JP2005063995A - Light emitting diode strip lamp - Google Patents

Light emitting diode strip lamp Download PDF

Info

Publication number
JP2005063995A
JP2005063995A JP2003206911A JP2003206911A JP2005063995A JP 2005063995 A JP2005063995 A JP 2005063995A JP 2003206911 A JP2003206911 A JP 2003206911A JP 2003206911 A JP2003206911 A JP 2003206911A JP 2005063995 A JP2005063995 A JP 2005063995A
Authority
JP
Japan
Prior art keywords
power supply
light emitting
light
emitting diode
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206911A
Other languages
Japanese (ja)
Inventor
John Popovich
ジョン・ポポヴィッチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOHOHAMA ELECTRON KK
Original Assignee
YOHOHAMA ELECTRON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOHOHAMA ELECTRON KK filed Critical YOHOHAMA ELECTRON KK
Priority to JP2003206911A priority Critical patent/JP2005063995A/en
Publication of JP2005063995A publication Critical patent/JP2005063995A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode strip lamp which heightens heat dissipation capability and improve installation density, thereby enabling large degree of freedom of installation position, and also to provide a manufacturing method of the lamp. <P>SOLUTION: The light emitting diode strip lamp is provided with a light emitting element 1 and power supply conductors 2, 3 for connecting the light emitting element 1. Insulating varnish coated wire (enameled wire) is used for the power supply conductors 2, 3. The light emitting element 1 is connected directly with a core wire exposed by exfoliating the insulating varnish coating of an installation position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、発光素子と取出電極を備え、取出電極が給電導体に接続される発光ダイオードストリップランプ、特に給電線に直接的に接続される発光ダイオードストリップランプに関する。
【0002】
【従来の技術】
従来の発光ダイオード(LED)は、基板と、基板の上に発光層を含む窒化物半導体層が積層されて形成された発光部と、該発光部の裏面や周縁などに電極を突出させて形成された取出電極とを備え、該取出電極を給電線に接続された給電導体に接続されて成るものが一般に知られている。
上記従来の発光ダイオードにおいては、給電線に接続された給電導体を特殊な形状に形成する(例えば、特開平06−275865号公報におけるリード体)などして、発光部の背面に設けられた取出電極と給電導体とのワイヤボンディングによる接続を確実にするものが知られている。
他の電極と給電導体との接続にワイヤボンディングを用いている。
【0003】
一般に発光ダイオードにおいては、図15に示すように、発光部aが透明なポリマーdで覆われる、即ちカプセル化されており、2本の電極線b,cが透明ポリマーdから突出している。
発光ダイオードは、発光部aがカプセル化されることにより、発光部aと電極線b,cとの絶縁性を確保する。
また、透明ポリマーdの光学的サイズを増すことにより、透明ポリマーdの内部反射を減少させ、透明ポリマーdから即ち発光ダイオードから外部への放射出力を大きくするものである。
さらに、透明ポリマーdの形状や寸法を変化させることで、内部反射、外部放射のスペクトロ角度、1または2以上の反射軸をコントロールしている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の発光ダイオードにおいては、通電中に発光部が発熱するが、この熱を十分に放散させることが困難であり、発光ダイオードが高温になるために、設置密度を高くすることができず、設置場所が限られるという問題があった。
また、給電導体が特開平06−275865号公報におけるリード体のように金属製の剛体であることが一般的で、給電導体に接続された後は設置位置が限定されて変えることができないという問題があり、給電導体として導線を用いてこの問題を解決するものが知られている。
ところが、給電導体に導線を用いた場合、用いられる導線が絶縁材料で被覆された被覆導線であり、放熱効果が期待できず、高温になるという問題があった。
さらに、発光する方向が全方位であり、発光が分散してしまい、必要とする特定の方向に強い発光をさせる事が困難で、反射鏡等の集光手段を別に設置する必要があり、構造が複雑になるとともに、コストが上昇するという問題があった。
【0005】
【従来例】
特開平06−275865号公報
特開平06−045660号公報
特開平10−163531号公報
特開平10−294493号公報
特開平10−326910号公報
特開平11−168235号公報
特開2000−331523号公報
特開2000−286457号公報
特開2001−144330号公報
【0006】
本発明の目的は、上記問題点を解決し、放熱能力を高めて設置密度を高くできるとともに、設置位置の自由度を大きくすることのできる発光ダイオードストリップランプ及びその製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明の発光ダイオードストリップランプは、請求項1において、発光素子と取出電極とを備えた発光ダイオードストリップランプであって、給電導体として金属線材から成る心線に絶縁塗料を塗布して成る絶縁塗料被覆線を用い、絶縁塗料層を削って給電導体の心線を露出させて素子接続部を形成し、ダイボンディング等の固定手段により発光素子を給電導体の素子接続部に直接的に固定することにより、給電導体の素子接続部は金属の心線が剥き出しになっている、即ち金属表面が露出しているから、反射効率が高く、心線と反対側への発光素子の光を強く反射させることができる。
また、ダイボンディング等の手段により発光素子を給電導体の素子接続部に直接的に固定することにより、給電導体(絶縁塗料被覆線)に発光素子を直接接続(ダイボンディング)しているから、プリント基板が不要となるとともに、設置範囲の長さを自由に設定することができる。
また、給電導体(絶縁塗料被覆線)は柔軟性を備えているから、2次元に限らず、3次元で自由な形状に変形させることができ、発光素子即ち発光ダイオードストリップランプの配置が自由に設定することができるとともに、放射範囲の調整の自由度を高くすることができる。
また、給電導体を絶縁塗料被覆線(エナメル線、マグネットワイヤ等)としたことにより、給電導体からの放熱効率が高く、発光素子の発する大量の発熱を大気中等に速やかに放散させて発光素子の温度を下げ、発光素子の発光効率を高めることができるとともに、発光素子の設置間隔を小さくして配置密度を高めることができる。
さらに、給電導体を絶縁塗料被覆線とすることで、材料費を安価にして製造コストを低減させることができる。
請求項2において、給電導体の心線をアルミニウム線材としたことにより、熱伝導性の極めて高いアルミニウム線材を心線として、発光素子を直接的に接続しているから、発光素子の発する大量の発熱をより一層外部に放散させることができる。
さらに、発光素子の発光効率を高めることができる。
請求項3において、2本以上の給電導体を並べて接合して給電ケーブルを形成し、絶縁塗料層を削って各給電導体に素子接続部を形成して、給電ケーブルの一側面の適所に素子接続部を形成したことにより、発光素子と給電導体の素子接続部とを強固に接続することができる。
請求項4において、給電ケーブルをコイル状に巻回して筒状体を形成し、該給電ケーブルの筒状体の外周面に削り溝を形成し、削り溝底面に心線を露出させて素子接続部を形成するとともに、筒状体を引き延ばして素子接続部間の距離を調節することにより、発光素子即ち発光ダイオードストリップランプの配置間隔を任意に調節することができる。
即ちコイルに巻いた給電ケーブルを引き延ばしたり縮めたりすることにより、隣合った発光素子即ち発光ダイオードストリップランプの間隔を拡縮させて、任意の配置間隔を得ることができる。
なお、絶縁塗料の削り溝の方向を、筒状体の中心線に対して傾斜させることで電極部の間隔を拡縮することができる。
請求項5において、2本の給電導体を並べて接合して形成した給電ケーブルの一側面に、給電ケーブルの長手方向に沿った凹面の反射鏡部を形成し、反射鏡部の端縁に沿って給電ケーブルの長手方向に延びる平坦な素子接続部を形成し、半田付け等の手段により発光素子の取出電極を給電ケーブルの素子接続部に直接的に接続することにより、発光素子の発光が、発光素子の両側に形成された給電導体の反射面で反射され、細幅の光に集束されて強い光束が得られるが、反射鏡が板金等で形成できるから、反射鏡の製作コストが低減されるとともに、放熱効率が高いものを得ることができ、発光効率を高くすることができる。
請求項6において、2本の給電導体を並べて接合して形成した給電ケーブルの一側面の絶縁塗料層を削って心線を露出させて素子接続部を形成し、半田付け等の手段により発光素子の取出電極を給電ケーブルの素子接続部に直接的に接続したものを、両側壁が開放端方向に拡開する略V字形の反射鏡の閉塞端の内側に配設したことにより、発光素子の発光が、発光素子の両側に形成された給電導体の反射面で反射され、細幅の光に集束されて強い光束が得られるが、反射鏡が板金等で形成できるから、反射鏡の製作コストが低減されるとともに、放熱効率が高いものを得ることができ、発光効率を高くすることができる。
請求項7において、給電導体の端部を、軸方向に押しつぶして給電導体の軸腺に略直交する円盤状の反射台座を形成し、該反射台座に1個又は複数個の発光素子の露出電極を接続したことにより、発光素子の発光が導体の線端を潰して形成された反射台座で反射集光され、反射鏡を別に製造する必要が無く、簡単な構成で強い光を投射することができる。
また、導体にアルミニウムを用いることで、展性の高い材料であるから、導体の線径に比して大径の反射台座を形成することができる。
さらに、線体と反射台座とが同一金属材料で連続して形成されることにより、熱伝導効率が高く、発光素子の発熱を効率よく放散させることができる。
請求項8において、複数の反射台座を同心円周上に配設し、その中心に電線を設置したことにより、個々の発光素子の発光が個々の反射台座で反射集光され、複数の反射台座が配置されていることで、簡単な構成で大強度の光を得ることができる。
請求項9において、3本以上の絶縁塗料被覆線である給電導体を、断面多角形となるように一体的に接合して給電ケーブルを形成し、給電ケーブルの各外側面に心線を露出させて素子接続部を側面毎に位置をずらして配設することにより、給電ケーブルの側面毎に異なる色を発光する発光素子を配置することができ、給電ケーブルに撚りをかけることによって発光色の配置が自由に且つ多彩に行うことができる。
また、給電ケーブルが複数本の給電導体を束ねられて形成されているから、自由に曲げることができ、発光素子の配置を自由にすることができ、上記の撚りと組み合わせることで、配色及び発光位置を自由に設定することができる。
【0008】
【発明の実施の形態】
本発明の第1実施例について図1乃至図3を参照して説明する。
図1において、本発明の発光ダイオードストリップランプは、発光素子(発光部)1と、発光素子1を接続する給電導体2、3とを備え、給電導体2、3に絶縁塗料被覆線(所謂エナメル線、マグネットワイヤ)を用いている。
【0009】
図2に示すように、給電導体2、3として絶縁塗料被覆線(例えば、エナメル線、マグネットワイヤ)を用い、発光素子1の取付部11、12(図3参照)が接続される部位である素子接続部20、30の絶縁塗料層21、31を剥がして、内部の導線(心線)22、32を露出させている。
【0010】
図3に示すように、発光素子1は、前述の如く、基板と、基板の上に発光層を含む窒化物半導体層が積層されて形成された発光部10と、該発光部10の裏面に形成された取付部11、12とを備えており、この取付部11、12を、ダイボンディング等の手段により上述の給電導体2、3の素子接続部20、30にそれぞれ直接固定するとともに、発光素子1の取出電極(図示略)と上記給電導体2、3の導線(心線)22、32とをワイヤボンディングで接続する。
発光素子1の取付部11、12の間の距離L(図3参照)と、給電導体2、3の間の距離W(図2参照)とが略同じ寸法に形成されている。
【0011】
素子接続部20(30)は、図4に示すように、給電導体2(3)の一側(本実施例では、上側)の絶縁塗料層21(31)だけを削り、導線(即ち心線)22(32)の上側を露出させて形成する。
素子接続部20(30)は、反射面としての機能も果たすものであるから、導線(心線)22(32)の露出部分を大きくして露出面積即ち反射面積を大きく確保する。
【0012】
この構成によると、給電導体(絶縁塗料被覆線、即ちエナメル線、マグネットワイヤ)に発光素子の取付部を直接接続(ダイボンディング)しているから、プリント基板が不要となるとともに、設置範囲の長さを自由に設定することができる。
また、給電導体(絶縁塗料被覆線、即ちエナメル線、マグネットワイヤ)を、2次元に限らず、3次元で自由な形状に変形させることができ、発光素子即ち発光ダイオードストリップランプの配置が自由に設定することができる。
また、給電導体を絶縁塗料被覆線、即ちエナメル線、マグネットワイヤとしたことにより、給電導体からの放熱効率が高く、発光素子の発する大量の発熱を大気中等に速やかに放散させて発光素子の温度を下げ、発光素子の発光効率を高めることができるとともに、発光素子即ち発光ダイオードストリップランプの設置間隔を小さくして配置密度を高めることができる。
また、給電導体の導体(心線)を露出させて形成した素子接続部に、発光素子を直接接続しているから、素子接続部が反射面となり、集光効果が高く、反射鏡等を別に設ける必要が無いものである。
さらに、給電導体を絶縁塗料被覆線(即ちエナメル線、マグネットワイヤ)とすることで、材料費を安価にして製造コストを低減させることができる。
【0013】
上記第1実施例では、給電導体が2本、発光素子の取付部も2個のものを示しているが、発光素子の取付部が3個以上の場合は、取付部の数に等しい本数の給電導体を設置して、個々の取付部に、それぞれ給電導体を接続する。 例えば、赤や青等の単色の発光素子においては、発光素子の取付部が2個で給電導体が2本となり、2色の発光素子の場合は、取付部が3個(又は4個)で給電導体が3本(又は4本)となり、3色の発光素子の場合は、取付部が4個(又は6個)で給電導体が4本(又は6本)となり、3本以上の給電導体を使用する場合は、給電導体を並べて並列に接合し、一側面の絶縁塗料を研削除去して素子接続部を形成する。
なお、発光素子の取付部を電極として形成することもできる。
【0014】
次に第2実施例について説明すると、図5及び図6において、2本の給電導体5、6を並べて接合して給電ケーブル7を形成し、この給電ケーブル7(2本の給電導体5、6を並列に接合したもの)をコイルに巻いて筒状体を形成し(図4参照)、発光素子の取付部が接続される部位の絶縁塗料層51、61を削って、内部の導線52、62を露出させて露出部50、60を形成し、この露出部50、60を素子接続部とし、発光素子の取付部をそれぞれ接続する。
【0015】
給電ケーブル7をコイル状に巻回した筒状体の外周面に、筒状体の軸に沿って直線状の削り溝71を形成し、削り溝71内の絶縁塗料層51、61を除去して削り溝71底部に導線52、62を露出させて、コイルの捲線1本ごとに素子接続部50、60を形成し、2個の素子接続部50、60で給電ケーブル7の素子接続部70を形成する。
なお、給電ケーブル7を複数本の線状体の撚り線とすることもできる。
【0016】
給電ケーブル7の幅が十分太い場合、給電ケーブル7の個々の素子接続部70に発光素子の取付部を接続するもので、発光素子の一対の取付部を、素子接続部70の素子接続部50、60にそれぞれ接続する。
逆に、給電ケーブル7の幅が十分太くないい場合は、図6に示すように、2本の給電導体5、6から成る給電ケーブル7をコイルに巻いたものを引き延ばして隣合った給電ケーブル7の素子接続部70の間の距離を大きくした後、個々の発光素子の一対の取付部を、素子接続部70の素子接続部50、60にそれぞれダイボンディング等で接続する。
【0017】
この構成によると、発光素子即ち発光ダイオードストリップランプの配置間隔を任意に調節することができるとともに、発光素子と給電ケーブル(給電導体から成る)とを強固に接続することができる。
即ちコイルに巻いた給電ケーブルを引き延ばしたり縮めたりすることにより、隣合った発光素子即ち発光ダイオードストリップランプの間隔を拡縮させて、任意の配置間隔を得ることができる。
なお、絶縁塗料の削り溝の方向を、筒状体の中心線に対して傾斜させることで電極部の間隔を拡縮することができる。
また、給電ケーブルをコイルに巻いた方が直線状のものよりも放熱効果が高くなり、蜜に巻いたコイルの方が粗に巻いたコイルよりも放熱効果が高いものである。
【0018】
図7を参照して第3実施例を説明すると、2本の給電導体100、110を絶縁塗装層13を介して接合し、絶縁塗装層13を中心線とした放物面、或いは複合曲面を形成して反射面111、112と成し、反射面111、112内の絶縁塗装層13の上に、絶縁塗装層13を跨いで発光素子14を設置して、発光素子14の下面に設けた一対の取付部(図示略)を給電導体100、110にダイボンディング等で接続する。
【0019】
給電導体100、110は、絶縁塗装層13以外の外周面も絶縁塗料層で覆われているが、反射面111、112は絶縁塗料層を削って給電導体100、110を露出させるか、又は反射塗料を塗布するものである。
絶縁塗装層13の両側の反射面111、112の端縁に、絶縁塗料層を削って幅の狭い平坦な、反射面111、112の端縁に沿って直線状に延びる素子接続部113、114を形成して、この素子接続部113、114に、1個又は2個以上の発光素子14の下面に設けた取付部を接続して設置する。
なお、給電導体を1本の導体で形成して一方の電極に接続し、他極に接続した電線を別個に設けて発光素子に接続することもできる。
【0020】
この構成によると、発光素子の発光が、発光素子の両側に形成された給電導体の反射面で反射され、細幅の光に集束されて強い光束が得られる。
また、給電導体を太く形成できるとともに、放熱効率の高い形状に形成することができるから、発光素子の発熱を十分に放散させることができ、発光素子の温度上昇をより効果的に防ぐことができるから、一層効率のよい発光を得ることができる。
【0021】
図8,9を参照して第4実施例を説明すると、給電導体を2本以上並設した給電ケーブル81の一側(図8では上面)の絶縁塗料を研削して導体(心線)を露出させ発光素子素子接続部(図示略)を形成し、発光素子素子接続部に任意の個数の発光素子80をダイボンディング等で接続し、略V字形断面に形成した反射鏡82の屈曲部内側に設置する。
【0022】
この構成によると、上記第3実施例と同様に、発光素子の発光が、発光素子の両側に形成された給電導体の反射面で反射され、細幅の光に集束されて強い光束が得られるが、反射鏡が板金等で形成できるから、反射鏡の製作コストが低減されるとともに、放熱効率が高いものを得ることができ、発光効率を高くすることができる。
【0023】
図10,11を参照して第5実施例を説明すると、アルミニウム、銅等から成る給電導体300の一方の線端を、導体300の長手方向に潰して円盤状の反射台座301を形成し、反射台座301に発光素子14の露出電極を接続して反射台座301に1個又は2個以上の発光素子14を固定すると共に、導体300の他端を電源の一方の極側に接続する。
ここで、反射台座301の直径Dと、導体300の線径dとの比で表される反射台座301の変形割合D/dを本実施例ではD/d=4〜6としている。
各発光素子14の他の電極を、電源の他の極側に接続された電線302にワイヤボンディング303で接続する。
【0024】
この構成によると、発光素子の発光を、導体の線端を潰して形成した反射台座で反射集光するから、反射鏡を別に製造する必要が無く、簡単な構成で強い光を投射することができる。
また、導体にアルミニウムを用いることで、展性の高い材料であるから、導体の線径に比して大径の反射台座を形成することができる。
さらに、線体と反射台座とが同一金属材料で連続して形成されることにより、熱伝導効率が高く、発光素子の発熱を効率よく放散させることができる。
なお、反射台座の反射面即ち発光素子を設置する面を凹面に形成することによって、一層反射光の集中度が高まり、強い光を得ることができる。
また、反射台座301の変形割合をD/d=4〜6に形成することで、発光素子の設置スペースを確保するとともに、十分な剛性を確保することができる。
【0025】
図12において、第6実施例は、発光素子14の露出電極が接続された反射台座301を複数個(実施例では3個)同心円周上に配置し、反射台座301が配置された円周の略中心位置に電線302を配設し、電線302に発光素子14の他の電極をワイヤボンディング303で接続している。
【0026】
この構成によると、個々の発光素子の発光が個々の反射台座で反射集光され、複数の反射台座が配置されていることで、簡単な構成で大強度の光を得ることができる。
【0027】
次に第7実施例を説明すると、図13に示すように、3本以上(本実施例では3本)の給電導体(絶縁塗料被覆線)91、92、93を、断面多角形(本実施例では三角形)となるように束ねて、一体的に接合して給電ケーブル90を形成する。
なお、断面多角形としては、例えば、四角形(給電導体4本)、六角形(給電導体6本)等がある。
【0028】
給電ケーブル90は、図13における給電導体91、92が並んでいるI側面図である図14(イ)に示すように、2本の給電導体91、92の外側面に、給電導体91、92に跨がって絶縁塗料被覆を削って心線を露出させた第1素子接続部101を適数形成する。
【0029】
給電ケーブル90の図13における給電導体92、93が並んでいるII側面図である図14(ロ)に示すように、2本の給電導体92、93の外側面に、給電導体92、93に跨がって絶縁塗料被覆を削って心線を露出させた第2素子接続部102を、第1素子接続部101とは位置をずらして適数形成する。
【0030】
給電ケーブル90の図13における給電導体93、91が並んでいるIII 側面図である図14(ロ)に示すように、2本の給電導体93、91の外側面に、給電導体93、91に跨がって絶縁塗料被覆を削って心線を露出させた第3素子接続部103を、第1素子接続部101及び第2素子接続部102とは位置をずらして適数形成する。
この結果、給電ケーブル90の総ての外側面(本実施例では、I側面とII側面及びIII 側面の3面)に、配置位置をずらして、第1素子接続部101と、第2素子接続部102と、第3素子接続部103が形成される。
【0031】
この構成により、給電ケーブルの側面毎に異なる色を発光する発光素子を配置することができ、給電ケーブルに撚りをかけることによって発光色の配置が自由に且つ多彩に行うことができる。
また、給電ケーブルが複数本の給電導体を束ねられて形成されているから、自由に曲げることができ、発光素子の配置を自由にすることができ、上記の撚りと組み合わせることで、配色及び発光位置を自由に設定することができる。
【0032】
【発明の効果】
本発明は、上述のとおり構成されているから次に述べる効果を奏する。
請求項1において、発光素子と取付部とを備えた発光ダイオードストリップランプであって、給電導体としてエナメル線等の絶縁塗料被覆線を用い、絶縁塗料層を削って給電導体の心線を露出させて素子接続部を形成し、ダイボンディング等の手段により発光素子の取付部を給電導体の素子接続部に直接的に接続することにより、給電導体(絶縁塗料被覆線)に発光素子の取付部を直接接続(ダイボンディング)しているから、プリント基板が不要となるとともに、設置範囲の長さを自由に設定することができる。
また、給電導体(絶縁塗料被覆線)を、2次元に限らず、3次元で自由な形状に変形させることができ、発光素子即ち発光ダイオードストリップランプの配置が自由に設定することができる。
また、給電導体を絶縁塗料被覆線(エナメル線、マグネットワイヤ、アルミワイヤ)としたことにより、給電導体からの放熱効率が高く、発光素子の発する大量の発熱を大気中等に速やかに放散させて発光素子の温度を下げ、発光素子の発光効率を高めることができるとともに、発光素子即ち発光ダイオードストリップランプの設置間隔を小さくして配置密度を高めることができる。
さらに、給電導体を絶縁塗料被覆線とすることで、材料費を安価にして製造コストを低減させることができる。
請求項2において、給電導体の心線をアルミニウム線材としたことにより、熱伝導性の極めて高いアルミニウム線材を心線として、発光素子を直接的に接続しているから、発光素子の発する大量の発熱をより一層外部に放散させることができる。
さらに、発光素子の発光効率を高めることができる。
請求項3において、2本以上の給電導体を並べて接合して給電ケーブルを形成し、絶縁塗料層を削って各給電導体に素子接続部を形成して、給電ケーブルの一側面の適所に素子接続部を形成したことにより、発光素子と給電導体の素子接続部とを強固に接続することができる。
請求項4において、給電ケーブルをコイル状に巻回して筒状体を形成し、該給電ケーブルの筒状体の外周面に削り溝を形成し、削り溝底面に心線を露出させて素子接続部を形成するとともに、筒状体を引き延ばして素子接続部間の距離を調節することにより、発光素子即ち発光ダイオードストリップランプの配置間隔を任意に調節することができる。
即ちコイルに巻いた給電ケーブルを引き延ばしたり縮めたりすることにより、隣合った発光素子即ち発光ダイオードストリップランプの間隔を拡縮させて、任意の配置間隔を得ることができる。
なお、絶縁塗料の削り溝の方向を、筒状体の中心線に対して傾斜させることで電極部の間隔を拡縮することができる。
請求項5において、2本の給電導体を並べて接合して形成した給電ケーブルの一側面に、給電ケーブルの長手方向に沿った凹面の反射鏡部を形成し、反射鏡部の端縁に沿って給電ケーブルの長手方向に延びる平坦な素子接続部を形成し、半田付け等の手段により発光素子の取付部を給電ケーブルの素子接続部に直接的に接続することにより、発光素子の発光が、発光素子の両側に形成された給電導体の反射面で反射され、細幅の光に集束されて強い光束が得られるが、反射鏡が板金等で形成できるから、反射鏡の製作コストが低減されるとともに、放熱効率が高いものを得ることができ、発光効率を高くすることができる。
請求項6において、2本の給電導体を並べて接合して形成した給電ケーブルの一側面の絶縁塗料層を削って心線を露出させて素子接続部を形成し、ダイボンディング等の手段により発光素子の取付部を給電ケーブルの素子接続部に直接的に接続したものを、両側壁が開放端方向に拡開する略V字形の反射鏡の閉塞端の内側に配設したことにより、発光素子の発光が、発光素子の両側に形成された給電導体の反射面で反射され、細幅の光に集束されて強い光束が得られるが、反射鏡が板金等で形成できるから、反射鏡の製作コストが低減されるとともに、放熱効率が高いものを得ることができ、発光効率を高くすることができる。
請求項7において、給電導体の端部を、軸方向に押しつぶして給電導体の軸腺に直交する円盤状の反射台座を形成し、該反射台座に1個又は複数個の発光素子の露出電極を接続したことにより、発光素子の発光が導体の線端を潰して形成された反射台座で反射集光され、反射鏡を別に製造する必要が無く、簡単な構成で強い光を投射することができる。
また、導体にアルミニウムを用いることで、展性の高い材料であるから、導体の線径に比して大径の反射台座を形成することができる。
さらに、線体と反射台座とが同一金属材料で連続して形成されることにより、熱伝導効率が高く、発光素子の発熱を効率よく放散させることができる。
請求項8において、複数の反射台座を同心円周上に配設し、その中心に電線を設置したことにより、個々の発光素子の発光が個々の反射台座で反射集光され、複数の反射台座が配置されていることで、簡単な構成で大強度の光を得ることができる。
請求項9において、3本以上の絶縁塗料被覆線である給電導体を、断面多角形となるように一体的に接合して給電ケーブルを形成し、給電ケーブルの各外側面に心線を露出させて素子接続部を側面毎に位置をずらして配設することにより、給電ケーブルの側面毎に異なる色を発光する発光素子を配置することができ、給電ケーブルに撚りをかけることによって発光色の配置が自由に且つ多彩に行うことができる。
また、給電ケーブルが複数本の給電導体を束ねられて形成されているから、自由に曲げることができ、発光素子の配置を自由にすることができ、上記の撚りと組み合わせることで、配色及び発光位置を自由に設定することができる。
【図面の簡単な説明】
【図1】本発明の発光ダイオードストリップランプの第1実施例の概略構成図である。
【図2】本発明の給電導体の素子接続部の拡大図である。
【図3】本発明の発光素子の裏面図である。
【図4】本発明の給電導体の素子接続部の拡大図である。
【図5】本発明の第2実施例の説明図である。
【図6】本発明の第2実施例の設置位置調整説明図である。
【図7】本発明の第3実施例の斜視図である。
【図8】本発明の第4実施例の側面図である。
【図9】本発明の第4実施例の平面図である。
【図10】本発明の第5実施例の側面図である。
【図11】本発明の第5実施例の平面図である。
【図12】本発明の第6実施例の平面図である。
【図13】本発明の第7実施例の断面図である。
【図14】本発明の第7実施例の側面図である。
【図15】従来の発光ダイオードランプの説明図である。
【符号の説明】
1,10,14,80 発光素子(発光部)、11,12 取付部
2,3,5,6,91,92,93,100,110,300 給電導体
20,30,70,101,102,103 素子接続部
21,13,31,51,61 絶縁塗料層
22,32,52,62 導線(心線)、50,60 素子接続部
7,81,90 給電ケーブル、71 削り溝
82,111,112 反射面、113,114 素子接続部、
301 反射台座、302 電線、303 ワイヤボンディング
a 発光部、b,c 電極線、d 透明ポリマー
[0001]
[Technical field to which the invention belongs]
The present invention relates to a light emitting diode strip lamp including a light emitting element and an extraction electrode, and the extraction electrode is connected to a power supply conductor, and more particularly to a light emitting diode strip lamp connected directly to a power supply line.
[0002]
[Prior art]
A conventional light emitting diode (LED) is formed by projecting an electrode on a substrate, a light emitting portion formed by laminating a nitride semiconductor layer including a light emitting layer on the substrate, and a back surface or a peripheral edge of the light emitting portion. It is generally known that the output electrode is connected to a power supply conductor connected to a power supply line.
In the above conventional light emitting diode, the feed conductor connected to the feed line is formed in a special shape (for example, a lead body in Japanese Patent Laid-Open No. 06-275865), and the extraction provided on the back surface of the light emitting unit There are known devices that ensure the connection between electrodes and power supply conductors by wire bonding.
Wire bonding is used to connect other electrodes to the power supply conductor.
[0003]
In general, in a light emitting diode, as shown in FIG. 15, a light emitting portion a is covered with a transparent polymer d, that is, encapsulated, and two electrode lines b and c protrude from the transparent polymer d.
The light emitting diode ensures the insulation between the light emitting part a and the electrode lines b and c by encapsulating the light emitting part a.
Further, by increasing the optical size of the transparent polymer d, the internal reflection of the transparent polymer d is decreased, and the radiation output from the transparent polymer d, that is, from the light emitting diode to the outside is increased.
Furthermore, by changing the shape and dimensions of the transparent polymer d, the internal reflection, the spectroscopic angle of external radiation, and one or more reflection axes are controlled.
[0004]
[Problems to be solved by the invention]
However, in the above conventional light emitting diode, the light emitting part generates heat during energization, but it is difficult to sufficiently dissipate this heat, and the light emitting diode becomes high temperature, so that the installation density can be increased. However, there was a problem that the installation place was limited.
Further, the feeding conductor is generally a metal rigid body like the lead body in Japanese Patent Application Laid-Open No. 06-275865, and after being connected to the feeding conductor, the installation position is limited and cannot be changed. In order to solve this problem, it is known to use a conductive wire as a power supply conductor.
However, when a conducting wire is used for the power supply conductor, the conducting wire used is a coated conducting wire coated with an insulating material, and there is a problem that a heat dissipation effect cannot be expected and the temperature becomes high.
Furthermore, the direction of light emission is omnidirectional, the light emission is dispersed, and it is difficult to emit strong light in the specific direction required, and it is necessary to install a condensing means such as a reflecting mirror separately. However, there was a problem that the cost increased with the complexity.
[0005]
[Conventional example]
Japanese Patent Laid-Open No. 06-275865
Japanese Patent Application Laid-Open No. 06-045660
Japanese Patent Laid-Open No. 10-163531
JP-A-10-294493
Japanese Patent Laid-Open No. 10-326910
JP-A-11-168235
JP 2000-331523 A
JP 2000-286457 A
JP 2001-144330 A
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a light emitting diode strip lamp and a method for manufacturing the same that can solve the above-mentioned problems, increase heat dissipation capacity, increase installation density, and increase the degree of freedom of installation position. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a light-emitting diode strip lamp according to the present invention is a light-emitting diode strip lamp having a light-emitting element and an extraction electrode according to claim 1, wherein an insulating paint is applied to a core wire made of a metal wire as a power supply conductor. Insulating paint coated wire formed by coating the insulating paint layer to expose the core wire of the feed conductor to form an element connection portion, and the light emitting element is connected to the feed conductor element connection portion by fixing means such as die bonding By directly fixing to the element, the metal conductor is exposed in the element connection part of the feeder conductor, that is, the metal surface is exposed, so the reflection efficiency is high, and light emission to the opposite side of the conductor The light of the element can be strongly reflected.
In addition, the light emitting element is directly connected to the power supply conductor (insulating paint coated wire) by directly fixing the light emitting element to the element connection portion of the power supply conductor by means such as die bonding. A board becomes unnecessary, and the length of the installation range can be freely set.
In addition, since the power supply conductor (insulating paint-coated wire) is flexible, it can be deformed not only in two dimensions but also in three dimensions, and the arrangement of light emitting elements, that is, light emitting diode strip lamps, is free. While being able to set, the freedom degree of adjustment of a radiation range can be made high.
In addition, the power supply conductor is made of an insulating paint-coated wire (enameled wire, magnet wire, etc.), so that the heat dissipation efficiency from the power supply conductor is high, and a large amount of heat generated by the light-emitting element is quickly dissipated into the atmosphere. The temperature can be lowered, the luminous efficiency of the light emitting element can be increased, and the arrangement density can be increased by reducing the installation interval of the light emitting elements.
Furthermore, by making the power supply conductor an insulating paint-coated wire, the material cost can be reduced and the manufacturing cost can be reduced.
In Claim 2, since the core wire of the power supply conductor is made of an aluminum wire, the light-emitting element is directly connected using the aluminum wire having an extremely high thermal conductivity as the core, so that a large amount of heat generated by the light-emitting element is generated. Can be further diffused to the outside.
Furthermore, the light emission efficiency of the light emitting element can be increased.
4. The power supply cable according to claim 3, wherein two or more power supply conductors are arranged and joined together to form a power supply cable, the insulating paint layer is cut to form an element connection portion on each power supply conductor, and the element connection is made at an appropriate position on one side of the power supply cable. By forming the portion, the light emitting element and the element connecting portion of the power feeding conductor can be firmly connected.
5. The device connection according to claim 4, wherein a power supply cable is wound into a coil shape to form a cylindrical body, a shaving groove is formed on an outer peripheral surface of the cylindrical body of the power feeding cable, and a core wire is exposed on the bottom surface of the shaving groove. The arrangement interval of the light emitting elements, that is, the light emitting diode strip lamps, can be arbitrarily adjusted by forming the portion and extending the cylindrical body to adjust the distance between the element connecting portions.
That is, by extending or contracting the power supply cable wound around the coil, the interval between adjacent light emitting elements, that is, the light emitting diode strip lamps, can be expanded and contracted to obtain an arbitrary arrangement interval.
In addition, the space | interval of an electrode part can be expanded / contracted by inclining the direction of the grinding groove | channel of an insulating coating material with respect to the centerline of a cylindrical body.
In Claim 5, the concave reflecting mirror part along the longitudinal direction of a feeding cable is formed in one side of the feeding cable formed by joining two feeding conductors side by side, and along the edge of the reflecting mirror part By forming a flat element connecting part extending in the longitudinal direction of the power supply cable and directly connecting the extraction electrode of the light emitting element to the element connecting part of the power supply cable by means of soldering or the like, the light emission of the light emitting element Reflected by the reflecting surfaces of the power supply conductors formed on both sides of the element and focused on narrow light to obtain a strong light flux, but the reflecting mirror can be formed of sheet metal or the like, so the manufacturing cost of the reflecting mirror is reduced At the same time, a product with high heat dissipation efficiency can be obtained, and the light emission efficiency can be increased.
7. The light emitting element according to claim 6, wherein an element connecting portion is formed by scraping an insulating coating layer on one side of a power supply cable formed by joining two power supply conductors side by side to expose a core wire, and soldering or the like. Are arranged directly inside the closed end of a substantially V-shaped reflecting mirror whose side walls are widened in the open end direction. Light emission is reflected by the reflecting surfaces of the power supply conductors formed on both sides of the light emitting element, and is focused on narrow light to obtain a strong luminous flux. However, the reflector can be made of sheet metal, etc. Can be reduced, and a heat dissipation efficiency can be obtained, so that the light emission efficiency can be increased.
8. The end of the power supply conductor is crushed in the axial direction to form a disk-shaped reflection pedestal substantially orthogonal to the axis of the power supply conductor, and the exposed electrode of one or a plurality of light emitting elements is formed on the reflection pedestal. As a result, the light emitted from the light-emitting element is reflected and collected by a reflecting pedestal formed by crushing the end of the conductor, and there is no need to separately manufacture a reflecting mirror, and strong light can be projected with a simple configuration. it can.
In addition, since aluminum is used for the conductor, it is a highly malleable material, so that it is possible to form a reflective pedestal having a diameter larger than that of the conductor.
Furthermore, since the wire body and the reflection base are continuously formed of the same metal material, the heat conduction efficiency is high, and the heat generation of the light emitting element can be efficiently dissipated.
In Claim 8, by arrange | positioning several reflective bases on the concentric periphery and installing the electric wire in the center, light emission of each light emitting element is reflected and condensed by each reflective base, and several reflective bases are provided. By arranging, high intensity light can be obtained with a simple configuration.
In Claim 9, the power supply conductor which is three or more insulation coating covering wires is integrally joined so that it may become a cross-sectional polygon, a power supply cable is formed, and a core wire is exposed to each outer side surface of a power supply cable. By disposing the element connection portions on each side, the light emitting elements that emit different colors can be arranged on each side of the power supply cable, and the light emission color can be arranged by twisting the power supply cable. Can be performed freely and in various ways.
In addition, since the power supply cable is formed by bundling a plurality of power supply conductors, it can be bent freely, and the arrangement of the light emitting elements can be made free. The position can be set freely.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, a light-emitting diode strip lamp of the present invention includes a light-emitting element (light-emitting portion) 1 and power supply conductors 2 and 3 for connecting the light-emitting element 1, and the power supply conductors 2 and 3 are covered with an insulating paint-coated wire (so-called enamel). Wire, magnet wire).
[0009]
As shown in FIG. 2, an insulating paint-coated wire (for example, enameled wire or magnet wire) is used as the power supply conductors 2 and 3, and the attachment portions 11 and 12 (see FIG. 3) of the light emitting element 1 are connected. The insulating paint layers 21 and 31 of the element connecting portions 20 and 30 are peeled off to expose the internal conductors (core wires) 22 and 32.
[0010]
As shown in FIG. 3, the light-emitting element 1 includes a substrate, a light-emitting unit 10 formed by stacking a nitride semiconductor layer including a light-emitting layer on the substrate, and a back surface of the light-emitting unit 10 as described above. The mounting portions 11 and 12 are formed, and the mounting portions 11 and 12 are directly fixed to the element connecting portions 20 and 30 of the above-described feed conductors 2 and 3 by means such as die bonding, and light emission is performed. The extraction electrode (not shown) of the element 1 and the conducting wires (core wires) 22 and 32 of the power supply conductors 2 and 3 are connected by wire bonding.
A distance L (see FIG. 3) between the mounting portions 11 and 12 of the light emitting element 1 and a distance W (see FIG. 2) between the feed conductors 2 and 3 are formed to have substantially the same dimensions.
[0011]
As shown in FIG. 4, the element connecting portion 20 (30) scrapes only the insulating coating layer 21 (31) on one side (in the present embodiment, upper side) of the power supply conductor 2 (3), and conducts the conductive wire (ie, the core wire). ) The upper side of 22 (32) is exposed.
Since the element connecting portion 20 (30) also functions as a reflecting surface, the exposed portion of the conducting wire (core wire) 22 (32) is enlarged to ensure a large exposed area, that is, a reflecting area.
[0012]
According to this configuration, since the mounting portion of the light emitting element is directly connected (die bonding) to the power supply conductor (insulating paint-coated wire, that is, enameled wire, magnet wire), the printed circuit board is not necessary and the installation range is long. Can be set freely.
In addition, the power supply conductor (insulating paint coated wire, ie, enameled wire, magnet wire) can be deformed into a free shape in three dimensions, not limited to two dimensions, and the arrangement of light emitting elements, ie, light emitting diode strip lamps, is free. Can be set.
In addition, since the power supply conductor is made of an insulating paint-coated wire, that is, enameled wire or magnet wire, the heat dissipation efficiency from the power supply conductor is high, and a large amount of heat generated by the light-emitting element is quickly dissipated into the atmosphere and the temperature of the light-emitting element. The luminous efficiency of the light-emitting element can be increased, and the arrangement density of the light-emitting elements, that is, the light-emitting diode strip lamps can be reduced to increase the arrangement density.
In addition, since the light emitting element is directly connected to the element connection part formed by exposing the conductor (core wire) of the power supply conductor, the element connection part becomes a reflection surface, and the light collecting effect is high. There is no need to provide it.
Furthermore, by using an insulating paint-coated wire (that is, enameled wire or magnet wire) as the power supply conductor, the material cost can be reduced and the manufacturing cost can be reduced.
[0013]
In the first embodiment, two power supply conductors and two light emitting element mounting parts are shown. However, when the number of light emitting element mounting parts is three or more, the number of mounting parts equal to the number of mounting parts is shown. A power supply conductor is installed, and each power supply conductor is connected to each mounting portion. For example, in a single color light emitting element such as red or blue, there are two mounting portions of the light emitting element and two feeding conductors, and in the case of a two color light emitting element, there are three (or four) mounting portions. There are three (or four) feed conductors, and in the case of a three-color light-emitting element, there are four (or six) mounting parts and four (or six) feed conductors, and three or more feed conductors Are used, the power supply conductors are arranged side by side and joined in parallel, and the insulating paint on one side is ground and removed to form the element connection portion.
In addition, the attachment part of a light emitting element can also be formed as an electrode.
[0014]
Next, a second embodiment will be described. In FIG. 5 and FIG. 6, two power supply conductors 5 and 6 are arranged side by side and joined to form a power supply cable 7, and this power supply cable 7 (two power supply conductors 5 and 6). Are wound around the coil to form a cylindrical body (see FIG. 4), and the insulating paint layers 51 and 61 to which the light emitting element mounting portion is connected are shaved, and the internal conductor 52 and The exposed portions 50 and 60 are formed by exposing 62, and the exposed portions 50 and 60 are used as element connection portions, and the attachment portions of the light emitting elements are respectively connected.
[0015]
A linear shaving groove 71 is formed along the axis of the tubular body on the outer peripheral surface of the tubular body in which the power supply cable 7 is wound in a coil shape, and the insulating paint layers 51 and 61 in the shaving groove 71 are removed. Then, the conductive wires 52 and 62 are exposed at the bottom of the shaving groove 71 to form element connection portions 50 and 60 for each coil winding, and the element connection portions 70 of the feeder cable 7 are formed by the two element connection portions 50 and 60. Form.
The feeding cable 7 may be a stranded wire of a plurality of linear bodies.
[0016]
When the width of the power supply cable 7 is sufficiently thick, the light emitting element attachment portions are connected to the individual element connection portions 70 of the power supply cable 7, and the pair of light emission element attachment portions are connected to the element connection portion 50 of the element connection portion 70. , 60 respectively.
On the contrary, when the width of the power feeding cable 7 is not sufficiently large, as shown in FIG. 6, the power feeding cable 7 composed of the two power feeding conductors 5 and 6 is stretched and the adjacent power feeding cables are stretched. After the distance between the seven element connecting portions 70 is increased, a pair of attachment portions of the individual light emitting elements are connected to the element connecting portions 50 and 60 of the element connecting portion 70 by die bonding or the like.
[0017]
According to this configuration, it is possible to arbitrarily adjust the arrangement interval of the light emitting elements, that is, the light emitting diode strip lamps, and it is possible to firmly connect the light emitting elements and the feeding cable (consisting of the feeding conductor).
That is, by extending or contracting the power supply cable wound around the coil, the interval between adjacent light emitting elements, that is, the light emitting diode strip lamps, can be expanded and contracted to obtain an arbitrary arrangement interval.
In addition, the space | interval of an electrode part can be expanded / contracted by inclining the direction of the grinding groove | channel of an insulating coating material with respect to the centerline of a cylindrical body.
Moreover, the heat radiation effect is higher when the power supply cable is wound around the coil than the straight one, and the heat radiation effect is higher when the coil wound around the honey is rougher than the coil wound roughly.
[0018]
The third embodiment will be described with reference to FIG. 7. Two power supply conductors 100 and 110 are joined via an insulating coating layer 13, and a parabolic surface or a compound curved surface with the insulating coating layer 13 as a center line is formed. The light emitting element 14 is formed on the lower surface of the light emitting element 14 by forming the light emitting element 14 across the insulating coating layer 13 on the insulating coating layer 13 in the reflecting surfaces 111 and 112. A pair of attachment portions (not shown) are connected to the power supply conductors 100 and 110 by die bonding or the like.
[0019]
The power supply conductors 100 and 110 are also covered with an insulating paint layer on the outer peripheral surface other than the insulating coating layer 13, but the reflecting surfaces 111 and 112 are formed by shaving the insulating paint layer to expose the power supply conductors 100 and 110, or reflecting A paint is applied.
The element connecting portions 113 and 114 that extend in a straight line along the edges of the reflective surfaces 111 and 112 that are narrow and flat by cutting the insulating paint layer on the edges of the reflective surfaces 111 and 112 on both sides of the insulating coating layer 13. And mounting portions provided on the lower surfaces of one or more light emitting elements 14 are connected to the element connecting portions 113 and 114 and installed.
Note that the power supply conductor may be formed of one conductor and connected to one electrode, and an electric wire connected to the other electrode may be provided separately and connected to the light emitting element.
[0020]
According to this configuration, the light emitted from the light emitting element is reflected by the reflecting surfaces of the power supply conductors formed on both sides of the light emitting element, and is focused on the narrow light to obtain a strong light flux.
Further, since the power supply conductor can be formed thick and can be formed in a shape with high heat dissipation efficiency, the heat generation of the light emitting element can be sufficiently dissipated, and the temperature rise of the light emitting element can be prevented more effectively. Therefore, more efficient light emission can be obtained.
[0021]
The fourth embodiment will be described with reference to FIGS. 8 and 9. The insulating paint on one side (upper surface in FIG. 8) of the power supply cable 81 in which two or more power supply conductors are arranged side by side is ground to form the conductor (core wire). A light emitting element element connecting portion (not shown) is exposed and an arbitrary number of light emitting elements 80 are connected to the light emitting element element connecting portion by die bonding or the like, and inside the bent portion of the reflecting mirror 82 formed in a substantially V-shaped cross section. Install in.
[0022]
According to this configuration, as in the third embodiment, the light emitted from the light emitting element is reflected by the reflecting surfaces of the power supply conductors formed on both sides of the light emitting element, and converged into narrow light to obtain a strong light flux. However, since the reflecting mirror can be formed of sheet metal or the like, the manufacturing cost of the reflecting mirror can be reduced, and a high heat dissipation efficiency can be obtained, and the luminous efficiency can be increased.
[0023]
A fifth embodiment will be described with reference to FIGS. 10 and 11. One end of a power supply conductor 300 made of aluminum, copper, or the like is crushed in the longitudinal direction of the conductor 300 to form a disk-shaped reflection base 301. The exposed electrode of the light emitting element 14 is connected to the reflecting pedestal 301 to fix one or more light emitting elements 14 to the reflecting pedestal 301, and the other end of the conductor 300 is connected to one pole side of the power source.
Here, the deformation ratio D / d of the reflecting pedestal 301 expressed by the ratio of the diameter D of the reflecting pedestal 301 and the wire diameter d of the conductor 300 is set to D / d = 4 to 6 in this embodiment.
The other electrode of each light emitting element 14 is connected by wire bonding 303 to an electric wire 302 connected to the other pole side of the power source.
[0024]
According to this configuration, since the light emitted from the light emitting element is reflected and collected by the reflecting pedestal formed by crushing the end of the conductor, there is no need to separately manufacture a reflecting mirror, and strong light can be projected with a simple configuration. it can.
In addition, since aluminum is used for the conductor, it is a highly malleable material, so that it is possible to form a reflective pedestal having a diameter larger than that of the conductor.
Furthermore, since the wire body and the reflection base are continuously formed of the same metal material, the heat conduction efficiency is high, and the heat generation of the light emitting element can be efficiently dissipated.
In addition, by forming the reflecting surface of the reflecting pedestal, that is, the surface on which the light emitting element is installed, in the concave surface, the concentration of reflected light is further increased and strong light can be obtained.
Moreover, by forming the deformation ratio of the reflecting pedestal 301 at D / d = 4 to 6, it is possible to secure the installation space for the light emitting element and sufficient rigidity.
[0025]
In FIG. 12, in the sixth embodiment, a plurality of (three in the embodiment) reflecting bases 301 to which the exposed electrodes of the light emitting elements 14 are connected are arranged on a concentric circumference, and the circumference of the reflecting base 301 is arranged. An electric wire 302 is disposed at a substantially central position, and the other electrode of the light emitting element 14 is connected to the electric wire 302 by wire bonding 303.
[0026]
According to this configuration, light emitted from each light emitting element is reflected and collected by each reflecting pedestal, and a plurality of reflecting pedestals are arranged, so that high intensity light can be obtained with a simple configuration.
[0027]
Next, a seventh embodiment will be described. As shown in FIG. 13, three or more (three in this embodiment) feeding conductors (insulating paint-coated wires) 91, 92, 93 are formed into polygonal sections (this embodiment). In the example, the power supply cable 90 is formed by bundling so as to form a triangle) and integrally joining them.
Examples of the polygonal cross section include a quadrangle (four feeding conductors) and a hexagon (six feeding conductors).
[0028]
As shown in FIG. 14A, which is an I side view in which the power supply conductors 91 and 92 in FIG. 13 are arranged, the power supply cable 90 is provided on the outer surface of the two power supply conductors 91 and 92. An appropriate number of first element connection portions 101 are formed by stripping the insulating coating and exposing the core wires.
[0029]
As shown in FIG. 14B, which is a side view of the feeder cable 90 in which the feeder conductors 92 and 93 in FIG. 13 are arranged side by side, the feeder conductors 92 and 93 are connected to the outer surfaces of the two feeder conductors 92 and 93. An appropriate number of second element connection portions 102 that are stripped of the insulating coating and exposed from the core wires are shifted from the first element connection portion 101 to form an appropriate number.
[0030]
As shown in FIG. 14B, which is a side view of the feeder cable 93 in FIG. 13 where the feeder conductors 93 and 91 in FIG. 13 are arranged, the feeder conductors 93 and 91 are connected to the outer surfaces of the two feeder conductors 93 and 91. An appropriate number of third element connection portions 103 that are stripped of the insulating coating and exposed from the core wires are shifted from the positions of the first element connection portions 101 and the second element connection portions 102.
As a result, the first element connection portion 101 and the second element connection are shifted to all outer surfaces of the power feeding cable 90 (in this embodiment, three surfaces of the I side surface, the II side surface, and the III side surface). The part 102 and the third element connection part 103 are formed.
[0031]
With this configuration, light emitting elements that emit different colors can be arranged for each side surface of the power supply cable, and the light emission colors can be freely and variously arranged by twisting the power supply cable.
In addition, since the power supply cable is formed by bundling a plurality of power supply conductors, it can be bent freely, and the arrangement of the light emitting elements can be made free. The position can be set freely.
[0032]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
The light-emitting diode strip lamp according to claim 1, wherein the light-emitting diode strip lamp includes a light-emitting element and a mounting portion, and an insulating paint-coated wire such as an enameled wire is used as the power supply conductor, and the core of the power supply conductor is exposed by scraping the insulating paint layer. The element connecting portion is formed, and the light emitting element mounting portion is directly connected to the element connecting portion of the power feeding conductor by means such as die bonding, so that the light emitting element mounting portion is attached to the power feeding conductor (insulating paint coated wire). Direct connection (die bonding) eliminates the need for a printed circuit board and allows the length of the installation range to be set freely.
In addition, the power supply conductor (insulating paint-coated wire) can be freely deformed in three dimensions, not limited to two dimensions, and the arrangement of light emitting elements, that is, light emitting diode strip lamps, can be freely set.
In addition, by using insulated paint-coated wires (enamelled wires, magnet wires, aluminum wires) as the power supply conductor, the heat dissipation efficiency from the power supply conductor is high, and a large amount of heat generated by the light-emitting element is quickly dissipated into the atmosphere and emitted light. The temperature of the element can be lowered to increase the light emission efficiency of the light emitting element, and the arrangement density can be increased by reducing the installation interval of the light emitting elements, that is, the light emitting diode strip lamps.
Furthermore, by making the power supply conductor an insulating paint-coated wire, the material cost can be reduced and the manufacturing cost can be reduced.
In Claim 2, since the core wire of the power supply conductor is made of an aluminum wire, the light-emitting element is directly connected using the aluminum wire having an extremely high thermal conductivity as the core, so that a large amount of heat generated by the light-emitting element is generated. Can be further diffused to the outside.
Furthermore, the light emission efficiency of the light emitting element can be increased.
4. The power supply cable according to claim 3, wherein two or more power supply conductors are arranged and joined together to form a power supply cable, the insulating paint layer is cut to form an element connection portion on each power supply conductor, and the element connection is made at an appropriate position on one side of the power supply cable. By forming the portion, the light emitting element and the element connecting portion of the power feeding conductor can be firmly connected.
5. The device connection according to claim 4, wherein a power supply cable is wound into a coil shape to form a cylindrical body, a shaving groove is formed on an outer peripheral surface of the cylindrical body of the power feeding cable, and a core wire is exposed on the bottom surface of the shaving groove. The arrangement interval of the light emitting elements, that is, the light emitting diode strip lamps, can be arbitrarily adjusted by forming the portion and extending the cylindrical body to adjust the distance between the element connecting portions.
That is, by extending or contracting the power supply cable wound around the coil, the interval between adjacent light emitting elements, that is, the light emitting diode strip lamps, can be expanded and contracted to obtain an arbitrary arrangement interval.
In addition, the space | interval of an electrode part can be expanded / contracted by inclining the direction of the grinding groove | channel of an insulating coating material with respect to the centerline of a cylindrical body.
In Claim 5, the concave reflecting mirror part along the longitudinal direction of a feeding cable is formed in one side of the feeding cable formed by joining two feeding conductors side by side, and along the edge of the reflecting mirror part By forming a flat element connection part extending in the longitudinal direction of the power supply cable and directly connecting the light emitting element attachment part to the element connection part of the power supply cable by means such as soldering, light emission of the light emitting element Reflected by the reflecting surfaces of the power supply conductors formed on both sides of the element and focused on narrow light to obtain a strong light flux, but the reflecting mirror can be formed of sheet metal or the like, so the manufacturing cost of the reflecting mirror is reduced At the same time, a product with high heat dissipation efficiency can be obtained, and the light emission efficiency can be increased.
7. The light emitting device according to claim 6, wherein an element connecting portion is formed by scraping an insulating coating layer on one side of a power supply cable formed by joining two power supply conductors side by side to expose a core wire, and by means such as die bonding. Is directly connected to the element connecting portion of the power supply cable, and the both side walls are arranged inside the closed end of the substantially V-shaped reflecting mirror whose open end direction is widened. Light emission is reflected by the reflecting surfaces of the power supply conductors formed on both sides of the light emitting element, and is focused on narrow light to obtain a strong luminous flux. However, the reflector can be made of sheet metal, etc. Can be reduced, and a heat dissipation efficiency can be obtained, so that the light emission efficiency can be increased.
8. The end of the power supply conductor is crushed in the axial direction to form a disk-shaped reflective pedestal orthogonal to the axial line of the power supply conductor, and the exposed electrode of one or a plurality of light emitting elements is formed on the reflective pedestal. As a result of the connection, the light emitted from the light emitting element is reflected and collected by the reflecting pedestal formed by crushing the line end of the conductor, and it is not necessary to manufacture a reflecting mirror separately, and strong light can be projected with a simple configuration. .
In addition, since aluminum is used for the conductor, it is a highly malleable material, so that it is possible to form a reflective pedestal having a diameter larger than that of the conductor.
Furthermore, since the wire body and the reflection base are continuously formed of the same metal material, the heat conduction efficiency is high, and the heat generation of the light emitting element can be efficiently dissipated.
In Claim 8, by arrange | positioning several reflective bases on the concentric periphery and installing the electric wire in the center, light emission of each light emitting element is reflected and condensed by each reflective base, and several reflective bases are provided. By arranging, high intensity light can be obtained with a simple configuration.
In Claim 9, the power supply conductor which is three or more insulation coating covering wires is integrally joined so that it may become a cross-sectional polygon, a power supply cable is formed, and a core wire is exposed to each outer side surface of a power supply cable. By disposing the element connection portions on each side, the light emitting elements that emit different colors can be arranged on each side of the power supply cable, and the light emission color can be arranged by twisting the power supply cable. Can be performed freely and in various ways.
In addition, since the power supply cable is formed by bundling a plurality of power supply conductors, it can be bent freely, and the arrangement of the light emitting elements can be made free. The position can be set freely.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of a light-emitting diode strip lamp of the present invention.
FIG. 2 is an enlarged view of an element connecting portion of a feed conductor according to the present invention.
FIG. 3 is a back view of the light emitting device of the present invention.
FIG. 4 is an enlarged view of an element connection portion of a power supply conductor according to the present invention.
FIG. 5 is an explanatory diagram of a second embodiment of the present invention.
FIG. 6 is an explanatory view of installation position adjustment according to the second embodiment of the present invention.
FIG. 7 is a perspective view of a third embodiment of the present invention.
FIG. 8 is a side view of a fourth embodiment of the present invention.
FIG. 9 is a plan view of a fourth embodiment of the present invention.
FIG. 10 is a side view of a fifth embodiment of the present invention.
FIG. 11 is a plan view of a fifth embodiment of the present invention.
FIG. 12 is a plan view of a sixth embodiment of the present invention.
FIG. 13 is a sectional view of a seventh embodiment of the present invention.
FIG. 14 is a side view of a seventh embodiment of the present invention.
FIG. 15 is an explanatory diagram of a conventional light emitting diode lamp.
[Explanation of symbols]
1, 10, 14, 80 Light-emitting element (light-emitting part), 11, 12 Mounting part
2, 3, 5, 6, 91, 92, 93, 100, 110, 300
20, 30, 70, 101, 102, 103 Element connection
21, 13, 31, 51, 61 Insulating paint layer
22, 32, 52, 62 Conductor (core wire), 50, 60 Device connection
7, 81, 90 Feeding cable, 71 Sharpening groove
82, 111, 112 reflective surface, 113, 114 element connection,
301 Reflecting base, 302 Electric wire, 303 Wire bonding
a light emitting part, b, c electrode wire, d transparent polymer

Claims (9)

発光素子と取出電極とを備えた発光ダイオードストリップランプであって、給電導体として金属線材から成る心線に絶縁塗料を塗布して成る絶縁塗料被覆線を用い、該給電導体の絶縁塗料層を削って給電導体の心線を露出させて素子接続部を形成し、ダイボンディング等の固定手段により発光素子を給電導体の素子接続部に直接的に固定することを特徴とする発光ダイオードストリップランプ。A light-emitting diode strip lamp having a light-emitting element and an extraction electrode, wherein an insulating paint-coated wire formed by applying an insulating paint to a core wire made of a metal wire is used as a power supply conductor, and the insulating paint layer of the power supply conductor is shaved. A light emitting diode strip lamp characterized in that an element connecting portion is formed by exposing a core wire of a feeding conductor, and a light emitting element is directly fixed to an element connecting portion of the feeding conductor by a fixing means such as die bonding. 給電導体の心線をアルミニウム線材としたことを特徴とする請求項1記載の発光ダイオードストリップランプ。2. The light emitting diode strip lamp according to claim 1, wherein a core wire of the power supply conductor is an aluminum wire. 2本以上の給電導体を並べて接合して給電ケーブルを形成し、絶縁塗料層を削って各給電導体に露出部を形成して、給電ケーブルの一側面の適所に素子接続部を形成したことを特徴とする請求項1又は2記載の発光ダイオードストリップランプ。Two or more power supply conductors are lined up and joined to form a power supply cable, the insulating paint layer is scraped to form an exposed portion on each power supply conductor, and an element connection portion is formed at an appropriate position on one side of the power supply cable. The light-emitting diode strip lamp according to claim 1 or 2. 給電ケーブルをコイル状に巻回して筒状体を形成し、該給電ケーブルの筒状体の外周面に削り溝を形成し、削り溝底面に心線を露出させて素子接続部を形成するとともに、筒状体を引き延ばして素子接続部間の距離を調節することを特徴とする請求項1,2又は3記載の発光ダイオードストリップランプ。A feeding cable is wound into a coil shape to form a cylindrical body, a shaving groove is formed on the outer peripheral surface of the cylindrical body of the feeding cable, and a core wire is exposed on the bottom surface of the shaving groove to form an element connecting portion. 4. The light emitting diode strip lamp according to claim 1, wherein the distance between the element connecting portions is adjusted by extending the cylindrical body. 2本の給電導体を並べて接合して形成した給電ケーブルの一側面に、給電ケーブルの長手方向に沿った凹面の反射鏡部を形成し、反射鏡部の端縁に沿って給電ケーブルの長手方向に延びる平坦な素子接続部を形成し、ダイボンディング等の固定手段により発光素子を給電ケーブルの素子接続部に直接的に固定することを特徴とする発光ダイオードストリップランプ。A concave reflecting mirror portion along the longitudinal direction of the feeding cable is formed on one side of the feeding cable formed by joining two feeding conductors side by side, and the longitudinal direction of the feeding cable along the edge of the reflecting mirror portion A light emitting diode strip lamp, characterized in that a flat element connecting portion extending in a straight line is formed and the light emitting element is directly fixed to the element connecting portion of the feeding cable by a fixing means such as die bonding. 2本の給電導体を並べて接合して形成した給電ケーブルの一側面の絶縁塗料層を削って心線を露出させて素子接続部を形成し、ダイボンディング等の固定手段により発光素子を給電ケーブルの素子接続部に直接的に固定したものを、両側壁が開放端方向に拡開する略V字形の反射鏡の閉塞端の内側に配設したことを特徴とする発光ダイオードストリップランプ。The insulating paint layer on one side of the power supply cable formed by joining two power supply conductors side by side is shaved to expose the core wire to form an element connection portion, and the light emitting element is attached to the power supply cable by fixing means such as die bonding. A light-emitting diode strip lamp, which is directly fixed to an element connecting portion, is disposed inside a closed end of a substantially V-shaped reflecting mirror whose both side walls expand in the open end direction. 給電導体の端部を、軸方向に押しつぶして給電導体の軸腺に略直交する円盤状の反射台座を形成し、該反射台座に1個又は複数個の発光素子をダイボンディング等の固定手段により固定したことを特徴とする発光ダイオードストリップランプ。The end portion of the power supply conductor is crushed in the axial direction to form a disk-shaped reflection pedestal that is substantially orthogonal to the axis line of the power supply conductor, and one or more light emitting elements are fixed to the reflection pedestal by a fixing means such as die bonding. A light-emitting diode strip lamp characterized by being fixed. 複数の反射台座を同心円周上に配設し、その中心に電線を設置したことを特徴とする請求項7記載の発光ダイオードストリップランプ。8. The light emitting diode strip lamp according to claim 7, wherein a plurality of reflecting pedestals are arranged on a concentric circle, and an electric wire is installed at the center thereof. 3本以上の絶縁塗料被覆線である給電導体を、断面多角形となるように一体的に接合して給電ケーブルを形成し、給電ケーブルの各外側面に心線を露出させて素子接続部を側面毎に位置をずらして配設したことを特徴とする発光ダイオードストリップランプ。Three or more insulated paint-coated wires are integrally joined to form a power supply cable so that the cross section of the power supply conductor is a polygonal cross section. A light-emitting diode strip lamp, characterized in that the position is shifted for each side surface.
JP2003206911A 2003-08-08 2003-08-08 Light emitting diode strip lamp Pending JP2005063995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206911A JP2005063995A (en) 2003-08-08 2003-08-08 Light emitting diode strip lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206911A JP2005063995A (en) 2003-08-08 2003-08-08 Light emitting diode strip lamp

Publications (1)

Publication Number Publication Date
JP2005063995A true JP2005063995A (en) 2005-03-10

Family

ID=34363597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206911A Pending JP2005063995A (en) 2003-08-08 2003-08-08 Light emitting diode strip lamp

Country Status (1)

Country Link
JP (1) JP2005063995A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011594A1 (en) * 2006-03-10 2007-09-13 Mross Jun., Ulrich lighting device
JP2009253040A (en) * 2008-04-07 2009-10-29 Yazaki Corp Led illumination unit
JP2014532294A (en) * 2011-09-06 2014-12-04 コーニンクレッカ フィリップス エヌ ヴェ Manufacturing method of LED matrix and apparatus having LED matrix
CN104204652A (en) * 2012-03-30 2014-12-10 皇家飞利浦有限公司 Pre-rotated overmolded bidirectional spreading lens for stretched leadframe architecture
US9130138B2 (en) 2012-07-31 2015-09-08 Nichia Corporation Light-emitting device manufacturing method
US9190587B2 (en) 2012-08-31 2015-11-17 Nichia Corporation Light-emitting device and method of manufacturing the same
US11226073B2 (en) 2015-03-10 2022-01-18 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US11441742B2 (en) 2015-12-09 2022-09-13 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11519567B2 (en) 2014-09-28 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11543086B2 (en) 2015-03-10 2023-01-03 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11649934B2 (en) 2014-09-28 2023-05-16 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11686457B2 (en) 2014-09-28 2023-06-27 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11906115B2 (en) 2014-12-05 2024-02-20 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011594A1 (en) * 2006-03-10 2007-09-13 Mross Jun., Ulrich lighting device
JP2009253040A (en) * 2008-04-07 2009-10-29 Yazaki Corp Led illumination unit
JP2014532294A (en) * 2011-09-06 2014-12-04 コーニンクレッカ フィリップス エヌ ヴェ Manufacturing method of LED matrix and apparatus having LED matrix
US9997684B2 (en) 2012-03-30 2018-06-12 Lumileds Llc Pre-rotated overmoulded bidirectional spreading lens for stretched leadframe architecture
CN104204652A (en) * 2012-03-30 2014-12-10 皇家飞利浦有限公司 Pre-rotated overmolded bidirectional spreading lens for stretched leadframe architecture
JP2015511774A (en) * 2012-03-30 2015-04-20 コーニンクレッカ フィリップス エヌ ヴェ Pre-rotated overmolded bidirectional diffuser lens for stretched leadframe architecture
US10249807B2 (en) 2012-03-30 2019-04-02 Lumileds Llc Pre-rotated overmoulded bidirectional spreading lens for stretched leadframe architecture
JP2017224856A (en) * 2012-03-30 2017-12-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pre-rotated overmolded bidirectional spreading lens for stretched leadframe architecture
US9130138B2 (en) 2012-07-31 2015-09-08 Nichia Corporation Light-emitting device manufacturing method
US10083943B2 (en) 2012-08-31 2018-09-25 Nichia Corporation Light-emitting device and method of manufacturing the same
US9711491B2 (en) 2012-08-31 2017-07-18 Nichia Corporation Light-emitting device and method of manufacturing the same
US9190587B2 (en) 2012-08-31 2015-11-17 Nichia Corporation Light-emitting device and method of manufacturing the same
US11519567B2 (en) 2014-09-28 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11649934B2 (en) 2014-09-28 2023-05-16 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11686457B2 (en) 2014-09-28 2023-06-27 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11906115B2 (en) 2014-12-05 2024-02-20 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US11226073B2 (en) 2015-03-10 2022-01-18 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11543086B2 (en) 2015-03-10 2023-01-03 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11698170B2 (en) 2015-03-10 2023-07-11 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11841113B2 (en) 2015-03-10 2023-12-12 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11441742B2 (en) 2015-12-09 2022-09-13 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp

Similar Documents

Publication Publication Date Title
TWI529968B (en) Flexible distributed led-based light source and method for making the same
US9810379B2 (en) LED lamp
CN1280574C (en) Device and method for modularization mounting of LED
US9234638B2 (en) LED lamp with thermally conductive enclosure
JP2004320020A (en) Led lamp having insertable axial direction lead wire passage and method for manufacturing the same
JP2005063995A (en) Light emitting diode strip lamp
US9395074B2 (en) LED lamp with LED assembly on a heat sink tower
US9310028B2 (en) LED lamp with LEDs having a longitudinally directed emission profile
US9951909B2 (en) LED lamp
JP5029822B2 (en) Light source and lighting device
US4990971A (en) Light emiting diode network
EP3669118B1 (en) Support for light-emitting elements and lighting device
WO2014150330A1 (en) Led lamp and heat sink
JP2007324137A (en) Lighting system
TW200409311A (en) Light emitting diode and package scheme and method thereof
JP2005093097A (en) Lighting system
US8616732B2 (en) Light-emitting device and illumination device
JP2004206947A (en) Light emitting diode, lighting fixture and their process of manufacture
EP3184877A1 (en) Led illumination apparatus and manufacturing method thereof
WO2014179519A2 (en) Led lamp
US7301174B1 (en) Light emitting diode strip lamp
JP2009021384A (en) Electronic component and light emitting device
JP6481695B2 (en) Lamp, wavelength discrimination cover for lamp, lighting device, and method of manufacturing lamp
JP6133521B2 (en) Light source assembly and method for manufacturing the light source assembly
JP2006186197A (en) Light emitting device