JP2005060350A - Method for producing aromatic carboxylic acid and alkali-soluble resin composition - Google Patents

Method for producing aromatic carboxylic acid and alkali-soluble resin composition Download PDF

Info

Publication number
JP2005060350A
JP2005060350A JP2003295792A JP2003295792A JP2005060350A JP 2005060350 A JP2005060350 A JP 2005060350A JP 2003295792 A JP2003295792 A JP 2003295792A JP 2003295792 A JP2003295792 A JP 2003295792A JP 2005060350 A JP2005060350 A JP 2005060350A
Authority
JP
Japan
Prior art keywords
alkali
general formula
resin
resin composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003295792A
Other languages
Japanese (ja)
Inventor
Michio Nakajima
道男 中嶋
Hiroaki Makabe
裕明 眞壁
Etsu Takeuchi
江津 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003295792A priority Critical patent/JP2005060350A/en
Publication of JP2005060350A publication Critical patent/JP2005060350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material for alkali-soluble photosensitive resin composition that permits easy pattern formation and has excellent high heat resistance, high reliability, for example, moisture-resistance reliability, further high transparency and low dielectric constant. <P>SOLUTION: In the presence of a palladium catalyst complex and a base, a compound represented by general formula (1) (wherein R<SB>1</SB>is H, -CO-R<SB>2</SB>or -SO<SB>2</SB>-R<SB>2</SB>) and a compound represented by general formula (2) [wherein R<SB>1</SB>is same as in the general formula (1)] are allowed to react with each other to produce a compound of general formula (3) (wherein n is an integer of 1 or more; R<SB>1</SB>is H or -CO-R<SB>2</SB>or -SO<SB>2</SB>-R<SB>2</SB>). In this case, the base has preferably pKa > 11. The alkali-soluble resin composition is prepared by allowing a compound represented by general formula (3) to react with a compound bearing two or more benzocyclobutene structures in one molecule at 100°C to 200°C with heat and its carboxyl group equivalent is ≤ 400 g/mole. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルカリ可溶性感光性脂組成物の原料として有用なカルボン酸の製造方法とアルカリ可溶性樹脂組成物に関するものである。   The present invention relates to a method for producing a carboxylic acid useful as a raw material for an alkali-soluble photosensitive fat composition and an alkali-soluble resin composition.

一般に、薄膜トランジスター型液晶表示素子等の表示素子には、素子や配線を保護するための保護膜、素子や配線を絶縁するための絶縁膜、素子表面を平坦化するための平坦化膜、更に多層化された配線間を絶縁する層間絶縁膜等が設けられている。又、近年高視野角や高コントラストを実現する新しい機構の表示素子において、例えば、MVA(Multi−domain Vertical Alignment)モードを用いた液晶表示素子で液晶分子の配向制御のために電極表面に形成される突起や、有機EL素子で電極間を絶縁するスペーサー等、従来なかったような新しい素子構成要素が出現している。一方、半導体装置や、それを実装するプリント配線板には、半導体素子や回路を保護するための保護膜、半導体素子や回路間を絶縁するための絶縁膜、或いは多層化された配線間を絶縁する層間絶縁膜が形成されている。これらの絶縁膜、或いは保護膜等の構成要素に使われる材料には、その加工工程中にかかる熱履歴に耐える耐熱性、使用される温度域や湿度域で長期間絶縁特性を保持し得る信頼性が要求されている。   Generally, a display element such as a thin film transistor type liquid crystal display element includes a protective film for protecting the element and the wiring, an insulating film for insulating the element and the wiring, a planarizing film for planarizing the element surface, An interlayer insulating film or the like that insulates the multilayered wirings is provided. In recent years, a display device having a new mechanism that realizes a high viewing angle and a high contrast, for example, a liquid crystal display device using an MVA (Multi-domain Vertical Alignment) mode is formed on the electrode surface for controlling the alignment of liquid crystal molecules. New element components such as protrusions and spacers that insulate the electrodes with organic EL elements have appeared. On the other hand, for semiconductor devices and printed wiring boards on which they are mounted, a protective film for protecting semiconductor elements and circuits, an insulating film for insulating between semiconductor elements and circuits, or insulation between multilayered wirings An interlayer insulating film is formed. The materials used for these insulating film and protective film components are heat resistant to withstand the heat history during the processing process, and reliable enough to maintain long-term insulating properties in the temperature and humidity ranges used. Sex is required.

更に、表示素子用材料としては、高い透明性も要求される。ところが、近年電子機器の軽薄短小化に伴い、表示素子の高精細化、半導体装置やプリント配線板の小型化や高集積化が進展しているために、これらの絶縁膜、或いは保護膜等に使われる材料に種々の技術的問題点が生じている。一つには、配線の高密度化及び信号の高速化に伴い、隣接する配線を通る信号間の干渉が問題になってきている。そのために、絶縁層には高い耐熱性及び信頼性と共に誘電率の低い材料が求められている。ところが、従来の耐熱性、高信頼性絶縁材料として使用されてきたポリイミド樹脂は、その樹脂骨格中に共役複素環基を有し、実際これが高い耐熱性に寄与しているわけであるが、同時に樹脂の誘電率を引き上げ、高細密化された配線間での信号の干渉を引き起こし、好ましくなかった。更に、この共役複素環基が光を吸収するため、高い透明性が要求される表示素子用材料には適応しにくいといった問題もあった。   Furthermore, high transparency is required as a display element material. However, as electronic devices have become lighter, thinner, and smaller in recent years, high definition of display elements and miniaturization and high integration of semiconductor devices and printed wiring boards have been developed. Various technical problems arise in the materials used. For example, with the increase in wiring density and signal speed, interference between signals passing through adjacent wirings has become a problem. Therefore, a material having a low dielectric constant as well as high heat resistance and reliability is required for the insulating layer. However, the polyimide resin that has been used as a conventional heat-resistant and highly reliable insulating material has a conjugated heterocyclic group in its resin skeleton, and this actually contributes to high heat resistance. The dielectric constant of the resin was raised, causing signal interference between highly densified wiring, which was not preferable. Further, since this conjugated heterocyclic group absorbs light, there is a problem that it is difficult to adapt to a display element material that requires high transparency.

これらの用途に適応可能な樹脂として、近年ベンゾシクロブテン樹脂が開発されている。これは、1,2−ジヒドロベンゾシクロブテン構造を有する化合物を使用して、最高250℃の熱硬化により架橋構造を形成するものである(例えば、非特許文献1参照。)。この樹脂の特長として、低い誘電率及び高い透明性と共に、耐熱性や高信頼性とを有しているため、上記のような絶縁材料への使用に非常に適した材料といえる。   In recent years, benzocyclobutene resins have been developed as resins that can be used for these applications. This uses a compound having a 1,2-dihydrobenzocyclobutene structure to form a crosslinked structure by thermal curing at a maximum of 250 ° C. (see, for example, Non-Patent Document 1). Since this resin has a low dielectric constant and high transparency as well as heat resistance and high reliability, it can be said that the resin is very suitable for use as an insulating material as described above.

一方、これらの半導体装置やプリント配線板、表示素子中には、小スペース中に高い密度の配線を作成しなければならず、絶縁樹脂を貫通して配線の導通を取るためのスルホール等のパターンを樹脂層で形成しなければならない。このようなパターン形成を容易に行う技術として、感光性樹脂組成物の使用が一般的になってきた。これは、光反応性を有する樹脂組成物で、樹脂層形成後に樹脂層を除去したい部位のみ、或いは樹脂層を除去したい部位以外のみに選択的に露光し、現像を行うことで除去したい部位の樹脂層のみを溶解除去し、パターン加工を行えるようにするものである。これら現像等による樹脂層の溶解の際、従来は有機溶剤が主に使用されていたが、良好な作業環境を確保するため、アルカリ等の水溶液で溶解加工ができる感光性樹脂組成物が要求されている。   On the other hand, in these semiconductor devices, printed wiring boards, and display elements, high density wiring must be created in a small space, and patterns such as through-holes for penetrating the wiring through the insulating resin Must be formed of a resin layer. As a technique for easily forming such a pattern, use of a photosensitive resin composition has become common. This is a resin composition having photoreactivity, and after selectively forming only the part where the resin layer is to be removed after forming the resin layer, or only the part other than the part where the resin layer is to be removed, development is performed. Only the resin layer is dissolved and removed so that pattern processing can be performed. Conventionally, an organic solvent has been mainly used for dissolution of the resin layer by development or the like. However, in order to ensure a good working environment, a photosensitive resin composition that can be dissolved by an aqueous solution of alkali or the like is required. ing.

上記のベンゾシクロブテン樹脂においても、感光性樹脂(例えば、特許文献1参照。)が開発されており、アルカリ現像が可能なものも開示されている(例えば、特許文献2参照。)。しかし、アルカリ現像性を発現するために導入されたカルボルキシル基により、樹脂層の誘電率や耐湿信頼性等の特性が低下するおそれがある。そこで、パターン形成が容易で、高耐熱性、高信頼性、更に高い透明性、低誘電率に優れた特性を有する新規のアルカリ可溶性感光性樹脂組成物が望まれており、その特性を発現できる原料が求められている。
北村他著、「熱硬化性樹脂」、合成樹脂工業協会、平成6年、第15巻、第2号、p.95〜108 特開平11−503248号公報(全頁) 米国特許第6,361,926号明細書(全頁)
Among the above benzocyclobutene resins, photosensitive resins (for example, see Patent Document 1) have been developed, and those capable of alkali development are also disclosed (for example, see Patent Document 2). However, the carboxyl group introduced to develop alkali developability may deteriorate characteristics such as dielectric constant and moisture resistance reliability of the resin layer. Therefore, there is a demand for a novel alkali-soluble photosensitive resin composition that is easy to form a pattern, has high heat resistance, high reliability, high transparency, and low dielectric constant, and can exhibit the characteristics. Raw materials are needed.
Kitamura et al., “Thermosetting Resin”, Synthetic Resin Industry Association, 1994, Vol. 15, No. 2, p. 95-108 JP 11-503248 A (all pages) US Pat. No. 6,361,926 (all pages)

本発明は、表示素子用、半導体用或いはプリント配線用等の絶縁膜、保護膜もしくは層間絶縁膜用材料等に使用可能な、パターン形成が容易で、高耐熱性、耐湿信頼性等の高信頼性、更に高い透明性、低誘電率に優れた特性を有するアルカリ可溶性感光性樹脂組成物の原料として有用なカルボン酸の製造方法とアルカリ可溶性樹脂組成物に関するものである。   The present invention can be used for an insulating film, a protective film or an interlayer insulating film material for display elements, semiconductors or printed wirings, and can be easily formed with a pattern, and has high reliability such as high heat resistance and moisture resistance reliability. The present invention relates to a method for producing a carboxylic acid and an alkali-soluble resin composition useful as a raw material for an alkali-soluble photosensitive resin composition having excellent properties, high transparency, and low dielectric constant.

本発明は、
[1]パラジウム触媒錯体、塩基の存在下、式(1)で示される化合物と、一般式(2)で示される化合物とを反応させることを特徴とする、一般式(3)で示される芳香族カルボン酸の製造方法、
The present invention
[1] A fragrance represented by general formula (3), characterized by reacting a compound represented by formula (1) with a compound represented by general formula (2) in the presence of a palladium catalyst complex and a base. A method for producing an aromatic carboxylic acid,

1は水素原子、―CO―R2または―SO2―R2である。 R 1 is a hydrogen atom, —CO—R 2 or —SO 2 —R 2 .

nは1以上の整数であり、R1は水素原子、―CO―R2または―SO2―R2である。 n is an integer of 1 or more, and R 1 is a hydrogen atom, —CO—R 2 or —SO 2 —R 2 .

[2] 塩基が11以上のpkaを有することを特徴とする、第[1]項記載の芳香族カルボン酸の製造方法、
[3] 一般式(3)で示される化合物と、1分子中にベンゾシクロブテン構造を2個以上有する化合物とを100〜200℃で加熱反応して得られる樹脂で、カルボキシル基当量が400g/モル以下であることを特徴とするアルカリ可溶性樹脂、
である。
[2] The method for producing an aromatic carboxylic acid according to item [1], wherein the base has a pka of 11 or more,
[3] A resin obtained by heating and reacting a compound represented by the general formula (3) and a compound having two or more benzocyclobutene structures in one molecule at 100 to 200 ° C., and having a carboxyl group equivalent of 400 g / An alkali-soluble resin, characterized in that it is less than or equal to a mole;
It is.

本発明の原料を使用したアルカリ可溶性感光性樹脂組成物を用いることによって、アルカリ水溶液によるフォトリソグラフィー工程でパターン形成が容易で、高耐熱性、耐湿信頼性等の高信頼性、更に高い透明性、低誘電率に優れた特性を有する絶縁樹脂層を得ることができる。この絶縁樹脂層は、表示素子用、半導体用或いはプリント配線用等の絶縁膜、保護膜もしくは層間絶縁膜用材料等に使用可能となり、産業上有用である。   By using the alkali-soluble photosensitive resin composition using the raw material of the present invention, pattern formation is easy in a photolithography process using an alkaline aqueous solution, high reliability such as high heat resistance and moisture resistance reliability, and further high transparency, An insulating resin layer having excellent characteristics with a low dielectric constant can be obtained. This insulating resin layer can be used for an insulating film for a display element, a semiconductor or a printed wiring, a protective film or an interlayer insulating film material, and is industrially useful.

本発明で得られるカルボン酸(一般式(3))は、一般式(4)で示される化合物と、一般式(5)で示される化合物とを加熱反応して得られる。一般式(3)で示される化合物の製造方法は、Heck反応を使用することができる。Heck反応はパラジウム触媒により引き起こされる、アルケンと、有機ハロゲン化合物、特にハロゲン化アリールとのカップリング反応である。具体的には、たとえば式(4)で示される化合物と式(5)で示される化合物を、溶媒、パラジウム触媒およびトリメチルアミンのような酸捕捉剤の存在下、不活性雰囲気中で攪拌しながら加熱反応することにより得ることができる。
又本発明では、式(4)で示される化合物と式(5)で示される化合物とを加熱反応して得られる化合物に、更に置換基を導入してもよい。
置換基を導入した具体例としては、例えば、式(6)、式(7)で示される化合物が挙げられる。これらの化合物では、置換基がカルボニル基、スルホン基を介して結合していることにより、後述する脱炭酸反応をより効率的に起すことができる。
The carboxylic acid (general formula (3)) obtained in the present invention is obtained by subjecting the compound represented by the general formula (4) and the compound represented by the general formula (5) to a heating reaction. The method for producing the compound represented by the general formula (3) can use a Heck reaction. The Heck reaction is a coupling reaction of an alkene and an organic halogen compound, particularly an aryl halide, caused by a palladium catalyst. Specifically, for example, the compound represented by formula (4) and the compound represented by formula (5) are heated with stirring in an inert atmosphere in the presence of a solvent, a palladium catalyst and an acid scavenger such as trimethylamine. It can be obtained by reacting.
Moreover, in this invention, you may introduce | transduce a substituent into the compound obtained by heat-reacting the compound shown by Formula (4), and the compound shown by Formula (5).
Specific examples of the substituent introduced include compounds represented by formula (6) and formula (7). In these compounds, since the substituent is bonded via a carbonyl group or a sulfone group, the decarboxylation reaction described later can be more efficiently caused.

(R2はハロゲン原子である。) (R 2 is a halogen atom.)

本発明に使用される、パラジウム触媒の例としてはパラジウムアセテート、テトラキス(トリフェニルホスフィン)パラジウム、ビス(トリフェニルホスフィン)パラジウムジアセテート、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、テトラキス(メチルジフェニルホスフィン)パラジウム、トランス−ジ−μ−アセトビス[2−(ジ−o−トリルホスフィノ)ベンジル]ジパラジウム等が挙げることができ、これらは単独でも併用してもよい。   Examples of the palladium catalyst used in the present invention include palladium acetate, tetrakis (triphenylphosphine) palladium, bis (triphenylphosphine) palladium diacetate, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium. , Tetrakis (methyldiphenylphosphine) palladium, trans-di-μ-acetobis [2- (di-o-tolylphosphino) benzyl] dipalladium, and the like, which may be used alone or in combination.

本発明に使用されるリン配位子としては、トリフェニルホスフィン、1,3−ビス(ジフェニルホスフィノ)プロパン、rac−2,2‘−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル、トリ−o−トリルホスフィン等が挙げることができ、これらは単独でも併用してもよい。   Examples of the phosphorus ligand used in the present invention include triphenylphosphine, 1,3-bis (diphenylphosphino) propane, rac-2,2′-bis (diphenylphosphino) -1,1′-binaphthyl, Examples include tri-o-tolylphosphine, and these may be used alone or in combination.

本発明に使用される、ハロゲン化水素受容体としての塩基の例としてはジペンチルアミン(pka=11.2)、ピロリジン(pka=11.2)、ジブチルアミン(pka=11.3)、ジベンゾイルメタン(pka=13.8)等が挙げることができ、これらは単独でも併用しても良い。   Examples of bases as hydrogen halide acceptors used in the present invention include dipentylamine (pka = 11.2), pyrrolidine (pka = 11.2), dibutylamine (pka = 11.3), dibenzoyl Methane (pka = 13.8) and the like can be mentioned, and these may be used alone or in combination.

本発明で得られるカルボン酸と1分子中にベンゾシクロブテン構造を2個以上有する化合物とを無溶媒或いは溶媒中で、100〜200℃で加熱することでアルカリ可溶性樹脂を製造することができ、カルボキシル基当量が400g/モル以下であるものである。カルボキシル基当量が400g/モル以下であれば、特に限定しないが現像時に用いる水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水等の無機アルカリ類、水酸化テトラメチルアンモニウムやエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アルカリ類の水溶液、及びこれにメタノール、エタノールのごときアルコール類等の水溶性有機溶剤や界面活性剤を適当量添加したアルカリ水溶液に可溶となる。カルボキシル基当量が400g/モルよりも大きいと、上記のアルカリ水溶液への溶解性が発現しにくくなり、パターン加工を行うことができなくなる。樹脂中のカルボキシル基の量は、標準アルカリ溶液を使用した樹脂溶液の滴定などにより測定することができる。   An alkali-soluble resin can be produced by heating the carboxylic acid obtained in the present invention and a compound having two or more benzocyclobutene structures in one molecule in a solvent-free or solvent at 100 to 200 ° C., The carboxyl group equivalent is 400 g / mol or less. As long as the carboxyl group equivalent is 400 g / mol or less, there is no particular limitation, but inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia used during development, tetramethylammonium hydroxide, ethylamine, triethylamine, and triethanol are used. It becomes soluble in an aqueous solution of an organic alkali such as amine, and an aqueous alkaline solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol, or a surfactant is added. When the carboxyl group equivalent is larger than 400 g / mol, the above-described solubility in an aqueous alkaline solution is hardly exhibited, and pattern processing cannot be performed. The amount of carboxyl groups in the resin can be measured by titration of the resin solution using a standard alkaline solution.

本発明に用いられる1分子中にベンゾシクロブテン構造を2個以上有する化合物としては、下記の式(8)、式(9)、式(10)で示される化合物等が挙げられるが、これらに限定されるものではない。これらのうちでは、加熱硬化した樹脂の機械特性などの見地より、一般式(8)で示される化合物が好ましい。   Examples of the compound having two or more benzocyclobutene structures in one molecule used in the present invention include compounds represented by the following formula (8), formula (9), and formula (10). It is not limited. Of these, the compound represented by the general formula (8) is preferable from the viewpoint of mechanical properties of the heat-cured resin.

本発明の原料から製造できるアルカリ可溶性樹脂は、一般式(3)で示される化合物と1分子中にベンゾシクロブテン構造を2個以上有する化合物とを無溶媒或いは溶媒中で、100〜200℃で加熱すればよい。100℃未満だと高分子量化反応が十分に起こらず製膜性等が劣ってしまう。逆に200℃を越えると樹脂が三次元架橋を起して不溶化してしまい、使用できなくなる。反応時間は、反応温度にもよるが100時間未満が好ましい。これにより適度な分子量の樹脂を得ることができる。100時間を越えると、生成する樹脂が高分子量になるとともに3次元化が進み、アルカリ溶解性が低下するので好ましくない。これらのアルカリ可溶性樹脂の分子量は、GPC(ゲル浸透クロマトグラフィー)でポリスチレン換算値として測定することができるが、良好な溶解性や製膜性などを得るためには、この値が重量平均分子量として1000以上30000以下であることが望ましい。   The alkali-soluble resin that can be produced from the raw material of the present invention comprises a compound represented by the general formula (3) and a compound having two or more benzocyclobutene structures in one molecule at 100 to 200 ° C. without solvent or in a solvent. What is necessary is just to heat. When the temperature is lower than 100 ° C., the high molecular weight reaction does not occur sufficiently and the film-forming property is deteriorated. On the other hand, if the temperature exceeds 200 ° C., the resin is insolubilized due to three-dimensional crosslinking, and cannot be used. Although depending on the reaction temperature, the reaction time is preferably less than 100 hours. Thereby, an appropriate molecular weight resin can be obtained. If it exceeds 100 hours, the resulting resin will have a high molecular weight, and the three-dimensionalization will proceed, resulting in a decrease in alkali solubility. The molecular weight of these alkali-soluble resins can be measured as a polystyrene-converted value by GPC (gel permeation chromatography), but in order to obtain good solubility and film-forming properties, this value is used as the weight average molecular weight. It is desirable that it is 1000 or more and 30000 or less.

また、この樹脂製造の際、一般式(3)で示される化合物と1分子中にベンゾシクロブテン構造を2個以上有する化合物の仕込み比を変えることにより、得られる樹脂のカルボキシル基当量を制御することができる。反応を溶媒中で行う場合の溶媒としては、メシチレン、γ−ブチロラクトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、乳酸エチル等を挙げることができ、これらは単独でも併用してもよい。溶媒中で反応した場合、反応物は樹脂溶液として得られる。感光性樹脂組成物を製造する場合、前記樹脂溶液をそのまま用いてもよいし、加工作業性を考慮して、更に前記のような溶媒を添加してもよい。無溶媒中で反応した場合、得られた樹脂を前記のような溶媒に溶解し、感光性樹脂組成物を製造すればよい。アルカリ可溶性樹脂を樹脂溶液で得た場合、溶液中の樹脂の濃度は、ある重量の樹脂溶液を150℃で60分加熱し、得られる固形分の量と元の樹脂溶液の重量との比として知ることができる。   In addition, during the resin production, the carboxyl group equivalent of the resulting resin is controlled by changing the charging ratio of the compound represented by the general formula (3) and the compound having two or more benzocyclobutene structures in one molecule. be able to. Solvents used for the reaction in a solvent include mesitylene, γ-butyrolactone, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, propylene glycol monomethyl ether , Propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethyl lactate and the like. These may be used alone or in combination. When reacted in a solvent, the reaction product is obtained as a resin solution. When producing a photosensitive resin composition, the resin solution may be used as it is, or a solvent as described above may be further added in consideration of processing workability. When the reaction is carried out in the absence of a solvent, the resulting resin may be dissolved in the solvent as described above to produce a photosensitive resin composition. When an alkali-soluble resin is obtained as a resin solution, the concentration of the resin in the solution is as follows: the weight of the resin solution is heated at 150 ° C. for 60 minutes; I can know.

得られた樹脂は、前記したようなアルカリ溶液に可溶であり、前記したアルカリ可溶性樹脂、該アルカリ可溶性樹脂100重量部に対し、0.01〜10重量部の塩基性物質及び1,2−キノンジアジド構造又は1,2−ナフトキノンジアジド構造を有する感光材を含むアルカリ可溶性感光性樹脂組成物を基板に塗布し樹脂層を形成し、露光、現像、リンス、後露光して、加熱硬化する際に樹脂層に存在するカルボキシル基を系外に除去するが、100〜250℃の加熱温度域において0.5時間以上加熱することで、アルカリ可溶性樹脂中のカルボキシル基の50%以上が脱炭酸反応により系外に除去される。加熱硬化前後の樹脂中のカルボキシル基は、各樹脂の赤外吸収スペクトルで、カルボキシル基に由来する水酸基の吸収の強度を比較することにより定量を行うことができるが、加熱により除去されるカルボキシル基が、50%未満だと樹脂層の誘電率、耐湿信頼性に悪影響を及ぼす。   The obtained resin is soluble in the alkali solution as described above, and 0.01 to 10 parts by weight of the basic substance and 1,2-based on the alkali-soluble resin and 100 parts by weight of the alkali-soluble resin. When an alkali-soluble photosensitive resin composition containing a photosensitive material having a quinonediazide structure or a 1,2-naphthoquinonediazide structure is applied to a substrate to form a resin layer, exposed, developed, rinsed, post-exposed, and heat cured Carboxyl groups present in the resin layer are removed from the system, but by heating for 0.5 hours or more in a heating temperature range of 100 to 250 ° C., 50% or more of the carboxyl groups in the alkali-soluble resin are decarboxylated. Removed outside the system. The carboxyl group in the resin before and after heat curing can be quantified by comparing the intensity of absorption of the hydroxyl group derived from the carboxyl group in the infrared absorption spectrum of each resin, but the carboxyl group removed by heating However, if it is less than 50%, the dielectric constant and moisture resistance reliability of the resin layer are adversely affected.

本発明より得られた感光性樹脂組成物に塩基性物質を添加することで、アルカリ可溶性樹脂中のカルボキシル基や、後述する後露光によって樹脂層中の感光材より生成するカルボキシル基の脱炭酸反応を促進することができる。塩基性物質として、たとえば水酸化ナトリウム、水酸化カリウム、ソーダ石灰などの無機塩基、2−メチルイミダゾール等のイミダゾール誘導体、1−ヒドロキシエチル−2−アルキルイミダゾリン、1,5−ジアザビシクロ〔4,3,0〕ノン−5−エン、1,8−ジアザビシクロ〔5,4,0〕−7−ウンデセン、トリエタノールアミン、トリフェニルホスフィン等の有機塩基を挙げることができるが、これらに限定されるものではない。これらの中では、樹脂組成物中のイオン性不純物による回路配線腐食の防止等の見地より、有機塩基の使用がより好ましい。これらは単独でも併用してもよい。塩基性物質の配合量は、アルカリ可溶性樹脂(溶液の場合、その固形分)100重量部に対し0.01〜10重量部である。更に好ましくは0.1〜5重量部が望ましい。下限値未満だとアルカリ可溶性樹脂中のカルボキシル基の50%以上が系外に除去されず、樹脂層の誘電率、耐湿信頼性に悪影響を及ぼす。逆に、上限値を越えると、残留する塩基性物質自身の影響により耐湿信頼性がかえって低下してしまう。   By adding a basic substance to the photosensitive resin composition obtained from the present invention, a decarboxylation reaction of a carboxyl group in an alkali-soluble resin or a carboxyl group generated from a photosensitive material in a resin layer by post-exposure described later Can be promoted. Examples of basic substances include inorganic bases such as sodium hydroxide, potassium hydroxide and soda lime, imidazole derivatives such as 2-methylimidazole, 1-hydroxyethyl-2-alkylimidazoline, 1,5-diazabicyclo [4,3, 0] non-5-ene, 1,8-diazabicyclo [5,4,0] -7-undecene, triethanolamine, triphenylphosphine, and other organic bases can be mentioned, but the examples are not limited thereto. Absent. In these, use of an organic base is more preferable from viewpoints, such as prevention of circuit wiring corrosion by the ionic impurity in a resin composition. These may be used alone or in combination. The compounding quantity of a basic substance is 0.01-10 weight part with respect to 100 weight part of alkali-soluble resin (The solid content in the case of a solution). More preferably, 0.1 to 5 parts by weight is desirable. If it is less than the lower limit, 50% or more of the carboxyl groups in the alkali-soluble resin are not removed out of the system, which adversely affects the dielectric constant and moisture resistance reliability of the resin layer. On the other hand, when the upper limit is exceeded, the moisture resistance reliability is lowered due to the influence of the remaining basic substance itself.

本発明のアルカリ可溶性樹脂組成物に用いられる感光材は、1,2−ベンゾキノンジアジド又は1,2−ナフトキノンジアジド構造を有しており、これらのうちでは、特に小さい露光量で高い溶解性のコントラストを得るために、1,2−ナフトキノン−2−ジアジド−5−スルホン酸或いは1,2−ナフトキノン−2−ジアジド−4−スルホン酸とフェノール化合物とのエステル化合物が好ましい。この感光材は、放射線照射による露光時の光反応でカルボキシル基を生成し、露光部のアルカリ現像液に対する溶解性を増加させるポジ型の感光材として機能する。この感光材の配合量は、アルカリ可溶性樹脂(溶液の場合、その固形分)100重量部に対して1〜50重量部が好ましく、更に好ましくは2〜25重量部が望ましい。1重量部未満だと感光性樹脂組成物のパターン形成が困難になり、50重量部を越えると感度が大幅に低下するので好ましくない。本発明に用いられるアルカリ可溶性感光性樹脂組成物は、感度等の特性向上を目的として、必要によりフェノール化合物や、シランカップリング剤、レベリング剤等を適宜配合することができる。   The photosensitive material used in the alkali-soluble resin composition of the present invention has a 1,2-benzoquinonediazide or 1,2-naphthoquinonediazide structure, and among these, a high solubility contrast with a particularly small exposure amount. In order to obtain 1,2-naphthoquinone-2-diazide-5-sulfonic acid or an ester compound of 1,2-naphthoquinone-2-diazide-4-sulfonic acid and a phenol compound is preferable. This photosensitive material functions as a positive photosensitive material that generates a carboxyl group by a photoreaction during exposure by radiation irradiation and increases the solubility of the exposed portion in an alkaline developer. The blending amount of the photosensitive material is preferably 1 to 50 parts by weight, more preferably 2 to 25 parts by weight with respect to 100 parts by weight of the alkali-soluble resin (solid content in the case of a solution). If the amount is less than 1 part by weight, it is difficult to form a pattern of the photosensitive resin composition, and if it exceeds 50 parts by weight, the sensitivity is greatly lowered, which is not preferable. The alkali-soluble photosensitive resin composition used in the present invention can be appropriately blended with a phenol compound, a silane coupling agent, a leveling agent and the like as necessary for the purpose of improving characteristics such as sensitivity.

本発明によるアルカリ可溶性感光性樹脂組成物を用いた樹脂層の製造方法として、例えば、ガラス、半導体素子、回路配線等の基板上に樹脂層を形成し、フォトリソグラフィーにより露光、現像を行った後、後露光を行い、加熱硬化で樹脂層を完成させる方法を挙げることができる。樹脂層の形成方法としては、キャスト法により感光性樹脂組成物の溶液を基板上へ塗布した後、乾燥により溶剤除去する方法等を挙げることができる。露光は、上記感光材が反応を起こし得るエネルギーの波長を有する放射線をパターン形状に照射することにより行われる。具体的には、X線、電子線、紫外線、可視光線等が使用できるが、200〜500nmの波長のものが望ましい。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水等の無機アルカリ類、水酸化テトラメチルアンモニウムやエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アルカリ類の水溶液、及びこれにメタノール、エタノールのごときアルコール類等の水溶性有機溶剤や界面活性剤を適当量添加した水溶液を好適に使用することができる。   As a method for producing a resin layer using the alkali-soluble photosensitive resin composition according to the present invention, for example, after forming a resin layer on a substrate such as glass, a semiconductor element, or a circuit wiring, and performing exposure and development by photolithography A method of performing post-exposure and completing the resin layer by heat curing can be mentioned. Examples of the method for forming the resin layer include a method in which a solution of the photosensitive resin composition is applied onto a substrate by a casting method and then the solvent is removed by drying. The exposure is performed by irradiating the pattern shape with radiation having an energy wavelength that can cause the photosensitive material to react. Specifically, X-rays, electron beams, ultraviolet rays, visible rays, and the like can be used, but those having a wavelength of 200 to 500 nm are desirable. As the developer, inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia, aqueous solutions of organic alkalis such as tetramethylammonium hydroxide, ethylamine, triethylamine and triethanolamine, and methanol, An aqueous solution to which an appropriate amount of a water-soluble organic solvent such as alcohol or a surfactant such as ethanol is added can be preferably used.

現像方式は、基板の現像液への浸漬、パドル現像、スプレー現像、超音波現像等を挙げることができる。現像後に形成した樹脂パターンをリンスする。リンス液としては、蒸留水を用いる。後露光は、現像後の樹脂層全面にパターン露光時に使用した露光機やUVコンベア等で露光を行うことができる。この工程により感光材中の未反応の感光基がカルボキシル基に変換され、光の吸収を抑えることにより透明性に優れた樹脂層が得られる。後露光の後に加熱硬化することにより樹脂層を完成させる。即ち、加熱によって樹脂中のベンゾシクロブテン構造が反応することで強固な架橋構造を形成し、耐熱性を発現し得るようになると同時に、この加熱によって樹脂中に存在し、光加工時にアルカリ可溶性の発現に寄与していたカルボキシル基、後露光部によって樹脂層中に存在する感光材より生成したカルボキシル基を脱炭酸反応によって系外に除去させ、加工後の樹脂層の誘電率や耐湿信頼性等の信頼性に悪影響が残るのを防止できることが、本発明の最大の特徴である。後硬化は、オーブンやホットプレートを使用して、100〜250℃まで加熱することによって行うことができる。加熱は、窒素やアルゴン等のアルカリ可溶性感光性樹脂組成物と直接反応を起こさない不活性気体雰囲気中で行う。かかる工程の後に、耐熱性や信頼性、電気特性、透明性に優れた樹脂層を得ることができる。   Examples of the development method include immersion of the substrate in a developer, paddle development, spray development, ultrasonic development, and the like. The resin pattern formed after development is rinsed. Distilled water is used as the rinse liquid. In the post-exposure, the entire surface of the resin layer after development can be exposed with an exposure machine, a UV conveyor, or the like used for pattern exposure. By this step, unreacted photosensitive groups in the photosensitive material are converted to carboxyl groups, and a resin layer having excellent transparency can be obtained by suppressing light absorption. The resin layer is completed by heat-curing after post-exposure. That is, when the benzocyclobutene structure in the resin reacts by heating, a strong cross-linked structure can be formed and heat resistance can be expressed, and at the same time, the heat is present in the resin and is alkali-soluble during photoprocessing. Carboxyl groups that contributed to expression and carboxyl groups generated from the photosensitive material present in the resin layer by the post-exposure part are removed out of the system by decarboxylation reaction, and the dielectric constant and moisture resistance reliability of the processed resin layer, etc. The greatest feature of the present invention is that it can prevent adverse effects on the reliability of the system. Post-curing can be performed by heating to 100 to 250 ° C. using an oven or a hot plate. Heating is performed in an inert gas atmosphere that does not directly react with an alkali-soluble photosensitive resin composition such as nitrogen or argon. After this step, a resin layer having excellent heat resistance, reliability, electrical characteristics, and transparency can be obtained.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例によって何ら制約されるものではない。
得られた化合物は特性評価のため、融点測定、1H−NMR、13C(1H)−NMR、MSの各種スペクトルの測定および元素分析を行った。各特性の測定条件は次のとおりとした。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited at all by these Examples.
The obtained compound was subjected to melting point measurement, 1 H-NMR, 13 C ( 1 H) -NMR, measurement of various spectra of MS and elemental analysis for property evaluation. The measurement conditions for each characteristic were as follows.

試験方法
(1)融点:セイコー電子製DSC−200型示差走査熱量計(DSC)を用い、10℃/min.の昇温速度により、測定した。
(2)核磁気共鳴スペクトル分析(1H−NMR、13C(1H)−NMR):日本電子製JNM−GSX400型を用いて測定した。1H−NMRは共鳴周波数400MHz、13C(1H )−NMRは共鳴周波数100MHzで、それぞれ測定した。測定溶媒は、重水素化溶媒である重水素化アセトンCD3COCD3を、それぞれ用いた。
(3)赤外分光分析(IR):パーキンエルマー社製PARAGON100型を用いて、KBr錠剤法により測定した。
(4)質量分析(MS):日本電子(株)製JMS−700型を用いてフィールド脱着(FD)法で測定した。
(5)元素分析:炭素及び水素はPERKIN ELMER社製2400型を用いて測定した。
Test method (1) Melting point: DSC-200 type differential scanning calorimeter (DSC) manufactured by Seiko Electronics Co., Ltd., 10 ° C./min. It measured by the temperature increase rate of.
(2) Nuclear magnetic resonance spectrum analysis ( 1 H-NMR, 13 C ( 1 H) -NMR): Measured using JNM-GSX400 type manufactured by JEOL. 1 H-NMR was measured at a resonance frequency of 400 MHz, and 13 C ( 1 H) -NMR was measured at a resonance frequency of 100 MHz. As a measurement solvent, deuterated acetone CD 3 COCD 3 which is a deuterated solvent was used.
(3) Infrared spectroscopic analysis (IR): Measured by the KBr tablet method using a PARAGON 100 model manufactured by PerkinElmer.
(4) Mass spectrometry (MS): Measured by a field desorption (FD) method using a JMS-700 type manufactured by JEOL Ltd.
(5) Elemental analysis: Carbon and hydrogen were measured using a Model 2400 manufactured by PERKIN ELMER.

実施例1
温度計、冷却管、窒素導入管、攪拌装置を装着した200mL入り4口フラスコに4−ブロモベンゾシクロブテン36.6g(0.2モル)、3−ブテン酸21.5g(0.25モル)、トリフェニルホスフィン1.82g(0.007モル)、ジブチルアミン25.8g(0.2モル、pka=11.3)、酢酸パラジウム0.39g(0.002モル)及びN,N−ジメチルホルムアミド75mLを導入し、窒素気流下攪拌しながら90℃で5時間加熱した。加熱後、反応系を10%水酸化ナトリウム水溶液中に滴下し、トルエンで未反応物を抽出除去した後、10%塩酸を滴下し、濾過により得られた析出物をメタノールにより再結晶し、室温で真空乾燥することにより、白色結晶である式(11)の1−(ベンゾシクロブテン−4−イル)−3−ブテン酸を35.2gを得た(収率93.5%)。
Example 1
4-Bromobenzocyclobutene (36.6 g, 0.2 mol) and 3-butenoic acid (21.5 g, 0.25 mol) were added to a 200 mL 4-neck flask equipped with a thermometer, a cooling tube, a nitrogen inlet tube, and a stirring device. , 1.82 g (0.007 mol) of triphenylphosphine, 25.8 g (0.2 mol, pka = 11.3) of dibutylamine, 0.39 g (0.002 mol) of palladium acetate and N, N-dimethylformamide 75 mL was introduced and heated at 90 ° C. for 5 hours with stirring under a nitrogen stream. After heating, the reaction system was dropped into a 10% aqueous sodium hydroxide solution, unreacted substances were extracted and removed with toluene, 10% hydrochloric acid was dropped, and the precipitate obtained by filtration was recrystallized from methanol, Was dried in vacuo to give 35.2 g of 1- (benzocyclobuten-4-yl) -3-butenoic acid of the formula (11) as white crystals (yield 93.5%).

得られた1−(ベンゾシクロブテン−4−イル)−3−ブテン酸のスペクトルデータを以下に示す。これらのデータは、得られた化合物が目的物であることを支持している。

[1−(ベンゾシクロブテン−4−イル)−3−ブテン酸(C12122)]
外観:淡黄色固体
融点:187℃(DSC、10℃/min)
1H−NMR:(400MHz、CD3OCD3−d6):δ7.38(d、1H)、7.22(d、1H)、7.06(d、1H)、6.07(s、2H)、3.15(s、4H)、2.55(s、1H)、2.53(s、2H)

13C(1H)−NMR:(100MHz、DMSO−d6):δ139.51、138.82、131.18、128.45、127.70、125.53、123.26、120.18、76.03、38.35、26.46、26.07

IR(KBr,cm-1):618、713、769、829、867、924、1143、1219、1258、1288、1351、1372、1443、1478、1504、1538、1556、1613、1681、1693、2350、2541、1925

MS(FD)(m/z):188.1(M+
元素分析:理論値 C:76.57% H:6.43%
実測値 C:76.50% H:6.39%
The spectrum data of the obtained 1- (benzocyclobuten-4-yl) -3-butenoic acid are shown below. These data support that the obtained compound is the target product.

[1- (Benzocyclobuten-4-yl) -3-butenoic acid (C 12 H 12 O 2 )]
Appearance: Pale yellow solid melting point: 187 ° C (DSC, 10 ° C / min)
1 H-NMR: (400 MHz, CD 3 OCD 3 -d 6 ): δ 7.38 (d, 1H), 7.22 (d, 1H), 7.06 (d, 1H), 6.07 (s, 2H), 3.15 (s, 4H), 2.55 (s, 1H), 2.53 (s, 2H)

13 C ( 1 H) -NMR: (100 MHz, DMSO-d 6 ): δ 139.51, 138.82, 131.18, 128.45, 127.70, 125.53, 123.26, 120.18, 76.03, 38.35, 26.46, 26.07

IR (KBr, cm −1 ): 618, 713, 769, 829, 867, 924, 1143, 1219, 1258, 1288, 1351, 1372, 1443, 1478, 1504, 1538, 1556, 1613, 1681, 1693, 2350 , 2541, 1925

MS (FD) (m / z): 188.1 (M <+> )
Elemental analysis: Theoretical value C: 76.57% H: 6.43%
Actual value C: 76.50% H: 6.39%

実施例2
実施例1のジブチルアミン25.8g(0.2モル、pka=11.3)の代わりにピロリジン14.2g(0.2モル、pka=11.2)を用いて、実施例1と同様に反応を行い白色結晶34.8g(収率92.4%)を得た。実施例1と同様の測定をおこない、式(11)と同じ化合物であることを確認した。
Example 2
Similar to Example 1, substituting 14.2 g (0.2 mol, pka = 11.2) of pyrrolidine for 25.8 g (0.2 mol, pka = 11.3) of dibutylamine of Example 1. Reaction was performed to obtain 34.8 g (yield 92.4%) of white crystals. The same measurement as in Example 1 was performed, and it was confirmed that the compound was the same as the formula (11).

実施例3
温度計、冷却管、窒素導入管、攪拌装置を装着した100ml入り4口フラスコに、前記で得られた(11)17.6g(0.093モル)、1,3−ビス(2−ビシクロ[4.2.0]オクタ−1,3,5−トリエン−3−イルエテニル)−1,1,3,3−テトラメチルジシロキサン11.8g(0.030モル)及び酢酸ジプロピレングリコールメチルエーテル88.2gを導入し、窒素気流中攪拌しながら160℃で50時間加熱反応することにより、樹脂溶液(2)(樹脂分23.8%)を得た。溶液の滴定により得られた、樹脂の固形分に対するカルボキシル基当量は320g/モルであった。得られた樹脂溶液(2)20g、トリフェニルホスフィン0.05g及び式(12)で示される感光材0.5gを混合し、均一な感光性樹脂組成物(4)を得た。
Example 3
In a 100 ml four-necked flask equipped with a thermometer, a condenser tube, a nitrogen inlet tube, and a stirrer, 17.6 g (0.093 mol) of the above-obtained (11), 1,3-bis (2-bicyclo [ 4.2.0] octa-1,3,5-trien-3-ylethenyl) -1,1,3,3-tetramethyldisiloxane 11.8 g (0.030 mol) and dipropylene glycol methyl ether 88 .2 g was introduced, and the mixture was reacted by heating at 160 ° C. for 50 hours while stirring in a nitrogen stream to obtain a resin solution (2) (resin content: 23.8%). The carboxyl group equivalent with respect to the solid content of the resin obtained by titration of the solution was 320 g / mol. 20 g of the obtained resin solution (2), 0.05 g of triphenylphosphine and 0.5 g of the photosensitive material represented by the formula (12) were mixed to obtain a uniform photosensitive resin composition (4).

得られた感光性樹脂組成物(4)をガラス基板上にスピンコーターで塗布し、ホットプレート上100℃で10分間乾燥させ、厚さ2μmの樹脂層を形成した。マスクを介した平行露光機(光源:高圧水銀灯)を使用して露光強度25mW/cm2で15秒間ガラスマスクを介し露光を行った。その後、2.38%水酸化テトラメチルアンモニウム水溶液に樹脂層を30秒間浸漬現像することにより、露光部の樹脂層は溶解し、パターン化された樹脂層を得ることができた。その後、樹脂層全体に露光時に用いた平行露光機を使用して、露光強度25mW/cm2で400秒間、後露光を行った後、熱風循環式乾燥器を使用して窒素気流下240℃で1時間加熱硬化を行った。別途、加熱硬化前後の(4)の赤外吸収スペクトルをFT−IRスペクトロメーター(PARAGON100型、パーキンエルマー社製)で測定したところ、2500〜3500cm-1に観察されるカルボキシル基の水酸基に由来する吸収が、加熱硬化により78%減少したことを確認した。 The obtained photosensitive resin composition (4) was applied onto a glass substrate with a spin coater and dried on a hot plate at 100 ° C. for 10 minutes to form a resin layer having a thickness of 2 μm. Using a parallel exposure machine (light source: high-pressure mercury lamp) through a mask, exposure was performed through a glass mask at an exposure intensity of 25 mW / cm 2 for 15 seconds. Thereafter, the resin layer was immersed and developed in an aqueous 2.38% tetramethylammonium hydroxide solution for 30 seconds, whereby the resin layer in the exposed area was dissolved, and a patterned resin layer could be obtained. Thereafter, the entire resin layer was post-exposed for 400 seconds at an exposure intensity of 25 mW / cm 2 using the parallel exposure machine used for exposure, and then heated at 240 ° C. under a nitrogen stream using a hot air circulation dryer. Heat curing was performed for 1 hour. Separately, the infrared absorption spectrum of (4) before and after heat curing was measured with an FT-IR spectrometer (PARAGON100 type, manufactured by PerkinElmer), and was derived from the carboxyl group hydroxyl group observed at 2500 to 3500 cm −1. It was confirmed that the absorption decreased by 78% by heat curing.

得られた樹脂層について、以下の特性を測定した。
透過率:透明性の目安として、上記の樹脂層付きガラス基板について、波長400nmでの光線の透過率を、分光光度計(UV−160型、島津製作所(株)・製)を用いて測定し、透過率は99%と透明性が良好であることがわかった。
吸水率:樹脂層付きガラス基板より剥離した樹脂層を23℃で24時間水中に浸漬し、浸漬前後の重量変化率を測定し、重量変化率は1.2%と低い値を示した。
誘電率:MIL−P−55617に準じて測定し、3.0の値を得た。
熱重量減少開始温度:示差熱天秤(TG/DTA 6200型、セイコーインスツルメンツ(株)・製)を用いて、窒素雰囲気中昇温速度を10℃/分として重量減少開始温度を測定し、重量減少温度は290℃であることがわかった。
測定結果はいずれの項目も良好な値を示した。
About the obtained resin layer, the following characteristics were measured.
Transmittance: As a measure of transparency, the light transmittance at a wavelength of 400 nm was measured using a spectrophotometer (UV-160, manufactured by Shimadzu Corporation) for the glass substrate with a resin layer. The transmittance was 99%, indicating that the transparency was good.
Water absorption: The resin layer peeled from the glass substrate with the resin layer was immersed in water at 23 ° C. for 24 hours, and the weight change rate before and after immersion was measured. The weight change rate was as low as 1.2%.
Dielectric constant: Measured according to MIL-P-55617, a value of 3.0 was obtained.
Thermal weight reduction start temperature: Using a differential thermal balance (TG / DTA 6200 type, manufactured by Seiko Instruments Inc.), the weight reduction start temperature was measured at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere to reduce the weight. The temperature was found to be 290 ° C.
The measurement results showed good values for all items.

比較例1
実施例1のジブチルアミン25.8g(0.2モル、pka=11.3)の代わりにトリエチルアミン20.2g(0.2モル、pka=10.8)を用いて、実施例1と同様に反応を行ったが、結晶は4.5g(収率11.9%)しか得られなかった。
Comparative Example 1
Similar to Example 1, substituting 20.2 g (0.2 mol, pka = 10.8) of triethylamine for 25.8 g (0.2 mol, pka = 11.3) of dibutylamine of Example 1. Although the reaction was performed, only 4.5 g (yield 11.9%) of crystals was obtained.

比較例2
実施例1のジブチルアミン25.8g(0.2モル、pka=11.3)の代わりにピリジン15.8g(0.2モル、pka=5.4)を用いて、実施例1と同様に反応を行ったが、結晶は得られなかった。
Comparative Example 2
Similar to Example 1 except that 15.8 g of pyridine (0.2 mol, pka = 5.4) was used instead of 25.8 g (0.2 mol, pka = 11.3) of dibutylamine of Example 1. The reaction was carried out, but no crystals were obtained.

比較例3
実施例1の3−ブテン酸21.5g(0.25モル)の代わりにアクリル酸18.0g(0.25モル)を用いて、実施例1と同様に反応を行い、白色結晶である式(13)の1−(ベンゾシクロブテン−4−イル)−2−ブテン酸を32.3gを得た(収率92.8%)。
Comparative Example 3
Using 18.0 g (0.25 mol) of acrylic acid instead of 21.5 g (0.25 mol) of 3-butenoic acid of Example 1, the reaction was carried out in the same manner as in Example 1, and the formula was a white crystal 32.3 g of 1- (benzocyclobuten-4-yl) -2-butenoic acid of (13) was obtained (yield 92.8%).

実施例3の式(11)17.6g(0.093モル)の代わりに、前記で得られた式(13)16.2g(0.093モル)を用いて、実施例3と同様に反応を行い、樹脂溶液を得た。実施例3と同様に感光性樹脂組成物を調整、塗布、加熱硬化を行い特性を調べた。
得られた樹脂層について、以下の特性を測定した。
透過率:透明性の目安として、上記の樹脂層付きガラス基板について、波長400nmでの光線の透過率を、分光光度計(UV−160型、島津製作所(株)・製)を用いて測定し、透過率は87%であることがわかった。
吸水率:樹脂層付きガラス基板より剥離した樹脂層を23℃で24時間水中に浸漬し、浸漬前後の重量変化率を測定し、重量変化率は2.8%と高い値を示した。
誘電率:MIL−P−55617に準じて測定し、3.1の値を得た。
熱重量減少開始温度:示差熱天秤(TG/DTA 6200型、セイコーインスツルメンツ(株)・製)を用いて、窒素雰囲気中昇温速度を10℃/分として重量減少開始温度を測定し、重量減少温度は210℃であることがわかった。
測定結果はいずれの項目も実施例3よりも劣る値を示した。
The same reaction as in Example 3 was carried out using 16.2 g (0.093 mol) of formula (13) obtained above instead of 17.6 g (0.093 mol) of formula (11) of Example 3. To obtain a resin solution. In the same manner as in Example 3, the photosensitive resin composition was prepared, applied, and heat-cured to examine the characteristics.
About the obtained resin layer, the following characteristics were measured.
Transmittance: As a measure of transparency, the light transmittance at a wavelength of 400 nm was measured using a spectrophotometer (UV-160, manufactured by Shimadzu Corporation) for the glass substrate with a resin layer. The transmittance was found to be 87%.
Water absorption: The resin layer peeled from the glass substrate with the resin layer was immersed in water at 23 ° C. for 24 hours, and the weight change rate before and after immersion was measured. The weight change rate was as high as 2.8%.
Dielectric constant: Measured according to MIL-P-55617 and obtained a value of 3.1.
Thermal weight reduction start temperature: Using a differential thermal balance (TG / DTA 6200 type, manufactured by Seiko Instruments Inc.), the weight reduction start temperature was measured at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere to reduce the weight. The temperature was found to be 210 ° C.
The measurement results showed values inferior to Example 3 for all items.

本発明は、表示素子用、半導体用或いはプリント配線用等の絶縁膜、保護膜もしくは層間絶縁膜用材料等に使用可能なアルカリ可溶性樹脂、感光性樹脂組成物の原料として有用なカルボン酸の製造方法とアルカリ可溶性樹脂を提供するものである。
本発明の原料を使用したアルカリ可溶性感光性樹脂組成物を用いることによって、アルカリ水溶液によるフォトリソグラフィー工程でパターン形成が容易で、高耐熱性、耐湿信頼性等の高信頼性、更に高い透明性、低誘電率に優れた特性を有する絶縁樹脂層を得ることができる。この絶縁樹脂層は、表示素子用、半導体用或いはプリント配線用等の絶縁膜、保護膜もしくは層間絶縁膜用材料等に使用可能となり、産業上有用である。
The present invention provides an alkali-soluble resin usable as an insulating film for a display element, a semiconductor or printed wiring, a protective film or an interlayer insulating film, and a carboxylic acid useful as a raw material for a photosensitive resin composition. A method and an alkali-soluble resin are provided.
By using the alkali-soluble photosensitive resin composition using the raw material of the present invention, pattern formation is easy in a photolithography process using an alkaline aqueous solution, high reliability such as high heat resistance and moisture resistance reliability, and further high transparency, An insulating resin layer having excellent characteristics with a low dielectric constant can be obtained. This insulating resin layer can be used for an insulating film for a display element, a semiconductor or a printed wiring, a protective film or an interlayer insulating film material, and is industrially useful.

Claims (3)

パラジウム触媒錯体、塩基の存在下、式(1)で示される化合物と、一般式(2)で示される化合物とを反応させることを特徴とする、一般式(3)で示される芳香族カルボン酸の製造方法。
1は水素原子、―CO―R2または―SO2―R2である。
nは1以上の整数であり、R1は水素原子、―CO―R2または―SO2―R2である。
An aromatic carboxylic acid represented by general formula (3), wherein a compound represented by formula (1) and a compound represented by general formula (2) are reacted in the presence of a palladium catalyst complex and a base. Manufacturing method.
R 1 is a hydrogen atom, —CO—R 2 or —SO 2 —R 2 .
n is an integer of 1 or more, and R 1 is a hydrogen atom, —CO—R 2 or —SO 2 —R 2 .
塩基が11以上のpkaを有することを特徴とする請求項1記載の芳香族カルボン酸の製造方法。 The method for producing an aromatic carboxylic acid according to claim 1, wherein the base has a pka of 11 or more. 一般式(3)で示される化合物と、1分子中にベンゾシクロブテン構造を2個以上有する化合物とを100〜200℃で加熱反応して得られる樹脂で、カルボキシル基当量が400g/モル以下であることを特徴とするアルカリ可溶性樹脂組成物。 A resin obtained by heating and reacting a compound represented by the general formula (3) and a compound having two or more benzocyclobutene structures in one molecule at 100 to 200 ° C., and having a carboxyl group equivalent of 400 g / mol or less. An alkali-soluble resin composition characterized by being.
JP2003295792A 2003-08-20 2003-08-20 Method for producing aromatic carboxylic acid and alkali-soluble resin composition Pending JP2005060350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295792A JP2005060350A (en) 2003-08-20 2003-08-20 Method for producing aromatic carboxylic acid and alkali-soluble resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295792A JP2005060350A (en) 2003-08-20 2003-08-20 Method for producing aromatic carboxylic acid and alkali-soluble resin composition

Publications (1)

Publication Number Publication Date
JP2005060350A true JP2005060350A (en) 2005-03-10

Family

ID=34371889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295792A Pending JP2005060350A (en) 2003-08-20 2003-08-20 Method for producing aromatic carboxylic acid and alkali-soluble resin composition

Country Status (1)

Country Link
JP (1) JP2005060350A (en)

Similar Documents

Publication Publication Date Title
KR101072953B1 (en) Positive-working photosensitive resin composition, method for producing pattern-formed resin film, semiconductor device, display device, and method for producing the semiconductor device and the display device
JP4556616B2 (en) Positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and method for manufacturing semiconductor device and display element
JP4289070B2 (en) Alkali-soluble resin, photosensitive resin composition, and method for forming resin layer
JP4281460B2 (en) Photosensitive resin composition and method for forming resin layer
Morita et al. New positive-type photosensitive polyimide having sulfo groups
JP2005062405A (en) Alkali-soluble photosensitive resin composition and method for forming resin layer
JP4277616B2 (en) Alkali-soluble photosensitive resin composition and method for forming resin layer
JP2011053679A (en) Positive photosensitive composition
JP4453298B2 (en) Photosensitive resin composition and method for forming resin layer
JP2005037925A (en) Positive photosensitive resin composition, semiconductor device, display element, and method for manufacturing semiconductor device and display element
JP5495487B2 (en) Positive photosensitive resin composition and naphthoquinone diazide compound used therefor
JP4569211B2 (en) Phenol compound, positive photosensitive resin composition, semiconductor device and display element, and method for manufacturing semiconductor device and display element
JP5290686B2 (en) Photosensitive resin composition
JP2005060350A (en) Method for producing aromatic carboxylic acid and alkali-soluble resin composition
JP5439640B2 (en) Negative photosensitive resin composition capable of alkali development, method for producing cured relief pattern, and semiconductor device
JP2005062406A (en) Alkali-soluble photosensitive resin composition and method for forming resin layer
JP4341336B2 (en) Photosensitive resin composition and method for forming resin layer
JP4341337B2 (en) Photosensitive resin composition and method for forming resin layer
JP5526757B2 (en) Novel compound and polymer composition using the same
JP4165484B2 (en) Positive photosensitive polyimide precursor composition
KR102149966B1 (en) Photosensitive resin composition, photosensitive resin layer using the same and electronic device
KR102288385B1 (en) Photosensitive resin composition, photosensitive resin layer and electronic device using the same
KR102319968B1 (en) Positive photosensitive resin composition, photosensitive resin layer and electronic device using the same
JP2009108209A (en) Method for producing polyhydroxyamide and positive type photosensitive resin composition
JP2005266420A (en) Photosensitive resin composition, and semiconductor device and display element using the same