JP2005060796A - Method for producing high strength and high toughness welded steel tube for air bag bottle - Google Patents

Method for producing high strength and high toughness welded steel tube for air bag bottle Download PDF

Info

Publication number
JP2005060796A
JP2005060796A JP2003294459A JP2003294459A JP2005060796A JP 2005060796 A JP2005060796 A JP 2005060796A JP 2003294459 A JP2003294459 A JP 2003294459A JP 2003294459 A JP2003294459 A JP 2003294459A JP 2005060796 A JP2005060796 A JP 2005060796A
Authority
JP
Japan
Prior art keywords
less
steel pipe
welded steel
group
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003294459A
Other languages
Japanese (ja)
Other versions
JP4079054B2 (en
Inventor
Masatoshi Araya
昌利 荒谷
Yoshikazu Kawabata
良和 河端
Shunsuke Toyoda
俊介 豊田
Kazuhito Kenmochi
一仁 剣持
Yasue Koyama
康衛 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003294459A priority Critical patent/JP4079054B2/en
Publication of JP2005060796A publication Critical patent/JP2005060796A/en
Application granted granted Critical
Publication of JP4079054B2 publication Critical patent/JP4079054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Air Bags (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high strength and high toughness welded steel tube for air bag bottle and the high strength and high toughness welded steel tube for air bag bottle having ≥900 MPa tensile strength and the high toughness showing ductility in a drop hammer test at -60°C to semi-cut steel tube. <P>SOLUTION: To the welded steel tube having the composition composed by mass% of 0.02-0.2% C, ≤1% Si, 1.5-4% Mn, ≤0.1% P, ≤0.01% S, ≤0.1% Al, ≤0.01% N, ≤0.1% Ti, ≤0.1% Nb, ≤0.01% B, a reducing-rolling at ≥700°C rolling-finishing temperature and ≤35% accumulated shrinkage diameter ratio is applied and the obtained steel tube is used as a blank steel tube, and a cold-drawing treatment is applied to this blank steel tube to form the steel tube having a prescribed size. Then, after cold-drawing treatment, an annealing treatment can be applied. Further, one or more kinds among Cu, Ni, Cr, Mo and/or one or two kinds of Ca and REM can be contained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高強度溶接鋼管に係り、とくにエアバッグ用として好適な、靭性、加工性に優れた高強度溶接鋼管に関する。   The present invention relates to a high-strength welded steel pipe, and more particularly to a high-strength welded steel pipe excellent in toughness and workability, which is suitable for an airbag.

近年、自動車の衝突安全性の向上が熱望され、とくに衝突時に乗員を保護する安全装置の導入が積極的に進められている。なかでも、衝突時、乗員と、ハンドルやインストルメントパネルとの間に展開し、乗員の運動エネルギーを吸収して乗員の損傷低減を図るエアバッグの搭載が一般化しつつある。とくに、ハンドル内に装填される運転席用エアバックや、インストルメントパネル内に装填される助手席用エアバッグは標準装備化されつつある。さらに、最近では、これらに加え、側面衝突時に乗員を保護するため、座席にサイドエアバッグ、あるいはサイドウインドウを覆うカーテン式エアバッグなどを搭載する自動車が多くなっている。エアバッグ用インフレータには容器部分であるボトルが含まれる。   In recent years, there has been a strong desire to improve the collision safety of automobiles, and in particular, the introduction of safety devices that protect passengers in the event of a collision has been actively promoted. In particular, in the event of a collision, the mounting of an airbag that deploys between the occupant and the steering wheel or instrument panel to absorb the kinetic energy of the occupant and reduce occupant damage is becoming common. In particular, driver seat airbags loaded in the steering wheel and passenger seat airbags loaded in the instrument panel are becoming standard equipment. Furthermore, recently, in addition to these, in order to protect the occupant in the case of a side collision, there are an increasing number of automobiles equipped with a side airbag or a curtain airbag covering the side window on the seat. The airbag inflator includes a bottle which is a container part.

従来から、エアバッグには、インフレータに収納した火薬を使用してガスを発生させる方式や、インフレータに収納した反応ガスの熱膨張を利用した方式が多く採用されてきた。 最近では、リサイクル性や環境への配慮から、火薬の使用に替えて、アルゴンなどの不活性ガスをインフレータに高圧で充填する方式も採用されるようになっている。   Conventionally, many methods have been employed for airbags, such as a method of generating gas using explosives stored in an inflator and a method using thermal expansion of a reaction gas stored in an inflator. Recently, in consideration of recyclability and environmental considerations, instead of using explosives, a method of filling an inflator with an inert gas such as argon at a high pressure has been adopted.

一般に、エアバッグ用ボトルは鋼管を加工して製造されている。鋼管に冷間引抜き加工を施し所定寸法とし、所定の長さに切断したのち、両管端をプレス加工などにより加工し封板を溶接して、ボトルとされる。このため、エアバッグボトル用鋼管としては、十分な強度と靭性を有し、加工性に優れ、さらに溶接性にも優れた鋼管が要望されている。   In general, airbag bottles are manufactured by processing steel pipes. The steel pipe is cold drawn to a predetermined size and cut to a predetermined length, and then both ends of the pipe are processed by pressing or the like and a sealing plate is welded to form a bottle. For this reason, as a steel pipe for airbag bottles, a steel pipe having sufficient strength and toughness, excellent workability, and excellent weldability is desired.

このような要望に対し、例えば、特許文献1には、C:0.01〜0.20%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.020 %以下、S:0.020 %以下、Al:0.10%以下を含み、あるいはさらにMo:0.50%以下、V:0.10%以下、Ni:0.50%以下、Cr:1.00%以下、Cu:0.50%以下、Ti:0.10%以下、Nb:0.10%以下、B:0.005 %以下のうち1種以上を含有し、残部Feおよび不可避的不純物からなる鋼を製管後、冷間加工を施したまま、もしくは冷間加工後、 焼なまし、 焼ならし、または焼入れ焼戻し処理する高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。   In response to such a request, for example, in Patent Document 1, C: 0.01 to 0.20%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.10 Or less: Mo: 0.50% or less, V: 0.10% or less, Ni: 0.50% or less, Cr: 1.00% or less, Cu: 0.50% or less, Ti: 0.10% or less, Nb: 0.10% or less, B : One or more of 0.005% or less, steel made of the balance Fe and inevitable impurities, after pipe making, cold work, or after cold work, annealing, normalizing, or A method of manufacturing a steel pipe for a high-strength, high-toughness air bag that has been quenched and tempered has been proposed.

また、特許文献2には、特許文献1に記載された組成と同様の組成の鋼を製管後、850 〜1000℃で焼ならしたのち、所定の寸法に冷間加工を施したまま、もしくは応力除去焼鈍、焼ならし、または焼入れ焼戻し処理を施す高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。   Patent Document 2 discloses that a steel having the same composition as that described in Patent Document 1 is piped and then normalized at 850 to 1000 ° C. and then cold-worked to a predetermined dimension, or A method of manufacturing a steel pipe for a high-strength, high-toughness air bag that is subjected to stress relief annealing, normalizing, or quenching and tempering has been proposed.

また、特許文献3には、特許文献1に記載された組成と同様の組成の鋼を製管後、850 〜1000℃での焼入れ、あるいはさらに450 ℃以上Ac1 変態点未満での焼戻しを行なったのち、所定の寸法に冷間加工を施したまま、もしくは冷間加工後焼きなまし処理を施す高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
特開平10−140283号公報 特開平10-140249 号公報 特開平10-140250 号公報
Further, in Patent Document 3, a steel having the same composition as that described in Patent Document 1 was piped and then quenched at 850 to 1000 ° C. or further tempered at 450 ° C. or more and less than the Ac1 transformation point. After that, a method of manufacturing a steel pipe for a high-strength, high-toughness air bag is proposed in which a cold working is performed to a predetermined dimension, or an annealing treatment is performed after the cold working.
Japanese Patent Laid-Open No. 10-140283 Japanese Patent Laid-Open No. 10-140249 Japanese Patent Laid-Open No. 10-140250

最近では、エアバッグシステムに対する小型化、軽量化が要求されるようになっており、エアバッグのボトル用鋼管として、さらなる高強度化が要求されている。このような要求を満足するには、冷間引抜や熱処理等を施したのち、最終的にエアバッグ用ボトルとして900MPa以上の引張強さが得られる鋼管が要望されている。   Recently, the airbag system has been required to be smaller and lighter, and as a steel pipe for an airbag bottle, higher strength has been demanded. In order to satisfy such requirements, there is a demand for a steel pipe that can obtain a tensile strength of 900 MPa or more as an air bag bottle after cold drawing or heat treatment.

特許文献1、特許文献2、特許文献3に記載された技術では590MPa級の高強度継目無鋼管の製造を目的としており、上記したエアバッグボトル用鋼管として望まれている、更なる高強度化要求には対応できないという問題がある。   The technologies described in Patent Document 1, Patent Document 2, and Patent Document 3 are aimed at producing 590 MPa class high-strength seamless steel pipes, which are desired as steel pipes for airbag bottles as described above. There is a problem that requests cannot be handled.

また、エアバッグボトルでは、液圧によるバースト試験が実施され、管円周方向の強度と延性が評価されている。このバースト試験では、試験時の割れが延性割れであることが要求されている。通常、試験時の割れが脆性割れでは不合格となる。バースト試験での脆性割れを防止するために、熱処理を施す必要があるが、強度確保の目的から、焼入れ・焼戻し処理を施すのが一般的である。   In addition, the airbag bottle is subjected to a burst test by hydraulic pressure, and the strength and ductility in the pipe circumferential direction are evaluated. In this burst test, the crack during the test is required to be a ductile crack. Usually, the crack at the time of the test is rejected if it is a brittle crack. In order to prevent brittle cracking in the burst test, it is necessary to perform heat treatment, but for the purpose of securing strength, it is common to perform quenching and tempering treatment.

しかしながら、焼入れ・焼戻し処理を施すことは、工程が複雑となり製造期間が長くなるとともに、インフレータ製造コストの高騰を招くという問題がある。このようなことから、熱処理を必要とすることなく、あるいは簡易な熱処理を施すだけで、要求特性を満足できるエアバッグボトル用鋼管が要望されている。   However, performing quenching and tempering has problems that the process becomes complicated and the manufacturing period becomes long, and the inflator manufacturing cost increases. For this reason, there is a demand for a steel pipe for an airbag bottle that can satisfy the required characteristics without requiring a heat treatment or simply by performing a simple heat treatment.

なお、不活性ガスを充填する方式のエアバッグでは、不活性ガスはインフレータ内に高圧で充填され、インフレータ内に常時高圧に保つ必要があるため、シームの信頼性の観点から、エアバッグ用鋼管としては、もっぱら継目無鋼管が使用される。しかし、継目無鋼管は高価であり、製造コストの更なる低減の要求に応えるべく溶接鋼管の適用が検討されている。   In an air bag filled with an inert gas, the inert gas is filled in the inflator at a high pressure, and it is necessary to keep the inflator constantly at a high pressure. Therefore, from the viewpoint of seam reliability, the steel pipe for the airbag is used. As such, seamless steel pipes are used exclusively. However, seamless steel pipes are expensive, and application of welded steel pipes is being studied to meet the demand for further reduction in manufacturing costs.

本発明は、上記した従来技術の問題を有利に解決し、熱処理を必要とすることなく、あるいは簡易な熱処理を施すだけで、エアバッグ用ボトルとして、900MPa以上の引張強さと、半割りにした鋼管に対する−60℃における落重試験で延性破壊するか又は破壊しない高靭性を有する、エアバッグボトル用高強度高靭性溶接鋼管の製造方法およびエアバッグボトル用高強度高靭性溶接鋼管を提案することを目的とする。   The present invention advantageously solves the above-described problems of the prior art, and halves the tensile strength of 900 MPa or more as an air bag bottle without requiring heat treatment or simply performing heat treatment. To propose a manufacturing method for high strength and high toughness welded steel pipes for airbag bottles and high strength and toughness welded steel pipes for airbag bottles that have high toughness that does not or does not break in a drop weight test at -60 ° C for steel pipes. With the goal.

本発明者らは、上記した課題を達成するために、溶接鋼管の強度、靭性におよぼす各種要因について鋭意研究した。その結果、C、Si,Mn、N、Ti、Nb、Bを適正範囲に調整したうえで、組織をベイナイトまたはベイニティックフェライト組織、またはベイナイト相またはベイニティックフェライト相を主相とし、20面積%以下のマルテンサイトを第二相として含む組織の溶接鋼管を素材鋼管とし、該素材鋼管に冷間引抜処理を施すことにより、焼入れ・焼戻し処理を施すことなく、エアバッグボトル用として最適な強度、靭性および加工性を有する溶接鋼管が得られることを見出した。   In order to achieve the above-described problems, the present inventors have intensively studied various factors affecting the strength and toughness of a welded steel pipe. As a result, after adjusting C, Si, Mn, N, Ti, Nb, and B to an appropriate range, the structure is bainite or bainitic ferrite structure, or the bainite phase or bainitic ferrite phase is the main phase, A welded steel pipe with a structure containing martensite of area% or less as the second phase is used as a raw steel pipe, and the steel pipe is subjected to a cold drawing process, so that it is optimal for an airbag bottle without quenching and tempering treatment. It has been found that a welded steel pipe having strength, toughness and workability can be obtained.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.02〜0.2%、Si:1%以下、Mn:1.5〜4%、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、Ti:0.1%以下、Nb:0.1%以下、B:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトまたはベイニティックフェライト組織、またはベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織を有する溶接鋼管を素材鋼管とし、該素材鋼管に冷間引抜処理を施して所定寸法の鋼管とすることを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
(2)(1)において、前記組成に加えてさらに、次A群またはB群
A群:質量%で、Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下のうちから選ばれた1種または2種以上
B群:質量%で、Ca:0.02%以下、REM:0.02%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群を含有することを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
(3)質量%で、C:0.02〜0.2%、Si:1%以下、Mn:1.5〜4%、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、Ti:0.1%以下、Nb:0.1%以下、B:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成を有する溶接鋼管に加熱処理または均熱処理を施したのち、圧延終了温度を700℃以上、累積縮径率を35%以下とする絞り圧延を施し、得られた鋼管を素材鋼管として、該素材鋼管に冷間引抜処理を施して所定寸法の鋼管とすることを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
(4)(3)において、前記絞り圧延が、800℃以上に再加熱する中間加熱処理を含み、該中間加熱処理以降の累積縮径率を35%以下とすることを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
(5)(3)または(4)において、前記組成に加えてさらに、次A群またはB群
A群:質量%で、Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下のうちから選ばれた1種または2種以上
B群:質量%で、Ca:0.02%以下、REM:0.02%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群を含有することを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
(6)冷間引抜処理まま、または冷間引抜処理とその後の焼ならし処理を施されて成る溶接鋼管であって、質量%で、C:0.02〜0.2%、Si:1%以下、Mn:1.5〜4%、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、Ti:0.1%以下、Nb:0.1%以下、B:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトまたはベイニティックフェライト組織、またはベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織を有し、引張強さ:900MPa以上の高強度と、半割りにした鋼管に対する−60℃における落重試験で延性破壊するかまたは破壊しない高靭性を有することを特徴とするエアバッグボトル用高強度高靭性溶接鋼管。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.02 to 0.2%, Si: 1% or less, Mn: 1.5 to 4%, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less Ti: 0.1% or less, Nb: 0.1% or less, B: 0.01% or less, the composition comprising the balance Fe and inevitable impurities, and the main phase of bainite or bainitic ferrite structure, or bainite or bainitic ferrite The material steel pipe is a welded steel pipe having a structure containing a martensite phase of 15% or less in area ratio as a second phase, and the raw steel pipe is subjected to cold drawing to obtain a steel pipe having a predetermined size. Manufacturing method of high strength and high toughness welded steel pipe for airbag bottles.
(2) In (1), in addition to the above composition, the following group A or group B
Group A: mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 1% or less selected from the group B: mass%, Ca : High-strength, high-toughness welded steel pipe for airbag bottles containing one or two groups selected from one or two selected from 0.02% or less and REM: 0.02% or less Manufacturing method.
(3) By mass%, C: 0.02 to 0.2%, Si: 1% or less, Mn: 1.5 to 4%, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less , Ti: 0.1% or less, Nb: 0.1% or less, B: 0.01% or less, and heat treatment or soaking treatment is performed on the welded steel pipe having the composition composed of the remaining Fe and inevitable impurities, and then the rolling end temperature is 700 The air is characterized in that it is drawn at a temperature of not less than ℃ and the cumulative diameter reduction ratio is 35% or less, and the obtained steel pipe is used as a raw steel pipe, and the raw steel pipe is subjected to cold drawing to obtain a steel pipe having a predetermined size. Manufacturing method of high strength and high toughness welded steel pipe for bag bottles.
(4) The airbag bottle according to (3), wherein the drawing rolling includes an intermediate heat treatment in which reheating is performed to 800 ° C. or more, and an accumulated diameter reduction ratio after the intermediate heat treatment is set to 35% or less. Of manufacturing high strength and high toughness welded steel pipes.
(5) In addition to the above composition in (3) or (4), the following group A or group B
Group A: mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 1% or less selected from the group B: mass%, Ca : High-strength, high-toughness welded steel pipe for airbag bottles containing one or two groups selected from one or two selected from 0.02% or less and REM: 0.02% or less Manufacturing method.
(6) A welded steel pipe that has been cold-drawn or is subjected to cold-drawing and subsequent normalization, in mass%, C: 0.02 to 0.2%, Si: 1% or less, Mn : 1.5-4%, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less, Ti: 0.1% or less, Nb: 0.1% or less, B: 0.01% or less, It has a composition comprising the remaining Fe and inevitable impurities, and a bainite or bainitic ferrite structure, or a structure containing bainite or bainitic ferrite as the main phase and a martensite phase with an area ratio of 15% or less as the second phase. Tensile strength: High strength of 900MPa or more, and high strength and high strength for airbag bottles, characterized by ductile fracture or no toughness in the drop test at -60 ° C for halved steel pipes Tough welded steel pipe.

本発明によれば、焼入れ焼戻し処理を施しことなく、エアバッグボトル用鋼管として適正な強度、靭性および加工性を有する溶接鋼管を、高寸法精度で安定して製造でき、産業上格段の効果を奏する。また、本発明になる溶接鋼管は、エアバッグボトルの用途以外にも、自動車用部材、建築用部材等の用途に好適な溶接鋼管である。なお、自動車用部材、建築用部材等の用途には冷間引抜処理を施すことなく、適用することが可能である。   According to the present invention, a welded steel pipe having appropriate strength, toughness, and workability as a steel pipe for an air bag bottle can be stably manufactured with high dimensional accuracy without performing quenching and tempering treatment, and the industrially remarkable effect can be obtained. Play. Moreover, the welded steel pipe which becomes this invention is a welded steel pipe suitable for uses, such as a member for motor vehicles, a member for construction, besides the use of an airbag bottle. In addition, it is possible to apply to uses, such as a member for motor vehicles, and a member for construction, without performing a cold drawing process.

本発明では、質量%で、C:0.02〜0.2%、Si:1%以下、Mn:1.5〜4%、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、Ti:0.1%以下、Nb:0.1%以下、B:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトまたはベイニティックフェライト組織、または、ベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織を有する溶接鋼管を素材鋼管とし、該素材鋼管に冷間引抜処理を施して所定寸法の鋼管とする。   In the present invention, by mass, C: 0.02 to 0.2%, Si: 1% or less, Mn: 1.5 to 4%, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% In the following, Ti: 0.1% or less, Nb: 0.1% or less, B: 0.01% or less, the composition comprising the balance Fe and unavoidable impurities, bainite or bainitic ferrite structure, or bainite or bainitic ferrite A welded steel pipe having a structure including a martensite phase with an area ratio of 15% or less as a second phase as a main phase is used as a raw steel pipe, and the raw steel pipe is subjected to cold drawing to obtain a steel pipe having a predetermined size.

まず、使用する素材鋼管の組成限定理由について 説明する。以下、組成における質量%は単に%と記す。   First, the reasons for limiting the composition of the steel pipe used will be explained. Hereinafter, the mass% in the composition is simply referred to as%.

C:0.02〜0.2%
Cは、鋼の強度増加に寄与する元素であり、所望の組織、強度を確保するために本発明では0.02%以上の含有を必要とする。一方、0.2%を超えて過剰に含有すると加工性、靭性が低下する。なお、0.02%未満の含有では、溶接時に結晶粒が粗大化する傾向を示し、強度不足、不均一変形の原因となる。このため、本発明では、Cは0.02〜0.2%の範囲に限定した。なお、好ましくは 0.02〜0.1%である。また、所望の組織を得るためにはC含有量とMn含有量とバランスさせることが必要となる。
C: 0.02-0.2%
C is an element that contributes to increasing the strength of steel, and in the present invention, it is necessary to contain 0.02% or more in order to ensure a desired structure and strength. On the other hand, if over 0.2%, the workability and toughness are lowered. If the content is less than 0.02%, the crystal grains tend to become coarse during welding, causing insufficient strength and uneven deformation. For this reason, in this invention, C was limited to 0.02 to 0.2% of range. In addition, Preferably it is 0.02 to 0.1%. In order to obtain a desired structure, it is necessary to balance the C content and the Mn content.

Si:1%以下
Siは、鋼の強度を増加させる元素であり、このような効果を得るには0.01%以上含有することが好ましいが、過剰な含有は電縫溶接性を著しく低下させる。このため、本発明では1%以下に限定した。なお、好ましくは0.15〜0.5%である。
Si: 1% or less
Si is an element that increases the strength of steel, and it is preferable to contain 0.01% or more in order to obtain such an effect. However, excessive inclusion significantly reduces ERW weldability. For this reason, in this invention, it limited to 1% or less. In addition, Preferably it is 0.15-0.5%.

Mn:1.5〜4%
Mnは、強度を向上させる元素であり、所望の強度を確保するために、本発明では1.5%以上の含有を必要とする。一方、4%を超えて含有すると、中心偏析起因の欠陥が発生する危険性が増大するとともに、溶接時に割れが発生したりして電縫溶接性が著しく低下する。なお、本発明では、靭性の改善を目的として、最適な組織を得るために、MnはC量とのバランスで適正量含有させるが、Mnが1.5%未満ではいかなるC量と組み合わせても目標強度と目標とする靭性を両立させて確保することができなくなる。また、Mnが1.5%未満ではフェライト+パーライト組織となり目標の組織を得ることができず、目標強度を確保できない。このようなことから、Mnは1.5〜4%の範囲に限定した。なお、好ましくは1.5〜3.0%である。
Mn: 1.5-4%
Mn is an element that improves the strength. In order to secure a desired strength, Mn is required to be contained in an amount of 1.5% or more in the present invention. On the other hand, if the content exceeds 4%, the risk of occurrence of defects due to center segregation increases, and cracks occur during welding, and the electro-weldability is significantly reduced. In the present invention, in order to improve the toughness, in order to obtain an optimum structure, Mn is contained in an appropriate amount in balance with the C amount. However, if Mn is less than 1.5%, the target strength can be combined with any C amount. And the target toughness cannot be secured at the same time. On the other hand, if Mn is less than 1.5%, a ferrite + pearlite structure cannot be obtained and the target strength cannot be secured. For these reasons, Mn was limited to a range of 1.5 to 4%. In addition, Preferably it is 1.5 to 3.0%.

P:0.1%以下
Pは、強度の増加に有用な元素であり、0.01%以上の含有で効果が顕著となるが、0.1%を超えて含有すると溶接性が顕著に劣化する。このため、Pは0.1%以下に限定した。なお、Pによる強化をそれほど必要としない場合や溶接性が問題となる場合には0.05%以下とすることが好ましい。
P: 0.1% or less P is an element useful for increasing the strength, and the effect becomes remarkable when the content is 0.01% or more. However, if the content exceeds 0.1%, the weldability is remarkably deteriorated. For this reason, P was limited to 0.1% or less. In addition, when the reinforcement | strengthening by P is not so required, or when weldability becomes a problem, it is preferable to set it as 0.05% or less.

S:0.01%以下
Sは、鋼中では非金属介在物として存在するが、曲げ加工、拡管加工などのような応力が負荷された場合には、これら非金属介在物を起点として亀裂が発生し鋼管が破断する場合がある。このため、Sはできるだけ低減することが好ましい。0.01%以下に低減すれば上記した悪影響は少なくなるため、本発明ではSは0.01%以下に限定した。なお、好ましくは0.005%以下、さらに好ましくは0.0010%以下である。
S: 0.01% or less S exists as non-metallic inclusions in steel, but when stress such as bending or pipe expansion is applied, cracks are generated starting from these non-metallic inclusions. The steel pipe may break. For this reason, it is preferable to reduce S as much as possible. If the content is reduced to 0.01% or less, the above-described adverse effects are reduced. Therefore, in the present invention, S is limited to 0.01% or less. In addition, Preferably it is 0.005% or less, More preferably, it is 0.0010% or less.

Al:0.1%以下
Alは、脱酸剤として作用するとともに、結晶粒の粗大化を抑制して延性、靭性を向上させる作用を有する元素であり、0.005%以上含有することが好ましい。しかし、0.1%を超えて含有すると、酸化物系介在物量が増加し清浄度が低下する。このため、Alは0.1%以下に限定した。なお、好ましくは0.05%以下である。
Al: 0.1% or less
Al is an element that acts as a deoxidizer and has the effect of improving the ductility and toughness by suppressing the coarsening of crystal grains, and is preferably contained in an amount of 0.005% or more. However, if it exceeds 0.1%, the amount of oxide inclusions increases and the cleanliness decreases. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.05% or less.

N:0.01%以下
Nは、Alと結合して結晶粒を微細化する元素であり、このためには、0.001%以上含有することが望ましいが、0.01%を超えて含有すると、延性が低下する。このため、Nは0.01%以下に限定した。
N: 0.01% or less N is an element that combines with Al to refine crystal grains. For this purpose, N is preferably contained in an amount of 0.001% or more, but if contained over 0.01%, ductility is reduced. . For this reason, N was limited to 0.01% or less.

Ti:0.1%以下
Tiは、Cと結合してTiCとして鋼中に析出して、鋼の強化、さらには溶接熱影響部の軟化を抑制する作用を有する。このような効果は0.005%以上の含有で顕著となるが、0.1%を超えて含有すると電縫溶接性が低下し、延性が低下する。このため、Tiは0.1%以下に限定した。
Ti: 0.1% or less
Ti combines with C and precipitates in the steel as TiC, and has the effect of suppressing the strengthening of the steel and further the softening of the weld heat affected zone. Such an effect becomes remarkable when the content is 0.005% or more. However, when the content exceeds 0.1%, the electric resistance weldability is lowered and the ductility is lowered. For this reason, Ti was limited to 0.1% or less.

Nb:0.1%以下
Nbは、Tiと同様に、Cと結合しNbCとして鋼中に析出して、鋼の強化、さらには溶接熱影響部の軟化を抑制する作用を有する。このような効果は0.005%以上の含有で顕著となるが、0.1%を超えて含有すると電縫溶接性が低下し、延性が低下する。このため、Nbは0.1%以下に限定した。
Nb: 0.1% or less
Nb, like Ti, binds to C and precipitates as NbC in the steel, and has the effect of strengthening the steel and further suppressing the softening of the weld heat affected zone. Such an effect becomes remarkable when the content is 0.005% or more. However, when the content exceeds 0.1%, the electric resistance weldability is lowered and the ductility is lowered. For this reason, Nb was limited to 0.1% or less.

B:0.01%以下
Bは、連続冷却において、フェライト変態を抑制し、長時間側にシフトさせベイナイト組織を得やすくする作用を有し、本発明では所望の組織を確保するために重要な元素の一つである。Bによりフェライト変態が抑制されることにより、靭性に悪影響を及ぼすマルテンサイト相の分率を低く抑えることができる。このような効果は0.0005%以上の含有で顕著に認められるが、0.01%を超えて含有しても上記した効果が飽和するとともに、靭性が劣化する。このため、Bは0.01%以下に限定した。なお、好ましくは0.0005〜0.0030%である。
B: 0.01% or less B has an action of suppressing ferrite transformation in continuous cooling and shifting to a long time side to easily obtain a bainite structure. In the present invention, B is an important element for securing a desired structure. One. By suppressing the ferrite transformation by B, the fraction of martensite phase that adversely affects toughness can be kept low. Such an effect is remarkably recognized when the content is 0.0005% or more, but even if the content exceeds 0.01%, the above-described effect is saturated and the toughness deteriorates. For this reason, B was limited to 0.01% or less. In addition, Preferably it is 0.0005 to 0.0030%.

上記した基本成分に加えて、さらに必要に応じ、次A群またはB群のうちから選ばれた1群または2群を含有することができる。   In addition to the basic components described above, one or two groups selected from the following group A or group B can be further contained as required.

A群:Cu:1%以下Ni:1%以下、Cr:1%以下、Mo:1%以下のうちから選ばれた1種または2種以上
A群のCu、Ni、Cr、Moは、いずれも延性、靭性を損なうことなく、強度を増加させることができる有用な元素であり、本発明では必要に応じ選択して含有できる。このような効果はCu、Ni、Cr、Moでそれぞれ0.01%以上の含有で顕著に認められる。一方、Cu、Ni、Cr、Moがそれぞれ1%を超えて含有すると、延性、溶接性が劣化するとともに、熱間加工性や冷間加工性が低下する。また、これら元素は高価であり、多量の含有は経済的に不利となる。このため、A群では、Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下にそれぞれ限定することが好ましい。
Group A: Cu: 1% or less Ni: 1% or less, Cr: 1% or less, Mo: 1% or less selected from 1% or less A group of Cu, Ni, Cr, Mo is any Is a useful element that can increase the strength without impairing the ductility and toughness, and can be selected and contained as necessary in the present invention. Such an effect is remarkably recognized when Cu, Ni, Cr and Mo are contained in amounts of 0.01% or more. On the other hand, when Cu, Ni, Cr, and Mo each contain more than 1%, ductility and weldability deteriorate, and hot workability and cold workability deteriorate. In addition, these elements are expensive, and a large amount is economically disadvantageous. For this reason, in group A, it is preferable to limit to Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, and Mo: 1% or less.

B群:Ca:0.02%以下、REM:0.02%以下のうちから選ばれた1種または2種
B群のCa、REMは、いずれも非金属介在物の形態を球状とし、延性および加工性の向上に有効に作用する元素であり、本発明では必要に応じ選択して含有できる。このような効果は、Ca:0.001%以上、REM:0.001%以上の含有で認められる。一方、Ca、REMとも0.02%を超えて含有すると、介在物量が多くなりすぎて清浄度が低下する。このため、B群では、Ca:0.02%以下、REM:0.02%以下に限定することが好ましい。なお、CaとREMを併用する場合には、合計で0.03%以下とすることが好ましい。
Group B: 1 or 2 types selected from Ca: 0.02% or less, REM: 0.02% or less Group B Ca and REM are both spherical in shape of non-metallic inclusions, and have ductility and workability. It is an element that acts effectively for improvement, and can be selected and contained as necessary in the present invention. Such an effect is recognized when Ca: 0.001% or more and REM: 0.001% or more. On the other hand, if both Ca and REM are contained in excess of 0.02%, the amount of inclusions becomes excessive and the cleanliness is lowered. For this reason, in Group B, it is preferable to limit to Ca: 0.02% or less and REM: 0.02% or less. When Ca and REM are used in combination, the total content is preferably 0.03% or less.

残部Feおよび不可避的不純物
上記した成分以外の残部は、Feおよび不可避的不純物である。
Remaining Fe and Inevitable Impurities The remainder other than the above components is Fe and inevitable impurities.

つぎに、素材鋼管の組織限定について説明する。   Next, the structure limitation of the material steel pipe will be described.

本発明で使用する素材鋼管の組織は、所定の強度、靭性を確保するために、ベイナイトまたはベイニティックフェライト組織とすることが好ましい。また、素材鋼管の組織は、ベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織としてもよい。なお、本発明でいう主相とは、面積率で50%以上を占める相をいうものとする。主相をベイナイトまたはベイニティックフェライトとして、より靭性を向上させるために、第二相として、マルテンサイト相を面積率で15%以下に制限することが好ましい。これにより所望の靭性を確保できる。なお、第二相は、マルテンサイト相以外に、フェライト相、パーライト相、セメンタイト相、炭化物を含んでも良い。   The structure of the material steel pipe used in the present invention is preferably a bainite or bainitic ferrite structure in order to ensure predetermined strength and toughness. The structure of the raw steel pipe may be a structure containing bainite or bainitic ferrite as the main phase and a martensite phase with an area ratio of 15% or less as the second phase. In addition, the main phase as used in the field of this invention shall mean the phase which occupies 50% or more by an area ratio. In order to further improve toughness by using bainite or bainitic ferrite as the main phase, it is preferable to limit the martensite phase to 15% or less in terms of area ratio as the second phase. Thereby, desired toughness can be ensured. The second phase may contain a ferrite phase, a pearlite phase, a cementite phase, and a carbide in addition to the martensite phase.

つぎに、好ましい素材鋼管の製造方法について説明する。   Next, a preferred method for manufacturing a steel pipe will be described.

上記した組成の溶鋼を、転炉、電気炉等の公知の溶製方法により溶製し、連続鋳造法、造塊法等の公知の鋳造方法によりスラブ等の圧延素材とすることが好ましい。ついで、スラブ等の圧延素材を、熱間圧延により熱延鋼板(帯鋼)とするか、あるいはさらに熱延鋼板(鋼帯)に冷間圧延と焼鈍処理とを施し冷延鋼板(鋼帯)とし、鋼管素材とすることが好ましい。ついで、これら鋼管素材(帯鋼)を用いて溶接鋼管とする。溶接鋼管の製造方法は、例えば、冷間あるいは温間または熱間で、ロール成形あるいは曲げ加工によりオープン管とし、オープン管の両エッジ部を誘導加熱を利用し融点以上に加熱してスクイズロールで衝合溶接する電気抵抗溶接法、あるいはオープン管の両エッジ部を誘導加熱を利用し融点未満に加熱してスクイズロールで衝合圧接する固相圧接法、あるいは鍛接法等とすることが好ましいが、本発明ではこれらの方法に限定されるものではない。   It is preferable that the molten steel having the above composition is melted by a known melting method such as a converter or an electric furnace and used as a rolling material such as a slab by a known casting method such as a continuous casting method or an ingot-making method. Next, the rolled material such as slab is made into a hot rolled steel plate (strip steel) by hot rolling, or cold rolled and annealed on the hot rolled steel plate (steel strip) to obtain a cold rolled steel plate (steel strip). It is preferable to use a steel pipe material. Then, these steel pipe materials (strip steel) are used to make a welded steel pipe. The method for manufacturing a welded steel pipe is, for example, an open pipe formed by roll forming or bending, cold, warm or hot, and both edges of the open pipe are heated above the melting point using induction heating and squeezed with a squeeze roll. It is preferable to use an electric resistance welding method in which contact welding is performed, or a solid-phase welding method in which both edges of an open pipe are heated to below the melting point using induction heating and a pressure welding is performed with a squeeze roll, or a forging method. However, the present invention is not limited to these methods.

本発明では、上記した組成を有する溶接鋼管を素材として、素材に加熱処理または均熱処理を施したのち、圧延終了温度を700℃以上、累積縮径率を35%以下とする絞り圧延を施し、素材鋼管とすることが好ましい。これにより、ベイナイトまたはベイニティックフェライト組織、または、ベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織を有する素材鋼管が容易に得られる。なお、本発明では素材鋼管の製造方法はこれに限定されるものではない。   In the present invention, the welded steel pipe having the above composition is used as a raw material, and after subjecting the raw material to heat treatment or soaking, the rolling finish temperature is 700 ° C. or more, and the drawing reduction is 35% or less. A material steel pipe is preferable. Thereby, a raw steel pipe having a bainite or bainitic ferrite structure, or a structure containing bainite or bainitic ferrite as a main phase and a martensite phase with an area ratio of 15% or less as a second phase can be easily obtained. . In addition, in this invention, the manufacturing method of a raw material steel pipe is not limited to this.

加熱処理の条件は、とくに限定されないが、圧延終了温度を700℃以上とすることができればよく、700〜1000℃の範囲で行うことが好ましい。なお、溶接鋼管の製造が、温間または熱間で行われ、溶接鋼管が絞り圧延可能な温度を保有している場合には、管温度の均熱化のために行う均熱処理で十分である。素材とする溶接鋼管の保有する温度が低すぎる場合には上記した加熱処理を行うことはいうまでもない。   The conditions for the heat treatment are not particularly limited as long as the rolling end temperature can be set to 700 ° C. or higher, and it is preferably performed in the range of 700 to 1000 ° C. If the welded steel pipe is manufactured warmly or hotly and the welded steel pipe has a temperature at which it can be drawn and rolled, a soaking treatment is sufficient for soaking the pipe temperature. . Needless to say, when the temperature of the welded steel pipe used as a raw material is too low, the above heat treatment is performed.

絞り圧延の圧延終了温度は700℃以上とすることが好ましい。圧延終了温度が700℃未満では、加工により導入されるフェライト変態核が増加してフェライト変態が促進され、フェライト分率が増大する。このため所望の強度が得られないうえ、結果的にマルテンサイト分率が増加して、靭性が劣化する。なお、圧延終了温度は、900℃以下とすることが生産性の確保と表面肌の劣化防止の観点から好ましい。また、絞り圧延の累積縮径率は35%以下とすることが好ましい。累積縮径率が35%を超えて大きくなると、フェライト変態核が増加し所望の組織を確保することができず、所望の靭性を確保することができない。   The rolling end temperature of the drawing rolling is preferably 700 ° C. or higher. When the rolling end temperature is less than 700 ° C., ferrite transformation nuclei introduced by processing increase, ferrite transformation is promoted, and the ferrite fraction increases. For this reason, desired strength cannot be obtained, and as a result, the martensite fraction increases and the toughness deteriorates. In addition, it is preferable that rolling end temperature shall be 900 degrees C or less from a viewpoint of ensuring productivity and prevention of deterioration of surface skin. Moreover, it is preferable that the cumulative diameter reduction ratio of drawing rolling is 35% or less. If the cumulative diameter reduction exceeds 35%, the ferrite transformation nuclei increase and the desired structure cannot be secured, and the desired toughness cannot be secured.

また、本発明では、絞り圧延の途中で一旦、圧延を中断し、800℃以上の温度に再加熱する中間加熱処理を施しても良い。この場合、中間加熱処理以前の加工歪が開放されるために、中間加熱処理以降の累積縮径率を35%以下にすることが好ましい。   Further, in the present invention, intermediate heat treatment may be performed in which rolling is temporarily interrupted during the drawing and reheated to a temperature of 800 ° C. or higher. In this case, since the processing strain before the intermediate heat treatment is released, the cumulative diameter reduction after the intermediate heat treatment is preferably 35% or less.

なお、素材鋼管の製造方法は上記した方法に限定されないことはいうまでもない。   In addition, it cannot be overemphasized that the manufacturing method of a raw material steel pipe is not limited to an above-described method.

得られた素材鋼管は、ついで冷間引抜処理を施され、所定寸法の鋼管(製品)とされる。   The obtained material steel pipe is then subjected to a cold drawing process to obtain a steel pipe (product) having a predetermined size.

冷間引抜き処理は、特別な装置を必要とせず、通常公知の冷間引抜装置を利用して行なうことができる。冷間引抜処理条件は、所定寸法の鋼管とすることができればとくに限定する必要はないが、縮径率を5〜25%、減肉率を10〜30%と適正範囲内に調整することが寸法精度確保の観点から好ましい。   The cold drawing process does not require a special device and can be performed using a generally known cold drawing device. The cold drawing conditions are not particularly limited as long as the steel pipe can have a predetermined size, but the diameter reduction rate can be adjusted to 5 to 25% and the thickness reduction rate to 10 to 30% within the proper range. It is preferable from the viewpoint of ensuring dimensional accuracy.

本発明では、上記した冷間引抜処理のままでも、所望のエアバッグ用鋼管として要求される強度、靭性等の特性を十分に満足させることができるが、冷間引抜処理後に、焼ならし処理を施すことが好ましい。これによりとくに、優れた管周方向靭性を安定して確保することができ。   In the present invention, the properties such as strength and toughness required as a desired steel pipe for an airbag can be sufficiently satisfied even with the cold drawing treatment described above, but the normalizing treatment is performed after the cold drawing treatment. It is preferable to apply. As a result, particularly excellent pipe circumferential direction toughness can be secured stably.

焼ならし処理は、850〜1000℃の範囲内の温度に加熱し空冷する処理とすることが好ましい。焼ならし温度が850℃未満ではオーステナイト粒の十分な均一化ができず、一方、焼ならし温度が1000℃を超えて高くなると、結晶粒が粗大化し所望の靭性が確保できにくくなる。このため、焼ならし温度は850〜1000℃に限定することが好ましい。なお、好ましくは850〜950℃である。   The normalizing process is preferably a process of heating to a temperature in the range of 850 to 1000 ° C. and air cooling. If the normalizing temperature is less than 850 ° C., the austenite grains cannot be sufficiently uniformed. On the other hand, if the normalizing temperature is higher than 1000 ° C., the crystal grains become coarse and it becomes difficult to ensure the desired toughness. For this reason, it is preferable to limit the normalizing temperature to 850-1000 degreeC. In addition, Preferably it is 850-950 degreeC.

冷間引抜処理のまま、あるいはさらに焼ならし処理を施された溶接鋼管は、その後、好ましくは、酸洗によるスケール除去、また必要に応じ曲がりの矯正を施され、製品管(鋼管)とされる。   The welded steel pipe that has been cold drawn or further subjected to normalization is preferably subjected to descaling by pickling and bending correction as necessary to obtain a product pipe (steel pipe). The

上記した製造方法により製造された溶接鋼管は、引張強さ:900MPa以上の高強度と、半割りにした鋼管に対する−60℃における落重試験で延性破壊するかもしくは破壊しない高靭性を有し、加工性、溶接性に優れた鋼管となり、エアバッグボトル向けとして好適な鋼管となる。   The welded steel pipe manufactured by the above-described manufacturing method has a high tensile strength: 900 MPa or more and a high toughness that does not break or does not break in a drop weight test at -60 ° C. against a halved steel pipe. It becomes a steel pipe excellent in workability and weldability, and is a steel pipe suitable for an airbag bottle.

なお、本発明では、焼ならし処理後の冷却を空冷としても十分に目標強度を確保できるため、特別な設備を必要とせずに、優れた特性の鋼管を安価なコストで安定して製造できるという利点がある。   In the present invention, since the target strength can be sufficiently secured even if the cooling after the normalizing treatment is air cooling, a steel pipe having excellent characteristics can be stably manufactured at a low cost without requiring special equipment. There is an advantage.

表1に示す組成の鋼管素材(板厚:2.6mmの熱延鋼板または板厚:2.6mmの焼鈍済み冷延鋼板)をロール成形しオープン管としたのち、オープン管両端部を誘導加熱により融点以上に加熱してスクイズロールで衝合接合して溶接鋼管(外径:146mmφ×肉厚:2.6 mm)とした。これら溶接鋼管に、さらに表2に示す条件で絞り圧延を施し素材鋼管(外径:70.0mmφ×肉厚:2.6 mm)とした。得られた素材鋼管から試験片を採取し、光学顕微鏡および走査型電子顕微鏡を用いて組織を観察し撮像して、画像解析装置を用いて、主相、第二相の種類、分率を求めた。なお、各試験片で10視野以上観察し各組織分率の平均値をもとめ、各素材鋼管の組織分率とした。   The steel pipe material (thickness: 2.6 mm hot rolled steel sheet or 2.6 mm thick annealed cold rolled steel sheet) having the composition shown in Table 1 is roll formed into an open pipe, and both ends of the open pipe are melted by induction heating. It heated above and collided with the squeeze roll, and it was set as the welded steel pipe (outer diameter: 146mmphi x wall thickness: 2.6mm). These welded steel pipes were further subjected to drawing rolling under the conditions shown in Table 2 to obtain raw steel pipes (outer diameter: 70.0 mmφ × wall thickness: 2.6 mm). Test specimens are collected from the obtained steel tube, the structure is observed and imaged using an optical microscope and a scanning electron microscope, and the types and fractions of the main phase and the second phase are obtained using an image analyzer. It was. In addition, 10 visual fields or more were observed with each test piece, the average value of each structure fraction was obtained, and it was set as the structure fraction of each raw material steel pipe.

これら素材鋼管に縮径率:4%、減肉率:19%、または縮径率:9%、減肉率:15%の冷間引抜処理を施して、外径67.0mmφ×肉厚2.1 mm、または外径63.5mmφ×肉厚2.2 mmの鋼管とした。一部の鋼管については、表2に示すように冷間引抜処理後に900℃×15min空冷の焼ならし処理を施した。ついで、これら鋼管を矯正し曲がりを除去して、製品管とした。   These steel pipes were cold-drawn with a reduction ratio of 4%, a reduction ratio of 19%, or a reduction ratio of 9% and a reduction ratio of 15%, and an outer diameter of 67.0 mmφ x wall thickness of 2.1 mm Or a steel pipe having an outer diameter of 63.5 mmφ × thickness of 2.2 mm. As shown in Table 2, some steel pipes were subjected to a normalizing treatment at 900 ° C. for 15 minutes after cold drawing. Subsequently, these steel pipes were straightened to remove the bends, thereby obtaining product pipes.

得られた溶接鋼管 (製品管)からJIS Z 2201の規定に準拠して引張試験片(JIS 12A試験片)を採取して、引張試験を実施し、長さ方向の引張特性を調査した。引張試験は、JIS Z 2241の規定に準拠して行った。さらに、水圧バースト試験を実施し、 そのバースト圧から周方向の引張強さTSを換算した。   Tensile test pieces (JIS 12A test pieces) were collected from the obtained welded steel pipes (product pipes) in accordance with the provisions of JIS Z 2201, were subjected to tensile tests, and the tensile properties in the length direction were investigated. The tensile test was performed in accordance with the provisions of JIS Z 2241. Furthermore, a water pressure burst test was conducted, and the tensile strength TS in the circumferential direction was converted from the burst pressure.

また、得られた溶接鋼管(製品管)について、−60℃における落重試験を実施し、周方向の靭性を調査した。−60℃における落重試験は、溶接鋼管(製品管)を半円状半割りにして、上に凸となるように配置し、その上に重錘(5kg)を高さ2m から落下させる試験を−60℃で実施した。なお、試験する溶接鋼管(半円状半割り)の内表面側の上部で管長方向に深さ0.5mmVノッチを導入した。Vノッチは45°、先端半径R0.25mmとした。試験後、破面を観察し脆性破壊の有無を調査した。試験は繰り返し3回とし、3回の試験で全く脆性破壊が生じない場合を○とし、全てが脆性破壊が生じた場合を×、それ以外を△とした。   Moreover, about the obtained welded steel pipe (product pipe), the drop weight test in -60 degreeC was implemented, and the toughness of the circumferential direction was investigated. The drop weight test at -60 ° C is a test in which a welded steel pipe (product pipe) is divided into half-circles and arranged so as to be convex upward, and a weight (5 kg) is dropped on it from a height of 2 m. Was carried out at −60 ° C. A 0.5 mm V notch was introduced in the pipe length direction at the upper part on the inner surface side of the welded steel pipe to be tested (semicircular half). The V notch was 45 ° and the tip radius was R0.25 mm. After the test, the fracture surface was observed to investigate the presence of brittle fracture. The test was repeated three times, and the case where no brittle fracture occurred in the three tests was marked with ◯, the case where all brittle fracture occurred was marked with ×, and the others were marked with Δ.

また、得られた溶接鋼管(製品管)について、へら絞り加工により、管端を外径45mmに縮径し、加工部の割れを観察し、加工性を評価した。割れ発生のない場合を○、割れが発生した場合を×とした。   Further, the obtained welded steel pipe (product pipe) was subjected to spatula drawing to reduce the pipe end to an outer diameter of 45 mm, and a crack in the processed part was observed to evaluate workability. The case where there was no cracking was marked with ◯, and the case where cracking occurred was marked with ×.

また、へら絞り加工により、管端を外径45mmに縮径したのち、管端に封板を溶接し、溶接後割れ発生の有無を目視および顕微鏡により調査し、溶接性を評価した。溶接後割れ発生のない場合を○、割れが発生した場合を×とした。   Further, after reducing the diameter of the tube end to 45 mm by spatula drawing, a sealing plate was welded to the tube end, and the presence or absence of cracking after welding was examined visually and under a microscope to evaluate the weldability. The case where no crack was generated after welding was marked with ◯, and the case where crack was generated was marked with x.

また、得られた製品管から試験片を採取し、光学顕微鏡および走査型電子顕微鏡を用いて組織を観察し撮像して、画像解析装置を用いて、主相、第二相の種類、分率を求めた。なお、各試験片で10視野以上観察し各視野の平均値をもとめ、各製品管の組織分率とした。   In addition, a test piece is collected from the obtained product tube, the structure is observed and imaged using an optical microscope and a scanning electron microscope, and the type and fraction of the main phase and second phase are measured using an image analyzer. Asked. In addition, 10 or more visual fields were observed with each test piece, and the average value of each visual field was obtained to obtain the tissue fraction of each product tube.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2005060796
Figure 2005060796

Figure 2005060796
Figure 2005060796

Figure 2005060796
Figure 2005060796

Figure 2005060796
Figure 2005060796

本発明例はいずれも900MPa以上の引張強さと、高靭性とを有し、加工性に優れ、さらに、溶接性に優れた溶接鋼管となっている。一方、本発明の範囲を外れる比較例は、引張強さが900MPa未満であるか、靭性が低下しているか、あるいは加工性、溶接性が低下しており、エアバッグボトル用鋼管として、十分な特性が得られていない。   Each of the examples of the present invention is a welded steel pipe having a tensile strength of 900 MPa or more and high toughness, excellent workability, and excellent weldability. On the other hand, the comparative example out of the scope of the present invention has a tensile strength of less than 900 MPa, has reduced toughness, or has deteriorated workability and weldability, and is sufficient as a steel pipe for an air bag bottle. Characteristics are not obtained.

Claims (6)

質量%で、
C:0.02〜0.2%、 Si:1%以下、
Mn:1.5〜4%、 P:0.1%以下、
S:0.01%以下、 Al:0.1%以下、
N:0.01%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトまたはベイニティックフェライト組織、またはベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織とを有する溶接鋼管を素材鋼管とし、該素材鋼管に冷間引抜処理を施して所定寸法の鋼管とすることを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
% By mass
C: 0.02 to 0.2%, Si: 1% or less,
Mn: 1.5-4%, P: 0.1% or less,
S: 0.01% or less, Al: 0.1% or less,
N: 0.01% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 0.01% or less, the composition comprising the balance Fe and unavoidable impurities, bainite or bainitic ferrite structure, or bainite or bainitic ferrite as the main phase, 15% in area ratio High strength for airbag bottles, characterized in that a welded steel pipe having a structure containing the following martensite phase as a second phase is a raw steel pipe, and the raw steel pipe is subjected to cold drawing to obtain a steel pipe of a predetermined size. Manufacturing method of high toughness welded steel pipe.
前記組成に加えてさらに、下記A群またはB群のうちから選ばれた1群または2群を含有することを特徴とする請求項1に記載のエアバッグボトル用高強度高靭性溶接鋼管の製造方法。

A群:質量%で、Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下のうちから選ばれた1種または2種以上
B群:質量%で、Ca:0.02%以下、REM:0.02%以下のうちから選ばれた1種または2種
In addition to the said composition, 1 group or 2 groups chosen from following A group or B group is contained, The manufacture of the high strength high toughness welded steel pipe for airbag bottles of Claim 1 characterized by the above-mentioned. Method.
Record
Group A: mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 1% or less selected from the group B: mass%, Ca : One or two selected from 0.02% or less, REM: 0.02% or less
質量%で、
C:0.02〜0.2%、 Si:1%以下、
Mn:1.5〜4%、 P:0.1%以下、
S:0.01%以下、 Al:0.1%以下、
N:0.01%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する溶接鋼管に加熱処理または均熱処理を施したのち、圧延終了温度を700℃以上、累積縮径率を35%以下とする絞り圧延を施し、得られた鋼管を素材鋼管として、該素材鋼管に冷間引抜処理を施して所定寸法の鋼管とすることを特徴とするエアバッグボトル用高強度高靭性溶接鋼管の製造方法。
% By mass
C: 0.02 to 0.2%, Si: 1% or less,
Mn: 1.5-4%, P: 0.1% or less,
S: 0.01% or less, Al: 0.1% or less,
N: 0.01% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 0.01% or less, heat treatment or soaking treatment is applied to a welded steel pipe having a composition composed of the balance Fe and inevitable impurities, and then the rolling end temperature is 700 ° C. or more and the cumulative diameter reduction rate High strength and toughness for airbag bottles, characterized by subjecting the obtained steel pipe to a raw steel pipe and subjecting the raw steel pipe to a cold drawing treatment to obtain a steel pipe of a predetermined size. Manufacturing method of welded steel pipe.
前記絞り圧延が、800℃以上に再加熱する中間加熱処理を含み、該中間加熱処理以降の累積縮径率を35%以下とすることを特徴とする請求項3に記載のエアバッグボトル用高強度高靭性溶接鋼管の製造方法。 4. The air bag bottle height according to claim 3, wherein the drawing rolling includes an intermediate heat treatment for reheating to 800 ° C. or more, and a cumulative diameter reduction ratio after the intermediate heat treatment is set to 35% or less. 5. Manufacturing method of high strength and toughness welded steel pipe. 前記組成に加えてさらに、下記A群またはB群のうちから選ばれた1群または2群を含有することを特徴とする請求項3または4に記載のエアバッグボトル用高強度高靭性溶接鋼管の製造方法。

A群:質量%で、Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下のうちから選ばれた1種または2種以上
B群:質量%で、Ca:0.02%以下、REM:0.02%以下のうちから選ばれた1種または2種
The high strength high toughness welded steel pipe for airbag bottles according to claim 3 or 4, further comprising one group or two groups selected from the following group A or group B in addition to the composition: Manufacturing method.
Record
Group A: mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 1% or less selected from the group B: mass%, Ca : One or two selected from 0.02% or less, REM: 0.02% or less
冷間引抜処理まま、または冷間引抜処理とその後の焼ならし処理を施されて成る溶接鋼管であって、質量%で、
C:0.02〜0.2%、 Si:1%以下、
Mn:1.5〜4%、 P:0.1%以下、
S:0.01%以下、 Al:0.1%以下、
N:0.01%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトまたはベイニティックフェライト組織、またはベイナイトまたはベイニティックフェライトを主相とし、面積率で15%以下のマルテンサイト相を第二相として含む組織を有し、引張強さ:900MPa以上の高強度と、半割りにした鋼管に対する−60℃における落重試験で延性破壊するかまたは破壊しない高靭性を有することを特徴とするエアバッグボトル用高強度高靭性溶接鋼管。
A welded steel pipe that has been subjected to cold drawing treatment or cold drawing treatment and subsequent normalization treatment in mass%.
C: 0.02 to 0.2%, Si: 1% or less,
Mn: 1.5-4%, P: 0.1% or less,
S: 0.01% or less, Al: 0.1% or less,
N: 0.01% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 0.01% or less, the composition comprising the balance Fe and unavoidable impurities, bainite or bainitic ferrite structure, or bainite or bainitic ferrite as the main phase, 15% in area ratio It has a structure containing the following martensite phase as the second phase, high tensile strength: 900 MPa or more, and high toughness that does not break or does not break in a drop weight test at -60 ° C on a halved steel pipe A high-strength, high-toughness welded steel pipe for airbag bottles.
JP2003294459A 2003-08-18 2003-08-18 High strength and high toughness welded steel pipe for airbag bottle and method for producing the same Expired - Fee Related JP4079054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294459A JP4079054B2 (en) 2003-08-18 2003-08-18 High strength and high toughness welded steel pipe for airbag bottle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294459A JP4079054B2 (en) 2003-08-18 2003-08-18 High strength and high toughness welded steel pipe for airbag bottle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005060796A true JP2005060796A (en) 2005-03-10
JP4079054B2 JP4079054B2 (en) 2008-04-23

Family

ID=34371020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294459A Expired - Fee Related JP4079054B2 (en) 2003-08-18 2003-08-18 High strength and high toughness welded steel pipe for airbag bottle and method for producing the same

Country Status (1)

Country Link
JP (1) JP4079054B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091585A1 (en) 2006-02-09 2007-08-16 Sumitomo Metal Industries, Ltd. Method for manufacturing bottle member for air bag inflator
JP2007204789A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk High-strength seamless steel pipe and manufacturing method therefor
WO2008007753A1 (en) * 2006-07-10 2008-01-17 Jfe Steel Corporation Hot-rolled steel sheets excellent both in workability and in strength and toughness after heat treatment and process for production thereof
WO2009004909A1 (en) * 2007-06-29 2009-01-08 Jfe Steel Corporation Thick hot-rolled steel sheet having excellent processability and excellent strength/toughness after thermal treatment, and method for production of the steel sheet
JP2010111931A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp High-tensile welded steel pipe for automotive member, and method for producing the same
CN104818376A (en) * 2015-05-08 2015-08-05 柳州金盾机械有限公司 Tempering process of air exhaust tube of loading machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204789A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk High-strength seamless steel pipe and manufacturing method therefor
WO2007091585A1 (en) 2006-02-09 2007-08-16 Sumitomo Metal Industries, Ltd. Method for manufacturing bottle member for air bag inflator
US7749339B2 (en) 2006-02-09 2010-07-06 Sumitomo Metal Industries, Ltd. Process for manufacturing an airbag inflator bottle member
JP5228492B2 (en) * 2006-02-09 2013-07-03 新日鐵住金株式会社 Manufacturing method of bottle member for airbag inflator
WO2008007753A1 (en) * 2006-07-10 2008-01-17 Jfe Steel Corporation Hot-rolled steel sheets excellent both in workability and in strength and toughness after heat treatment and process for production thereof
US8062438B2 (en) 2006-07-10 2011-11-22 Jfe Steel Corporation Hot-rolled thin steel sheet with excellent formability and excellent strength and toughness after heat treatment, and method for manufacturing the same
US8182621B2 (en) 2006-07-10 2012-05-22 Jfe Steel Corporation Method of hot-rolled thin steel sheet with excellent formability and excellent strength and toughness after heat treatment
WO2009004909A1 (en) * 2007-06-29 2009-01-08 Jfe Steel Corporation Thick hot-rolled steel sheet having excellent processability and excellent strength/toughness after thermal treatment, and method for production of the steel sheet
JP2010111931A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp High-tensile welded steel pipe for automotive member, and method for producing the same
CN104818376A (en) * 2015-05-08 2015-08-05 柳州金盾机械有限公司 Tempering process of air exhaust tube of loading machine

Also Published As

Publication number Publication date
JP4079054B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP5018784B2 (en) Seamless steel pipe for airbag accumulator and manufacturing method thereof
US7727463B2 (en) Steel pipe for an airbag system
US20090101242A1 (en) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
EP2484793B1 (en) Steel pipe for air bag and process for producing same
JP5979334B1 (en) High strength welded steel pipe for airbag inflator and method for manufacturing the same
JPH10140250A (en) Production of steel tube for air bag, having high strength and high toughness
US20130160889A1 (en) High-strength electric resistance welded steel tube and production method therefor
JP3220975B2 (en) Manufacturing method of steel pipe for high strength and high toughness air bag
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
JP5234226B2 (en) Manufacturing method of steel pipe for airbag
JP3858615B2 (en) Method for producing seamless steel pipe for high strength airbag with tensile strength of 900 MPa or more
US20060070687A1 (en) Method for producing seamless steel pipe for inflator of air bag
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP3318467B2 (en) Manufacturing method of high strength and high toughness steel pipe with excellent workability
JP4079054B2 (en) High strength and high toughness welded steel pipe for airbag bottle and method for producing the same
JP4079053B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe for airbag
JP3250211B2 (en) Manufacturing method of steel pipe for high strength and high toughness air bag
JP2004076034A (en) Method for producing high strength, high toughness and high workability seamless steel pipe for air bag
CN111511949A (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP7244715B2 (en) Hot-rolled steel sheet with excellent durability and its manufacturing method
JP3960145B2 (en) Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
JP2003201541A (en) High strength, high workability seamless steel pipe for air bag and production method therefor
JPH10212549A (en) High toughness electric resistance welded tube for air bag and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees