JP2005060471A - Method and apparatus for recovering solvent and styrene from polystyrene solution - Google Patents

Method and apparatus for recovering solvent and styrene from polystyrene solution Download PDF

Info

Publication number
JP2005060471A
JP2005060471A JP2003290004A JP2003290004A JP2005060471A JP 2005060471 A JP2005060471 A JP 2005060471A JP 2003290004 A JP2003290004 A JP 2003290004A JP 2003290004 A JP2003290004 A JP 2003290004A JP 2005060471 A JP2005060471 A JP 2005060471A
Authority
JP
Japan
Prior art keywords
solvent
polystyrene
pipe
styrene
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003290004A
Other languages
Japanese (ja)
Inventor
Takashi Kamiyama
隆 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2003290004A priority Critical patent/JP2005060471A/en
Publication of JP2005060471A publication Critical patent/JP2005060471A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently recover a solvent and styrene from a polystyrene solution. <P>SOLUTION: In recovering a solvent and styrene from a polystyrene solution prepared by dissolving polystyrene in the solvent, the solvent is recovered by evaporating and separating it from the solution and then the polystyrene separated from the solvent is thermally decomposed to recover styrene. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は発泡スチロール等の嵩密度の低いポリスチレンを溶剤に溶解して得られたポリスチレン溶液から溶剤とスチレンを回収する方法および回収装置に関する。   The present invention relates to a method and an apparatus for recovering a solvent and styrene from a polystyrene solution obtained by dissolving polystyrene having a low bulk density such as polystyrene foam in a solvent.

工場や一般家庭から排出されるプラスチック、いわゆる廃プラスチックの多くは熱分解して燃料や化学原料のモノマーとして回収される。廃プラスチックには種々の種類が混在しているので、通常、これら各種の廃プラスチックを種類ごとに分別して熱分解に供される。従来知られている熱分解方法としては、例えば特許文献1、特許文献2に記載された技術が知られている。   Most plastics discharged from factories and households, so-called waste plastics, are thermally decomposed and recovered as monomers for fuel and chemical raw materials. Since various types of waste plastics are mixed, usually, these various types of waste plastics are sorted by type and subjected to thermal decomposition. As a conventionally known thermal decomposition method, for example, techniques described in Patent Document 1 and Patent Document 2 are known.

排出される廃プラスチックの種類としては、ポリスチレン、スチレンとブタジエンやアクリル等との共重合体などのスチレン系樹脂(以下、これらを単にポリスチレンという。)が多い。廃ポリスチレンには、射出成形やブロー成形した硬質もしくは軟質の非発泡ポリスチレンと発泡成形した発泡ポリスチレンが含まれる。   As the types of waste plastics to be discharged, there are many styrene-based resins (hereinafter simply referred to as polystyrene) such as polystyrene and copolymers of styrene and butadiene, acrylic, or the like. Waste polystyrene includes hard or soft non-expanded polystyrene that has been injection-molded or blow-molded and expanded polystyrene that has been foam-molded.

硬質もしくは軟質の非発泡ポリスチレンは嵩密度が大きいので一次集積場や熱分解施設への運搬、保管、または取扱い等にそれほど問題はないが、発泡ポリスチレンは嵩密度が著しく小さいので運搬等の効率は極めて低い。そこで従来から、発泡ポリスチレンを例えば一次集積場などに設置した容器内で溶剤に溶解して減容し、得られたポリスチレン溶液を熱分解施設へ運搬して熱分解することが多い。   Hard or soft non-expanded polystyrene has a large bulk density, so there is no problem in transportation, storage, or handling to the primary collection site or pyrolysis facility. Very low. Therefore, conventionally, foamed polystyrene is often dissolved in a solvent in a container installed in a primary collection site or the like to reduce the volume, and the resulting polystyrene solution is transported to a thermal decomposition facility for thermal decomposition.

ポリスチレンを溶解できる溶剤には、スチレン、ベンゼン、トルエン、キシレン等があるが、溶解能力やコスト的な有利性から、最近はリモネンを主成分とする溶剤が多用されている。このリモネンは溶剤重量とほぼ同容量のポリスチレンを溶解する能力があり、大量のポリスチレンを溶解した状態のポリスチレン溶液は高粘度のゲル状を呈する。   Solvents that can dissolve polystyrene include styrene, benzene, toluene, xylene, and the like, but recently, a solvent mainly composed of limonene is frequently used because of its dissolving ability and cost advantage. This limonene has the ability to dissolve polystyrene in the same volume as the solvent weight, and the polystyrene solution in which a large amount of polystyrene is dissolved exhibits a highly viscous gel.

ポリスチレンを溶剤に溶解したポリスチレン溶液は熱分解装置で熱分解できる。一般的な熱分解装置は熱分解器、凝縮器および蒸留装置等により構成されるが、熱分解器で得られた分解ガスは凝縮器で冷却により凝縮され、凝縮成分である油分は例えば2本の蒸留塔により構成した蒸留装置で蒸留してスチレンモノマーを回収する。   A polystyrene solution obtained by dissolving polystyrene in a solvent can be pyrolyzed with a pyrolyzer. A general pyrolysis apparatus is composed of a pyrolyzer, a condenser, a distillation apparatus, and the like, but the cracked gas obtained in the pyrolyzer is condensed by cooling in the condenser, and two oil components, for example, are condensed components. The styrene monomer is recovered by distillation with a distillation apparatus constituted by a distillation column.

ポリスチレンを減容するために用いられる溶剤は比較的価格が高いので、最終的には何らかの方法で回収して再使用することが望ましい。通常、ポリスチレン溶液を熱分解器に供給すると、それに含まれる溶剤は熱分解器で蒸発し、分解ガスと共に流出して凝縮器で凝縮される。そして凝縮した溶剤はスチレンモノマー成分と共に蒸留装置に供給され、そこで蒸留操作により回収される。   Since the solvent used for reducing the volume of polystyrene is relatively expensive, it is finally desirable to recover and reuse it by some method. Usually, when a polystyrene solution is supplied to a thermal decomposer, the solvent contained therein evaporates in the thermal decomposer, flows out together with the decomposition gas, and is condensed in the condenser. The condensed solvent is supplied to the distillation apparatus together with the styrene monomer component, where it is recovered by distillation operation.

特開2001−302563号公報JP 2001-302563 A 特開2001−335658号公報JP 2001-335658 A

溶剤としてスチレンを用いた場合には、上記蒸留装置でスチレンモノマー成分と同条件で蒸留できるので、その蒸留操作は容易である。しかし溶剤としてリモネン等を用いた場合には、スチレンの分離回収とは別の蒸留塔が更に2本必要になるので、コスト的に不利になる。そこで本発明はかかる問題を解決することを課題とし、そのための新しい溶剤とスチレンの回収方法および回収装置を提供することを目的とする。   When styrene is used as the solvent, the distillation operation is easy because the distillation apparatus can be distilled under the same conditions as the styrene monomer component. However, when limonene or the like is used as the solvent, two additional distillation columns different from the separation and recovery of styrene are required, which is disadvantageous in terms of cost. Accordingly, an object of the present invention is to solve such a problem, and an object thereof is to provide a new solvent and styrene recovery method and recovery apparatus therefor.

前記課題を解決する本発明に係る回収方法は、ポリスチレンを溶剤に溶解したポリスチレン溶液から溶剤とスチレンを回収する方法である。そして本方法は、前記ポリスチレン溶液から溶剤を蒸発分離して回収し、溶剤が分離されたポリスチレンを熱分解してスチレンを回収することを特徴とする(請求項1)。   The recovery method according to the present invention for solving the above problems is a method of recovering a solvent and styrene from a polystyrene solution obtained by dissolving polystyrene in a solvent. And this method is characterized by recovering styrene by evaporating and separating the solvent from the polystyrene solution and thermally decomposing the polystyrene from which the solvent has been separated (Claim 1).

上記回収方法において、ポリスチレンを熱分解して得られた分解ガスを凝縮し、その油分を蒸留して高純度のスチレンを回収することができる(請求項2)。   In the above recovery method, cracked gas obtained by thermally decomposing polystyrene can be condensed, and the oil can be distilled to recover high-purity styrene.

また、前記課題を解決する本発明に係る回収装置は、ポリスチレンを溶剤に溶解したポリスチレン溶液から溶剤とスチレンを回収する装置である。そして本装置は、前記ポリスチレン溶液から溶剤を蒸発分離して回収する溶剤蒸発機と、溶剤が分離されたポリスチレンを熱分解する熱分解装置を備えていることを特徴とする(請求項3)。   Moreover, the collection | recovery apparatus which concerns on this invention which solves the said subject is an apparatus which collect | recovers a solvent and styrene from the polystyrene solution which melt | dissolved the polystyrene in the solvent. The apparatus comprises a solvent evaporator for evaporating and recovering the solvent from the polystyrene solution, and a thermal decomposing apparatus for thermally decomposing the polystyrene from which the solvent has been separated (Claim 3).

上記回収装置において、前記熱分解装置は、ポリスチレンを熱分解する熱分解器と、熱分解によって得られた分解ガスを凝縮する凝縮器と、凝縮により得られた油分を蒸留してスチレンを回収する蒸留装置を備えることができる(請求項4)。   In the recovery apparatus, the thermal decomposition apparatus recovers styrene by pyrolyzing polystyrene, a condenser for condensing cracked gas obtained by pyrolysis, and distilling the oil obtained by condensation. A distillation apparatus can be provided (Claim 4).

本発明に係る回収方法によれば、蒸留装置を複雑化することなく、ポリスチレン溶液から溶剤とスチレンを効率よく回収することができる。その際、分解ガスを凝縮してその油分を蒸留することにより、高純度のスチレンモノマーを回収することができる。また本発明に係る回収装置を用いることにより、上記回収方法を効率よく実施できる。   According to the recovery method of the present invention, it is possible to efficiently recover the solvent and styrene from the polystyrene solution without complicating the distillation apparatus. At that time, high-purity styrene monomer can be recovered by condensing the cracked gas and distilling the oil. Moreover, the said collection | recovery method can be implemented efficiently by using the collection | recovery apparatus which concerns on this invention.

次に、図面を参照して本発明の回収方法および回収装置の最良の実施形態を説明する。図1、図2は本発明に係る回収方法を実施する装置のプロセスフロー図である。先ず図1において、熱分解施設にポリスチレンを溶剤で溶解して得られたポリスチレン溶液の貯蔵タンク1が設置される。貯蔵タンク1にはギアポンプ等の高粘度用の移送ポンプ2を設けた配管2aが接続され、配管2aの先端は溶剤蒸発機3に接続される。   Next, the best embodiment of the collection method and collection apparatus of the present invention will be described with reference to the drawings. 1 and 2 are process flow diagrams of an apparatus for carrying out a recovery method according to the present invention. First, in FIG. 1, a storage tank 1 for a polystyrene solution obtained by dissolving polystyrene with a solvent is installed in a thermal decomposition facility. A pipe 2 a provided with a transfer pump 2 for high viscosity such as a gear pump is connected to the storage tank 1, and the tip of the pipe 2 a is connected to the solvent evaporator 3.

溶剤蒸発機3の上部には分離された溶剤を排出する排出部が設けられ、その排出部は配管4を経て凝縮器(コンデンサ)5に連通する。凝縮器5には凝縮した溶剤を回収する配管6と非凝縮ガスを排出する配管7が接続され、配管7の途中には真空ポンプ等の減圧手段8が設けられる。   An upper part of the solvent evaporator 3 is provided with a discharge part for discharging the separated solvent, and the discharge part communicates with a condenser (condenser) 5 through a pipe 4. A pipe 6 for collecting the condensed solvent and a pipe 7 for discharging the non-condensed gas are connected to the condenser 5, and decompression means 8 such as a vacuum pump is provided in the middle of the pipe 7.

溶剤蒸発機3の底部に溶剤を分離したポリスチレンを排出する排出管9が接続され、その排出管9の先端は供給装置10の入口部に連通する。供給装置10の出口部は断熱材で被覆した配管11に接続され、配管11の先端は管型の熱分解器12の入口部12aに接続される。   A discharge pipe 9 for discharging the polystyrene from which the solvent has been separated is connected to the bottom of the solvent evaporator 3, and the tip of the discharge pipe 9 communicates with the inlet of the supply device 10. An outlet portion of the supply device 10 is connected to a pipe 11 covered with a heat insulating material, and a tip of the pipe 11 is connected to an inlet portion 12 a of a tubular pyrolyzer 12.

さらに熱分解器12の出口部12bには配管13が接続され、配管13の先端は凝縮器(コンデンサ)14に連通する。凝縮器14の底部には凝縮した油分を排出する配管15が接続され、配管15の先端は図2に示す蒸留装置に連通する。また凝縮器14の上部には非凝縮ガスを排出する配管16が接続され、配管16の途中に真空ポンプ等の減圧手段17が設けられる。   Further, a pipe 13 is connected to the outlet 12 b of the pyrolyzer 12, and the tip of the pipe 13 communicates with a condenser (condenser) 14. A pipe 15 for discharging the condensed oil is connected to the bottom of the condenser 14, and the tip of the pipe 15 communicates with the distillation apparatus shown in FIG. A pipe 16 for discharging non-condensable gas is connected to the upper part of the condenser 14, and a decompression means 17 such as a vacuum pump is provided in the middle of the pipe 16.

次に図2において、凝縮器14からの配管15にはポンプ16が設けられ、その出口側は蒸留装置20を構成する第1蒸留塔21の中段に連通する。第1蒸留塔21の下部にスチームで加熱されるリボイラ22が設けられ、リボイラ22部分、すなわち第1蒸留塔21の底部付近にはポンプ23を設けた配管24が接続される。第1蒸留塔21の頂部に配管25が接続され、配管25の先端は第1凝縮器26に連通する。   Next, in FIG. 2, a pump 16 is provided in the pipe 15 from the condenser 14, and the outlet side thereof communicates with the middle stage of the first distillation column 21 constituting the distillation apparatus 20. A reboiler 22 heated by steam is provided at the lower portion of the first distillation column 21, and a pipe 24 provided with a pump 23 is connected to the reboiler 22 portion, that is, near the bottom of the first distillation column 21. A pipe 25 is connected to the top of the first distillation column 21, and the tip of the pipe 25 communicates with the first condenser 26.

第1凝縮器26の底部にポンプ27を設けた配管28が接続され、配管28から分岐した還流管29の先端が第1蒸留塔21の上部に連通し、さらに配管28から分岐した回収管30に逆止弁31が設けられる。なお回収管30の先端は重質油回収タンク41に連通する。一方、第1凝縮器26の上部には圧力調整弁32を設けた配管33が接続され、配管33の先端は真空ポンプ等の減圧手段34に連通する。   A pipe 28 provided with a pump 27 is connected to the bottom of the first condenser 26, the leading end of a reflux pipe 29 branched from the pipe 28 communicates with the upper portion of the first distillation column 21, and a recovery pipe 30 branched from the pipe 28. A check valve 31 is provided. The tip of the collection pipe 30 communicates with the heavy oil collection tank 41. On the other hand, a pipe 33 provided with a pressure regulating valve 32 is connected to the upper part of the first condenser 26, and the tip of the pipe 33 communicates with a decompression means 34 such as a vacuum pump.

第1蒸留塔21からの配管24の先端は第2蒸留塔35の中段に連通する。第2蒸留塔35の下部にスチームで加熱されるリボイラ36が設けられ、リボイラ36部分、すなわち第2蒸留塔35の底部付近には冷却器37、ポンプ38および逆止弁39を順に設けた配管40が接続され、配管40の先端は重質油回収タンク41に連通する。また第2蒸留塔35の頂部に配管42が接続され、配管42の先端は第2凝縮器43に連通する。   The tip of the pipe 24 from the first distillation column 21 communicates with the middle stage of the second distillation column 35. A reboiler 36 heated by steam is provided at the lower part of the second distillation column 35, and a pipe provided with a cooler 37, a pump 38 and a check valve 39 in this order in the reboiler 36 portion, that is, near the bottom of the second distillation column 35. 40 is connected, and the tip of the pipe 40 communicates with the heavy oil recovery tank 41. A pipe 42 is connected to the top of the second distillation column 35, and the tip of the pipe 42 communicates with the second condenser 43.

第2凝縮器43の底部に配管44が接続され、配管44から分岐した還流管45の途中にポンプ46が設けられ、その先端が第2蒸留塔35の上部に連通する。さらに配管44から分岐した回収管47に冷却器(例えばSM冷却器)48が設けられ、その先端はモノマー回収タンク49に連通する。一方、第2凝縮器43の上部には圧力調整弁51を設けた配管50が接続され、配管50の先端は真空ポンプ等の減圧手段34に連通する。   A pipe 44 is connected to the bottom of the second condenser 43, a pump 46 is provided in the middle of the reflux pipe 45 branched from the pipe 44, and the tip communicates with the upper part of the second distillation column 35. Furthermore, a cooler (for example, SM cooler) 48 is provided in the recovery pipe 47 branched from the pipe 44, and the tip thereof communicates with the monomer recovery tank 49. On the other hand, a pipe 50 provided with a pressure regulating valve 51 is connected to the upper part of the second condenser 43, and the tip of the pipe 50 communicates with a decompression means 34 such as a vacuum pump.

次に上記回収装置を構成する各機器を具体的に説明する。溶剤蒸発機3は遠心薄膜式の蒸発機を用いることができる。遠心薄膜式の蒸発機は図1に示すように、円筒状の容器内に回転羽根を有するスクレーパ60を設け、そのスクレーパ60の軸は容器上部に配置した減速装置付きモータ等の駆動部61の駆動軸に連結される。なお容器の周囲には図示しない加熱部が設けられ、容器を外部から200℃程度に加熱するようになっている。そして容器の上部から供給されるゲル状のポリスチレン溶液は、スクレーパ60による遠心力で容器の内壁を薄膜状となって下降し、その間に外部からの加熱により低沸点成分である溶剤が蒸発する。   Next, each device constituting the recovery apparatus will be described in detail. The solvent evaporator 3 can be a centrifugal thin film evaporator. As shown in FIG. 1, the centrifugal thin film type evaporator is provided with a scraper 60 having rotating blades in a cylindrical container, and the axis of the scraper 60 is a drive unit 61 such as a motor with a speed reducer disposed on the upper part of the container. Connected to the drive shaft. A heating unit (not shown) is provided around the container so that the container is heated to about 200 ° C. from the outside. The gel-like polystyrene solution supplied from the upper part of the container descends in a thin film shape on the inner wall of the container by centrifugal force by the scraper 60, and during that time, the solvent which is a low boiling point component evaporates by heating from the outside.

供給装置10は一般にプラスチックの射出成型に用いられる押出装置を利用することができる。押出装置はポリスチレンをヒータで加熱溶融し、溶融ポリスチレンを押出す溶融押出部63を備え、溶融押出部63はヒータ付の筒体64とその内部に配置したスクリュー65を備え、スクリュー65は駆動部66により回転駆動される。   As the supply apparatus 10, an extrusion apparatus generally used for plastic injection molding can be used. The extrusion apparatus includes a melt extrusion unit 63 that heats and melts polystyrene with a heater and extrudes the molten polystyrene. The melt extrusion unit 63 includes a cylinder 64 with a heater and a screw 65 disposed therein, and the screw 65 is a drive unit. 66 is driven to rotate.

熱交換器12には槽型と図示のような管型がある。槽型の熱分解器12は底部が円錐形に形成された筒状の槽本体に攪拌および残渣掻き取り用のスクレーパを設け、周囲から加熱される槽内でポリスチレンを熱分解するもので、ある程度の時間をかけて一度に大量のポリスチレンをバッチ的に熱分解するのに適している。   The heat exchanger 12 includes a tank type and a pipe type as illustrated. The tank-type pyrolyzer 12 is provided with a scraper for stirring and scraping residue on a cylindrical tank body having a conical bottom, and thermally decomposes polystyrene in a tank heated from the surroundings. It is suitable for batch pyrolysis of large quantities of polystyrene at once over a period of time.

一方、管型の熱分解器12は図示のように熱分解部が細長い反応管67で構成され、その中をポリスチレンが通過する間に周囲から加熱されて熱分解し、槽型の場合より少量のポリスチレンを連続的に熱分解するのに適している。なお管型の熱分解器12を用いる場合は、前記のような供給装置10から溶融ポリスチレンを供給する方法が好ましい。   On the other hand, as shown in the figure, the tubular pyrolyzer 12 is composed of a long and narrow reaction tube 67, which is heated from the surroundings while the polystyrene passes through it and thermally decomposed, and a smaller amount than in the case of the tank type. Suitable for continuous pyrolysis of polystyrene. In addition, when using the tubular pyrolyzer 12, the method of supplying molten polystyrene from the supply apparatus 10 as described above is preferable.

図示のような管型の熱分解器12は、ステンレス等の耐熱性および伝熱性のよい金属管で作られた直径50mm〜200mm程度、長さ5m〜数十m程度から選択される細長い反応管67と、反応管67の周囲を覆うようにして設けた加熱部68を備えている。なお反応管67の直径および長さは上記範囲に限らず、必要とする処理量に応じて変えることができる。   The tubular pyrolyzer 12 as shown in the figure is a slender reaction tube made of a metal tube having good heat resistance and heat conductivity such as stainless steel and having a diameter of about 50 mm to 200 mm and a length of about 5 m to several tens of meters. 67 and a heating unit 68 provided so as to cover the periphery of the reaction tube 67. The diameter and length of the reaction tube 67 are not limited to the above ranges, and can be changed according to the required processing amount.

熱分解器12はその熱分解時の温度が高いほど熱分解効率が高くなり、さらに、熱分解に際してエチルベンゼンやトルエン等の副生物の生成を抑制し、化学原料としての高純度のスチレンモノマーを高収率で得るには減圧状態で熱分解することが望ましい。なお加熱部68を流通する加熱ガスによりポリスチレンは加熱されて熱分解するが、加熱部68への加熱ガスの供給源として、液体燃料または気体燃料を燃焼して高温の燃焼ガスを発生する加熱ガス発生装置(図示せず)が別途設けられる。   The higher the temperature during the thermal decomposition, the higher the thermal decomposition efficiency of the thermal decomposer 12, and further, the generation of by-products such as ethylbenzene and toluene is suppressed during the thermal decomposition, and a high-purity styrene monomer as a chemical raw material is increased. In order to obtain a high yield, it is desirable to perform thermal decomposition under reduced pressure. The polystyrene is heated and thermally decomposed by the heating gas flowing through the heating unit 68, but as a heating gas supply source to the heating unit 68, a heating gas that burns liquid fuel or gaseous fuel to generate high-temperature combustion gas. A generator (not shown) is provided separately.

凝縮器5,14、第1凝縮器26および第2凝縮器43の内部には図示しない冷却管が配置され、その冷却管に冷却水が流通する。そして供給されたガス成分は冷却管の表面で熱交換し、高沸点成分が凝縮して油分となって底部に滞留し、低沸点成分が非凝縮ガスとして上部に滞留する。また第1蒸留塔21および第2蒸留塔35は多段の棚またはラッシリングを充填した一般的な蒸留塔を使用することができるが、高い効率でスチレンモノマー等を分離回収するには、減圧状態で蒸留操作をすることが好ましい。   Cooling pipes (not shown) are arranged inside the condensers 5, 14, the first condenser 26 and the second condenser 43, and the cooling water flows through the cooling pipes. The supplied gas component exchanges heat on the surface of the cooling pipe, the high boiling point component condenses and becomes an oil component and stays at the bottom, and the low boiling point component stays at the top as a non-condensed gas. As the first distillation column 21 and the second distillation column 35, a general distillation column filled with multistage shelves or lashing can be used. In order to separate and recover styrene monomer and the like with high efficiency, It is preferable to carry out the distillation operation at.

次に上記回収装置によりポリスチレン溶液から溶剤とスチレンを回収する方法を説明する。先ず溶剤蒸発機3、供給装置10、熱分解系統および蒸留系統は運転可能な状態に立ち上げる。すなわち、減圧手段8を運転して凝縮器5、溶剤蒸発機3およびそれらを連通する配管系を減圧状態とし、溶剤蒸発機3の温度を200℃程度に昇温する。また供給装置10の溶融部を加熱しておく。   Next, a method for recovering the solvent and styrene from the polystyrene solution by the recovery device will be described. First, the solvent evaporator 3, the supply device 10, the thermal decomposition system, and the distillation system are brought into an operable state. That is, the decompression means 8 is operated to place the condenser 5, the solvent evaporator 3 and the piping system connecting them into a decompressed state, and the temperature of the solvent evaporator 3 is raised to about 200 ° C. Moreover, the melting part of the supply apparatus 10 is heated.

さらに減圧手段17を運転すると共に、配管11に設けたガス導入部(図示せず)から窒素等の不活性ガスを導入し、熱分解器12、凝縮器14およびそれらを連通する配管系の内部の酸素を不活性ガスで置換する。熱分解系が酸素不存在状態になったら不活性ガスの導入を停止し、減圧手段17に設けた減圧弁(図示せず)を調整して熱分解器12の内圧を3〜20kpa、好ましくは10kpa程度の減圧状態にする。さらに加熱部68に図示しない加熱ガス発生装置からの加熱ガスを導入し、反応管67の温度、すなわち熱分解温度を500℃〜800℃程度の範囲に昇温する。   Further, the decompression means 17 is operated, and an inert gas such as nitrogen is introduced from a gas introduction part (not shown) provided in the pipe 11, and the inside of the pyrolyzer 12, the condenser 14, and the piping system that communicates them The oxygen is replaced with an inert gas. When the thermal decomposition system is in the absence of oxygen, the introduction of the inert gas is stopped, and a pressure reducing valve (not shown) provided in the pressure reducing means 17 is adjusted to adjust the internal pressure of the thermal decomposer 12 to 3 to 20 kpa, preferably The pressure is reduced to about 10 kpa. Further, a heating gas from a heating gas generator (not shown) is introduced into the heating unit 68, and the temperature of the reaction tube 67, that is, the thermal decomposition temperature is raised to a range of about 500 ° C to 800 ° C.

さらに減圧手段34を運転し、前記の同様な方法で第1蒸留塔21、第2蒸留塔35およびそれらを連通する配管系を不活性ガスで置換すると共に、5〜10kpa程度の減圧状態にする。さらにリボイラ22、36に加熱源、例えばスチームを供給して第1蒸留塔21および第2蒸留塔35を所定の蒸留温度に昇温する。なお第1蒸留塔21の減圧レベルは圧力調整弁32で調整し、第2蒸留塔35の減圧レベルは圧力調整弁51で調整する。   Further, the decompression means 34 is operated to replace the first distillation column 21 and the second distillation column 35 and the piping system connecting them with an inert gas in the same manner as described above, and to reduce the pressure to about 5 to 10 kpa. . Further, a heating source such as steam is supplied to the reboilers 22 and 36 to raise the temperature of the first distillation column 21 and the second distillation column 35 to a predetermined distillation temperature. The reduced pressure level of the first distillation column 21 is adjusted by the pressure adjustment valve 32, and the reduced pressure level of the second distillation column 35 is adjusted by the pressure adjustment valve 51.

次にポリスチレンの熱分解操作について説明する。溶剤としてリモネンを用いて発泡ポリスチレンを溶解し、得られたゲル状のポリスチレン溶液を例えばタンクローリ等の運搬手段で熱分解施設に運び、貯蔵タンク1に一時的に貯蔵する。貯蔵タンク1のポリスチレン溶液は移送ポンプ2で溶剤蒸発機3に供給し、そこで200℃程度の温度に加熱してポリスチレンから溶剤を蒸発分離する。ガス状で分離された溶剤は配管4を経て凝縮器5に流出して冷却し、凝縮した溶剤は図示しない溶剤回収タンクに回収される。   Next, the thermal decomposition operation of polystyrene will be described. Limonene is used as a solvent to dissolve the expanded polystyrene, and the resulting gel-like polystyrene solution is transported to a thermal decomposition facility by a transport means such as a tank truck and temporarily stored in the storage tank 1. The polystyrene solution in the storage tank 1 is supplied to the solvent evaporator 3 by the transfer pump 2, where it is heated to a temperature of about 200 ° C. to evaporate and separate the solvent from the polystyrene. The solvent separated in a gaseous state flows out to the condenser 5 through the pipe 4 and is cooled, and the condensed solvent is recovered in a solvent recovery tank (not shown).

一方、溶剤蒸発機3で溶剤を分離したポリスチレンは配管9を流下し、下部に配置した供給装置10の溶融部62に供給される。溶融部62ではポリスチレンが150℃〜200℃程度の温度で加熱されて溶融し、溶融押出部63から配管11に押出される。配管11に押出された溶融ポリスチレンは熱分解器12の入口部12a、すなわち反応管67の先端部に流入し、反応管67を通過する間に周囲から加熱されて熱分解する。   On the other hand, the polystyrene from which the solvent has been separated by the solvent evaporator 3 flows down the pipe 9 and is supplied to the melting part 62 of the supply device 10 arranged at the lower part. In the melting part 62, polystyrene is heated and melted at a temperature of about 150 ° C. to 200 ° C., and is extruded from the melt extrusion part 63 to the pipe 11. The molten polystyrene extruded into the pipe 11 flows into the inlet 12a of the pyrolyzer 12, that is, the tip of the reaction tube 67, and is heated from the surroundings and thermally decomposed while passing through the reaction tube 67.

反応管67内で生成した分解ガスは分解残渣と共に熱分解器12の出口部12b、すなわち反応管67の後端部から流出し、分解残渣はその後端部に設けた滞留部(図示せず)で分離され、分解ガスが配管13に流出する。反応管67の温度および減圧レベルを前記状態に維持し、スチレンポリマーからなる溶融ポリスチレンを熱分解すると、スチレンモノマー70重量%、スチレンダイマー10重量%前後、スチレントリマー10重量%前後、トルエン、エチルベンゼン、αメチルスチレンその他副生物2重量%程度の分解ガスが得られる。   The cracked gas produced in the reaction tube 67 flows out from the outlet portion 12b of the thermal cracker 12, that is, the rear end portion of the reaction tube 67 together with the cracked residue, and the cracked residue is a staying portion (not shown) provided at the rear end portion. And the cracked gas flows out into the pipe 13. Maintaining the temperature and pressure reduction level of the reaction tube 67 in the above-described state and thermally decomposing molten polystyrene made of styrene polymer, 70% by weight of styrene monomer, about 10% by weight of styrene dimer, about 10% by weight of styrene trimer, toluene, ethylbenzene, Decomposition gas of about 2% by weight of α-methylstyrene and other by-products can be obtained.

配管13に流出した分解ガスは凝縮器14に供給され、そこで冷却されてスチレンモノマーを含む比較的高沸点の成分が凝縮し、油分として配管15から蒸留装置20に供給される。凝縮器14で凝縮しない低沸点成分は減圧手段17で吸引して配管16から図示しない回収タンクにガス成分として回収される。なお、このガス成分は前記加熱ガス発生装置の燃料として供給することができる。   The cracked gas that has flowed out to the pipe 13 is supplied to the condenser 14 where it is cooled to condense relatively high-boiling components including the styrene monomer, and is supplied as an oil component from the pipe 15 to the distillation apparatus 20. The low boiling point component that is not condensed by the condenser 14 is sucked by the decompression means 17 and recovered as a gas component from the pipe 16 to a recovery tank (not shown). This gas component can be supplied as fuel for the heated gas generator.

次に蒸留操作により高純度のスチレンを回収する方法を説明する。凝縮器14からの油分は配管15のポンプ16を運転することによって第1蒸留塔21の中段に供給され、そこで蒸留される。第1蒸留塔21の蒸留操作によって分離された低沸点成分は塔頂から配管25を経て第1凝縮器26に流出する。この低沸点成分は第1蒸留塔21への供給量の3〜5重量%程度のトルエン、エチルベンゼン、αメチルスチレン等を含むものであり、第1凝縮器26で冷却されてその中の比較的沸点の高い成分が油分として凝縮する。また凝縮しない比較的低沸点の成分は配管33から減圧手段34を経て図示しない回収タンクに回収される。   Next, a method for recovering high purity styrene by distillation will be described. The oil content from the condenser 14 is supplied to the middle stage of the first distillation column 21 by operating the pump 16 in the pipe 15 and distilled there. The low boiling point component separated by the distillation operation of the first distillation column 21 flows out from the top of the column through the pipe 25 to the first condenser 26. This low-boiling component contains about 3 to 5% by weight of toluene, ethylbenzene, α-methylstyrene, etc., supplied to the first distillation column 21 and is cooled by the first condenser 26 and relatively contained therein. Components with a high boiling point condense as oil. Further, the relatively low boiling point component that does not condense is recovered from the pipe 33 through the pressure reducing means 34 to a recovery tank (not shown).

第1凝縮器26で生成した油分はポンプ27を運転することにより配管28から流出し、一部は還流管29から第1蒸留塔21の上部に還流し、残りは配管30から重質油回収タンク41に回収される。なお第1蒸留塔21の還流比は配管29に設けた調整弁(図示せず)を調整することにより例えば20〜100程度に設定される。   The oil produced in the first condenser 26 flows out of the pipe 28 by operating the pump 27, part of it is returned to the upper part of the first distillation column 21 from the reflux pipe 29, and the rest is recovered from the pipe 30 with heavy oil. Collected in the tank 41. The reflux ratio of the first distillation column 21 is set to, for example, about 20 to 100 by adjusting an adjustment valve (not shown) provided in the pipe 29.

第1蒸留塔21の塔底部には蒸留分離されたスチレンモノマーを含む高沸点成分が滞留し、その高沸点成分はポンプ23を運転することにより配管24から第2蒸留塔35の中段に供給され、そこでさらに蒸留される。第2蒸留塔35の蒸留操作によって分離される低沸点成分は塔頂から配管42を経て第2凝縮器43に流出し、そこで冷却されて比較的高沸点の成分が油分として凝縮する。また凝縮しない比較的低沸点の成分は配管50から減圧手段34を経て図示しない回収タンクに回収される。   At the bottom of the first distillation column 21, a high-boiling component containing styrene monomer that has been separated by distillation stays, and the high-boiling component is supplied from the pipe 24 to the middle stage of the second distillation column 35 by operating the pump 23. There it is further distilled. The low boiling point component separated by the distillation operation of the second distillation column 35 flows from the top of the column through the pipe 42 to the second condenser 43, where it is cooled and condensed with a relatively high boiling point component as oil. Further, the relatively low boiling point component that does not condense is recovered from the pipe 50 through the pressure reducing means 34 to a recovery tank (not shown).

第2凝縮器43で生成した油分は配管44から流出し、ポンプ46を運転することによりその一部が還流管45から第2蒸留塔35の上部に還流する。第2蒸留塔35の還流比は配管45に設けた調整弁(図示せず)を調整することにより例えば2〜5程度に設定される。配管44から流出する残りの油分は配管47に設けた冷却器48で冷却されモノマー回収タンク49に回収される。なおモノマー回収タンク49に回収されるスチレンモノマーは99.9%程度の高純度であり、その回収率は熱分解器12に供給した溶融ポリスチレンのおよそ70重量%となる。   The oil produced in the second condenser 43 flows out from the pipe 44, and a part of the oil is refluxed from the reflux pipe 45 to the upper part of the second distillation column 35 by operating the pump 46. The reflux ratio of the second distillation column 35 is set to, for example, about 2 to 5 by adjusting an adjustment valve (not shown) provided in the pipe 45. The remaining oil flowing out of the pipe 44 is cooled by a cooler 48 provided in the pipe 47 and recovered in the monomer recovery tank 49. The styrene monomer recovered in the monomer recovery tank 49 has a high purity of about 99.9%, and the recovery rate is approximately 70% by weight of the molten polystyrene supplied to the thermal cracker 12.

第2蒸留塔35の塔底部には蒸留分離された高沸点成分が滞留し、その高沸点成分はポンプ38を運転することにより配管40から流出し、冷却器37で冷却して重質油回収タンク41に回収される。なお重質油回収タンク41に回収される重質油は、熱分解器12に供給される溶融ポリスチレンの20〜30重量%程度であり、前記リボイラ22,36の熱源であるスチームを発生する蒸気発生装置や前記加熱ガス発生装置の燃料として使用できる。   The high-boiling components separated by distillation stay at the bottom of the second distillation column 35, and the high-boiling components flow out of the pipe 40 by operating the pump 38, and are cooled by the cooler 37 to recover heavy oil. Collected in the tank 41. The heavy oil recovered in the heavy oil recovery tank 41 is about 20 to 30% by weight of the molten polystyrene supplied to the pyrolyzer 12, and generates steam that is a heat source of the reboilers 22 and 36. It can be used as a fuel for the generator and the heated gas generator.

本発明に係る回収方法および回収装置は、発泡ポリスチレンを溶剤で溶解して得られたポリスチレン溶液から効率よく溶剤とスチレンを回収するために有効に利用できる。   The recovery method and recovery apparatus according to the present invention can be effectively used for efficiently recovering a solvent and styrene from a polystyrene solution obtained by dissolving foamed polystyrene with a solvent.

本発明に係る回収方法を実施する装置の熱分解部分を示すプロセスフロー図。The process flow figure which shows the thermal decomposition part of the apparatus which enforces the collection | recovery method concerning this invention. 本発明に係る回収方法を実施する装置の蒸留部分を示すプロセスフロー図。The process flow figure which shows the distillation part of the apparatus which enforces the collection | recovery method concerning this invention.

符号の説明Explanation of symbols

1 貯蔵タンク
2 移送ポンプ
2a 配管
3 溶剤蒸発機
4 配管
5 凝縮器
6,7 配管
8 減圧手段
9 排出管
10 供給装置
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Transfer pump 2a Piping 3 Solvent evaporator 4 Piping 5 Condenser 6, 7 Piping 8 Pressure reducing means 9 Draining pipe 10 Supply device

11 配管
12 熱分解器
12a 入口部
12b 出口部
13 配管
14 凝縮器
15,16 配管
17 減圧手段
20 蒸留装置
DESCRIPTION OF SYMBOLS 11 Piping 12 Pyrolyzer 12a Inlet part 12b Outlet part 13 Piping 14 Condenser 15,16 Piping 17 Decompression means 20 Distillation device

21 第1蒸留塔
22 リボイラ
23 ポンプ
24,25 配管
26 第1凝縮器
27 ポンプ
28 配管
29 還流管
30 回収管
21 First distillation column 22 Reboiler 23 Pump 24, 25 Piping 26 First condenser 27 Pump 28 Piping 29 Reflux pipe 30 Recovery pipe

31 逆止弁
32 圧力調整弁
33 配管
34 減圧手段
35 第2蒸留塔
36 リボイラ
37 冷却器
38 ポンプ
39 逆止弁
40 配管
31 Check Valve 32 Pressure Regulating Valve 33 Piping 34 Depressurizing Means 35 Second Distillation Column 36 Reboiler 37 Cooler 38 Pump 39 Check Valve 40 Piping

41 重質油回収タンク
42 配管
43 第2凝縮器
44 配管
45 還流管
46 ポンプ
47 回収管
48 冷却器
49 モノマー回収タンク
50 配管
41 Heavy Oil Recovery Tank 42 Piping 43 Second Condenser 44 Piping 45 Reflux Pipe 46 Pump 47 Recovery Pipe 48 Cooler 49 Monomer Recovery Tank 50 Piping

51 圧力調整弁
60 スクレーパ
61 駆動部
62 溶融部
63 溶融押出部
64 筒体
65 スクリュー
66 駆動部
67 反応管
68 加熱部
51 Pressure Adjusting Valve 60 Scraper 61 Drive Unit 62 Melting Unit 63 Melting Extrusion Unit 64 Cylindrical Body 65 Screw 66 Drive Unit 67 Reaction Tube 68 Heating Unit

Claims (4)

ポリスチレンを溶剤に溶解したポリスチレン溶液から溶剤とスチレンを回収する方法において、前記ポリスチレン溶液から溶剤を蒸発分離して回収し、溶剤が分離されたポリスチレンを熱分解してスチレンを回収することを特徴とするポリスチレン溶液から溶剤とスチレンを回収する方法。   In the method of recovering a solvent and styrene from a polystyrene solution in which polystyrene is dissolved in a solvent, the solvent is evaporated and recovered from the polystyrene solution, and the polystyrene from which the solvent is separated is thermally decomposed to recover styrene. To recover solvent and styrene from polystyrene solution. 請求項1において、ポリスチレンを熱分解して得られた分解ガスを凝縮し、その油分を蒸留して高純度のスチレンを回収することを特徴とするポリスチレン溶液から溶剤とスチレンを回収する方法。   The method for recovering a solvent and styrene from a polystyrene solution according to claim 1, wherein the cracked gas obtained by thermally decomposing polystyrene is condensed and the oil is distilled to recover high-purity styrene. ポリスチレンを溶剤に溶解したポリスチレン溶液から溶剤とスチレンを回収する装置において、前記ポリスチレン溶液から溶剤を蒸発分離して回収する溶剤蒸発機3と、溶剤が分離されたポリスチレンを熱分解する熱分解装置を備えていることを特徴とする回収装置。   In an apparatus for recovering a solvent and styrene from a polystyrene solution in which polystyrene is dissolved in a solvent, a solvent evaporator 3 for recovering the solvent by evaporating and separating the solvent from the polystyrene solution, and a thermal decomposition apparatus for thermally decomposing the polystyrene from which the solvent has been separated A collection device characterized by comprising. 請求項3において、前記熱分解装置は、ポリスチレンを熱分解する熱分解器12と、熱分解によって得られた分解ガスを凝縮する凝縮器14と、凝縮により得られた油分を蒸留してスチレンを回収する蒸留装置20を備えていることを特徴とする回収装置。
4. The thermal decomposition apparatus according to claim 3, wherein the thermal decomposition apparatus includes a thermal decomposer 12 for thermally decomposing polystyrene, a condenser 14 for condensing a cracked gas obtained by thermal decomposition, and distilling an oil component obtained by condensation. A recovery device comprising a distillation device 20 for recovery.
JP2003290004A 2003-08-08 2003-08-08 Method and apparatus for recovering solvent and styrene from polystyrene solution Pending JP2005060471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290004A JP2005060471A (en) 2003-08-08 2003-08-08 Method and apparatus for recovering solvent and styrene from polystyrene solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290004A JP2005060471A (en) 2003-08-08 2003-08-08 Method and apparatus for recovering solvent and styrene from polystyrene solution

Publications (1)

Publication Number Publication Date
JP2005060471A true JP2005060471A (en) 2005-03-10

Family

ID=34368158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290004A Pending JP2005060471A (en) 2003-08-08 2003-08-08 Method and apparatus for recovering solvent and styrene from polystyrene solution

Country Status (1)

Country Link
JP (1) JP2005060471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308652A (en) * 2007-06-18 2008-12-25 Mayekawa Mfg Co Ltd Solvent separation/recovery method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308652A (en) * 2007-06-18 2008-12-25 Mayekawa Mfg Co Ltd Solvent separation/recovery method and apparatus
JP4673345B2 (en) * 2007-06-18 2011-04-20 株式会社前川製作所 Solvent separation and recovery method and apparatus

Similar Documents

Publication Publication Date Title
US8674154B2 (en) Apparatus and method for conducting thermolysis of plastic waste in continuous manner
JP2007146109A (en) High-performance chamber mixer for catalyst oil suspension as reactor for producing intermediate distillate by depolymerization and polymerization of hydrocarbon-containing residue in circuit
CN109562301A (en) Method for by converting-plastics being fuel
WO2021180893A1 (en) Process for recovering styrene monomer from a styrene-containing polymer
US20030050519A1 (en) Method for decomposing plastic waste to produce fuel materials and equipment for the method
JP2010155944A (en) Waste plastic liquefaction device
CN101314082B (en) Reboiler for high viscosity, high heat-variable flowage type high boiling point materials
CN202387237U (en) Device for purifying and regenerating waste organic solvent
CN101337998B (en) Devolatilization technology containing continuous recovering and refining process and equipment thereof
JP2005060471A (en) Method and apparatus for recovering solvent and styrene from polystyrene solution
CN112645807B (en) Production equipment and production method of flaky camphor
JP2002060537A (en) Method for recovering raw material of foamed polystyrene
TW201531456A (en) Method for processing a product stream of a dimethyl ether reactor by separation technology
JP2002212571A (en) Method for thermal cracking of waste plastic
JP2003267896A (en) Method for recovery of monomer and apparatus for recovery
CN102266677A (en) High vacuum distillation purification device
US20200070060A1 (en) Solvent Recovery System
JP2005132802A (en) Method for recovery of styrene and apparatus therefor
CN105713113B (en) Method for recovering heat of gas-phase material in condensation kettle
CN211486557U (en) Organic solvent and water continuous removal recovery system in macromolecular compound production
JP2004002519A (en) Method for producing polystyrene
Arkenbout Progress in continuous fractional crystallization
JP2964378B2 (en) Waste plastic oiling equipment
Nitsche et al. Steam Distillation
JP7484001B1 (en) Apparatus for producing vinyl polymer and method for producing vinyl polymer