JP2005061021A - Ground reinforcing method - Google Patents

Ground reinforcing method Download PDF

Info

Publication number
JP2005061021A
JP2005061021A JP2003291591A JP2003291591A JP2005061021A JP 2005061021 A JP2005061021 A JP 2005061021A JP 2003291591 A JP2003291591 A JP 2003291591A JP 2003291591 A JP2003291591 A JP 2003291591A JP 2005061021 A JP2005061021 A JP 2005061021A
Authority
JP
Japan
Prior art keywords
ground
layer
anchor member
embankment
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003291591A
Other languages
Japanese (ja)
Other versions
JP4252860B2 (en
Inventor
Yujiro Inaba
雄次郎 稲葉
Yasuyuki Kitano
靖行 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Araigumi Co Ltd
Original Assignee
Araigumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Araigumi Co Ltd filed Critical Araigumi Co Ltd
Priority to JP2003291591A priority Critical patent/JP4252860B2/en
Publication of JP2005061021A publication Critical patent/JP2005061021A/en
Application granted granted Critical
Publication of JP4252860B2 publication Critical patent/JP4252860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground reinforcing method for easily improving the ground by performing horizontal leveling excavation of the surface layer part of the natural ground, and driving anchor members therein and straining them in improving or reinforcing the natural ground. <P>SOLUTION: Horizonal leveling excavation of the surface layer part is performed. Multilayer banking layers 4, flat or almost flat net-like or grid-like reinforcing members 5 with a large friction coefficient and high tensile strength interposed between the banking layers, and an upper plate 3 of high rigidity disposed on the uppermost banking layer, are disposed on the surface layer part to construct a reinforced soil skeleton. The anchor members 6 are then provided passing through the upper plate 3, reinforcing members 5, banking layers 4 and a deposit layer 21 at the lower part of the banking layer to reach the support ground 22, and the anchor members are strained to apply compressive force not only to the banking layers but also to the deposit layer. A load lead-in reinforced soil foundation enlarged from the reinforced soil skeleton is thereby constituted to reinforce the ground. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は自然地山を改良あるいは補強する工法に関し、特に、アンカー部材を打ち込むとともに緊張する構成とした地盤補強工法に関するものである。   The present invention relates to a method for improving or reinforcing natural ground, and more particularly, to a ground reinforcing method in which an anchor member is driven and tensioned.

従来、地盤を改良したり補強する際には、不良土を除去して良質な土と入れ替える置換工法や、固化材を用いて地盤改良を行う強制地盤攪拌改良工法や、薬剤を注入することで地盤改良を行う地盤注入工法や、地盤の上に盛土を形成し予め地盤に加わる全圧力を増加させて基礎地盤の圧密沈下を促進させると共に強度増加を図るプレローディング工法等が採用されている。   Conventionally, when improving or reinforcing the ground, a replacement method that removes defective soil and replaces it with good quality soil, a forced ground agitation improvement method that improves the ground using a solidifying material, or a chemical injection A ground injection method for ground improvement, a preloading method for forming a fill on the ground and increasing the total pressure applied to the ground in advance to promote consolidation settlement of the foundation ground and to increase the strength are adopted.

前記置換工法では、不良土を除去して処分する作業が必要であり、前記強制地盤攪拌改良工法ではセメント系固化材等の重金属類を地盤に混入することになり土壌汚染等の不安がある。また、前記地盤注入工法では注入する薬液による公害等の不安がある。さらに、前記プレローディング工法では、地盤上に盛土で載苛した後で一定期間放置しておき、その後盛土を撤去し除荷することが必要であり、盛土材の搬出、撤去手間がかかっており、また、施工期間が長くなっている。   In the replacement method, it is necessary to remove and dispose of defective soil. In the forced ground agitation improvement method, heavy metals such as cement-based solidification material are mixed into the ground, and there is a concern about soil contamination. Moreover, in the ground injection method, there is anxiety such as pollution due to the chemicals to be injected. Furthermore, in the preloading method, it is necessary to leave the soil for a certain period after being filled with the embankment on the ground, and then remove and unload the embankment, which takes time and labor to remove and remove the embankment material. Also, the construction period is longer.

そのために多層の盛土層を転圧しながら積層して、アンカーにより盛土層全体を圧縮することで、橋台や橋脚などの上部構造物を支持するための基礎構築体を形成する工法が公開されている。(例えば、特許文献1参照)
上記の特許文献1に記載の基礎構築体は、鋼板等からなる高剛性の基礎支持体上に、一定厚さの盛土層を複数積み重ねて、各盛土層間に、摩擦係数及び引張強度が大きいフラット若しくは略フラットな補強材を介装した基礎構築体であり、さらには、多層の盛土層と補強材とを貫通する複数本のアンカーを装着して、締め上げて、各盛土層と補強材とを一体化した構成である。
For this purpose, a method of forming a foundation structure to support upper structures such as abutments and piers by laminating multiple embankment layers while rolling and compressing the entire embankment layer with anchors has been released. . (For example, see Patent Document 1)
The foundation construction described in Patent Document 1 is a flat structure having a large friction coefficient and a high tensile strength between each embankment layer by stacking a plurality of embankment layers of a certain thickness on a highly rigid foundation support made of steel plate or the like. Alternatively, it is a foundation structure with a substantially flat reinforcing material interposed therebetween, and further, a plurality of anchors penetrating the multi-layered embankment layer and the reinforcing material are attached, tightened, and each embankment layer and the reinforcing material Is an integrated configuration.

さらには、盛土層を締付けて構成される基礎構築体に、アンカー頂部に緩み止め機構を装着して、常に一定のプレストレスを継続的に維持するように構成した補強土構造物も既に公開されている。(例えば、特許文献2参照)
また、アンカーなどの補強棒材に一定の緊張力を付与し、緩みを阻止するために、皿ばねを多数積層した構成の締着装置も公開されている。(例えば、特許文献3参照)
特許第2597116号公報(第1−5頁、第1図) 特開2002−146793号公報(第1−12頁、第1図) 特開2002−339356号公報(第1−7頁、第1図)
In addition, a reinforced soil structure that has been constructed so that the foundation structure constructed by tightening the embankment layer is equipped with a loosening prevention mechanism at the top of the anchor so that constant prestress is continuously maintained at all times has already been released. ing. (For example, see Patent Document 2)
In addition, a fastening device having a configuration in which a number of disc springs are stacked in order to impart a certain tension to a reinforcing bar such as an anchor and prevent loosening has been disclosed. (For example, see Patent Document 3)
Japanese Patent No. 2597116 (page 1-5, FIG. 1) JP 2002-146793 A (page 1-12, FIG. 1) JP-A-2002-339356 (page 1-7, FIG. 1)

しかしながらコンクリートやセメント系固化材を用いた地盤改良工法では、軟弱な地盤を掘り返して、固化材を添加して締め固める作業が必要であり、また硬化する期間工期が長くなり、大型の施工重機が必要であると共に、工事が長期化し大変である。   However, in the ground improvement method using concrete or cement-based solidification material, it is necessary to dug up the soft ground, add the solidification material and compact it, and the period of time for hardening becomes long, and large construction heavy machinery It is necessary, and the construction is long and difficult.

一方、特許文献1に記載の補強土を使用した基礎構築体は、高剛性の基礎支持体と、天板となる高剛性の床版との間に積層した盛土層を、上下から締付けてプレストレスを加える構成であって、各盛土層間に敷設した補強材自身に引張プレストレスが導入される。その結果前記プレストレスにより、積層された盛土層全体が高い剛性と強度を保持し一体化された基礎構築体を構成している。   On the other hand, the foundation construction body using the reinforced soil described in Patent Document 1 is obtained by tightening an embankment layer laminated between a high-rigidity base support and a high-rigidity floor slab to be a top plate from above and below. It is the structure which adds stress, Comprising: Tensile prestress is introduce | transduced into the reinforcing material itself laid between each embankment layer. As a result, the pre-stress constitutes an integrated foundation structure in which the entire stacked embankment layer maintains high rigidity and strength.

しかし、高剛性の基礎支持体上に、盛土層を積層していく構成であって、堅固な岩盤を基礎支持体とする場合には、前記岩盤が露出するまで掘削する必要があり、さらに、傾斜面に盛土層を構築する図10に示す場合では、鉛直方向のアンカー部材6に加えて、傾斜面に略直交する斜め方向のアンカー部材6Cを設ける必要がある。   However, it is a configuration in which the embankment layer is stacked on a highly rigid foundation support, and when a solid rock is used as the foundation support, it is necessary to excavate until the rock is exposed, In the case shown in FIG. 10 in which the embankment layer is constructed on the inclined surface, in addition to the anchor member 6 in the vertical direction, it is necessary to provide an anchor member 6C in the oblique direction substantially orthogonal to the inclined surface.

また、特許文献2に記載の補強土構造物は、常に一定の緊張力(プレストレス)を付与するために、複雑な緩み止め機構を必要としている。   Further, the reinforced earth structure described in Patent Document 2 requires a complicated loosening prevention mechanism in order to always apply a constant tension (prestress).

本発明の目的は、プレローディング工法と補強土工法とのそれぞれの特徴を併せ持つと共に、さらに工事の規模が小さくまた短い工期で容易に地盤を補強することができる地盤補強工法を提供することである。   An object of the present invention is to provide a ground reinforcement construction method that has both the characteristics of a preloading construction method and a reinforced earth construction method and that can further reinforce the ground with a small construction scale and a short construction period. .

上記の目的を達成するために請求項1に係る発明は、表層部分を水平にならし掘削して、その上に高剛性の上盤を配設して、前記上盤と該上盤下部の堆積層とを貫通して支持地盤に達するアンカー部材を設け、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張することで堆積層に圧縮力を作用させて堆積層の強度増加を図り地盤を補強する構成としたことを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, the surface layer portion is leveled and excavated, and a highly rigid upper board is disposed thereon, and the upper board and the lower part of the upper board are arranged. An anchor member that penetrates the deposited layer and reaches the support ground is provided, and a first nut member is screwed into a screw portion formed at the upper end portion of the anchor member, and the anchor member is tightened and tightened to deposit. It is characterized in that the ground is reinforced by increasing the strength of the sedimentary layer by applying a compressive force to the layer.

上記の構成を有する請求項1に係る発明によれば、水平にならし掘削した表層部に上盤を設置してアンカー部材を打ち込み締め上げるだけで、上盤下部の堆積層を補強土擬似躯体とすることができ、地盤を補強することができる。   According to the invention according to claim 1 having the above-described configuration, the sedimentary layer at the lower part of the upper board can be reinforced by simply installing the upper board on the surface layer that has been leveled and excavated, and driving the anchor member up and tightening. And the ground can be reinforced.

請求項2に係る発明は、表層部分を水平にならし掘削して、その上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上の盛土層上に高剛性の上盤を配設して補強土躯体を造成後に、該上盤と前記補強材と前記盛土層と、該盛土層下部の堆積層を貫通して支持地盤に達するアンカー部材を設け、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張することで、前記盛土層だけでなく、前記堆積層にも圧縮力を作用させて補強土擬似躯体を形成し、前記補強土躯体よりも拡大した荷重導入補強土基礎を構成して地盤を補強する構成としたことを特徴としている。   In the invention according to claim 2, the surface layer portion is leveled and excavated, and a multi-layered embankment layer and a flat or substantially flat net shape having a large friction coefficient and tensile strength interposed between the embankment layers and each embankment layer, After the lattice-shaped reinforcing material and a high rigidity upper board are arranged on the uppermost embankment layer to form a reinforcing earthen body, the upper board, the reinforcing material, the embankment layer, and a deposited layer below the embankment layer The embankment layer is provided by providing an anchor member penetrating through the support ground, screwing a first nut member into a screw portion formed at the upper end portion of the anchor member, tightening the anchor member and tensioning In addition to forming a reinforced soil pseudo frame by applying a compressive force to the sedimentary layer, the load introduction reinforced soil foundation is configured to reinforce the ground by expanding the reinforced soil body. It is said.

上記の構成を有する請求項2に係る発明によれば、水平にならし掘削した表層部に多層の盛土層を形成して、上盤を載置すると共にアンカー部材を堆積層を貫通して支持地盤にまで打ち込むことで、荷重導入補強土基礎を構築する際に、打ち込んだ堆積層までをも一体の補強土基礎とすることで見かけ上大型の基礎地盤を構築することができる。   According to the invention according to claim 2 having the above-described configuration, a multi-layered embankment layer is formed on the surface layer portion that has been leveled and excavated, and the upper board is placed and the anchor member is supported through the deposition layer. By constructing a load-introducing reinforced soil foundation by driving into the ground, it is possible to construct an apparently large foundation ground by using the reinforced soil foundation as an integral part of the deposited layer.

請求項3に係る発明は、表層部分から支持地盤に至るまで掘削して、該支持地盤を段切りして平面部を造成すると共に、該平面部に埋め戻し土或いは良質土を転圧しながら積層して、その上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上の盛土層上に高剛性の上盤を配設して補強土躯体を造成後に、該上盤と前記補強材と前記盛土層と、該盛土層下部の転圧積層部を貫通して支持地盤に達するアンカー部材を設け、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張することで、前記盛土層だけでなく、前記転圧積層部にも圧縮力を作用させて補強土擬似躯体を形成し、前記補強土躯体よりも拡大した荷重導入補強土基礎を構成して地盤を補強する構成としたことを特徴としている。   The invention according to claim 3 excavates from the surface layer portion to the supporting ground, cuts the supporting ground to create a flat portion, and laminates the flat portion while rolling back-filled soil or high-quality soil. And a multi-layered embankment layer, a flat or substantially flat mesh-like or lattice-like reinforcing material having a large friction coefficient and tensile strength, and a high rigidity on the top embankment layer. After the upper board is disposed and the reinforced earth body is formed, an anchor member that penetrates through the rolling laminate of the upper board, the reinforcing material, the embankment layer, and the lower part of the embankment layer to reach the support ground is provided, The first nut member is screwed into the threaded portion formed at the upper end portion of the anchor member, and the anchor member is tightened and tensioned, so that not only the embankment layer but also the rolling lamination portion is compressed. A reinforced soil pseudo-body is formed by acting, It constitutes a remote enlarged load introduced reinforced soil foundation was being characterized in that it is configured to reinforce the ground.

上記の構成を有する請求項3に係る発明によれば、支持地盤の傾斜した自然地山等においても有効な荷重導入補強土基礎とすることができる。   According to the invention according to claim 3 having the above-described configuration, it is possible to provide an effective load-introducing reinforced soil foundation even in a natural ground with inclined support ground.

請求項4に係る発明は、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張する際に、中空円筒状の内金具とケーシング金具との間にゴム状弾性体層が挟設された構造のせん断ゴムばね材を加圧手段とする締着部材を介して緊張する構成としたことを特徴としている。   According to a fourth aspect of the present invention, when the first nut member is screwed into the threaded portion formed at the upper end portion of the anchor member, and the anchor member is tightened and tensioned, the hollow cylindrical inner metal fitting and the casing It is characterized in that it is configured to be tensioned via a fastening member using a shear rubber spring material having a structure in which a rubber-like elastic body layer is sandwiched between the metal fittings as a pressurizing means.

上記の構成を有する請求項4に係る発明によれば、単一部品のせん断ゴムばね材を介してアンカー部材を緊張するだけで、盛土や基礎地盤の沈下やアンカー部材の伸長に追随して一定の緊張力を付与することができる。   According to the invention which concerns on Claim 4 which has said structure, it only follows tension | tensile_strength of a embankment, foundation ground subsidence | elongation, and expansion | extension of an anchor member only by tensioning an anchor member via the shear rubber spring material of a single part. The tension can be given.

請求項5に係る発明は、前記締着部材が、前記加圧手段に加えてさらに、第二のナット部材と該第二のナット部材を締付け方向に付勢するゼンマイばね材とを備える緩み防止手段を有していることを特徴としている。   According to a fifth aspect of the present invention, the fastening member further includes a second nut member and a spring spring material that biases the second nut member in the tightening direction in addition to the pressurizing means. It has the means.

上記の構成を有する請求項5に係る発明によれば、常時一定の緊張力を長期に渡って安定して付与することができる。   According to the invention which concerns on Claim 5 which has said structure, constant tension force can always be stably provided over a long period of time.

請求項6に係る発明は、前記第二のナット部材外縁部にウォームホイールを成形し、該ウォームホイールに係合するウォームを配設すると共に、前記第二のナット部材を締付け方向に前記ウォームを回転させるように付勢する構成としていることを特徴としている。   According to a sixth aspect of the present invention, a worm wheel is formed on the outer edge of the second nut member, a worm that engages with the worm wheel is disposed, and the second nut member is tightened in the tightening direction. It is characterized by being configured to be urged to rotate.

上記の構成を有する請求項6に係る発明によれば、第二のナット部材の緩みをさらに確実に防止することができる。   According to the invention which concerns on Claim 6 which has said structure, loosening of a 2nd nut member can be prevented further reliably.

請求項7に係る発明は、請求項4に記載のせん断ゴムばね材を加圧手段とする締着部材に替えて、バネ鋼製の波板からなる締着部材を介して緊張する構成としたことを特徴としている。   The invention according to claim 7 is configured to be tensioned via a fastening member formed of a corrugated plate made of spring steel, instead of the fastening member using the shear rubber spring material according to claim 4 as a pressurizing means. It is characterized by that.

上記の構成を有する請求項7に係る発明によれば、波板を介してアンカー部材を緊張させるだけで、常に一定の緊張力を付加することができ、さらに緊張力の緩みを防止することができる。   According to the invention according to claim 7 having the above-described configuration, it is possible to always apply a constant tension force only by tensioning the anchor member via the corrugated plate, and to prevent the tension force from loosening. it can.

上記したように本発明によれば、自然地山の表層部分を水平にならし掘削して、上盤を載置すると共に、アンカー部材を堆積層を貫通して支持地盤に達するまで打ち込むことで、打ち込んだ堆積層を補強土擬似躯体とすることができ、地盤を補強することができる。また、掘削した地盤に盛土層を形成し、荷重導入補強土基礎を構築する際に、打ち込んだ堆積層をも一体の補強土基礎とすることで、見かけ上さらに大型の補強された基礎地盤を構築することができる。   As described above, according to the present invention, the surface layer portion of the natural ground is leveled and excavated, the upper plate is placed, and the anchor member is driven through the deposited layer until it reaches the support ground. The deposited layer that has been driven in can be used as a reinforced soil pseudo-enclosure, and the ground can be reinforced. In addition, when an embankment layer is formed on the excavated ground and a load-introducing reinforced soil foundation is constructed, the piled-up sedimentary layer is also used as an integral reinforced soil foundation, so that an apparently larger reinforced foundation ground can be obtained. Can be built.

そのために、小規模の土木工事により大型の荷重導入補強土基礎を構築する地盤補強工法ともなり、山間部等の狭隘な地形に適した工法であると共に、環境に優しく低コスト化が達成可能である。   Therefore, it is also a ground reinforcement method for constructing a large load-introducing reinforced soil foundation by small-scale civil engineering work, and it is suitable for narrow terrain such as mountainous areas, and it can achieve environmentally friendly and low cost reduction. is there.

さらには、基礎を構成する補強土と同時に下部の堆積層を締め上げて周囲の土と一体化するので、安定した大型の基礎地盤とすることができる。   Furthermore, since the lower sedimentary layer is tightened simultaneously with the reinforcing soil constituting the foundation and integrated with the surrounding soil, a stable large-scale foundation ground can be obtained.

自然地山を改良あるいは補強する際に、表層部分を水平にならし掘削して上盤を配設して、アンカー部材を支持地盤まで打ち込むかまたは、比較的小さな荷重導入補強土基礎を構成してアンカー部材を支持地盤まで打ち込むことで、容易にまた短期間で施工可能となる地盤補強工法とした。   When improving or reinforcing natural ground, leveling the surface layer and excavating it, placing the upper plate and driving the anchor member to the supporting ground, or constructing a relatively small load-introducing reinforced soil foundation In this way, the anchor member is driven to the supporting ground, so that the ground reinforcement method can be constructed easily and in a short period of time.

以下、本発明に係る地盤補強工法の第一の実施例について、図1から図8に基づいて説明する。   Hereinafter, a first embodiment of the ground reinforcement method according to the present invention will be described with reference to FIGS.

図1は本発明に係る荷重導入補強土基礎の第一の実施例を示す断面図である。図2は本発明に係る荷重導入補強土基礎の有効性を示す概略説明図である。図3は法面すべりを防止する実施例を示す概略説明図であり、(a)は荷重導入補強土基礎による地盤補強工法を示し、(b)は上盤とアンカー部材による地盤補強工法を示している。図4には河川流路に本発明に係る荷重導入補強土基礎を配置した例を示しており、(a)は透過型堰堤を示し、(b)は導流堤を示す。図5は従来の工法による補強土基礎を示す断面図である。図6は締着部材と緩み防止手段とを備えるアンカー部材の上端部構成を示す断面図であり、図7はウォームギヤを備える第二の緩み防止手段を示す斜視図である。図8は締着部材として波板を備えるアンカー部材の上端部構成を示す概略説明図である。   FIG. 1 is a sectional view showing a first embodiment of a load-introducing reinforced soil foundation according to the present invention. FIG. 2 is a schematic explanatory view showing the effectiveness of the load-introducing reinforced soil foundation according to the present invention. FIG. 3 is a schematic explanatory view showing an embodiment for preventing slope slip, (a) showing a ground reinforcement method using a load-introducing reinforcing soil foundation, and (b) showing a ground reinforcement method using an upper plate and an anchor member. ing. FIG. 4 shows an example in which the load-introducing reinforced soil foundation according to the present invention is arranged in a river channel, where (a) shows a transmission type dam and (b) shows a diversion bank. FIG. 5 is a sectional view showing a reinforced soil foundation by a conventional construction method. FIG. 6 is a cross-sectional view showing the structure of the upper end portion of the anchor member provided with the fastening member and the loosening prevention means, and FIG. 7 is a perspective view showing the second loosening prevention means provided with the worm gear. FIG. 8 is a schematic explanatory view showing a configuration of an upper end portion of an anchor member provided with a corrugated plate as a fastening member.

図5に示すように、従来型の荷重導入補強土基礎10は地山の堆積層21に大きな掘削部20Bを設けて構築されており、該掘削部20Bの底ならし施工後に底盤2を設置し、アンカー部材6を装着固定する。次いで基礎を構築していくがこの基礎構築とは、多層の盛土層(4a、4b、4c、4d)間に補強材5を敷設して順次転圧しながら突き固めて、盛土層4を構築するものである。さらに、上盤3を設置して該上盤3の上方に突き出たアンカー部材6の上端部に形成されたネジ部にナット部材7を螺合させアンカー部材6を締め上げて、底盤2と上盤3とに挟まれた盛土層4を一体的に圧縮して補強土躯体となし、荷重導入補強土基礎10を構築している。つまり、従来工法による荷重導入補強土基礎10は、底盤2と上盤3と盛土層4とを一体的に締め上げた補強土躯体と同等の大きさの基礎体となっている。   As shown in FIG. 5, the conventional load-introducing reinforced soil foundation 10 is constructed by providing a large excavation part 20B on the sedimentary layer 21 of the natural ground, and the bottom board 2 is installed after the bottom leveling of the excavation part 20B. Then, the anchor member 6 is mounted and fixed. Next, the foundation is constructed. In this foundation construction, the reinforcing material 5 is laid between the multi-layered embankment layers (4a, 4b, 4c, 4d), and the embankment layer 4 is constructed by rolling and compacting sequentially. Is. Further, the upper board 3 is installed and the nut member 7 is screwed into the threaded portion formed at the upper end of the anchor member 6 protruding above the upper board 3 to tighten the anchor member 6, The embankment layer 4 sandwiched between the boards 3 is integrally compressed to form a reinforced earth body, and a load-introducing reinforced soil foundation 10 is constructed. That is, the load-introducing reinforced soil foundation 10 according to the conventional method is a foundation having the same size as a reinforced earth body in which the bottom board 2, the upper board 3, and the embankment layer 4 are integrally tightened.

さらに詳細に説明すると、上記基礎10は、鋼板等の高剛性の底盤2に設けられた穿孔穴に、PC棒鋼からなるアンカー部材6を挿入して装着固定した後、最下層の盛土4dを造成して転圧機などで突き固めながら補強材5を敷設し、その上に次の盛土4cを造成しさらに突き固め、新たな補強材5を敷設しさらに盛土4b、補強材5、最上段の盛土層4aを順次積み重ね、最後に高剛性の上盤3を設置して形成したものである。   More specifically, the foundation 10 is formed by inserting and fixing an anchor member 6 made of PC steel bar into a perforated hole provided in a highly rigid bottom plate 2 such as a steel plate, and then forming a bottom embankment 4d. Then, the reinforcing material 5 is laid while being tamped with a compactor, and the next embankment 4c is formed thereon and further reinforced, and a new reinforcing material 5 is laid, and the embankment 4b, the reinforcing material 5, and the uppermost embankment. The layers 4a are stacked one after another, and finally a highly rigid upper board 3 is installed.

この時に、補強材5として、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材(ジオテキスタイルやエキスパンドメタル等)を採用し、厚みの薄い多重の盛土層間に介装しながら、順次所定厚みの基礎10を形成するまで積み重ねていく構成である。この際、盛土層4として、掘削部20Bから掘削された残土を用いる構成とすると、余分な廃棄物を生じることもなく、また、残土の輸送を行う必要もない。   At this time, a flat or substantially flat net-like or lattice-like reinforcing material (geotextile, expanded metal, etc.) having a large friction coefficient and tensile strength is adopted as the reinforcing material 5 while being interposed between multiple thin embankment layers. In this configuration, the bases 10 having a predetermined thickness are sequentially stacked until they are formed. At this time, when the embankment layer 4 is configured to use the remaining soil excavated from the excavation unit 20B, no extra waste is generated and it is not necessary to transport the remaining soil.

本発明に係る荷重導入補強土基礎1は図1に示すように、地山の堆積層21の表層部分のみを掘削して割りと浅い掘削部20Aを形成して、底ならし後に、直接に盛土層4を構築するものである。前記掘削部20Aに底盤を敷設することなく、そのまま複数の各盛土層を転圧しながら、それぞれの盛土層間に補強材を敷設して積層していき、最上段に上盤3を設置して、最後にアンカー部材6を打ち込む構成である。   As shown in FIG. 1, the load-introducing reinforced soil foundation 1 according to the present invention excavates only the surface layer portion of the sediment layer 21 of the natural ground to form a relatively shallow excavation portion 20A. The embankment layer 4 is constructed. Without laying the bottom plate in the excavation part 20A, while rolling the plurality of embankment layers as they are, the reinforcement material is laid and laminated between the embankment layers, and the upper plate 3 is installed at the uppermost stage. Finally, the anchor member 6 is driven.

アンカー部材6は、上盤3、盛土層4、補強材5、堆積層21を貫通して支持地盤22にまで達するアンカー部材であって、地山補強に一般的に採用されているアースアンカーでも、また、下部に螺旋状の突起部を備えたネジ式アースアンカーでもよく、自然地山の土質に応じて選択して採用すればよい。   The anchor member 6 is an anchor member that reaches the support ground 22 through the upper board 3, the embankment layer 4, the reinforcing material 5, and the deposition layer 21, and is also an earth anchor that is generally employed for ground reinforcement. In addition, a screw-type earth anchor having a spiral protrusion at the lower portion may be used, and it may be selected and adopted according to the soil quality of the natural ground.

前記支持地盤22は荷重導入補強土基礎1を支持することができる程度の強度を備える地盤であって、基礎岩盤であっても、標準貫入試験によるN値30以上の地盤であってもよく、共に十分支持地盤22としての役割を果すことができる。   The support ground 22 is a ground having a strength that can support the load-introducing reinforced soil foundation 1, and may be a foundation rock or a ground having an N value of 30 or more by a standard penetration test. Both can sufficiently serve as the supporting ground 22.

前記アンカー部材6として、ボルト・ナット型のアンカー部材を採用することも可能であるが、地盤補強等の土木工事に一般的に採用されるアンカー部材をそのまま採用することで、通常の土木工事により荷重導入補強土基礎を造成することができ好適である。また、前記アンカー部材6の数量は、前記基礎1を形成するのに必要な締め付け力を発揮する程度の本数でよく、特に限定するものではない。   As the anchor member 6, it is possible to adopt a bolt / nut type anchor member. However, by adopting an anchor member generally employed in civil engineering work such as ground reinforcement, as a result of ordinary civil engineering work. A load-introducing reinforced soil foundation can be created, which is preferable. Further, the number of the anchor members 6 is not particularly limited as long as the number of anchor members 6 is sufficient to exert a tightening force necessary for forming the foundation 1.

アンカー部材6を堆積層21の地中深くまで打ち込んだ後で、アンカー部材6の上端部に形成されたネジ部にナット部材7を螺合して締め上げて前記アンカー部材6を締結すると、堆積層21の地中深く打ち込まれているアンカー部材6は移動せずに、各盛土層が締付けられてプレストレスが付加されると共に、アンカー部材6が打ち込まれている堆積層21にもプレストレスが付加された状態となる。また、このプレストレスは図中の破線に示すように、前記アンカー部材6が打ち込まれている堆積層21にまで付加されており、図中の破線で示すように断面台形状に下側に大きく拡大していることが明らかとなった。   After the anchor member 6 is driven deep into the ground of the deposition layer 21, the nut member 7 is screwed onto the screw portion formed at the upper end portion of the anchor member 6 and tightened to fasten the anchor member 6. The anchor member 6 driven deep in the ground of the layer 21 does not move, but each embankment layer is tightened and prestress is applied, and the prestress is also applied to the deposited layer 21 in which the anchor member 6 is driven. Added state. Further, this pre-stress is applied even to the deposited layer 21 in which the anchor member 6 is driven, as shown by a broken line in the figure. It became clear that it was expanding.

これは自然地山の地盤は、砂質土と粘性土が混在あるいは互層状態となっている堆積層21であるために、圧縮力が付加されても、側方流動せずに、そのまま圧縮されてプレストレス状態となるためである。   This is because the ground of natural ground is a sedimentary layer 21 in which sandy soil and cohesive soil are mixed or in an alternating layer state, and even if a compressive force is applied, it is compressed as it is without lateral flow. This is because it is in a prestressed state.

基礎に当たる砂質系の堆積土周辺は、元々周囲の地盤から拘束されており、アンカー力により載荷された場合、周辺に土が側方流動することなく、また、躯体下部地盤はプレロード効果により、強度増加と沈下が促進されるため、補強材が配置されなくても基礎として安定している。前記基礎の安定とは、滑動・転倒・支持力に対して安定しているということである。   The sandy sediments surrounding the foundation are originally restrained from the surrounding ground, and when loaded by anchor force, the soil does not flow laterally to the surroundings, and the lower ground of the frame is due to the preload effect, Since strength increase and settlement are promoted, it is stable as a foundation even if a reinforcing material is not arranged. The stability of the foundation means that the foundation is stable with respect to sliding, falling, and supporting force.

そのために、砂質土と粘性土とが混在している堆積層を備える自然地山では、表層部分を水平にならし掘削して補強土基礎を構築し、アンカー部材を堆積層深く打ち込むことで、構築した補強土基礎を地下に延設した大きさに拡大した補強土擬似躯体を形成することが可能になる。つまり、本発明に係る荷重導入補強土基礎は、多層の盛土層と上盤とから構成される補強土躯体の大きさ以上に拡大された基礎地盤を構成することになる。   For this reason, in natural ground with a sedimentary layer in which sandy soil and cohesive soil are mixed, the surface layer is leveled and excavated to construct a reinforced soil foundation and anchor members are driven deep into the sedimentary layer. Thus, it is possible to form a reinforced soil pseudo-enclosure that is expanded to a size obtained by extending the constructed reinforced soil foundation to the basement. That is, the load-introducing reinforced soil foundation according to the present invention constitutes a foundation ground that has been expanded beyond the size of a reinforced earth body composed of a multi-layered embankment layer and an upper board.

この時に、図中の実線に示すように、アンカー部材6として、堆積層21を貫通して支持地盤22にまで打ち込まれたアンカー部材6Aとしても、また、堆積層21が深くて強固な場合には、該堆積層21内に深く打ち込むアンカー部材6B(想像線で示す)としてもよい。これは、堆積層21が厚くて深い地盤の場合には、該堆積層21内のみにアンカー部材6Bを設置すればよく、堆積層21が比較的薄く支持地盤22が地表近くにある場合には支持地盤22まで打ち込むことで、アンカー部材6Aの設置強度をさらに増加することができる。アンカー部材6Aを支持地盤22まで打ち込んだ状態でも、荷重導入補強土基礎1と支持地盤22間にある堆積層21にはプレストレスが付加された拡大化した補強土基礎地盤(図中の破線に示す範囲)が形成されている。   At this time, as shown by a solid line in the figure, as the anchor member 6, the anchor member 6 </ b> A penetrating through the deposition layer 21 and driven into the support ground 22 is also used when the deposition layer 21 is deep and strong. May be anchor members 6B (indicated by imaginary lines) that are driven deeply into the deposited layer 21. In the case where the deposited layer 21 is thick and deep ground, the anchor member 6B may be installed only in the deposited layer 21. When the deposited layer 21 is relatively thin and the supporting ground 22 is close to the ground surface. By driving to the support ground 22, the installation strength of the anchor member 6A can be further increased. Even in a state in which the anchor member 6A is driven to the support ground 22, an enlarged reinforced soil foundation ground (indicated by a broken line in the figure) in which a prestress is applied to the deposited layer 21 between the load-introducing reinforcement soil foundation 1 and the support ground 22 is provided. Range shown) is formed.

つまり、プレストレスが付加された荷重導入補強土基礎は、図2に示すように、補強土躯体としての大きさが擬似躯体1aでその荷重がHaであっても、プレストレス状態であるので該擬似躯体1aの上部に荷重Hbの土換算荷重高さ1bを配設したことに相当する状態となり、堆積層中にHa+Hbに相当するプレローディング荷重が付加された見かけ上の地盤改良ゾーン1cを形成していることになる。そのために、荷重導入補強土基礎としては図中に示すHa+Hb+Hcに相当する荷重を有する補強土擬似躯体1a+1b+1cに拡大された基礎を構成すると共に、該基礎の周囲の土に受動土圧を発生させ、その見かけ荷重は補強土躯体自重の数倍となり、前記擬似躯体1aの自重以上のすべり抑止力を発揮する。   That is, the load-introducing reinforced soil foundation to which prestress is applied is in a prestressed state even when the size of the reinforced soil body is a pseudo skeleton 1a and the load is Ha, as shown in FIG. It becomes a state equivalent to disposing the soil equivalent load height 1b of the load Hb on the upper part of the pseudo housing 1a, and an apparent ground improvement zone 1c is formed in which a preloading load corresponding to Ha + Hb is added in the deposited layer. Will be. Therefore, as the load-introducing reinforced soil foundation, a foundation expanded to the reinforced soil pseudo-enclosure 1a + 1b + 1c having a load corresponding to Ha + Hb + Hc shown in the figure is formed, and passive earth pressure is generated in the soil around the foundation, The apparent load is several times the weight of the reinforced earthen body, and exhibits a slip suppression force that is greater than the weight of the pseudo-body 1a.

そのために、図3(a)に示すように本発明に係る荷重導入補強土基礎1を、法面すべりを抑止する盛土工法に適用すると好適である。特に長大法面の下部にあたる法尻に設置される荷重導入補強土基礎1Aは、上記のように自重以上のすべり抑止力を発揮するために、構築する荷重導入補強土基礎1Aが比較的小型であっても大型の補強土擬似躯体からなる大きな基礎を構築していることになり、プレストレスの効果を最大に発揮して長大すべりS1を防止すると共に地すべり23に対する補強擁壁として好適である。   Therefore, as shown in FIG. 3A, it is preferable to apply the load-introducing reinforced soil foundation 1 according to the present invention to a banking method that suppresses slope slip. In particular, the load-introducing reinforced soil foundation 1A installed at the bottom of the long slope is a relatively small load-introducing reinforced soil foundation 1A to be constructed in order to exhibit a slip suppression force that exceeds its own weight as described above. Even if it exists, it will be constructing the big foundation which consists of a large reinforced earth pseudo-frame, and it is suitable as a reinforcement retaining wall with respect to the landslide 23 while exhibiting the effect of a prestress to the maximum and preventing the long slide S1.

また、前記法尻に設置する荷重導入補強土基礎1Aの上部に別の荷重導入補強土基礎1Bを設置して、順次滑りを分断するようにし、分断すべりS2を防止する構成とすることもできる。この分断すべりS2はすべりの方向が構築体に水平となり、躯体抵抗力が大きくなって、すべり抑止力に大きな効果がある。つまり、この荷重導入補強土基礎1Bは、傾斜面部の堆積層の補強と土石流24の防止機能を備えている。   Further, another load introduction reinforcing soil foundation 1B may be installed on the upper part of the load introduction reinforcing soil foundation 1A to be installed on the above-mentioned butt, so as to sequentially separate the slip and prevent the fragmentation slip S2. . In this divided slip S2, the slip direction is horizontal to the construction body, and the frame resistance is increased, which has a great effect on the slip prevention force. That is, the load-introducing reinforced soil foundation 1B has a function of reinforcing the sedimentary layer on the inclined surface portion and preventing the debris flow 24.

さらには、法面の任意の位置の表層部分を水平にならし掘削した後で、地表に突出しない程度の小型の荷重導入補強土基礎1Cを設置して、斜面部分の地盤を補強する補強土基礎とすることも有効である。   Furthermore, after leveling and digging the surface layer at an arbitrary position on the slope, a small load-introducing reinforced soil foundation 1C that does not protrude to the ground surface is installed to reinforce the ground of the slope portion. A foundation is also effective.

さらには、図3(b)に示すように、表層部分を水平にならし掘削したあとで上盤3を配設して、アンカー部材6を支持地盤22まで打ち込んで締め付けるだけで、堆積層21に圧縮力を作用させて、図中の破線で示す範囲の補強土擬似躯体を形成することになり、この簡単な構成でも自然地山の地盤を補強する工法となりえるものである。   Furthermore, as shown in FIG. 3 (b), after the surface layer portion is leveled and excavated, the upper board 3 is disposed, and the anchor member 6 is driven to the support ground 22 and tightened, and then the deposited layer 21 is obtained. A compressive force is applied to form a reinforced soil pseudo-frame in the range indicated by the broken line in the figure, and even this simple configuration can be a construction method for reinforcing the ground of natural ground.

以上説明したように、自然地山の堆積層に鉛直方向の圧力を付与すると、堆積層内部の周囲の土に受動土圧が付加されて、地盤強度が増大する。これは、自然地山の地盤が砂質土と粘性土とが混在した堆積層からなっており、プレストレスをかけても側方流動を起こし難いからである。また、その地盤強度が増加する範囲は、押圧する上盤の面積だけに留まらずに、断面台形状に下部に行くほど拡大して広範囲に広がっており、自然地山の地盤補強に最適である。   As described above, when vertical pressure is applied to the sedimentary layer of natural ground, passive earth pressure is applied to the surrounding soil inside the sedimentary layer, increasing the ground strength. This is because the ground of natural ground is composed of sedimentary layers in which sandy soil and cohesive soil are mixed, and it is difficult for side flow to occur even when prestressed. In addition, the area where the ground strength increases is not limited to the area of the upper board to be pressed, but expands to a lower part in a trapezoidal cross section, which is optimal for ground reinforcement of natural ground. .

また、プレストレスをかける前に、鉄筋類挿入による補強工法等の従来の自然地山の補強工法を施工して組み合わせ工法とすると、さらに地盤の補強効果を増加させることができる。   In addition, if a conventional natural ground reinforcement method such as a reinforcement method by inserting reinforcing bars is applied before the prestress is applied to form a combination method, the ground reinforcement effect can be further increased.

本発明に係る地盤補強工法では、地盤の表層部分を水平にならし掘削するだけなので、掘削する土量が少なくてよい。そのために、工事規模を小さくすることができる。さらに、底盤を使用せずに、荷重導入補強土基礎造成後にアンカー部材を打ち込んで締め上げる工程であるので、従来の補強土基礎工法ように、底盤を設置してアンカー部材を装着した後に、盛土転圧と補強材敷設とを繰り返し作業していく必要もなく、工程が簡単になると共に工期も短縮でき、安価な地盤補強工法となる。   In the ground reinforcement method according to the present invention, since the surface layer portion of the ground is only leveled and excavated, the amount of soil to be excavated can be small. Therefore, the construction scale can be reduced. Furthermore, since the anchor member is driven and tightened after the load-introducing reinforced soil foundation is constructed without using the bottom plate, after the bottom plate is installed and the anchor member is installed, as in the conventional reinforced soil foundation method, It is not necessary to repeat the rolling and laying of the reinforcing material, the process is simplified, the construction period can be shortened, and an inexpensive ground reinforcement method is provided.

図4には河川流路に本発明に係る荷重導入補強土基礎を配置した例を示しており、(a)は透過型堰堤を示し、(b)は導流堤を示す。   FIG. 4 shows an example in which the load-introducing reinforced soil foundation according to the present invention is arranged in a river channel, where (a) shows a transmission type dam and (b) shows a diversion bank.

図4(a)に示す荷重導入補強土基礎1Dは、川底を少し掘削して構築した補強土基礎であり、流域の上流から下流に向かって順に互い違いに複数個配列した構成であり、流れる土砂は堆積せず通過し、水の流れエネルギーは複数の前記基礎に衝突する際に吸収されて減衰するように構成したものである。そのために、図中の矢印は、元の流れエネルギー30がこの透過型堰堤を通過すると、流れエネルギー31にまで減衰することを示している。   The load-introducing reinforced soil foundation 1D shown in FIG. 4 (a) is a reinforced soil foundation constructed by excavating the riverbed a little, and has a configuration in which a plurality of staggered flows are arranged in order from the upstream to the downstream of the basin. Passes through without depositing, and the flow energy of water is absorbed and attenuated when colliding with a plurality of the foundations. Therefore, the arrows in the figure indicate that the original flow energy 30 is attenuated to the flow energy 31 when passing through the transmission type dam.

また、前記荷重導入補強土基礎1Dはそれぞれが、小規模の構築物構成であって、川幅全体に渡って構築する不透過型堰堤に比べてはるかに小規模な土木工事でよい。また、掘削する土量も少量であるので、環境に対する悪影響もない。   Further, each of the load-introducing reinforcing earth foundations 1D has a small-scale structure configuration, and may be a civil engineering work that is much smaller than an impervious type dam constructed over the entire river width. Moreover, since the amount of soil to be excavated is small, there is no adverse effect on the environment.

図4(b)に示す荷重導入補強土基礎1Eは川の流れを蛇行させて緩やかな流れとする導流堤であって、川の両側に互い違いに複数配設した例である。この配置例では、水流が順にそれぞれの基礎に衝突して、流れを偏向して蛇行するようになる。そのために、図中の矢印は、元の流れエネルギー32がこの導流堤を通過すると、流れエネルギー33にまで減衰することを示している。   A load-introducing reinforcing earth foundation 1E shown in FIG. 4B is a diversion bank that causes a gentle flow by meandering the flow of the river, and is an example in which a plurality of staggered foundations are arranged alternately on both sides of the river. In this arrangement example, the water flow sequentially collides with each foundation, and the flow is deflected to meander. Therefore, the arrow in the figure indicates that the original flow energy 32 is attenuated to the flow energy 33 when passing through the diversion bank.

また、自然地山の地盤補強工法や河川流路における堰堤構築の際に、アンカー部材6を締付ける時に、図6に示すように、緊張力を付与すると共に緩みを阻止する締着部材8を配設する構成とすれば、所定の締付け力を付加することができ、さらには締付け力の緩みを防止することができる。   Further, when the anchor member 6 is tightened during the ground reinforcement method for natural ground and the construction of a dam in a river channel, as shown in FIG. 6, a fastening member 8 that applies tension and prevents loosening is disposed. If it is set as the structure provided, predetermined | prescribed clamping force can be added and also loosening of clamping force can be prevented.

アンカー部材6により盛土に鉛直方向にプレロードを加えて塑性ひずみを進行させ、供用時の残留沈下を抑制する。次にプレロードの一部を除荷しプレストレス状態にすることによって盛土内の拘束圧を高い値に維持し、供用時でのせん断抵抗力と剛性を飛躍的に増加させることができる。   The anchor member 6 applies a preload to the embankment in the vertical direction to advance plastic strain, and suppresses the residual settlement during service. Next, by unloading a part of the preload to bring it into a prestressed state, the restraining pressure in the embankment can be maintained at a high value, and the shear resistance and rigidity during operation can be dramatically increased.

そのために、プレストレス状態を維持する構成とすることで、地震等の繰り返し荷重が付加されても、曲げ変形を抑制して盛土の鉛直拘束力を維持することで、一体的な補強土擬似躯体を維持することができる。   Therefore, by adopting a configuration that maintains a prestressed state, even if a repeated load such as an earthquake is applied, by suppressing bending deformation and maintaining the vertical restraining force of the embankment, an integrated reinforced soil pseudo-enclosure Can be maintained.

図6(a)に示す締着部材8は、アンカー部材6が挿通自在な円形の開口部80Aを中央に備える設置台80に、前記開口部80Aを塞ぐようにせん断ゴムばね材Eを配設した構成である。つまり、上盤3から突き出した状態のアンカー部材6に、下側が開放した溝型台状の設置台80を被せるように止めネジ80aで固設して、前記開口部80A上にアンカー部材6を挿通して前記せん断ゴムばね材Eを配設した構成としている。   In the fastening member 8 shown in FIG. 6A, a shear rubber spring material E is disposed on an installation base 80 having a circular opening 80A through which the anchor member 6 can be inserted at the center so as to close the opening 80A. This is the configuration. That is, the anchor member 6 protruding from the upper board 3 is fixed with the set screw 80a so as to cover the groove-shaped base-like installation base 80 opened on the lower side, and the anchor member 6 is mounted on the opening 80A. The shear rubber spring material E is disposed so as to be inserted.

前記せん断ゴムばね材Eは、中空円筒状の内金具81とケーシング金具82との間に、円環状のゴム状弾性体層83を挟設した構成であり、これらの界面は加硫接着等の方法で強固に接着されている。そのために、円筒軸方向には前記ゴム状弾性体層83を介して、内金具81とケーシング金具82とが変位自在な構成である。   The shear rubber spring material E has a configuration in which an annular rubber elastic body layer 83 is sandwiched between a hollow cylindrical inner metal member 81 and a casing metal member 82. It is firmly bonded by the method. For this purpose, the inner metal member 81 and the casing metal member 82 can be displaced via the rubber-like elastic layer 83 in the cylindrical axis direction.

設置台80の上端中央部に設けられた円形の開口部80Aに前記せん断ゴムばね材Eを設置する。この時に前記開口部80Aの周縁に突出部80Bを設け、該突出部80Bに前記ケーシング金具82の下端部を外嵌するように載置する構成とすると、設置位置が規制されて好適である。前記せん断ゴムばね材Eを設置後に、前記アンカー部材6上端部のネジ部6aに第一のナット部材7を螺合させてワッシャ9を介して内金具81の上端を押下していくと、内金具81が押圧されながらゴム状弾性体層83が弾性変形し、図中の実線に示すように81A位置まで押下される。   The shear rubber spring material E is installed in a circular opening 80 </ b> A provided at the center of the upper end of the installation table 80. At this time, it is preferable that the projecting portion 80B is provided on the peripheral edge of the opening 80A and the lower end portion of the casing fitting 82 is mounted on the projecting portion 80B so that the installation position is restricted. After installing the shear rubber spring material E, when the first nut member 7 is screwed into the screw portion 6a at the upper end portion of the anchor member 6 and the upper end of the inner fitting 81 is pushed down through the washer 9, The rubber-like elastic body layer 83 is elastically deformed while the metal fitting 81 is pressed, and is pressed down to the position 81A as shown by the solid line in the figure.

前記ゴム状弾性体層83の弾性変形量に相当する緊張力が前記アンカー部材6に付加された状態となり、さらに、盛土や基礎地盤の沈下やアンカー部材の伸長に追随して弾性変形しながら所定の緊張力を付与する構成である。つまり、せん断ゴムばね材Eは、設置台80と第一のナット部材7とで、アンカー部材6に緊張力を付与する加圧手段を構成している。   A tension force corresponding to the elastic deformation amount of the rubber-like elastic body layer 83 is applied to the anchor member 6, and further, while being elastically deformed following the settlement of the embankment or foundation ground or the extension of the anchor member, a predetermined amount is obtained. It is the structure which gives the tension power of. That is, the shear rubber spring material E constitutes a pressurizing means that applies tension to the anchor member 6 by the installation base 80 and the first nut member 7.

上記緊張力の程度としてその一例を示すと、前記ゴム状弾性体層83の厚みTが40mmで長さHが450mmの場合に、内金具81を60mm押下してゴム状弾性体の伸びが60mmの場合で約600kN(約60トン)、内金具81を100mm押下してゴム状弾性体の伸びが100mmの場合で約1000kN(約100トン)の緊張力が得られている。   As an example of the degree of tension, when the thickness T of the rubber-like elastic body layer 83 is 40 mm and the length H is 450 mm, the inner metal member 81 is pushed down by 60 mm, and the extension of the rubber-like elastic body is 60 mm. In this case, a tension force of about 1000 kN (about 100 tons) is obtained when the inner metal member 81 is pressed 100 mm and the elongation of the rubber-like elastic body is 100 mm.

そのために、ゴム状弾性体の伸びを60〜100mmの範囲でアンカー部材6の緊張力を付与する構成としておけば、アンカー部材一箇所に常に600kN以上の緊張力を付加している状態を維持することができる。   Therefore, if the extension of the rubber-like elastic body is configured to apply the tension of the anchor member 6 in the range of 60 to 100 mm, a state in which a tension of 600 kN or more is always applied to one anchor member is maintained. be able to.

また、この時に、前記加圧手段に加えてさらに、第二のナット部材84とゼンマイばね材85と支持体86とを備える緩み防止手段Fを備える構成の締着部材8とすれば、締付け力の緩みをさらに防止することができ好適である。   At this time, in addition to the pressurizing means, if the fastening member 8 is configured to include the loosening prevention means F including the second nut member 84, the spring spring member 85, and the support 86, the tightening force It is possible to further prevent the slackening.

前記第二のナット部材84と半径方向にわずかに間隔をあけて円環状で内側に凹部を設けた支持体86を、複数本の止めネジ86aにより上盤3に固着する構成であり、前記凹部にゼンマイばね材85を収容可能にしている。   The second nut member 84 is configured to be fixed to the upper board 3 by a plurality of set screws 86a, and a support body 86 having an annular shape and a concave portion on the inner side with a slight gap in the radial direction. The spring spring material 85 can be accommodated.

前記ゼンマイばね材85の両端の一方を第二のナット部材84に止着し、他方を支持体86に止着すると共に、ゼンマイばね材85の付勢力が第二のナット部材84を締める方向に向かうように設定している。   One end of the spring spring member 85 is fixed to the second nut member 84 and the other end is fixed to the support 86, and the urging force of the spring member 85 is tightened in the second nut member 84. It is set to head.

そのために、前記せん断ゴムばね材Eを締付けて固定した後で、アンカー部材6の第二ネジ部6bに装着している第二のナット部材84を回転し上盤3に固着する。その後で、ゼンマイばね材85を締めた状態で支持体86を止めネジ86aで上盤3に固定すると、前記第二のナット部材84が締付けられる方向に前記ゼンマイばね材85の付勢力が作用する構成とすることができる。   Therefore, after the shear rubber spring material E is fastened and fixed, the second nut member 84 attached to the second screw portion 6b of the anchor member 6 is rotated and fixed to the upper board 3. Thereafter, when the support body 86 is fixed to the upper board 3 with the set screw 86a in a state in which the mainspring spring 85 is tightened, the urging force of the mainspring spring 85 acts in the direction in which the second nut member 84 is tightened. It can be configured.

上記の構成にしておけば、補強土基礎体を構成する上盤3とアンカー部材6とを締結する第二のナット部材84が常に締付けられる方向に付勢されている構成となるので、前記のせん断ゴムばね材Eの加圧力をアンカー部材6と上盤3に確実に、さらに長期に渡って安定して付与することができる。また、ゼンマイばね材85の上面を覆うカバー部材87を配設することで、前記ゼンマイばね材85部に異物等が混入するのを防止することができる。   If it is set as said structure, since it becomes the structure currently urged | biased in the direction in which the 2nd nut member 84 which fastens the top board 3 and the anchor member 6 which comprise a reinforced earth foundation is fastened, The applied pressure of the shear rubber spring material E can be reliably and stably applied to the anchor member 6 and the upper board 3 for a longer period of time. Further, by disposing the cover member 87 that covers the upper surface of the spring spring member 85, it is possible to prevent foreign matters and the like from entering the spring member 85 portion.

前記せん断ゴムばね材Eを図6(b)に示すように、内金具81とケーシング金具82とを上下にずらして段違い型に成形した形状(図中の想像線に示す)とし、ケーシング金具82を設置台80Cに載置する構成とすれば、第一のナット部材7によりワッシャ9を介して内金具81の上端を押下する際に、前記内金具81の上端面がケーシング金具82の上端面と略水平になるまで押圧する(図中の実線に示す)ことで、所定の緊張力を付与する構成とすることができる。   As shown in FIG. 6B, the shear rubber spring material E has a shape (indicated by an imaginary line in the figure) in which the inner metal member 81 and the casing metal member 82 are shifted up and down to form a stepped shape. When the upper end of the inner metal member 81 is pushed down by the first nut member 7 through the washer 9, the upper end surface of the inner metal member 81 is the upper end surface of the casing metal member 82. It can be set as the structure which provides predetermined | prescribed tension | tensile_strength by pressing until it becomes substantially horizontal (it shows as the continuous line in a figure).

上記の構成では、緊張力の緩みが生じると、前記内金具81の上端面とケーシング金具82の上端面との水平状態が破棄されて、内金具81の上端面が競り上がる方向に変移するので、一目瞭然となり直ちに第一のナット部材7の締め直しすることで、緊張力の再調整を実施することができる。   In the above configuration, when the tension force is loosened, the horizontal state between the upper end surface of the inner metal member 81 and the upper end surface of the casing metal member 82 is discarded, and the upper end surface of the inner metal member 81 shifts in a competitive direction. When the first nut member 7 is immediately retightened, the tension can be readjusted.

いずれにしても、単体構成のせん断ゴムばね材Eを用いて所定の緊張力を付加する締着部材を構成することができるので、構造が簡単であるだけでなく、操作も楽になる。   In any case, the fastening member for applying a predetermined tension force can be configured using the shear rubber spring material E having a single structure, so that not only the structure is simple but also the operation becomes easy.

上記のせん断ゴムばね材Eは、基礎の塑性変形による沈下分(体積減少分)だけゼンマイばね材85が第二のナット部材84を回転させて追随してプレストレス状態を維持する構成である。また、密に締め固めた盛土体に外力を与えた場合、盛土体がせん断変形により、体積膨張をおこそうとするが、前記第二のナット部材84を常にアンカー部材6の引張り方向に回転力を与えているので、逆転をおこさずに補強土基礎の体積膨張を阻止している。   The above-described shear rubber spring material E has a configuration in which the mainspring spring material 85 follows the rotation of the second nut member 84 by the amount of subsidence (volume reduction) due to the plastic deformation of the foundation to maintain the prestressed state. Further, when an external force is applied to the densely packed embankment body, the embankment body tends to undergo volume expansion due to shear deformation, but the second nut member 84 is always rotated in the tension direction of the anchor member 6. Therefore, the volume expansion of the reinforced soil foundation is prevented without reversing.

つまり、盛土の高さを一定に保つ機能を備えており、補強土基礎の体積膨張を抑制すると共に、前記第二のナット部材84を締付け方向に常時付勢しているので、地震や土砂崩落などの衝撃による繰り返し曲げ変形をも抑制することができる。   In other words, it has a function to keep the height of the embankment constant, suppresses volume expansion of the reinforced soil foundation, and constantly urges the second nut member 84 in the tightening direction. It is also possible to suppress repeated bending deformation due to impact such as.

また、図7に示すように、ゼンマイばね材85に替えてウォーム88と第二のナット部材84Aの外縁に形成されるウォームホイールとで構成されるウォームギヤを備える第二の緩み防止手段FAを配設する構成としてもよい。   Further, as shown in FIG. 7, second loosening prevention means FA including a worm gear constituted by a worm 88 and a worm wheel formed on the outer edge of the second nut member 84A is arranged in place of the mainspring spring member 85. It is good also as a structure to install.

上盤3に固着される設置台80Dに、ブッシュ88Aを介して回転自在に装着されるウォーム88が第二のナット部材84Aの外縁に形成されたウォームホイールに噛合うウォームギヤ構成として、ウォーム88を回動させることで、第二のナット部材84Aを回転可能にしたものである。   As a worm gear configuration in which a worm 88 rotatably mounted on a mounting base 80D fixed to the upper board 3 via a bush 88A meshes with a worm wheel formed on the outer edge of the second nut member 84A, By rotating, the second nut member 84A is made rotatable.

前記ウォーム88の一方の軸端にハンドル89Aを備える円盤89を設けた。円盤89の外縁部に装着されるハンドル89Aを回すことで、ウォーム88を軽く回動させることができる。さらに、円盤89と設置台80D間に第二のゼンマイばね材85Aを配設して前記ウォーム88の回転方向を一方向に付勢するように構成し、第二のナット部材84Aが締まる方向に常に付勢しておく構成としておけば、前記と同様に第二のナット部材84Aの逆転を防止して、補強土基礎の体積変化に追随し、躯体の強度・剛性を維持することができる。   A disk 89 having a handle 89 </ b> A is provided at one shaft end of the worm 88. By turning the handle 89A attached to the outer edge of the disk 89, the worm 88 can be rotated lightly. Further, the second spring member 85A is disposed between the disk 89 and the installation base 80D so as to urge the rotation direction of the worm 88 in one direction, so that the second nut member 84A is tightened. If the structure is always urged, the reverse rotation of the second nut member 84A can be prevented in the same manner as described above, the volume change of the reinforced soil foundation can be followed, and the strength and rigidity of the housing can be maintained.

また、前記第二のゼンマイばね材85A部にラチェット機能を備えるクラッチ部材を装着して、緩みをさらに抑制する構成とすることもできる。   Further, a clutch member having a ratchet function may be attached to the second spring spring member 85A so as to further suppress loosening.

ただし、第二のゼンマイばね材85Aのみで構成した例では、前記補強土基礎の体積変化に追随して回動する前記ハンドル89Aの位置により、その変化具合を目視にて確認することができ好適である。   However, in the example constituted only by the second spring spring material 85A, the degree of change can be visually confirmed by the position of the handle 89A that rotates following the volume change of the reinforced soil foundation. It is.

さらに、締着部材8として図8に示す波板8Aを上盤3の上に載置して、第一のナット部材7を締付ける構成とするだけでも、強力な緊張力が得られて好適である。このような簡単な構成でも、所定の緊張力を付加するだけではなく、締付け力の緩み防止を図ることができる。   Furthermore, even if the corrugated plate 8A shown in FIG. 8 is placed on the upper board 3 as the fastening member 8 and the first nut member 7 is fastened, a strong tension can be obtained, which is preferable. is there. Even with such a simple configuration, not only a predetermined tension force can be applied, but also the tightening force can be prevented from loosening.

前記波板8Aはバネ鋼製の波板であって、波状の板鋼を締付ける際に生じる弾性反力を補強土の締付け力とする構成である。そのために、バネ性の明確な波板8Aを前記ナット部材7で締付ける構成としているので、波板8Aの変形量により、前記ナット部材7の締め付け程度を判定することができ、一定の締付け量とすることができると共に、長期に渡って安定した締付け力を維持することができる。さらに、補強土の変形や流失等により締め付けが緩む場合でも、所定の締め付け力を維持しながら、波板8Aの弾性範囲内で変形量が変化するので、再度の締め付け時期も明確に判定され好適である。   The corrugated plate 8A is a corrugated plate made of spring steel and has a configuration in which an elastic reaction force generated when the corrugated plate steel is tightened is used as a tightening force of the reinforcing soil. For this purpose, the corrugated plate 8A having a clear spring property is tightened by the nut member 7. Therefore, the degree of tightening of the nut member 7 can be determined from the amount of deformation of the corrugated plate 8A. And a stable tightening force can be maintained over a long period of time. Furthermore, even when tightening is loosened due to deformation or loss of the reinforced soil, the amount of deformation changes within the elastic range of the corrugated plate 8A while maintaining a predetermined tightening force. It is.

もちろん前記波板8Aに替えて、大型の波ワッシャを採用することもできるが、盛土層を押圧する大きな締付け力を得るためには、大きな面積に加工可能なバネ鋼板の波板が好ましい。   Of course, a large wave washer can be used instead of the corrugated plate 8A, but in order to obtain a large clamping force for pressing the embankment layer, a corrugated plate of a spring steel plate that can be processed into a large area is preferable.

アンカー部材6の緩み止め機構として単なる板金部品である波板8Aを介して締付ける構成としたので、構成の複雑な緩み止め装置を使用せずに簡単にアンカー部材6の緩み止めを行うことができるという効果を有する。   Since the anchor member 6 is configured to be tightened via a corrugated sheet 8A, which is a simple sheet metal part, the anchor member 6 can be easily prevented from loosening without using a complicated locking device. It has the effect.

上記のように、自然地山の表層部分のみを水平にならし掘削して、荷重導入補強土基礎1を構築すると、該基礎1の下部地盤である堆積層をも荷重導入補強土基礎状態とする工法であるので、土木工のみにより効率的に作業することができる。また、従来のコンクリートやセメント系固化材を用いた地盤改良工法では、軟弱な地盤を掘り返して、固化材を添加して締め固める作業が必要であり、また硬化する期間工期が長くなり、大型の施工重機が必要であると共に、工事が長期化し大変であるが、本実施例では、補強土基礎構築の全工程を一連の連続工程として短期間に施工することができる。そして、自然地山の表層部分のみを掘削して補強土構築工事を行うので、自然にやさしい工法ともいえ、環境保全にも好適である。   As described above, when only the surface layer portion of the natural ground is leveled and excavated to construct the load-introducing reinforced soil foundation 1, the sediment layer which is the lower ground of the foundation 1 is also in the load-introducing reinforced soil foundation state. Therefore, it is possible to work efficiently only by civil engineering. In addition, the conventional ground improvement method using concrete or cement-based solidified material requires the work of digging up the soft ground, adding the solidified material and compacting it, and the period of time for hardening becomes long, resulting in large-scale work. Although heavy construction equipment is required and construction is long and difficult, in this embodiment, the entire process of constructing the reinforced soil foundation can be constructed in a short time as a series of continuous processes. And since only the surface layer part of the natural ground mountain is excavated and the reinforced soil construction work is performed, it can be said that it is a natural-friendly construction method and is also suitable for environmental conservation.

つまり、上記の本発明に係る荷重導入補強土基礎による地盤補強工法は、割に小規模の土木工事により大型の荷重導入補強土基礎を構築する地盤補強工法ともなり、山間部の狭隘な地形でも比較的容易に工事を行うことができる工法であり、工事工程を短くすることができ、工事コストを低く押えることができる。   In other words, the ground reinforcement method using the load-introducing reinforced soil foundation according to the present invention is also a ground reinforcement method for constructing a large load-introducing reinforced soil foundation by small-scale civil engineering work, even in a narrow terrain in a mountainous area. It is a construction method that allows construction to be performed relatively easily, shortens the construction process, and keeps construction costs low.

次に図9と図10により第二の実施例について説明する。   Next, a second embodiment will be described with reference to FIGS.

図9は本発明に係る荷重導入補強土基礎を利用して地山の斜面部に構造物の基礎を構成した例であり、図10には従来の荷重導入補強土基礎による構造物の基礎構成を示している。   FIG. 9 shows an example in which the foundation of the structure is constructed on the slope of the natural ground using the load-introducing reinforced soil foundation according to the present invention, and FIG. Is shown.

図9に示す荷重導入補強土基礎1Fは、斜面表層の堆積層21を支持地盤25に至るまで掘削して、支持地盤25の上面を段切りして平面部25aを造成し、掘削した現地発生土または良質土を埋め戻して転圧し置換層20Cを造成し、その上に補強材5と盛土4を積層して補強土基礎を構築して、上盤3を設置した後で、アンカー部材6を前記支持地盤25に達するまで打ち込んで、先端をモルタル注入などで固定し、緊張締着した構成である。また、前記上盤3に台座12を設置し、該台座12に橋桁13等を設置することができる。   The load-introducing reinforced soil foundation 1F shown in FIG. 9 excavates the sediment layer 21 on the slope surface up to the supporting ground 25, cuts the upper surface of the supporting ground 25 to create a flat portion 25a, and excavates the field. After the earth or high-quality earth is backfilled and rolled to form the replacement layer 20C, the reinforcing material 5 and the embankment 4 are laminated thereon to construct the reinforced earth foundation, and after the upper board 3 is installed, the anchor member 6 Until the support ground 25 is reached, the tip is fixed by mortar injection or the like, and is tightened and tightened. Further, a pedestal 12 can be installed on the upper board 3, and a bridge girder 13 or the like can be installed on the pedestal 12.

上記の荷重導入補強土基礎1Fは土から構成されているので、軽量な構成であり、傾斜面の山側ではなく傾斜地近くに構築することができ、橋台とした時に、橋桁スパンを短くすることができる。   The load-introducing reinforced soil foundation 1F is made of soil, so it is light in weight, and can be constructed near the slope rather than the mountain side of the slope. When it is used as an abutment, the bridge girder span can be shortened. it can.

前記の荷重導入補強土基礎1Fは、水平状態の支持地盤上に基礎構築体を構築する構成であるので、特殊な斜面設計も不要であり容易な施工となる。また、図10に示す従来の斜め状の補助アンカーが不要であり、アンカー緊張力の複合設計計算も不要である。   Since the load introduction reinforcing soil foundation 1F is configured to construct a foundation structure on a support ground in a horizontal state, a special slope design is not required and the construction is easy. Moreover, the conventional diagonal auxiliary anchor shown in FIG. 10 is unnecessary, and the complex design calculation of anchor tension force is also unnecessary.

図10に示す従来の基礎構成では、支持地盤25の鉛直方向にアンカー部材6を設置すると共に、傾斜した支持地盤25に略直交する方向に斜めに打ち込む補助アンカー6Cを設けて、荷重導入補強土基礎11を支持地盤25に付勢して該基礎の側方移動と沈下を防止する必要があって、アンカー部材6と補助アンカー6Cの緊張力を設定することが困難であり、さらにはその施工も困難である。   In the conventional basic structure shown in FIG. 10, the anchor member 6 is installed in the vertical direction of the support ground 25, and the auxiliary anchor 6C that is driven obliquely in a direction substantially orthogonal to the inclined support ground 25 is provided, so that the load-introducing reinforcement soil is provided. It is necessary to urge the foundation 11 to the support ground 25 to prevent lateral movement and settlement of the foundation, and it is difficult to set the tension force of the anchor member 6 and the auxiliary anchor 6C. It is also difficult.

上記のアンカー部材6と補助アンカー6Cを傾斜面25bに対して打ち込み、それぞれの緊張力を作用させる際に、その緊張力に不均衡が生じると、図中の想像線に示すように前記傾斜面25bに沿ってすべりが生じて、側方移動した基礎11Aとなり、地盤支持力の低下につながる。   When the anchor member 6 and the auxiliary anchor 6C are driven into the inclined surface 25b and the respective tension forces are applied, if there is an imbalance in the tension force, the inclined surface as shown by an imaginary line in the figure. A slip occurs along the line 25b to form a base 11A that has moved sideways, which leads to a decrease in ground supporting force.

そのために、施工段階において鉛直方向のアンカー部材6と斜め状の補助アンカー6Cとの緊張力の不均衡により、側方移動や沈下が生じて所要の支持力が得られない場合には、施工を中止して手戻りとなることがある。   Therefore, in the construction stage, if the required support force cannot be obtained due to lateral movement or settlement due to the tension imbalance between the vertical anchor member 6 and the oblique auxiliary anchor 6C, the construction is performed. It may be canceled and returned.

図9に示す本発明に係る荷重導入補強土基礎1Fは、設計計算が容易であり、施工中に掘削地盤の地耐力現認もできるので、状況に応じて置換工部分と擬似躯体工部分との高さを変えることができ、設計変更も容易である。また、通常の盛土施工であるので、転圧管理を行うことで通常の土木作業者で作業可能であり、特殊な技能工を必要としない。   The load-introducing reinforced soil foundation 1F according to the present invention shown in FIG. 9 is easy in design calculation and can confirm the ground strength of the excavated ground during construction. The height can be changed, and the design can be easily changed. Moreover, since it is normal embankment construction, it can be operated by a normal civil engineer by performing rolling pressure management, and does not require a special technician.

本実施例においても、補強土による擬似躯体は表層部分のみの浅い部分だけでよく、ただアンカー部材を支持地盤25に達するまで打ち込んで、前記擬似躯体と置換層20Cとを同時に緊張することで、補強土擬似躯体下部に断面台形状に下側に大きく拡大した基礎体を構成している。   Also in the present embodiment, the simulated skeleton by the reinforced soil may be only a shallow portion of the surface layer portion. A foundation body that is greatly expanded downward in a trapezoidal cross section is configured at the lower part of the reinforced soil simulated housing.

さらには、掘削残土である現地発生土が不良な場合には、石灰混合改良などにより脱水や改質を図り再利用することができるので、掘削残土を廃棄する必要もなく、また搬送する必要もないことになり、この点からも山間部等の狭隘な地形に適した工法であると共に、環境に優しく低コスト化が達成可能である。   Furthermore, if the locally generated soil that is excavated residual soil is poor, it can be reused by dewatering and reforming by improving lime mixing, etc., so it is not necessary to discard the excavated soil and transport it. From this point, it is a construction method suitable for narrow terrain such as a mountainous area, and it is environmentally friendly and can achieve cost reduction.

また、多層の盛土層から構成される基礎を貫通して、堆積層の地中深くにまでアンカー部材を打ち込む構成であるので、前記基礎だけではなく、該基礎下部の堆積層をも一体的な荷重導入補強土擬似躯体を形成し、大型の基礎地盤を構築したものと同等の効果を得ることができる。さらには、該基礎躯体にプレストレスを掛ける際に、周囲の土に受動土圧が発生し、地盤強度がさらに向上するので、地盤補強工法として有効である。   Further, since the anchor member is driven through the foundation composed of the multi-layered embankment layer and deep into the ground of the sedimentary layer, not only the foundation but also the sedimentary layer below the foundation is integrated. It is possible to obtain the same effect as that obtained by forming a load-introducing reinforced soil pseudo-frame and constructing a large foundation ground. Furthermore, when prestressing is applied to the foundation frame, a passive earth pressure is generated in the surrounding soil and the ground strength is further improved, which is effective as a ground reinforcement method.

本発明に係る荷重導入補強土基礎の第一の実施例を示す断面図である。It is sectional drawing which shows the 1st Example of the load introduction reinforcement | strengthening soil foundation which concerns on this invention. 本発明に係る荷重導入補強土基礎の有効性を示す概略説明図である。It is a schematic explanatory drawing which shows the effectiveness of the load introduction reinforcement | strengthening soil foundation which concerns on this invention. 法面すべりを防止する実施例を示す概略説明図であり、(a)は荷重導入補強土基礎による地盤補強工法を示し、(b)は上盤とアンカー部材による地盤補強工法を示す。It is a schematic explanatory drawing which shows the Example which prevents a slope slip, (a) shows the ground reinforcement construction method by a load introduction reinforcement earth foundation, (b) shows the ground reinforcement construction method by an upper board and an anchor member. 河川流路に本発明に係る荷重導入補強土基礎を配置した例を示しており、(a)は透過型堰堤を示し、(b)は導流堤を示す。The example which has arrange | positioned the load introduction reinforcement | strengthening soil foundation which concerns on this invention in the river flow path is shown, (a) shows a transmission type dam, (b) shows a diversion bank. 従来の工法による補強土基礎を示す断面図である。It is sectional drawing which shows the reinforced soil foundation by the conventional construction method. 締着部材と緩み防止手段とを備えるアンカー部材の上端部構成を示す断面図である。It is sectional drawing which shows the upper end part structure of an anchor member provided with a fastening member and a loosening prevention means. ウォームギヤを備える第二の緩み防止手段を示す斜視図である。It is a perspective view which shows the 2nd loosening prevention means provided with a worm gear. 締着部材として波板を備えるアンカー部材の上端部構成を示す概略説明図である。It is a schematic explanatory drawing which shows the upper end part structure of an anchor member provided with a corrugated sheet as a fastening member. 本発明に係る荷重導入補強土基礎を利用して地山の斜面部に構造物の基礎を構成した第二の実施例を示す断面図である。It is sectional drawing which shows the 2nd Example which comprised the foundation of the structure in the slope part of the natural ground using the load introduction reinforcement | strengthening earth foundation which concerns on this invention. 従来の荷重導入補強土基礎による構造物の基礎構成を示す断面図である。It is sectional drawing which shows the basic composition of the structure by the conventional load introduction reinforcement earth foundation.

符号の説明Explanation of symbols

1 荷重導入補強土基礎
1a (荷重導入)補強土擬似躯体
3 上盤
4 盛土層
5 補強材
6 アンカー部材
8 締着部材
10 荷重導入補強土基礎(従来の)
20A 掘削部
20B (従来の深い)掘削部
21 堆積層
22 支持地盤
81 内金具
82 ケーシング金具
83 ゴム状弾性体層
84 第二のナット部材
84A 第二のナット部材(ウォームホイールを備える)
88 ウォーム
E せん断ゴムばね材(加圧手段)
F 緩み防止手段
FA 第二の緩み防止手段
DESCRIPTION OF SYMBOLS 1 Load introduction reinforcement earth foundation 1a (Load introduction) Reinforcement earth pseudo frame 3 Upper board 4 Embankment layer 5 Reinforcement material 6 Anchor member 8 Fastening member 10 Load introduction reinforcement earth foundation (conventional)
20A excavation part 20B (conventional deep) excavation part 21 sedimentary layer 22 support ground 81 inner metal fitting 82 casing metal fitting 83 rubber-like elastic body layer 84 second nut member 84A second nut member (equipped with worm wheel)
88 Worm E Shear rubber spring material (Pressurizing means)
F Loosening prevention means FA Second loosening prevention means

Claims (7)

表層部分を水平にならし掘削して、その上に高剛性の上盤を配設して、前記上盤と該上盤下部の堆積層とを貫通して支持地盤に達するアンカー部材を設け、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張することで堆積層に圧縮力を作用させて堆積層の強度増加を図り地盤を補強する構成としたことを特徴とする地盤補強工法。   Excavating by leveling the surface layer part, disposing a highly rigid upper board thereon, providing an anchor member that penetrates the upper board and the deposited layer at the lower part of the upper board and reaches the support ground, The first nut member is screwed into the threaded portion formed at the upper end of the anchor member, and the anchor member is tightened and tensioned to apply a compressive force to the deposited layer to increase the strength of the deposited layer. A ground reinforcement construction method characterized by having a structure to reinforce. 表層部分を水平にならし掘削して、その上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上の盛土層上に高剛性の上盤を配設して補強土躯体を造成後に、該上盤と前記補強材と前記盛土層と、該盛土層下部の堆積層を貫通して支持地盤に達するアンカー部材を設け、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張することで、前記盛土層だけでなく、前記堆積層にも圧縮力を作用させて補強土擬似躯体を形成し、前記補強土躯体よりも拡大した荷重導入補強土基礎を構成して地盤を補強する構成としたことを特徴とする地盤補強工法。   The surface layer part is leveled and excavated, and a multi-layered embankment layer is formed thereon, a flat or substantially flat mesh-like or lattice-like reinforcing material interposed between each embankment layer and having a large friction coefficient and tensile strength, and an uppermost layer. After a highly rigid upper board is arranged on the embankment layer and a reinforced earth body is formed, the upper board, the reinforcing material, the embankment layer, and the deposited layer below the embankment layer are penetrated to reach the support ground. An anchor member is provided, a first nut member is screwed into a screw portion formed on the upper end portion of the anchor member, and the anchor member is tightened and tensioned, so that not only the embankment layer but also the deposited layer A ground reinforcement construction method characterized by forming a reinforced soil pseudo skeleton by applying a compressive force and forming a load-introducing reinforced soil foundation larger than the reinforced soil body to reinforce the ground. 表層部分から支持地盤に至るまで掘削して、該支持地盤を段切りして平面部を造成すると共に、該平面部に埋め戻し土或いは良質土を転圧しながら積層して、その上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上の盛土層上に高剛性の上盤を配設して補強土躯体を造成後に、該上盤と前記補強材と前記盛土層と、該盛土層下部の転圧積層部を貫通して支持地盤に達するアンカー部材を設け、前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張することで、前記盛土層だけでなく、前記転圧積層部にも圧縮力を作用させて補強土擬似躯体を形成し、前記補強土躯体よりも拡大した荷重導入補強土基礎を構成して地盤を補強する構成としたことを特徴とする地盤補強工法。   Drilling from the surface layer part to the support ground, stepping the support ground to create a plane part, and laminating back-filled soil or high-quality soil on the plane part while rolling, and multilayering on it Reinforced by embedding the embankment layer, a flat or substantially flat net-like or lattice-like reinforcing material that is interposed between each embankment layer, and has a high friction coefficient and tensile strength, and a highly rigid upper board on the uppermost embankment layer After forming the earthen body, an anchor member that penetrates the upper layer, the reinforcing material, the embankment layer, and the rolling compaction layered portion at the lower part of the embankment layer to reach the support ground is provided, and is formed at the upper end of the anchor member The first nut member is screwed to the threaded portion, and the anchor member is tightened and tensioned, so that not only the embankment layer, but also the rolling compaction portion is subjected to a compressive force, and the reinforced soil pseudo frame is formed. Introducing a load that is larger than the reinforced earth Ground reinforcement construction method, characterized in that to form the strongly soil foundation and the structure for reinforcing the ground. 前記アンカー部材上端部に形成されたネジ部に第一のナット部材を螺合させ、前記アンカー部材を締め上げて緊張する際に、中空円筒状の内金具とケーシング金具との間にゴム状弾性体層が挟設された構造のせん断ゴムばね材を加圧手段とする締着部材を介して緊張する構成としたことを特徴とする請求項1から3のいずれかに記載の地盤補強工法。   When the first nut member is screwed into the screw portion formed at the upper end portion of the anchor member and the anchor member is tightened and tensioned, the rubber-like elasticity is provided between the hollow cylindrical inner metal fitting and the casing metal fitting. The ground reinforcement method according to any one of claims 1 to 3, wherein a tension is applied via a fastening member using a shear rubber spring material having a structure in which a body layer is sandwiched as pressure means. 前記締着部材が、前記加圧手段に加えてさらに、第二のナット部材と該第二のナット部材を締付け方向に付勢するゼンマイばね材とを備える緩み防止手段を有していることを特徴とする請求項4に記載の地盤補強工法。   In addition to the pressurizing means, the fastening member further includes a loosening prevention means including a second nut member and a spring spring material that biases the second nut member in the fastening direction. The ground reinforcement method according to claim 4, wherein 前記第二のナット部材外縁部にウォームホイールを成形し、該ウォームホイールに係合するウォームを配設すると共に、前記第二のナット部材を締付け方向に前記ウォームを回転させるように付勢する構成としていることを特徴とする請求項5に記載の地盤補強工法。   A configuration in which a worm wheel is formed on the outer edge of the second nut member, a worm that engages with the worm wheel is disposed, and the second nut member is urged to rotate in the tightening direction. The ground reinforcement construction method according to claim 5, wherein: 請求項4に記載のせん断ゴムばね材を加圧手段とする締着部材に替えて、バネ鋼製の波板からなる締着部材を介して緊張する構成としたことを特徴とする地盤補強工法。

A ground reinforcement construction method characterized in that, instead of a fastening member using the shear rubber spring material according to claim 4 as a pressurizing means, the tension is made via a fastening member made of a corrugated plate made of spring steel. .

JP2003291591A 2003-08-11 2003-08-11 Ground reinforcement method Expired - Fee Related JP4252860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291591A JP4252860B2 (en) 2003-08-11 2003-08-11 Ground reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291591A JP4252860B2 (en) 2003-08-11 2003-08-11 Ground reinforcement method

Publications (2)

Publication Number Publication Date
JP2005061021A true JP2005061021A (en) 2005-03-10
JP4252860B2 JP4252860B2 (en) 2009-04-08

Family

ID=34369232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291591A Expired - Fee Related JP4252860B2 (en) 2003-08-11 2003-08-11 Ground reinforcement method

Country Status (1)

Country Link
JP (1) JP4252860B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037679A (en) * 2012-08-10 2014-02-27 Taisei Corp Water channel and construction method for the same
JP2016156148A (en) * 2015-02-23 2016-09-01 公益財団法人鉄道総合技術研究所 Construction method for enhancing seismic resistance of banking wall reinforced at both ends and having large slenderness ratio, and ease of long-term maintenance and management by mitigating residual deformation
JP2016160628A (en) * 2015-02-27 2016-09-05 旭コンクリート工業株式会社 Retaining wall, and installation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037679A (en) * 2012-08-10 2014-02-27 Taisei Corp Water channel and construction method for the same
JP2016156148A (en) * 2015-02-23 2016-09-01 公益財団法人鉄道総合技術研究所 Construction method for enhancing seismic resistance of banking wall reinforced at both ends and having large slenderness ratio, and ease of long-term maintenance and management by mitigating residual deformation
JP2016160628A (en) * 2015-02-27 2016-09-05 旭コンクリート工業株式会社 Retaining wall, and installation method thereof

Also Published As

Publication number Publication date
JP4252860B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
Alexiew et al. Geotextile encased columns (GEC): load capacity, geotextile selection and pre-design graphs
CN103958780B (en) The method for forming cementing retaining wall
JP2007321452A (en) Construction method for bridge and bridge structure thereof
JP5180022B2 (en) Constraining method for mountain retaining wall head
US20230091971A1 (en) System and Method for Protection of Under-Slab Utilities From Changes in Soil Volume
JPH06294136A (en) Soil improvement pile
JP3789127B1 (en) Seismic structure
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP2002242186A (en) Bank structure constructing method
JP4575800B2 (en) Embankment reinforcement structure and reinforcement method
JP4252860B2 (en) Ground reinforcement method
US6745421B2 (en) Abutment with seismic restraints
JP4089717B2 (en) Earthquake-proof basement structure and its construction method
JP2597116B2 (en) Embankment foundation and its construction method
JP2016156147A (en) Construction method of anti-gigantic tsunami seacoast earth structure with highly rigid geosynthetic reinforced earth retaining wall having rigid integral wall surface
KR101203289B1 (en) Reinforced retaining wall with curb element and its construction method
JP2004183347A (en) Pipe line installation method for columnar article and load introduction reinforcement foundation
JP2007247225A (en) Continuous girder structure formed of a plurality of simple girder bridges, and construction method
JP3770665B2 (en) Ground improvement composite foundation
JP2015055076A (en) Support structure, and method for constructing support pillar
SHINDO et al. Restoration of Sanriku railway by utilizing reinforced soil structures to enhance earthquake-and-tsunami-resistance
JP6324916B2 (en) Measures to improve long-term maintenance performance by reducing earthquake resistance and residual deformation of double-wall reinforced embankment method with large slenderness ratio
Naesgaard et al. The construction and performance of post-grouted micro-piles for Vancouver International Airport Domestic Terminal Building
JP7008663B2 (en) Column pile rotation suppression structure
JP4153826B2 (en) Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4252860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees