子径で且つラジカルを含んでいることを特徴とする帯電微粒子水。   A charged fine particle water having a particle size of nanometer size and containing a radical. 粒子径が3〜100nmであることを特徴とする請求項1記載の帯電微粒子水。   2. The charged fine particle water according to claim 1, wherein the particle diameter is 3 to 100 nm. ラジカルとして、ヒドロキシルラジカル、スーパーオキサイド、一酸化窒素ラジカル、酸素ラジカルのうちのいずれか1つ以上を含んでいることを特徴とする請求項1または2記載の帯電微粒子水。   3. The charged fine particle water according to claim 1, comprising at least one of a hydroxyl radical, a superoxide, a nitric oxide radical, and an oxygen radical as a radical. 酸性化学種を含んでいることを特徴とする請求項1〜3のいずれか1項に記載の帯電微粒子水。   The charged fine particle water according to any one of claims 1 to 3, comprising an acidic chemical species. 窒素酸化物または有機酸を含んでいることを特徴とする請求項4記載の帯電微粒子水。   5. The charged fine particle water according to claim 4, comprising nitrogen oxide or organic acid. 硝酸、硝酸水和物、亜硝酸、亜硝酸水和物のうちいずれか1つ以上を含んでいることを特徴とする請求項4または5記載の帯電微粒子水。   6. The charged fine particle water according to claim 4, comprising at least one of nitric acid, nitric acid hydrate, nitrous acid, and nitrous acid hydrate. マイナスに帯電していることを特徴とする請求項1〜6のいずれかの項に記載の帯電微粒子水。   The charged fine particle water according to any one of claims 1 to 6, which is negatively charged.
JP2003425862A 2003-05-27 2003-12-22 Moisturizing method and electrostatic atomizer using charged fine particle water Expired - Lifetime JP4608207B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003425862A JP4608207B2 (en) 2003-08-05 2003-12-22 Moisturizing method and electrostatic atomizer using charged fine particle water
CN201210145613.5A CN102794256B (en) 2003-05-27 2004-05-26 Method and apparatus for creating environment where mist of charged water particle is dispersed
KR1020057018662A KR100661069B1 (en) 2003-05-27 2004-05-26 Charged fine particulate water, and method of creating environment where mist of the charged fine particulate water is dispersed
EP04734926A EP1666156B1 (en) 2003-05-27 2004-05-26 Method and apparatus for creating environment where mist of charged water particle is dispersed
AT04734926T ATE552913T1 (en) 2003-05-27 2004-05-26 METHOD AND APPARATUS FOR CREATING AN ENVIRONMENT IN WHICH A MIST OF CHARGED WATER PARTICLES IS DISPERSED
EP11192173A EP2428278A3 (en) 2003-05-27 2004-05-26 Charged fine particulate water, and method of creating environment where mist of the charged fine particulate water is dispersed
CN2004800098625A CN1774301B (en) 2003-05-27 2004-05-26 Charged water particle and method for creating environment where mist of charged water particle is dispersed
US10/552,743 US7473298B2 (en) 2003-05-27 2004-05-26 Charged water particle, and method for creating environment where mist of charged water particle is dispersed
PCT/JP2004/007593 WO2004105958A1 (en) 2003-05-27 2004-05-26 Charged water particle, and method for creating environment where mist of charged water particle is dispersed
TW093115047A TW200505802A (en) 2003-05-27 2004-05-27 Charged fine particle water and method for forming a environment dispersed mist formed by charged fine particle water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003286960 2003-08-05
JP2003425862A JP4608207B2 (en) 2003-08-05 2003-12-22 Moisturizing method and electrostatic atomizer using charged fine particle water

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP2007099901A Division JP4608513B2 (en) 2003-08-05 2007-04-05 Deodorizing / deactivating method and electrostatic atomizer using charged fine particle water
JP2010179292A Division JP4948631B2 (en) 2003-08-05 2010-08-10 Moisturizing method and apparatus using charged fine particle water
JP2010179295A Division JP5054809B2 (en) 2003-08-05 2010-08-10 Method for generating charged fine particle water and electrostatic atomizer
JP2010179294A Division JP4877410B2 (en) 2003-08-05 2010-08-10 Deactivation method and deactivation apparatus with charged fine particle water
JP2010179293A Division JP2010284541A (en) 2003-08-05 2010-08-10 Deodorization method by charged fine particle water and electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2005066586A true JP2005066586A (en) 2005-03-17
JP4608207B2 JP4608207B2 (en) 2011-01-12

Family

ID=34425178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425862A Expired - Lifetime JP4608207B2 (en) 2003-05-27 2003-12-22 Moisturizing method and electrostatic atomizer using charged fine particle water

Country Status (1)

Country Link
JP (1) JP4608207B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117970A (en) * 2005-10-31 2007-05-17 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2007260625A (en) * 2006-03-29 2007-10-11 Matsushita Electric Works Ltd Electrostatic atomizing apparatus
JP2010063438A (en) * 2008-09-12 2010-03-25 Panasonic Electric Works Co Ltd Electrostatic atomizing device, and food preserving device equipped with the same
JP2010082560A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Reduced water mist generation device and reduced water mist generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054809B2 (en) * 2003-08-05 2012-10-24 パナソニック株式会社 Method for generating charged fine particle water and electrostatic atomizer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117970A (en) * 2005-10-31 2007-05-17 Matsushita Electric Works Ltd Electrostatic atomizing device
JP4600247B2 (en) * 2005-10-31 2010-12-15 パナソニック電工株式会社 Electrostatic atomizer
US8505839B2 (en) 2005-10-31 2013-08-13 Panasonic Corporation Electrostatically atomizing device
JP2007260625A (en) * 2006-03-29 2007-10-11 Matsushita Electric Works Ltd Electrostatic atomizing apparatus
JP4645501B2 (en) * 2006-03-29 2011-03-09 パナソニック電工株式会社 Electrostatic atomizer
JP2010063438A (en) * 2008-09-12 2010-03-25 Panasonic Electric Works Co Ltd Electrostatic atomizing device, and food preserving device equipped with the same
JP2010082560A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Reduced water mist generation device and reduced water mist generation method
US8474731B2 (en) 2008-09-30 2013-07-02 Panasonic Corporation Reduced water mist generator and method of producing reduced water mist

Also Published As

Publication number Publication date
JP4608207B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5877387B2 (en) Electrostatic atomizer
KR100661069B1 (en) Charged fine particulate water, and method of creating environment where mist of the charged fine particulate water is dispersed
KR100716638B1 (en) Electrostatic atomizing device and humidifier using this
EP1629897A1 (en) Electrostatic atomizer and air purifier using the same
JP4608207B2 (en) Moisturizing method and electrostatic atomizer using charged fine particle water
JP4608513B2 (en) Deodorizing / deactivating method and electrostatic atomizer using charged fine particle water
WO2004110642A1 (en) Electrostatic atomizer with anion ion generating function and air cleaner using same
JP4195989B2 (en) Electrostatic atomizer and air cleaner provided with the same
JP4936200B2 (en) Electrostatic atomizer and air cleaner equipped with electrostatic atomizer
JP4407415B2 (en) Electrostatic atomizer and air cleaner equipped with electrostatic atomizer
JP4324051B2 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071221

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R151 Written notification of patent or utility model registration

Ref document number: 4608207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

EXPY Cancellation because of completion of term