JP2005062006A - Method and apparatus for controlling adhesion directivity of carbon nanotube - Google Patents

Method and apparatus for controlling adhesion directivity of carbon nanotube Download PDF

Info

Publication number
JP2005062006A
JP2005062006A JP2003292818A JP2003292818A JP2005062006A JP 2005062006 A JP2005062006 A JP 2005062006A JP 2003292818 A JP2003292818 A JP 2003292818A JP 2003292818 A JP2003292818 A JP 2003292818A JP 2005062006 A JP2005062006 A JP 2005062006A
Authority
JP
Japan
Prior art keywords
carbon nanotube
probe
liquid
axis
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292818A
Other languages
Japanese (ja)
Inventor
Tamio Tanigawa
民生 谷川
Kotaro Oba
光太郎 大場
Hiroshi Matsuura
寛 松浦
Tomohito Takubo
朋仁 田窪
Takeshi Uda
毅 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003292818A priority Critical patent/JP2005062006A/en
Publication of JP2005062006A publication Critical patent/JP2005062006A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To arbitrarily control relative directions between an axis of a probe and an axis of a carbon nanotube being set at the head of a scanning probe microscope or held by a handling equipment such as carbon nanotube tweezers or the like, in order to improve its durability and precision and stability of measurements. <P>SOLUTION: The carbon nanotube 1 which temporarily adheres to the tip of the probe of the scanning probe microscope or the handling equipment, is dipped in liquid, and its fetching process is carried out. By repeating moving a joint section in the vertical direction which is the temporal adhesive section between the carbon nanotube 1 and the tip of the probe 2, so as to border on a liquid level, gaps existing in unjoint sections between the carbon nanotube and the tip of the probe are removed, and the axis of the carbon nanotube and the axis of the tip of the probe which are moved vertically, are operated so as to coincide with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カーボンナノチューブの付着方向性制御方法および方向性制御装置に関する。   The present invention relates to a carbon nanotube adhesion direction control method and a direction control device.

従来、プローブ顕微鏡の先端部にカーボンナノチューブを付着させる際、バルク状態のカーボンナノチューブを電子顕微鏡で観察しながら位置決めし、電子ビームを当てた際、堆積するコンタミにより付着させ、その後、引き抜くことによりカーボンナノチューブ付きプローブを製作していた。このため、高価な真空装置が必要で、操作に時間がかかり、両者の相対位置は人為的なバラツキが生じている。   Conventionally, when carbon nanotubes are attached to the tip of a probe microscope, the carbon nanotubes in a bulk state are positioned while observing with an electron microscope, and when irradiated with an electron beam, carbon nanotubes are attached by depositing contaminants, and then pulled out. Produced a probe with nanotubes. For this reason, an expensive vacuum apparatus is required, it takes time to operate, and the relative position of both causes artificial variation.

本発明は、走査型プローブ顕微鏡の先端部あるいはカーボンナノチューブピンセットなどのハンドリング機器のプローブなどの基材に付着したカーボンナノチューブについて、基材の軸とカーボンナノチューブの軸の相対位置を任意に制御し、測定の精度、安定性、耐久性等を向上させることを目的とする。   The present invention, for carbon nanotubes attached to a substrate such as a probe of a scanning probe microscope or a handling device probe such as carbon nanotube tweezers, arbitrarily control the relative position of the axis of the substrate and the axis of the carbon nanotube, The purpose is to improve measurement accuracy, stability, durability, and the like.

本発明は、以下に示す方法および装置によって上述の課題を解決する。
1.基材、例えば走査型プローブ顕微鏡あるいはハンドリング機器のプローブ先端部に仮
付着したカーボンナノチューブを、液体に接触させることによる毛細管現象や表面張力
などの相互作用を利用し、プローブ先端部とカーボンナノチューブの相対位置を制御す
る方法、および装置。
2.上記方法において、相互作用として電磁相互作用を併用し、操作及び制御を容易にす
ることも可能な方法および装置。
The present invention solves the above-described problems by the following method and apparatus.
1. The carbon nanotubes temporarily attached to the substrate, for example, the probe tip of a scanning probe microscope or handling device, are brought into contact with the liquid, and the interaction between the probe tip and the carbon nanotube is utilized by utilizing interactions such as capillary action and surface tension. Method and apparatus for controlling position.
2. A method and apparatus capable of facilitating operation and control by using electromagnetic interaction as an interaction in the above method.

走査型プローブ顕微鏡あるいはハンドリング機器のプローブと、カーボンナノチューブ
の任意方向の軸合わせが簡単に行える。このため、平面形状の測定や力測定等を正確に
再現性良く行える。
Axis alignment of the carbon nanotube with the scanning probe microscope or the probe of the handling equipment can be easily performed. For this reason, it is possible to accurately measure the planar shape and force with good reproducibility.

走査型顕微鏡あるいはハンドリング機器のプローブ先端部に仮付着したカーボンナノチューブを液体に浸し、前記基材と、カーボンナノチューブとの仮付着部である接合部を液面を境に上下動を繰り返すことによってカーボンナノチューブと前記基材との間の未結合部である隙間をなくして行き、上下動させているカーボンナノチューブの軸と前記基材の軸との方向性を制御するカーボンナノチューブの付着方向性制御方法および方向性制御装置が最良の形態として構成される。   Carbon nanotubes temporarily attached to the tip of the probe of a scanning microscope or handling device are immersed in a liquid, and carbon is obtained by repeatedly moving up and down the junction between the base material and the carbon nanotubes with the liquid surface as a boundary. A method for controlling the direction of attachment of carbon nanotubes, which eliminates a gap that is an unbonded portion between the nanotubes and the base material, and controls the directionality between the axis of the carbon nanotubes that are moved up and down and the axis of the base material The directional control device is configured as the best mode.

以下、本発明の実施例を図面に基づいて説明する。
図1は、カーボンナノチューブ1を走査型プローブ顕微鏡の短針先端であるプローブ2に仮付着した状態を示す。図に示すように、プローブ2とカーボンナノチューブ1との間には未結合部分3が存在し、この状態では、カーボンナノチューブ1の軸(想定軸として把えてよい。以下、同じ)とプローブ2の軸とが一致しておらず、理想的なカーボンナノチューブ付きプローブとは言い難い。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a state in which a carbon nanotube 1 is temporarily attached to a probe 2 which is a tip of a short needle of a scanning probe microscope. As shown in the figure, there is an unbonded portion 3 between the probe 2 and the carbon nanotube 1, and in this state, the axis of the carbon nanotube 1 (which may be grasped as an assumed axis; the same applies hereinafter) and the probe 2 The axes do not match, making it difficult to say that the probe is ideal with carbon nanotubes.

図2は、カーボンナノチューブの方向性を制御するための方法を示す図である。今、カーボンナノチューブ1とプローブ2とは図1に示す状態にあるとする。すなわち、カーボンナノチューブ1とプローブ2の軸とは一致していない。図2において、カーボンナノチューブ付きのプローブ2を液体4の液体表面(液面)5に向けておろして行き、液面5に静かに浸す。そして、プローブ2とカーボンナノチューブ1の接合部(仮付着部)7を、すなわちプローブ2を液面5を境にして何度か上下させる。液体として、水、あるいはエタノール、メタノール、プロパノール、ブタノールなどのアルコールあるいはこれらの混合したものが使用できる不揮発性液体の使用が望ましい。不揮発性性能の異なる二以上の液体を混合することによって揮発速度を調整することができる。   FIG. 2 is a diagram illustrating a method for controlling the directionality of carbon nanotubes. Assume that the carbon nanotube 1 and the probe 2 are in the state shown in FIG. That is, the axes of the carbon nanotube 1 and the probe 2 do not coincide. In FIG. 2, the probe 2 with carbon nanotubes is lowered toward the liquid surface (liquid level) 5 of the liquid 4 and gently immersed in the liquid level 5. Then, the joint portion (temporary attachment portion) 7 between the probe 2 and the carbon nanotube 1, that is, the probe 2 is moved up and down several times with the liquid surface 5 as a boundary. As the liquid, it is desirable to use a non-volatile liquid that can use water, alcohol such as ethanol, methanol, propanol, butanol, or a mixture thereof. The volatilization rate can be adjusted by mixing two or more liquids having different non-volatile performances.

プローブ先端へカーボンナノチューブを仮付着させたものを、液面に対し相対運動させることにより、液体の毛細管現象や表面張力を利用してカーボンナノチューブを垂直方向になるように力を働かせる。これによってカーボンナノチューブを液面から引き抜いた方向に位置決めする。図にあっては当初Aの状態にあったカーボンナノチューブ1が液体の毛細管現象や表面張力によってBの状態に方向転換され、最終的には垂直方向となる。   By moving the carbon nanotube temporarily attached to the probe tip relative to the liquid surface, a force is applied to the carbon nanotube in the vertical direction by utilizing the capillary action and surface tension of the liquid. As a result, the carbon nanotube is positioned in the direction pulled out from the liquid surface. In the figure, the carbon nanotubes 1 that were initially in the A state are changed to the B state by the liquid capillary phenomenon and surface tension, and finally become the vertical direction.

このように、プローブ2とカーボンナノチューブ1との接合部7を中心としてプローブ2を液面5に対して何度か上下動させることによってカーボンナノチューブ1の方向が制御され、カーボンナノチューブ1とプローブ2との間の未接合部分、すなわち隙間がなくなって行き、プローブ2の軸とカーボンナノチューブ1の軸とが一致してくる。   Thus, the direction of the carbon nanotube 1 is controlled by moving the probe 2 up and down several times with respect to the liquid surface 5 around the joint 7 between the probe 2 and the carbon nanotube 1. The unjoined portion between the two, that is, the gap disappears, and the axis of the probe 2 and the axis of the carbon nanotube 1 coincide.

図3は、上記の操作によってプローブ2の軸とカーボンナノチューブ1の軸とが一致した状態を示す。このようにして両者の軸が一致したことを以って操作を終了する。図3は、相対運動の特別な場合としての、プローブ2の先端部を液面5に対して垂直方向に相対運動させたことにより、プローブ2の軸(この図の場合、側面)とカーボンナノチューブ1の軸を垂直方向に一致させた例を示す。このように相対運動によってカーボンナノチューブの方向を制御することができる。   FIG. 3 shows a state in which the axis of the probe 2 and the axis of the carbon nanotube 1 coincide with each other by the above operation. In this way, the operation ends when both axes coincide. FIG. 3 shows a special case of relative movement, in which the tip of the probe 2 is moved relative to the liquid surface 5 in the direction perpendicular to the axis of the probe 2 (side surface in this case) and carbon nanotubes. An example in which the axis of 1 is made to coincide with the vertical direction is shown. Thus, the direction of the carbon nanotube can be controlled by relative movement.

尚、先の例にあってはプローブ2を垂直方向に設置し、これにカーボンナノチューブ1の軸を合わせるようにしているが、プローブ2を傾けておいて、カーボンナノチューブ1を垂直方向に制御し、完成した時にカーボンナノチューブ1とプローブ2に対して所定の角度とすることが可能である。   In the above example, the probe 2 is installed in the vertical direction and the axis of the carbon nanotube 1 is aligned with this, but the probe 2 is tilted to control the carbon nanotube 1 in the vertical direction. When completed, it can be at a predetermined angle with respect to the carbon nanotube 1 and the probe 2.

上記の操作は、プローブ2とカーボンナノチューブ1との間に電磁場印加装置によって電磁相互作用を加えた状態下で行うことができる。図2において、プローブ2とカーボンナノチューブ1の接合部7近くに電磁場印加装置11の一対の放電先鋭ロッド12を位置せしめて、該放電先鋭ロッド12によって構成される両電極間に電位差を付与し、電磁相互作用を適用する。この電磁相互作用は毛細管現象や表面張力などの作用に重畳して働くことになり、プローブ2軸とカーボンナノチューブ1の軸の方向性制御をより確実なものとし、かつ迅速達成を可能にする。
図4は、上述した操作によってプローブ2の軸とカーボンナノチューブ1の軸との方向が制御され、両軸が一致し、先端部接合終了13したことを確認したことを示す写真である。
The above operation can be performed in a state where an electromagnetic interaction is applied between the probe 2 and the carbon nanotube 1 by an electromagnetic field applying device. In FIG. 2, a pair of discharge sharp rods 12 of the electromagnetic field application device 11 are positioned near the joint 7 between the probe 2 and the carbon nanotube 1, and a potential difference is applied between both electrodes constituted by the discharge sharp rods 12. Apply electromagnetic interaction. This electromagnetic interaction works in a superimposed manner on actions such as capillarity and surface tension, making the direction control of the probe 2 axis and the axis of the carbon nanotube 1 more reliable and enabling rapid achievement.
FIG. 4 is a photograph showing that it was confirmed that the directions of the axis of the probe 2 and the axis of the carbon nanotube 1 were controlled by the above-described operation, the two axes coincided, and the tip end joining 13 was completed.

以上のように、本実施例によれば、走査型顕微鏡あるいはハンドリング機器のプローブ先端に仮付着したカーボンナノチューブを液体に浸し、前記プローブ先端部と、カーボンナノチューブとの仮付着部である接合部を液面を境に上下動を繰り返すことによってカーボンナノチューブと前記プローブ先端部との間の未結合部である隙間をなくして行き、上下動させているカーボンナノチューブの軸と前記プローブ先端部の軸とを一致させるようにするカーボンナノチューブの付着方向性制御方法および方向性制御装置が構成される。
更に、前記カーボンナノチューブを液体に浸し、取出すことによって発生する毛細管現象や表面張力などの作用に、電磁相互作用を付加するカーボンナノチューブの付着方向性制御方法および方向性制御装置が構成される。
As described above, according to the present embodiment, the carbon nanotube temporarily attached to the probe tip of the scanning microscope or the handling device is immersed in the liquid, and the joint portion which is the temporarily attached portion between the probe tip portion and the carbon nanotube is formed. By repeating the vertical movement with the liquid surface as a boundary, the gap between the carbon nanotube and the probe tip is eliminated, and the axis of the carbon nanotube being moved up and down and the axis of the probe tip are The carbon nanotube attachment directionality control method and the directionality control apparatus are configured so as to match the two.
Furthermore, a carbon nanotube adhesion direction control method and a direction control device are provided which add electromagnetic interaction to actions such as capillary action and surface tension generated by immersing the carbon nanotubes in a liquid and taking them out.

カーボンナノチューブが付着したプローブを示す図。The figure which shows the probe to which the carbon nanotube adhered. 図1のプローブを液面に対し相対運動させている状態を示す図。The figure which shows the state which is making the probe of FIG. 1 move relative to the liquid level. 相対運動の特別な場合としての、プローブを液面に対して垂直方向に相対運動させたことにより、プローブの軸とカーボンナノチューブの軸を垂直方向に一致させた例を示す図。The figure which shows the example which made the axis | shaft of a probe and the axis | shaft of a carbon nanotube correspond to the orthogonal | vertical direction by making the probe move relative to the liquid surface in the perpendicular direction as a special case of relative motion. プローブとカーボンナノチューブの液面に対する相対運動によってカーボンナノチューブの相対位置を制御したことを示す写真。A photograph showing that the relative position of the carbon nanotubes was controlled by the relative movement of the probe and the carbon nanotubes relative to the liquid surface.

符号の説明Explanation of symbols

1…カーボンナノチューブ、2…プローブ、3…未結合部(隙間)、4…液体、5…液面、6…プローブの上下動、7…接合部(仮付着部)、11…電磁場印加装置、12…放電先鋭ロッド。
DESCRIPTION OF SYMBOLS 1 ... Carbon nanotube, 2 ... Probe, 3 ... Unbonded part (gap), 4 ... Liquid, 5 ... Liquid surface, 6 ... Vertical movement of probe, 7 ... Joining part (temporary adhesion part), 11 ... Electromagnetic field application apparatus, 12 ... Discharge sharp rod.

Claims (5)

走査型顕微鏡あるいはハンドリング機器のプローブ先端部などの基材に仮付着したカーボンナノチューブを液体に浸し、前記基材と、カーボンナノチューブとの仮付着部である接合部を液面を境に上下動を繰り返すことによってカーボンナノチューブと前記基材との間の未結合部である隙間をなくして行き、上下動させているカーボンナノチューブの軸と前記基材の軸との方向性を制御することを特徴とするカーボンナノチューブの付着方向性制御方法。   Carbon nanotubes temporarily attached to a substrate such as a scanning microscope or the tip of a probe of a handling device are immersed in a liquid, and the joint portion between the substrate and the carbon nanotubes is moved up and down with the liquid surface as a boundary. It is characterized by controlling the directionality of the axis of the carbon nanotube that is moved up and down and the axis of the base material by eliminating the gap that is an unbonded portion between the carbon nanotube and the base material by repeating. To control the adhesion direction of carbon nanotubes. 請求項1において、前記基材を液面に対して垂直方向に上下動させてカーボンナノチューブを前記基材に対して垂直方向に付着させ、もしくは、基材を斜めの状態で上下動させることにより、基材に対して任意の角度にカーボンナノチューブを付着させることを特徴とするカーボンナノチューブの付着方向性制御方法。   In Claim 1, the said base material is vertically moved with respect to a liquid level, and a carbon nanotube is made to adhere to the said vertical direction with respect to the said base material, or a base material is moved up and down in an oblique state. A carbon nanotube attachment direction control method, comprising attaching carbon nanotubes at an arbitrary angle to a substrate. 請求項1において、前記カーボンナノチューブを液体に浸すことによって発生する毛細管現象や表面張力などの作用に、電磁相互作用を付加することを特徴とするカーボンナノチューブの付着方向性制御方法。   2. The carbon nanotube attachment direction control method according to claim 1, wherein an electromagnetic interaction is added to an action such as a capillary phenomenon or a surface tension generated by immersing the carbon nanotube in a liquid. 基材に仮付着したカーボンナノチューブを浸す液体部を有し、前記基材とカーボンナノチューブ接合部を前記液体部の液面を境に上下動させる操作装置を有することを特徴とするカーボンナノチューブの付着方向性制御装置。   Adhesion of carbon nanotubes, comprising a liquid part for immersing carbon nanotubes temporarily attached to a base material, and an operation device for moving the base material and the carbon nanotube junction part up and down with the liquid surface of the liquid part as a boundary Directional control device. 請求項4において、前記カーボンナノチューブを液体に浸すことによって発生する毛細管現象や表面張力などの作用に、電磁相互作用を付加する電磁場印加装置を設けることを特徴とするカーボンナノチューブの付着方向性制御装置。
5. The carbon nanotube attachment directionality control device according to claim 4, further comprising an electromagnetic field application device for adding electromagnetic interaction to an action such as capillary action or surface tension generated by immersing the carbon nanotube in a liquid. .
JP2003292818A 2003-08-13 2003-08-13 Method and apparatus for controlling adhesion directivity of carbon nanotube Pending JP2005062006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292818A JP2005062006A (en) 2003-08-13 2003-08-13 Method and apparatus for controlling adhesion directivity of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292818A JP2005062006A (en) 2003-08-13 2003-08-13 Method and apparatus for controlling adhesion directivity of carbon nanotube

Publications (1)

Publication Number Publication Date
JP2005062006A true JP2005062006A (en) 2005-03-10

Family

ID=34370010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292818A Pending JP2005062006A (en) 2003-08-13 2003-08-13 Method and apparatus for controlling adhesion directivity of carbon nanotube

Country Status (1)

Country Link
JP (1) JP2005062006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024706A (en) * 2005-07-19 2007-02-01 Daiken Kagaku Kogyo Kk Nanotube probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024706A (en) * 2005-07-19 2007-02-01 Daiken Kagaku Kogyo Kk Nanotube probe

Similar Documents

Publication Publication Date Title
US7997123B2 (en) Nanotipped device and method
US4924091A (en) Scanning ion conductance microscope
US7034854B2 (en) Methods and apparatus for ink delivery to nanolithographic probe systems
US6642129B2 (en) Parallel, individually addressable probes for nanolithography
DE102016205941A1 (en) Apparatus and method for analyzing a defect of a photolithographic mask or wafer
JP2012528736A (en) Silicon pen nanolithography
WO2011156500A2 (en) Electrochemical methods for wire bonding
KR101265776B1 (en) Nano electrode and method for manutacturing of the same
Dong et al. Development of CNT-ISFET based pH sensing system using atomic force microscopy
JP2013524258A (en) Cantilever for adhesion
JP2008275481A (en) Device and method for analyzing biomolecule function structure
JP2005062006A (en) Method and apparatus for controlling adhesion directivity of carbon nanotube
Xu et al. Loading a high-viscous droplet via the cone-shaped liquid bridge induced by an electrostatic force
JP4645912B2 (en) Biological sample manipulation method
WO2014124913A1 (en) Afm probe integrated dropping and hanging mercury electrode
JP2005349496A (en) Method of depositing micro-substance on substrate
JP4601000B2 (en) Specific substance observation device and specific substance observation method
CN109824012A (en) A kind of nano-pore accurate manufacture process
US20220208538A1 (en) Integrated microfluidic probe (imfp) and methods of use thereof
JP2004034277A (en) Micro-machining device and method for manufacturing cantilever using the same
JP4016109B2 (en) Method and apparatus for strengthening carbon nanotube adhering portion, and probe having strengthened adhering portion
JPH03179202A (en) Minute probe and method for forming minute probe
JP2770537B2 (en) Scanning tunneling microscope
Geerlings Functional scanning probes for sensing, actuation and deposition
Suryavanshi Meniscus controlled three-dimensional nanofabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220