JP2005062723A - Liquid crystal display and its manufacturing method - Google Patents

Liquid crystal display and its manufacturing method Download PDF

Info

Publication number
JP2005062723A
JP2005062723A JP2003296002A JP2003296002A JP2005062723A JP 2005062723 A JP2005062723 A JP 2005062723A JP 2003296002 A JP2003296002 A JP 2003296002A JP 2003296002 A JP2003296002 A JP 2003296002A JP 2005062723 A JP2005062723 A JP 2005062723A
Authority
JP
Japan
Prior art keywords
colored layer
liquid crystal
width
layer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003296002A
Other languages
Japanese (ja)
Inventor
Natsuko Fujiyama
奈津子 藤山
Yuzo Hisatake
雄三 久武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Matsushita Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Technology Co Ltd filed Critical Toshiba Matsushita Display Technology Co Ltd
Priority to JP2003296002A priority Critical patent/JP2005062723A/en
Publication of JP2005062723A publication Critical patent/JP2005062723A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To substantially reduce light escaping generated in an aperture region by superposition of colored layers, in a liquid crystal display. <P>SOLUTION: The liquid crystal display is provided with an array substrate AR, a counter substrate CT, and a liquid crystal layer LQ interposed between the array substrate AR and the counter substrate CT, and the array substrate AR includes a plurality of signal lines X located at fixed intervals as light-shielding wiring layers, a plurality of colored layers R, G, and B formed by red, green, and blue colors, respectively, having specific visibility characteristics in aperture regions partitioned by the signal lines X and a plurality of pixel electrodes PE formed on the colored layers R, G, and B, respectively. Especially, low visibility-side colored layers of the plurality of colored layers R, G, and B are superposed on the respective signal lines X so as to be mainly upheaved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一般に液晶層が一対の電極基板間に挟持される構造の液晶表示装置およびその製造方法に関し、特に複数の着色層が複数の画素電極と一緒に一方の電極基板上に配置される液晶表示装置およびその製造方法に関する。   The present invention generally relates to a liquid crystal display device having a structure in which a liquid crystal layer is sandwiched between a pair of electrode substrates and a method for manufacturing the same, and in particular, a plurality of colored layers are disposed on one electrode substrate together with a plurality of pixel electrodes. The present invention relates to a liquid crystal display device and a manufacturing method thereof.

液晶表示装置は、軽量、薄型、低消費電力という特性からOA機器、情報端末、時計、テレビのような様々な分野で応用されている。典型的な液晶表示装置では、液晶層が一対の電極基板間に挟持される。一方の電極基板は略マトリクス状に配置される複数の画素電極を有するアレイ基板からなり、他方の電極基板は複数の画素電極に対向する対向電極を有する対向基板からなる。これらアレイ基板および対向基板は液晶表示パネルとして液晶層を取り囲むように配置される外縁シール部材により貼り合わされる。   Liquid crystal display devices are applied in various fields such as office automation equipment, information terminals, watches, and televisions because of their characteristics of light weight, thinness, and low power consumption. In a typical liquid crystal display device, a liquid crystal layer is sandwiched between a pair of electrode substrates. One electrode substrate is composed of an array substrate having a plurality of pixel electrodes arranged in a substantially matrix shape, and the other electrode substrate is composed of a counter substrate having counter electrodes facing the plurality of pixel electrodes. The array substrate and the counter substrate are bonded together by an outer edge sealing member disposed so as to surround the liquid crystal layer as a liquid crystal display panel.

この液晶表示パネルがカラー表示用である場合には、一般に対向基板が赤、緑、および青に着色された複数の着色層からなるカラーフィルタを含み、これら着色層を複数の画素電極に対向させてアレイ基板に貼り合わされる。しかしながら、この構成はアレイ基板と対向基板との貼り合わせプロセスにおいて各着色層を対応画素電極に整合させる高精度の位置合せを必要とする。近年では、この位置合せを不要にする技術として、カラーフィルタをアレイ基板上に形成するCOAプロセスも実用化されている(例えば、特許文献1参照)。   When this liquid crystal display panel is for color display, the counter substrate generally includes a color filter composed of a plurality of colored layers colored red, green, and blue, and these colored layers are opposed to a plurality of pixel electrodes. Are attached to the array substrate. However, this configuration requires high-precision alignment in which each colored layer is aligned with the corresponding pixel electrode in the bonding process between the array substrate and the counter substrate. In recent years, a COA process for forming a color filter on an array substrate has also been put into practical use as a technique that makes this alignment unnecessary (see, for example, Patent Document 1).

COAプロセスでは、カラーフィルタが複数の画素電極の下地として用いられる。これら画素電極はカラーフィルタとなる複数の着色層を覆って形成される光透過性導電層をパターニングすることにより形成されるが、このパターニング精度は着色層の位置ずれに大きく依存し、画素の開口率を低下させる原因になる。
特開2001−281697 (図4)
In the COA process, a color filter is used as a base for a plurality of pixel electrodes. These pixel electrodes are formed by patterning a light-transmitting conductive layer that covers a plurality of colored layers to be color filters. The patterning accuracy greatly depends on the misalignment of the colored layers, and the pixel openings Cause the rate to drop.
Japanese Patent Laid-Open No. 2001-281697 (FIG. 4)

上述した理由から、現在では、開口領域の周囲、すなわち画素電極の間隙を透過する光を遮る遮光性配線層上で隣接着色層を重ねて形成することによりパターニング精度の低下を防止している。しかしながら、このように着色層を重ねた場合に遮光性配線層付近の開口領域において生じる光抜けによって黒表示時のコントラストが低下するという問題がある。   For the reasons described above, at present, a decrease in patterning accuracy is prevented by forming an adjacent colored layer on the light-shielding wiring layer that blocks light transmitted through the gap between the pixel electrodes, that is, the pixel electrodes. However, there is a problem that the contrast at the time of black display is lowered due to light leakage occurring in the opening region near the light-shielding wiring layer when the colored layers are overlapped in this way.

本発明はこのような問題に鑑みてなされたもので、着色層の重なりによって開口領域に生じる光抜けを実質的に低減できる液晶表示装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a liquid crystal display device and a method for manufacturing the same that can substantially reduce light leakage generated in an opening region due to overlapping of colored layers.

本発明によれば、第1および第2電極基板と、前記第1および第2電極基板間に挟持される液晶層とを備え、第1電極基板は一定間隔で並ぶ複数の遮光性配線層、複数の遮光性配線層によって区画される開口領域に対してそれぞれ固有の視感度特性を持つ色で形成される複数の着色層、および複数の着色層上にそれぞれ形成される複数の画素電極を含み、複数の着色層は低視感度側の着色層を主に隆起させるように各遮光性配線層上で重ねられる液晶表示装置が提供される。   According to the present invention, the first and second electrode substrates and a liquid crystal layer sandwiched between the first and second electrode substrates, wherein the first electrode substrate has a plurality of light-shielding wiring layers arranged at regular intervals, Including a plurality of colored layers formed in colors each having a unique visibility characteristic with respect to an opening region partitioned by a plurality of light-shielding wiring layers, and a plurality of pixel electrodes formed on the plurality of colored layers, respectively. There is provided a liquid crystal display device in which a plurality of colored layers are superposed on each light-shielding wiring layer so that the colored layer on the low visibility side is mainly raised.

さらに本発明によれば、第1および第2基板間に液晶層を挟持させるもので、第1基板上に一定間隔で並ぶ複数の遮光性配線層を形成し、複数の遮光性配線層によって区画される開口領域に対してそれぞれ固有の視感度特性を持つ色で複数の着色層を形成し、複数の着色層上にそれぞれ複数の画素電極を形成し、複数の着色層は視感度の高いものから順に形成する液晶表示装置の製造方法が提供される。   Further, according to the present invention, the liquid crystal layer is sandwiched between the first and second substrates, and a plurality of light-shielding wiring layers arranged at regular intervals are formed on the first substrate, and the plurality of light-shielding wiring layers are partitioned. A plurality of colored layers are formed with colors having unique visibility characteristics with respect to the aperture region to be formed, and a plurality of pixel electrodes are respectively formed on the plurality of colored layers, and the plurality of colored layers have high visibility. The manufacturing method of the liquid crystal display device formed in order is provided.

この液晶表示装置およびその製造方法では、複数の着色層が低視感度側の着色層を主に隆起させるように各遮光性配線層上で重ねられる。本願発明者等は、これら着色層が各遮光性配線層上での重なりにより遮光性配線層で遮光されない開口領域に入り込んで隆起することを確認した。この隆起部分では、リタデーション値(=Δnd、ここでΔn:屈折率,d:層厚)が中央部付近とは異なり、その結果として光抜けが生じている。着色層は固有の視感度特性を持つ色で形成されるため、この光抜けが高視感度側の着色層で生じると、これが低視感度側の着色層で生じたときよりも黒表示時のコントラストを低下させる。そこで、この液晶表示装置は低視感度側の着色層を主に隆起させている。具体的には、高視感度側の着色層上に低視感度側の着色層を重ねたり、高視感度側の着色層の幅を広げて低視感度側の着色層の幅を狭めたり、これらを組み合わせたりすればよく、開口領域内の隆起部分で生じる光抜けがこれにより実質的に低減され、黒表示時のコントラスト低下を改善できる。   In this liquid crystal display device and its manufacturing method, a plurality of colored layers are overlaid on each light-shielding wiring layer so as to mainly raise the colored layer on the low visibility side. The inventors of the present application have confirmed that these colored layers rise into the opening region that is not shielded by the light-shielding wiring layer due to the overlap on each light-shielding wiring layer. In this raised portion, the retardation value (= Δnd, where Δn: refractive index, d: layer thickness) is different from that in the vicinity of the central portion, and as a result, light leakage occurs. Since the colored layer is formed with a color having a unique visibility characteristic, when this light omission occurs in the colored layer on the high visibility side, this occurs at the time of black display than when it occurs in the colored layer on the low visibility side. Reduce contrast. Therefore, this liquid crystal display device mainly has a raised color layer on the low visibility side. Specifically, the colored layer on the low visibility side is overlaid on the colored layer on the high visibility side, or the width of the colored layer on the high visibility side is increased to narrow the width of the colored layer on the low visibility side, What is necessary is just to combine these, and the light omission which arises in the protruding part in an opening area | region is reduced substantially by this, and the contrast fall at the time of black display can be improved.

本発明によれば、着色層の重なりによって開口領域に生じる光抜けを実質的に低減できる液晶表示装置およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal display device which can reduce substantially the light leakage produced in an opening area | region by the overlap of a colored layer, and its manufacturing method can be provided.

以下、本発明の一実施形態に係る液晶表示装置について添付図面を参照して説明する。この液晶表示装置はマルチドメイン構造のVANモードで表示を行う透過型XGA液晶表示パネルである。   Hereinafter, a liquid crystal display device according to an embodiment of the present invention will be described with reference to the accompanying drawings. This liquid crystal display device is a transmissive XGA liquid crystal display panel that performs display in a VAN mode having a multi-domain structure.

図1はこの液晶表示パネルTMDの断面構造を概略的に示し、図2は図1に示す液晶表示パネルTMDの外観を示し、図3は図2に示す液晶表示パネルTMDの回路構造を概略的に示す。   1 schematically shows a cross-sectional structure of the liquid crystal display panel TMD, FIG. 2 shows an appearance of the liquid crystal display panel TMD shown in FIG. 1, and FIG. 3 schematically shows a circuit structure of the liquid crystal display panel TMD shown in FIG. Shown in

液晶表示パネルTMDは、図1に示すように第1電極基板となるアレイ基板ARと、第1電極基板に対向する第2電極基板となる対向基板CTと、負の誘電率異方性を有する液晶組成物を含みアレイ基板ARおよび対向基板CT間に挟持される液晶層LQとを備える。アレイ基板ARと対向基板CTとは、図2に示すように液晶層LQを取り囲むように配置される外縁シール部材11により貼り合わされる。液晶表示パネルTMDでは、画像を表示するための表示領域DAが外縁シール部材11の内側に配置され、駆動回路を配置するための周辺領域EAがこの表示領域DAの周囲に配置される。液晶組成物はアレイ基板ARと対向基板CTとの貼合わせ後に液晶注入口12から注入され、この注入後に封止部材13により封止される。   As shown in FIG. 1, the liquid crystal display panel TMD has an array substrate AR serving as a first electrode substrate, a counter substrate CT serving as a second electrode substrate facing the first electrode substrate, and negative dielectric anisotropy. A liquid crystal layer LQ that includes the liquid crystal composition and is sandwiched between the array substrate AR and the counter substrate CT. As shown in FIG. 2, the array substrate AR and the counter substrate CT are bonded together by an outer edge seal member 11 disposed so as to surround the liquid crystal layer LQ. In the liquid crystal display panel TMD, a display area DA for displaying an image is arranged inside the outer edge seal member 11, and a peripheral area EA for arranging a drive circuit is arranged around the display area DA. The liquid crystal composition is injected from the liquid crystal injection port 12 after the array substrate AR and the counter substrate CT are bonded, and is sealed by the sealing member 13 after the injection.

アレイ基板ARは、表示領域DAにおいて、図3に示すように、マトリクス状に配置されたm×n個の画素電極PE、これら画素電極PEの行に沿って配置されたm本の走査線Y(Y1〜Ym)、これら画素電極PEの列方向に沿って配置されたn本の信号線X(X1〜Xn)、m×n個の画素電極PEに対応して走査線Y1〜Ymおよび信号線X1〜Xnの交差位置近傍に配置されたm×n個の画素スイッチ15を有し、さらに画素電極PEの行に沿って配置されるm本の補助容量線16を有する。走査線Y1〜Ymは信号線X1〜Xnと略直交し、補助容量線16と略平行に配置される。各補助容量線16は対向電極駆動回路等から対向電位VCOMとして得られる所定電位に設定され、対応行の画素電極PEと容量結合してそれぞれ補助容量Csを構成する。   As shown in FIG. 3, the array substrate AR includes m × n pixel electrodes PE arranged in a matrix and m scanning lines Y arranged along the rows of the pixel electrodes PE in the display area DA. (Y1 to Ym), n signal lines X (X1 to Xn) arranged along the column direction of the pixel electrodes PE, scanning lines Y1 to Ym and signals corresponding to m × n pixel electrodes PE. It has m × n pixel switches 15 arranged in the vicinity of the intersecting positions of the lines X1 to Xn, and further has m auxiliary capacitance lines 16 arranged along the row of the pixel electrodes PE. The scanning lines Y <b> 1 to Ym are substantially orthogonal to the signal lines X <b> 1 to Xn and are disposed substantially parallel to the auxiliary capacitance line 16. Each auxiliary capacitance line 16 is set to a predetermined potential obtained as a counter potential VCOM from a counter electrode drive circuit or the like, and capacitively couples with the pixel electrode PE in the corresponding row to form an auxiliary capacitance Cs.

また、アレイ基板ARは、周辺領域EAにおいて、走査線Y1〜Ymを駆動する走査線駆動回路YD、信号線X1〜Xnを駆動する信号線駆動回路XDを有する。各画素スイッチ15は例えばポリシリコン薄膜トランジスタからなり、対応走査線Yおよび対応信号線Xに接続され、この走査線Yからの駆動電圧により導通し、信号線Xからの信号電圧を対応画素電極PEに印加する。   In addition, the array substrate AR has a scanning line driving circuit YD for driving the scanning lines Y1 to Ym and a signal line driving circuit XD for driving the signal lines X1 to Xn in the peripheral area EA. Each pixel switch 15 is made of, for example, a polysilicon thin film transistor, is connected to the corresponding scanning line Y and the corresponding signal line X, is made conductive by the driving voltage from the scanning line Y, and the signal voltage from the signal line X is applied to the corresponding pixel electrode PE. Apply.

画素電極PEは、金属等の導電部材からなる遮光性配線層である信号線Xおよび走査線Yによって区画される開口領域に配置される。画素電極PEはガラス基板などの光透過性絶縁基板GL2の上方に形成されるITO等の透明導電部材からなり、その平面的な広がりによって液晶層LQの画素領域に電界を印加する。画素電極PEは例えばその起伏により液晶層LQの画素領域を複数のドメインに配向分割するように構成されている。   The pixel electrode PE is disposed in an opening region defined by the signal line X and the scanning line Y, which is a light-shielding wiring layer made of a conductive member such as metal. The pixel electrode PE is made of a transparent conductive member such as ITO formed above the light-transmissive insulating substrate GL2 such as a glass substrate, and applies an electric field to the pixel region of the liquid crystal layer LQ due to its planar spread. The pixel electrode PE is configured, for example, to divide the pixel region of the liquid crystal layer LQ into a plurality of domains by undulations.

アレイ基板ARでは、図1において省略されているが、それぞれの画素スイッチ15がガラス基板などの光透過性絶縁基板GL1上に形成され、カラーフィルタCFにより覆われる。カラーフィルタCFは、複数の画素電極PEの行方向に繰り返し並べられ各々対応画素電極PEに対向する赤着色層R、緑着色層G、青着色層Bにより構成される。画素電極PEおよびカラーフィルタCFは配向膜18により全体的に覆われる。配向膜18は、電圧無印加状態において液晶層LQの液晶分子20をアレイ基板ARに対して略垂直な方向に配向させる。このアレイ基板AR側では、さらに偏光板PL1が液晶層LQとは反対側となる絶縁基板GL1の表面に貼り付けられる。   Although not shown in FIG. 1 in the array substrate AR, each pixel switch 15 is formed on a light-transmissive insulating substrate GL1 such as a glass substrate and covered with a color filter CF. The color filter CF is configured by a red colored layer R, a green colored layer G, and a blue colored layer B that are repeatedly arranged in the row direction of the plurality of pixel electrodes PE and face the corresponding pixel electrodes PE. The pixel electrode PE and the color filter CF are entirely covered with the alignment film 18. The alignment film 18 aligns the liquid crystal molecules 20 of the liquid crystal layer LQ in a direction substantially perpendicular to the array substrate AR when no voltage is applied. On the array substrate AR side, a polarizing plate PL1 is further attached to the surface of the insulating substrate GL1 on the side opposite to the liquid crystal layer LQ.

他方、対向基板CTでは、対向電極CEがガラス基板などの光透過性絶縁基板GL2上に形成されるITO等の透明導電部材からなり、配向膜19がこの対向電極CEを覆って形成される。対向電極CEは、アレイ基板AR側に配置された複数の画素電極PE全体に対向するように配置される。配向膜19は、電圧無印加状態において液晶層LQの液晶分子20を対向基板CTに対して略垂直な方向に配向する。この対向基板CT側では、偏光板PL2が液晶層LQとは反対側となる絶縁基板GL2の表面に貼り付けられる。   On the other hand, in the counter substrate CT, the counter electrode CE is made of a transparent conductive member such as ITO formed on the light-transmissive insulating substrate GL2 such as a glass substrate, and the alignment film 19 is formed to cover the counter electrode CE. The counter electrode CE is disposed so as to face the entire plurality of pixel electrodes PE disposed on the array substrate AR side. The alignment film 19 aligns the liquid crystal molecules 20 of the liquid crystal layer LQ in a direction substantially perpendicular to the counter substrate CT when no voltage is applied. On the counter substrate CT side, the polarizing plate PL2 is attached to the surface of the insulating substrate GL2 on the side opposite to the liquid crystal layer LQ.

ちなみに、液晶表示パネルTMDは、カラーフィルタCFが画素スイッチ15および画素電極PEのアレイと共にアレイ基板AR上に形成されるCOA(Color filter On Array)構造である。このCOA構造は、カラーフィルタCFを対向基板CT上に配置する場合に基板相互をずれなく貼り合わせるために必要とされる高精度な位置合わせを不要にでき、この結果として製造処理を容易にし材料コストを低減することが可能である。液晶表示パネルTMDが上述のように透過型である場合には、カラーフィルタCFの材料がアクリル系樹脂、エポキシ系樹脂、ノボラック系樹脂などの透明樹脂であることが透過率、色合いの観点から好ましい。   Incidentally, the liquid crystal display panel TMD has a COA (Color filter On Array) structure in which the color filter CF is formed on the array substrate AR together with the array of the pixel switches 15 and the pixel electrodes PE. This COA structure eliminates the need for high-precision positioning required for bonding the substrates without displacement when the color filter CF is disposed on the counter substrate CT. As a result, the manufacturing process is facilitated. Costs can be reduced. When the liquid crystal display panel TMD is a transmission type as described above, the material of the color filter CF is preferably a transparent resin such as an acrylic resin, an epoxy resin, or a novolac resin from the viewpoints of transmittance and color. .

アレイ基板ARの製造工程では、最初に画素スイッチ15が絶縁基板GL1上に形成され、走査線Yも画素スイッチ15のゲート電極と一体的に形成される。画素スイッチ15は例えば層間絶縁膜等により覆われ、さらに信号線Xがこの層間絶縁膜上に形成される。   In the manufacturing process of the array substrate AR, first, the pixel switch 15 is formed on the insulating substrate GL1, and the scanning line Y is also formed integrally with the gate electrode of the pixel switch 15. The pixel switch 15 is covered with, for example, an interlayer insulating film and the signal line X is formed on the interlayer insulating film.

続いて、緑色の顔料を分散させた紫外線硬化型アクリル樹脂レジストがスピンナーで全面塗布され、90°Cの温度で10分間乾燥される。この後、波長365nmの紫外線が、緑着色層Gのための領域を露光するために照射される。ここでは、緑着色層Gをストライプ状としさらに画素スイッチ15に対するコンタクトホールを形成するようなフォトマスクを用いて露光を行う。紫外線の露光量は100mJ/cmに設定される。次に、この樹脂レジストは水酸化カリウムを1重量パーセント含む水溶液を用いて20秒間現像処理され、さらに200°Cの温度で、60分間焼成される。これにより、コンタクトホールを有する膜厚3.2μmの緑着色層Gが形成される。 Subsequently, an ultraviolet curable acrylic resin resist in which a green pigment is dispersed is applied over the entire surface with a spinner and dried at a temperature of 90 ° C. for 10 minutes. Thereafter, ultraviolet light having a wavelength of 365 nm is irradiated to expose a region for the green colored layer G. Here, exposure is performed using a photomask that forms the green colored layer G in a stripe shape and further forms a contact hole for the pixel switch 15. The exposure amount of ultraviolet rays is set to 100 mJ / cm 2 . Next, this resin resist is developed for 20 seconds using an aqueous solution containing 1% by weight of potassium hydroxide, and further baked at a temperature of 200 ° C. for 60 minutes. Thereby, a green colored layer G having a thickness of 3.2 μm having a contact hole is formed.

赤着色層Rおよび青着色層Bについても、それぞれ対応色の顔料を分散させた紫外線硬化型アクリル樹脂レジストを用いて緑着色層Gと同様のプロセスで形成される。赤着色層Rは緑着色層Gの形成後に形成され、青着色層Bは赤着色層Rの形成後に形成される。赤着色層Rおよび青着色層Gは緑着色層Gと同様に膜厚3.2μmとなる。カラーフィルタCFはこれら緑着色層G、赤着色層R、および青着色層Bによって得られる。   The red colored layer R and the blue colored layer B are also formed in the same process as the green colored layer G using an ultraviolet curable acrylic resin resist in which pigments of corresponding colors are dispersed. The red colored layer R is formed after the green colored layer G is formed, and the blue colored layer B is formed after the red colored layer R is formed. Similarly to the green colored layer G, the red colored layer R and the blue colored layer G have a film thickness of 3.2 μm. The color filter CF is obtained by the green colored layer G, the red colored layer R, and the blue colored layer B.

その後、画素電極PEが、厚さ約1500ÅでITOをスパッタリングしてこれをフォトリソグラフィでパターニングすることにより形成される。尚、画素電極PEの起伏は、例えば透明樹脂レジストパターン等を画素電極PEの下地としてカラーフィルタCF上に形成することにより得ることができる。   Thereafter, the pixel electrode PE is formed by sputtering ITO with a thickness of about 1500 mm and patterning it by photolithography. The undulation of the pixel electrode PE can be obtained by forming a transparent resin resist pattern or the like on the color filter CF as a base of the pixel electrode PE, for example.

その後、感光性の黒色樹脂がスピンナーで塗布され、90°Cの温度で、10分間乾燥され、さらに紫外線が液晶層LQのセルギャップを規定する柱状スペーサのための領域および図2に示す外縁シール部材11の内側において表示領域DAを取り囲む額縁状遮光層のための遮光領域(幅3mm)を露光させるフォトマスクを介して照射される。紫外線の露光量は300mJ/cmに設定される。その後、黒色樹脂がpH=11.5のアルカリ性水溶液を用いた現像処理により選択的に除去され、200°Cの温度で、60分間焼成され、これにより柱状スペーサおよび遮光層が一緒に形成される。 Thereafter, a photosensitive black resin is applied with a spinner, dried at a temperature of 90 ° C. for 10 minutes, and an ultraviolet ray is a region for a columnar spacer that defines the cell gap of the liquid crystal layer LQ and the outer edge seal shown in FIG. Irradiation is performed through a photomask that exposes a light shielding region (width 3 mm) for the frame-shaped light shielding layer surrounding the display region DA inside the member 11. The exposure amount of ultraviolet rays is set to 300 mJ / cm 2 . Thereafter, the black resin is selectively removed by a development process using an alkaline aqueous solution having a pH = 11.5, and is baked at a temperature of 200 ° C. for 60 minutes, whereby a columnar spacer and a light shielding layer are formed together. .

この後、配向膜18が全画素電極PEを覆って600Åの厚さで配向膜材料を塗布することにより形成される。   Thereafter, the alignment film 18 is formed by coating the alignment film material with a thickness of 600 mm covering all the pixel electrodes PE.

対向基板CTについては、対向電極CEが絶縁基板GL2上に形成され、配向膜19がこの対向電極CEを覆って同様に600Åの厚さで配向膜材料を塗布することにより形成される。また、配向膜19の外縁に沿って、エポキシ系熱硬化樹脂の接着剤が印刷により形成され、さらに電極転移材がこの接着剤の外側にアレイ基板ARの補助容量線16と対向電極CEとのコンタクトをとるために形成される。   Regarding the counter substrate CT, the counter electrode CE is formed on the insulating substrate GL2, and the alignment film 19 is formed by coating the counter electrode CE and similarly applying an alignment film material with a thickness of 600 mm. In addition, an epoxy thermosetting resin adhesive is formed by printing along the outer edge of the alignment film 19, and an electrode transfer material is formed on the outside of the adhesive between the auxiliary capacitance line 16 of the array substrate AR and the counter electrode CE. Formed for contact.

このようにして得られたアレイ基板ARおよび対向基板CTは、それぞれの端面を治具で合わせ、さらに対向基板CT上のエポキシ系熱硬化樹脂の接着剤を外縁シール部材11として用いて貼合わされる。続いて、負の誘電率異方性を持つネマチック液晶材料が液晶層LQの液晶組成物として液晶注入口12からアレイ基板ARおよび対向基板CT間において外縁シール部材11で囲まれた空間に注入され、液晶注入口12がこの注入後に紫外線硬化樹脂からなる封止部材13により封止される。   The array substrate AR and the counter substrate CT thus obtained are bonded to each other using the jig of the epoxy-based thermosetting resin on the counter substrate CT as the outer edge seal member 11. . Subsequently, a nematic liquid crystal material having negative dielectric anisotropy is injected as a liquid crystal composition of the liquid crystal layer LQ from the liquid crystal injection port 12 into the space surrounded by the outer edge seal member 11 between the array substrate AR and the counter substrate CT. The liquid crystal injection port 12 is sealed with a sealing member 13 made of an ultraviolet curable resin after the injection.

ここで、上述した着色層R,G,B、信号線X、および画素電極PEの関係についてさらに説明する。n本の信号線X(X1〜Xn)は遮光性配線層として一定間隔で並べられており、着色層R,G,Bはこれら信号線Xによって区画される開口領域に対してそれぞれ固有の視感度特性を持つ赤色、緑色、青色で形成されている。着色層R,G,Bの視感度特性は、観察者の視覚がそれぞれの色の透過光に対して示す感度のことであり、例えば緑着色層Gを基準として着色層R=40%,着色層G=100%,着色層B=19%という相対透過率で表すことができる。各画素電極PEはこのような着色層R,G,Bのうちの対応着色層上に形成される。着色層R,G,Bに対する開口領域の幅をそれぞれWa(R),Wa(G),Wa(B)で表すと、これらはWa(R)=Wa(G)=Wa(B)という関係にあり、信号線Xの間隔に等しい。全画素電極PEの幅は、両端において信号線Xに重なるようにWa(R)=Wa(G)=Wa(B)の値より僅かに大きいことが好ましい。これに対して、着色層R,G,B自体の幅をWc(R),Wc(G),Wc(B)で表すと、これらはWc(G)> Wc(R)> Wc(B)という関係にあり、いずれも一定である信号線Xの間隔よりも大きい値である。   Here, the relationship between the above-described colored layers R, G, B, the signal line X, and the pixel electrode PE will be further described. The n signal lines X (X1 to Xn) are arranged as a light-shielding wiring layer at a constant interval, and the colored layers R, G, and B have a unique view with respect to the opening regions defined by these signal lines X, respectively. It is formed of red, green, and blue with sensitivity characteristics. The visibility characteristics of the colored layers R, G, and B are the sensitivities that the observer's vision shows with respect to the transmitted light of the respective colors. For example, the colored layer R = 40% based on the green colored layer G, The relative transmittance of the layer G = 100% and the colored layer B = 19% can be expressed. Each pixel electrode PE is formed on a corresponding colored layer among such colored layers R, G, and B. When the widths of the opening regions with respect to the colored layers R, G, and B are expressed as Wa (R), Wa (G), and Wa (B), respectively, the relationship is Wa (R) = Wa (G) = Wa (B). And equal to the interval between the signal lines X. The width of all the pixel electrodes PE is preferably slightly larger than the value of Wa (R) = Wa (G) = Wa (B) so as to overlap the signal line X at both ends. On the other hand, when the widths of the colored layers R, G, and B are expressed as Wc (R), Wc (G), and Wc (B), they are Wc (G)> Wc (R)> Wc (B). The values are larger than the constant interval between the signal lines X.

さらに、着色層R,G,Bは着色層G、着色層R、着色層Bの順序で形成される。図1を参照すると、着色層Gは両端において信号線Xだけを下地として形成される。着色層Rは一端において信号線Xだけを下地として形成されるが、他端において信号線Xとこの信号線Xを下地とする着色層Gとを下地として形成される。着色層Bは一端において信号線Xとこの信号線Xを下地とする着色層Gとを下地として形成され、他端において信号線Xとこの信号線Xを下地とする着色層Rとを下地として形成される。   Further, the colored layers R, G, and B are formed in the order of the colored layer G, the colored layer R, and the colored layer B. Referring to FIG. 1, the colored layer G is formed at both ends with only the signal line X as a base. The colored layer R is formed using only the signal line X as a base at one end, and is formed using the signal line X and the colored layer G using the signal line X as a base at the other end. The colored layer B is formed at one end with the signal line X and the colored layer G with the signal line X as a base, and at the other end with the signal line X and the colored layer R with the signal line X as a base. It is formed.

このようにして着色層R,G,Bが各信号線X上で重ねられた場合、低視感度側の着色層が主に隆起する結果となる。着色層R,Gの重なりは、着色層Gよりも低い視感度にある着色層Rを主に隆起させる。着色層B,Gの重なりは、着色層Gよりも低い視感度にある着色層Bを主に隆起させる。着色層B,Rの重なりは、着色層Rよりも低い視感度にある着色層Bを主に隆起させる。   When the colored layers R, G, and B are overlapped on each signal line X in this manner, the colored layer on the low visibility side mainly rises. The overlapping of the colored layers R and G mainly raises the colored layer R having a lower visibility than the colored layer G. The overlapping of the colored layers B and G mainly raises the colored layer B having a lower visibility than the colored layer G. The overlapping of the colored layers B and R mainly raises the colored layer B having a lower visibility than the colored layer R.

本実施形態の液晶表示装置では、着色層R,G,Bが低視感度側の着色層を主に隆起させるように各遮光性配線層上で重ねられる。これら隆起はそれぞれの開口領域に入り込み、図1において破線の矢印で示す光抜けを生じさせるが、これらの光抜けは常に低視感度側の着色層に設定されている。例えば着色層R,G,Bのうちで最も視感度の高い着色層Gに注目すれば、これと着色層Gまたは着色層Rに重なっても、これによる隆起が着色層Gに対応する開口領域の外側で生じるため、端部でのリタデーション値(=Δnd、ここでΔn:屈折率,d:層厚)を中央部付近とほぼ等しくすることができ、その結果として光抜けが着色層Gに対応する開口領域において生じない。このように、光抜けの発生箇所を着色層R,G,Bのうちでより低視感度である側に集中させることにより、全体として黒表示時のコントラスト低下を改善することができる。   In the liquid crystal display device of this embodiment, the colored layers R, G, and B are overlaid on each light-shielding wiring layer so that the colored layer on the low visibility side is mainly raised. These ridges enter the respective opening regions and cause light leakage indicated by broken-line arrows in FIG. 1, but these light leakages are always set in the colored layer on the low visibility side. For example, if attention is paid to the colored layer G having the highest visibility among the colored layers R, G, and B, even if it overlaps with the colored layer G or the colored layer R, the raised area corresponding to the colored layer G corresponds to the opening region. Therefore, the retardation value at the end (= Δnd, where Δn: refractive index, d: layer thickness) can be made substantially equal to the vicinity of the central portion, and as a result, light leakage occurs in the colored layer G. It does not occur in the corresponding open area. As described above, by concentrating the occurrence of light leakage on the side of the colored layers R, G, and B that has lower visibility, it is possible to improve contrast reduction during black display as a whole.

次に、本実施形態の液晶表示装置を実際に製造して黒表示時のコントラストを測定した結果を示す。上述したように着色層R,G,BをWc(G)> Wc(R)> Wc(B)という関係の異なる幅に設定し、これらを着色層G、着色層R、着色層Bの順序で形成したところ、550:1という良好な黒表示時のコントラストを得ることができた。そこで、この形成順序を維持し、着色層R,G,BをWc(G)> Wc(R)> Wc(B)ではなくWc(R)= Wc(G)= Wc(B)という関係の等しい幅に設定してみたが、この場合でも510:1という良好な黒表示時のコントラストを得ることができた。   Next, the result of actually manufacturing the liquid crystal display device of the present embodiment and measuring the contrast during black display will be shown. As described above, the colored layers R, G, and B are set to have different widths in the relationship of Wc (G)> Wc (R)> Wc (B), and these are the order of the colored layer G, the colored layer R, and the colored layer B. As a result, it was possible to obtain a good black display contrast of 550: 1. Therefore, this formation order is maintained, and the colored layers R, G, and B are not in the relationship of Wc (G)> Wc (R)> Wc (B) but Wc (R) = Wc (G) = Wc (B) Although the widths were set equal, a good black display contrast of 510: 1 could be obtained even in this case.

また、比較例として、着色層R,G,BをWc(R)= Wc(G)= Wc(B)という関係の等しい幅に設定し、さらに着色層B、着色層R、着色層Gの順序で形成したことを除いて本実施形態と同様の製造プロセスで液晶表示装置を実際に製造した。この場合には、黒表示時のコントラストが上述の550:1あるいは510:1に比べて著しく低い380:1という値であった。   As a comparative example, the colored layers R, G, and B are set to have equal widths such that Wc (R) = Wc (G) = Wc (B), and the colored layers B, R, and G A liquid crystal display device was actually manufactured by the same manufacturing process as in this embodiment except that the layers were formed in order. In this case, the contrast at the time of black display was a value of 380: 1 which is significantly lower than the above-mentioned 550: 1 or 510: 1.

尚、本発明は上述の実施形態に限定されず、その要旨を逸脱しない範囲でさらに様々に変形可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change variously further.

上述の実施形態では、着色層R,G,BをWc(G)> Wc(R)> Wc(B)という関係の異なる幅に設定し、これらを着色層G、着色層R、着色層Bの順序で形成したが、例えば着色層R,G,BをWc(G)= Wc(R)= Wc(B)という関係の等しい幅に設定し、これらを着色層G、着色層R、着色層Bの順序で形成してもよい。   In the above-described embodiment, the colored layers R, G, and B are set to different widths in the relationship of Wc (G)> Wc (R)> Wc (B), and these are colored layer G, colored layer R, and colored layer B. For example, the colored layers R, G, and B are set to have equal widths such that Wc (G) = Wc (R) = Wc (B), and these are colored layer G, colored layer R, colored You may form in order of layer B.

また、上述の実施形態では、着色層R,G,Bの各々が1列分の画素電極PEに割り当てられたストライプ状であるため、走査線Yおよび信号線Xのうちの信号線Xについて着色層R,G,Bとの関係を説明したが、さらに着色層R,G,Bが1列分の画素電極PEに順次割り当てられて遮光性配線層である走査線Y上でも重なるような場合には、これら画素電極PEの列方向においても着色層R,G,Bの幅並びに形成順序の関係が信号線Xに対する場合と同様に設定される。   In the above-described embodiment, since each of the coloring layers R, G, and B has a stripe shape assigned to one column of pixel electrodes PE, the signal lines X among the scanning lines Y and the signal lines X are colored. Although the relationship with the layers R, G, and B has been described, the colored layers R, G, and B are sequentially assigned to the pixel electrodes PE for one column and overlap even on the scanning line Y that is a light-shielding wiring layer. In the column direction of the pixel electrodes PE, the relationship between the widths of the colored layers R, G, and B and the order of formation is set in the same manner as in the case of the signal line X.

本発明の一実施形態に係る液晶表示パネルの断面構造を概略的に示す図である。It is a figure which shows schematically the cross-section of the liquid crystal display panel which concerns on one Embodiment of this invention. 図1に示す液晶表示パネルの外観を示す図である。It is a figure which shows the external appearance of the liquid crystal display panel shown in FIG. 図2に示す液晶表示パネルの回路構造を概略的に示す図である。FIG. 3 is a diagram schematically showing a circuit structure of the liquid crystal display panel shown in FIG. 2.

符号の説明Explanation of symbols

15…画素スイッチ、TMD…液晶表示パネル、AR…アレイ基板、CT…対向基板、LQ…液晶層、PE…画素電極、CE…対向電極、CF…カラーフィルタ、R,G,B…着色層、X…信号線。   15 ... pixel switch, TMD ... liquid crystal display panel, AR ... array substrate, CT ... counter substrate, LQ ... liquid crystal layer, PE ... pixel electrode, CE ... counter electrode, CF ... color filter, R, G, B ... colored layer, X: Signal line.

Claims (8)

第1および第2電極基板と、前記第1および第2電極基板間に挟持される液晶層とを備え、前記第1電極基板は一定間隔で並ぶ複数の遮光性配線層、前記複数の遮光性配線層によって区画される開口領域に対してそれぞれ固有の視感度特性を持つ色で形成される複数の着色層、および前記複数の着色層上にそれぞれ形成される複数の画素電極を含み、前記複数の着色層は低視感度側の着色層を主に隆起させるように各遮光性配線層上で重ねられることを特徴とする液晶表示装置。   A first and second electrode substrate; and a liquid crystal layer sandwiched between the first and second electrode substrates, wherein the first electrode substrate has a plurality of light-shielding wiring layers arranged at regular intervals, and the plurality of light-shielding properties. A plurality of colored layers each formed with a color having a unique visibility characteristic with respect to the opening region partitioned by the wiring layer, and a plurality of pixel electrodes respectively formed on the plurality of colored layers, The colored layer is overlaid on each light-shielding wiring layer so that the colored layer on the low visibility side is mainly raised. 前記複数の着色層は赤着色層、緑着色層、および青着色層のいずれかであり、前記緑着色層が前記赤着色層および前記青着色層の各々の下地となり、前記赤着色層が前記青着色層の下地となるように重ねられることを特徴とする請求項1に記載の液晶表示装置。   The plurality of colored layers are any one of a red colored layer, a green colored layer, and a blue colored layer, the green colored layer is a base for each of the red colored layer and the blue colored layer, and the red colored layer is the above The liquid crystal display device according to claim 1, wherein the liquid crystal display device is overlaid so as to be a base of a blue colored layer. 前記青着色層の幅は前記一定間隔より大きく、前記赤着色層の幅は前記青着色層の幅よりも大きく、前記緑着色層の幅は前記赤着色層の幅よりも大きいことを特徴とする請求項2に記載の液晶表示装置。   The width of the blue colored layer is larger than the predetermined interval, the width of the red colored layer is larger than the width of the blue colored layer, and the width of the green colored layer is larger than the width of the red colored layer, The liquid crystal display device according to claim 2. 前記複数の着色層は赤着色層、緑着色層、および青着色層のいずれかであり、前記青着色層の幅は前記一定間隔より大きく、前記赤着色層の幅は前記青着色層の幅よりも大きく、前記緑着色層の幅は前記赤着色層の幅よりも大きいことを特徴とする請求項1に記載の液晶表示装置。   The plurality of colored layers are any one of a red colored layer, a green colored layer, and a blue colored layer, the width of the blue colored layer is larger than the predetermined interval, and the width of the red colored layer is the width of the blue colored layer The liquid crystal display device according to claim 1, wherein a width of the green colored layer is larger than a width of the red colored layer. 第1および第2基板間に液晶層を挟持させるもので、前記第1基板上に一定間隔で並ぶ複数の遮光性配線層を形成し、前記複数の遮光性配線層によって区画される開口領域に対してそれぞれ固有の視感度特性を持つ色で複数の着色層を形成し、前記複数の着色層上にそれぞれ複数の画素電極を形成し、前記複数の着色層は視感度の高いものから順に形成することを特徴とする液晶表示装置の製造方法。   A liquid crystal layer is sandwiched between a first substrate and a second substrate. A plurality of light-shielding wiring layers arranged at regular intervals are formed on the first substrate, and an opening region defined by the plurality of light-shielding wiring layers is formed. On the other hand, a plurality of colored layers are formed with colors having unique visibility characteristics, a plurality of pixel electrodes are formed on the plurality of colored layers, and the plurality of colored layers are formed in descending order of visibility. A method for manufacturing a liquid crystal display device. 前記複数の着色層は赤着色層、緑着色層、および青着色層のいずれかであり、前記緑着色層が前記赤着色層および前記青着色層に先立って形成され、前記赤着色層が前記青着色層に先立って形成されることを特徴とする請求項5に記載の液晶表示装置の製造方法。   The plurality of colored layers are any of a red colored layer, a green colored layer, and a blue colored layer, the green colored layer is formed prior to the red colored layer and the blue colored layer, and the red colored layer is 6. The method of manufacturing a liquid crystal display device according to claim 5, wherein the liquid crystal display device is formed prior to the blue colored layer. 前記青着色層の幅は前記一定間隔より大きく、前記赤着色層の幅は前記青着色層の幅よりも大きく、前記緑着色層の幅は前記赤着色層の幅よりも大きいことを特徴とする請求項6に記載の液晶表示装置の製造方法。   The width of the blue colored layer is larger than the predetermined interval, the width of the red colored layer is larger than the width of the blue colored layer, and the width of the green colored layer is larger than the width of the red colored layer, A method for manufacturing a liquid crystal display device according to claim 6. 前記複数の着色層は赤着色層、緑着色層、および青着色層のいずれかであり、前記青着色層の幅は前記一定間隔より大きく、前記赤着色層の幅は前記青着色層の幅よりも大きく、前記緑着色層の幅は前記赤着色層の幅よりも大きいことを特徴とする請求項5に記載の液晶表示装置の製造方法。   The plurality of colored layers are any one of a red colored layer, a green colored layer, and a blue colored layer, the width of the blue colored layer is larger than the predetermined interval, and the width of the red colored layer is the width of the blue colored layer 6. The method of manufacturing a liquid crystal display device according to claim 5, wherein the width of the green colored layer is larger than the width of the red colored layer.
JP2003296002A 2003-08-20 2003-08-20 Liquid crystal display and its manufacturing method Pending JP2005062723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296002A JP2005062723A (en) 2003-08-20 2003-08-20 Liquid crystal display and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296002A JP2005062723A (en) 2003-08-20 2003-08-20 Liquid crystal display and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005062723A true JP2005062723A (en) 2005-03-10

Family

ID=34372046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296002A Pending JP2005062723A (en) 2003-08-20 2003-08-20 Liquid crystal display and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005062723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002617A (en) * 2009-06-18 2011-01-06 Hitachi Displays Ltd Liquid crystal display device
JP2011095693A (en) * 2009-07-23 2011-05-12 Fujifilm Corp Va type liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002617A (en) * 2009-06-18 2011-01-06 Hitachi Displays Ltd Liquid crystal display device
JP2011095693A (en) * 2009-07-23 2011-05-12 Fujifilm Corp Va type liquid crystal display device

Similar Documents

Publication Publication Date Title
US7826028B2 (en) Liquid crystal display device
KR101158872B1 (en) Lquid Crystal Display and method for manufacturing the same
US20050243235A1 (en) Color filter on thin film transistor type liquid crystal display device and method of fabricating the same
US20030179328A1 (en) Liquid crystal display device
JPH08286178A (en) Liquid crystal display device
JP4776915B2 (en) Display panel, manufacturing method thereof, and liquid crystal display device having the same
JP2002350860A (en) Method for producing liquid crystal display device
JP4359155B2 (en) Electrophoretic display device
JP2007240542A (en) Liquid crystal display element
KR101172048B1 (en) Liquid Crystal Display And Method For Fabricating The Same
JP3507731B2 (en) LCD panel
JP2007052262A (en) Liquid crystal display device and method for manufacturing the same
JP2005062723A (en) Liquid crystal display and its manufacturing method
JP2999117B2 (en) Liquid crystal device and method of manufacturing the same
JPH1090693A (en) Liquid crystal display element
KR20050046163A (en) Liquid crystal display panel and method of fabricating the same
JPH08201793A (en) Liquid crystal image display device
KR100621608B1 (en) Method of manufacturing a TFT LCD pannel
JPH08179305A (en) Liquid crystal display element
JP2002006328A (en) Liquid crystal display device
JP2000227589A (en) Liquid crystal display device and its manufacture
JP2005258328A (en) Liquid crystal display
JP2005084230A (en) Liquid crystal display and its manufacturing method
JP2007310282A (en) Filter substrate and its manufacturing method
JP2007047203A (en) Method for manufacturing liquid crystal display element