JP2005059049A - Method for continuously casting steel for preventing contamination of molten steel in tundish - Google Patents
Method for continuously casting steel for preventing contamination of molten steel in tundish Download PDFInfo
- Publication number
- JP2005059049A JP2005059049A JP2003291312A JP2003291312A JP2005059049A JP 2005059049 A JP2005059049 A JP 2005059049A JP 2003291312 A JP2003291312 A JP 2003291312A JP 2003291312 A JP2003291312 A JP 2003291312A JP 2005059049 A JP2005059049 A JP 2005059049A
- Authority
- JP
- Japan
- Prior art keywords
- tundish
- pouring
- ladle
- slag
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、取鍋と鋳型との間にあるタンディッシュ内のスラグを脱酸し、スラグからの
溶鋼汚染を防止する鋼の連続鋳造方法に関するものであり、さらに詳しくは、取鍋から注
入管を用いてタンディッシュに注湯した後、その注入管内のスラグを脱酸し、次の取鍋か
らの注湯を行う鋼の連続鋳造方法に関する。
The present invention relates to a continuous casting method of steel for deoxidizing slag in a tundish between a ladle and a mold and preventing contamination of molten steel from the slag. The present invention relates to a continuous casting method of steel in which after pouring into a tundish using a slag, the slag in the injection pipe is deoxidized and the molten metal is poured from the next ladle.
取鍋からの注湯初期においては、いくつかの要因により、タンディッシュ内において溶
鋼の再酸化が起こり、溶鋼の清浄性が悪化する。清浄性悪化の要因は、大別して2つあり
、その第1は大気を含む雰囲気からの酸化であり、その第2は低級酸化物を含むスラグに
よる酸化である。
In the initial stage of pouring from the ladle, due to several factors, reoxidation of the molten steel occurs in the tundish, and the cleanliness of the molten steel deteriorates. There are roughly two factors causing deterioration in cleanliness, the first being oxidation from an atmosphere containing air, and the second being oxidation by slag containing lower oxides.
従来、取鍋からの注湯初期の清浄性悪化に対しては種々の対策が講じられている。雰囲
気からの酸化を防止する方法としては、例えば下記の特許文献1〜4に開示された方法な
どがある。特許文献1には、取鍋底部とタンディッシュ底部とをスライディングノズル付
下注ぎ用ロングノズルで連結し、取鍋内溶鋼をタンディッシュ内に下注ぎで供給すること
により大気と遮断する方法が開示されている。また、ロングノズルの先端を溶鋼に浸漬さ
せた状態で取鍋を開孔することも一般に行われている。特許文献2および特許文献3には
、タンディッシュに蓋を設置して密閉するとともに、Arなどの不活性ガスを吹き込んで
タンディッシュ内の酸素濃度を低減した状態で溶鋼を注入する方法が開示されている。さ
らに、特許文献4には、タンディッシュ内への溶鋼注入前に、Mg合金をタンディッシュ
内へ添加し、Mg蒸気によりタンディッシュ内を大気からシールする溶鋼の清浄化方法が
開示されている。
Conventionally, various measures have been taken against the deterioration of cleanliness in the initial stage of pouring from a ladle. As a method for preventing oxidation from the atmosphere, for example, there are methods disclosed in
他方、スラグによる溶鋼の酸化を防止する方法としては、下記の特許文献5〜8に開示
された方法などがある。特許文献5には、筒状の側壁部とその上部の円錐状の屋根部と平
板状の底部よりなるスラグ侵入防止用容器を取鍋の注入口の中心部と容器中心が一致する
ように取鍋より吊り下げて、スラグ侵入を防止する方法が、また、特許文献6には、ロン
グノズルにスラグブレーカーを装着するとともに、スラグブレーカーをその筒部下端がタンディッシュ湯面下の溶湯内に位置するように浸漬させて注入を行う方法がそれぞれ開示されている。その他、スラグ検知システムを用いて取鍋スラグの流入量を低減する方法も広く行われている。
On the other hand, methods for preventing oxidation of molten steel by slag include methods disclosed in Patent Documents 5 to 8 below. In Patent Document 5, a slag intrusion prevention container consisting of a cylindrical side wall part, a conical roof part on the upper part, and a flat bottom part is taken so that the center part of the inlet of the pan coincides with the container center. A method of preventing slag invasion by hanging from a pan is also disclosed in Patent Document 6, in which a slag breaker is attached to a long nozzle, and the bottom end of the slag breaker is located in the molten metal below the surface of the tundish. Each of the methods for injecting by soaking is disclosed. In addition, a method of reducing the inflow amount of ladle slag using a slag detection system is also widely performed.
さらに、特許文献7には、前鍋から注入末期にロングノズル内に貯留しているノロを、
ロングノズルを溶鋼から上昇させることによりタンディッシュ内に排出し、再びロングノ
ズルを溶鋼中に浸漬して後鍋内溶鋼を鋳造する際に、ロングノズルの下端がタンディッシュ湯面下一定深さ以上浸漬した時点で、後鍋溶鋼の注入を開始し、かつ、ロングノズルの
浸漬深さを一定深さ以上に保持し、タンデイツシュへの溶鋼供給量を制御する高清浄鋼の
鋳造方法が開示されている。そして、特許文献8には、金属Alを主体とするスラグ脱酸
剤および粉末状フラックスをタンディッシュ内に添加することによって、タンディッシュ
内の溶鋼上のスラグ組成中のT.Fe及びMnOを低減する高清浄度溶鋼の製造方法が開
示されている。
Furthermore, in Patent Document 7, the Noro stored in the long nozzle at the end of the injection from the front pan,
When the long nozzle is lifted from the molten steel, it is discharged into the tundish, and when the long nozzle is immersed in the molten steel again to cast the molten steel in the pan, the lower end of the long nozzle is above a certain depth below the surface of the tundish. Disclosed is a method for casting high clean steel that starts pouring molten steel after the immersion, maintains the immersion depth of the long nozzle above a certain level, and controls the amount of molten steel supplied to the tundish. Yes. And in patent document 8, T. in the slag composition on the molten steel in a tundish is added to the tundish by adding the slag deoxidizer and powdery flux which have metal Al as a main component. A manufacturing method of high cleanliness molten steel that reduces Fe and MnO is disclosed.
また、取鍋からタンディッシュへの注湯には、一般に、(A)取鍋ロングノズルを用いてタンディッシュ内溶鋼に浸漬給湯する方法、および、(B)先端部が溶鋼に浸漬した注入管をタンディッシュに備え取鍋下の短いノズルからの落下流を注入管内に給湯する方法の2種類が用いられている。 In addition, for pouring from the ladle to the tundish, in general, (A) a method in which hot water is immersed in the molten steel in the tundish using a ladle long nozzle, and (B) an injection tube whose tip is immersed in the molten steel Two types of methods are used in which a tidal dish is prepared and hot water is supplied from the short nozzle under the ladle into the injection pipe.
本発明者らが両注湯方法の機能を比較調査した結果、前記(B)の注入管方式は、鋳造定常部での介在物の浮上効率に優れている反面、取鍋からの注湯初期には前の取鍋から流出したスラグを落下流でたたき込み、溶鋼が汚染される問題を有することが判明した。 As a result of a comparative investigation of the functions of the both pouring methods, the present inventors have found that the injection pipe method of (B) is superior in the floating efficiency of inclusions in the casting steady part, but the initial pouring from the ladle Was found to have a problem that the molten steel was contaminated by slag flowing out from the previous ladle.
上述の従来技術のうち、雰囲気からの酸化を防止する方法は、スラグからの酸化を防止
し得ない点において不備がある。また、スラグからの酸化を防止する方法として特許文献5に開示されたスラグ侵入防止容器を用いる方法は、容器の取り扱いなどの操作性に問題がある。また、特許文献6および7に開示されたロングノズルを使用する方法は、注入管を用いる方法に比べて鋳造の定常部において介在物の浮上に劣る。特許文献8に開示されたタンディッシュに金属Al粒子および粉末状フラックスを添加する方法は、注入管をスラグの脱酸反応容器として活用したり、還元剤のAlをスラグとの混合促進作用を有する気化性のアルカリ土類金属と合金化して添加するなどの技術的要素に欠けており、スラグの還元効果が小さく、また不安定である。
Among the above-described conventional techniques, the method for preventing oxidation from the atmosphere is deficient in that it cannot prevent oxidation from the slag. Further, the method using the slag intrusion prevention container disclosed in Patent Document 5 as a method for preventing oxidation from slag has a problem in operability such as handling of the container. Moreover, the method using the long nozzle disclosed in Patent Documents 6 and 7 is inferior to the floating of inclusions in the steady portion of casting as compared with the method using an injection tube. The method of adding metal Al particles and powdery flux to the tundish disclosed in Patent Document 8 uses the injection tube as a deoxidation reaction vessel for slag, or has the effect of promoting the mixing of Al as a reducing agent with slag. It lacks technical elements such as alloying with a vaporizable alkaline earth metal and is added, has a small slag reduction effect, and is unstable.
上述のとおり、連続鋳造方法において、スラグからの溶鋼の汚染を防止し、清浄度の高い鋳片を製造するためには、なお幾多の改善すべき問題が残されている。 As described above, in the continuous casting method, there are still many problems to be improved in order to prevent the contamination of molten steel from the slag and to produce a clean slab.
本発明は、上記の問題の調査結果に鑑みてなされたものであり、注入管を反応容器として活用することにより、注入管方式のデメリットである取鍋からの注湯初期における溶鋼の汚染問題を解消し、高い介在物の浮上除去効率を確保できる連続鋳造方法を提供することを課題としている。 The present invention has been made in view of the investigation results of the above problems, and by utilizing the injection tube as a reaction vessel, the problem of contamination of molten steel at the initial stage of pouring from the ladle, which is a disadvantage of the injection tube system, is achieved. It is an object to provide a continuous casting method that can solve the problem and ensure high removal and removal efficiency of inclusions.
本発明者は、上述の課題を解決するために、前記した従来の問題点を踏まえて、スラグからの溶鋼の汚染を防止できる連続鋳造方法を検討し、下記の(a)〜(c)の知見を得た。
(a)注湯前に予め注入管内のスラグを金属Al、Ca、Si、Mgなどの脱酸剤により脱酸しておけば、FeO、MnOなどの低級酸化物がAl2O3、CaO、MgO、SiO2などの安定な酸化物に置換され、溶鋼との反応性に乏しいスラグとなるので、次の取鍋からの落下流にたたき込まれても微細な介在物として懸濁しにくく、容易に浮上除去される。
In order to solve the above-mentioned problems, the present inventor examined a continuous casting method capable of preventing contamination of molten steel from slag, based on the above-described conventional problems, and the following (a) to (c): Obtained knowledge.
(A) If the slag in the injection tube is previously deoxidized with a deoxidizing agent such as metal Al, Ca, Si, or Mg before pouring, lower oxides such as FeO and MnO are converted to Al 2 O 3 , CaO, and MgO. Since it is replaced with a stable oxide such as SiO 2 and becomes a slag with poor reactivity with molten steel, it is difficult to suspend as a fine inclusion even if it is struck by the falling flow from the next ladle. It is lifted and removed.
(b)上記(a)の方法を行うには、取鍋から注入管を用いてタンディッシュに注湯し、タンディッシュ内湯面の高さが注入管の下端以上の高さにある期間に、注湯を終了後、注入管内のスラグ上にAlまたはSiのうちの1種とCaまたはMgのうちの1種との合金を含有する脱酸剤を添加し、その後に次の取鍋からの注湯を開始すればよい。 (B) To perform the method of (a) above, pour hot water from the ladle into the tundish using the injection pipe, and during the period when the height of the tundish hot water surface is higher than the lower end of the injection pipe, After finishing pouring, a deoxidizer containing an alloy of one of Al or Si and one of Ca or Mg is added onto the slag in the injection pipe, and then from the next ladle The pouring should be started.
(c)上記(b)の方法においては、注入管の内径が円形断面換算で0.3〜1mであり、Ca−Al合金、Ca−Si合金またはAl−Mg合金のうちのいずれか1種以上を含有するスラグ脱酸剤を、金属Al、CaおよびSiの総質量が1〜20kgとなる範囲内で添加した後、60秒以上の反応時間をおいて、次の取鍋からの注湯を開始することが好ましい。 (C) In the method (b), the inner diameter of the injection tube is 0.3 to 1 m in terms of a circular cross section, and any one of Ca—Al alloy, Ca—Si alloy, and Al—Mg alloy is used. After adding the slag deoxidizer containing the above within a range in which the total mass of metal Al, Ca and Si is 1 to 20 kg, the reaction time of 60 seconds or more is allowed, and the pouring from the next ladle It is preferable to start.
本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)〜(3)に示す溶鋼の汚染を防止する鋼の連続鋳造方法にある。
(1)取鍋から注入管を用いてタンディッシュに注湯し、タンディッシュ内湯面の高さが前記注入管の下端以上の高さにある期間に、取鍋からの注湯を終了後、注入管内のスラグ上に金属AlまたはSiのうちの1種とCaまたはMgのうちの1種との合金を含有するスラグ脱酸剤を添加し、その後に次の取鍋からの注湯を開始することを特徴とするタンディッシュ内溶鋼の汚染を防止する鋼の連続鋳造方法。
The present invention has been completed on the basis of the above findings, and the gist thereof lies in the steel continuous casting method for preventing contamination of molten steel shown in the following (1) to (3).
(1) After pouring hot water from the ladle into the tundish using the pouring pipe, and finishing the pouring from the ladle in a period when the tundish hot water surface is higher than the lower end of the pouring pipe, A slag deoxidizer containing an alloy of one of metal Al or Si and one of Ca or Mg is added onto the slag in the injection pipe, and then pouring from the next ladle is started. A continuous casting method for steel, which prevents contamination of molten steel in a tundish.
(2)前記注入管の内径が円形断面の直径に換算して0.3〜1mであり、Ca−Al合金、Ca−Si合金またはAl−Mg合金のうちのいずれか1種以上を含有する前記スラグ脱酸剤を、金属Al、CaおよびSiの合計質量が1〜20kgの範囲内で添加した後、60秒以上経過させ、注入管内にArガスを吹き込みながら次の取鍋からの注湯を開始することを特徴とする前記(1)に記載のタンディッシュ内溶鋼の汚染を防止する鋼の連続鋳造方法。 (2) The inner diameter of the injection tube is 0.3 to 1 m in terms of the diameter of the circular cross section, and contains any one or more of Ca—Al alloy, Ca—Si alloy or Al—Mg alloy. After adding the slag deoxidizer within a range where the total mass of the metals Al, Ca and Si is in the range of 1 to 20 kg, it is allowed to elapse for 60 seconds or more, and the molten metal is poured from the next ladle while blowing Ar gas into the injection tube. The continuous casting method of steel for preventing contamination of molten steel in the tundish as described in (1) above,
(3)次の取鍋からの注湯開始前に、一旦タンディッシュから鋳型への注湯を停止し、浸漬ノズル内を酸素ガスを用いて洗浄するか、または浸漬ノズルを交換した後、タンディッシュから鋳型への前記注湯停止から40分以内に次の取鍋からの注湯を開始することを特徴とする前記(1)または(2)に記載のタンディッシュ内溶鋼の汚染を防止する鋼の連続鋳造方法。 (3) Before the start of pouring from the next ladle, once the pouring from the tundish to the mold is stopped, the inside of the immersion nozzle is cleaned with oxygen gas, or the immersion nozzle is replaced. The pouring from the ladle is started within 40 minutes after the pouring stop from the dish to the mold, preventing contamination of molten steel in the tundish according to (1) or (2) Steel continuous casting method.
本発明において、「注入管」とは、取鍋底部のノズルからタンディッシュ蓋およびタンディッシュ内の湯面へと通じ、取鍋からタンディッシュへの溶鋼注入流を大気と遮断し、添加された脱酸剤とスラグとを反応させるための閉鎖空間を形成する筒をいう。タンディッシュ蓋の下面から湯面に浸漬するように設置された上堰により閉鎖空間を形成しても同様な効果が得られる。
「湯面の高さが注入管の下端以上の高さにある期間」とは、湯面の高さが注入管の下端と同一高さまたはそれ以上の高さにある期間を意味する。
「注入管の内径が円形断面の直径に換算して0.3〜1m」とは、注入管の内径が注入管の内断面積と同一断面積を有する円形断面の内径(内直径)に換算して0.3〜1mであることを意味する。また、注入管の内断面の形状は円形以外に長円形、多角形、方形などのいずれであってもよい。
In the present invention, the “injection pipe” refers to the addition of the molten steel injection flow from the ladle to the tundish through the nozzle at the bottom of the ladle to the tundish lid and the hot water surface in the tundish. The cylinder which forms the closed space for making a deoxidizer and slag react. Even if the closed space is formed by the upper weir installed so as to be immersed in the hot water surface from the lower surface of the tundish lid, the same effect can be obtained.
The “period in which the height of the molten metal is higher than the lower end of the injection tube” means a period in which the height of the molten metal is the same height as or higher than the lower end of the injection tube.
“The inner diameter of the injection tube is 0.3 to 1 m in terms of the diameter of the circular cross section” means that the inner diameter of the injection pipe is converted to the inner diameter (inner diameter) of the circular cross section having the same cross sectional area as the inner cross sectional area of the injection pipe. It means that it is 0.3-1m. Further, the shape of the inner cross section of the injection tube may be any of an oval, a polygon, a square, etc. in addition to a circle.
また、「次の取鍋」とは、スラグ脱酸剤を添加した後に注湯する取鍋を意味し、後述の「前の取鍋」とは、スラグ脱酸剤を添加する以前に注湯した取鍋を意味する。
を意味する。
The “next ladle” means a ladle that is poured after the slag deoxidizer is added, and the “previous ladle” described later refers to the pouring before the slag deoxidizer is added. Means a ladle.
Means.
本発明の連続鋳造方法によれば、取鍋から注入管を用いてタンディッシュに注湯する方
法において、鋳造定常部における介在物の高い浮上効率を確保しつつ、注入管方式の弱点とされる次の取鍋注湯による鋳造開始時における汚染を効果的に防止し、全鋳造領域において清浄度の高い鋳片を得ることが可能となる。
According to the continuous casting method of the present invention, in the method of pouring the tundish from the ladle using the injection pipe, it is a weak point of the injection pipe system while ensuring high floating efficiency of inclusions in the casting steady part. Contamination at the start of casting by the next ladle pouring can be effectively prevented, and a slab having a high cleanliness can be obtained in the entire casting region.
本発明者は、注入管内で発生する取鍋スラグによる溶鋼の汚染およびその防止方法について種々の検討および実験を重ね、本発明の連続鋳造方法を完成させた。以下にその内容を詳細に述べる。
前の取鍋の注湯末期に注入管内に流入したスラグは、FeOやMnOなどの低級酸化物を多く含み、流入直後から、溶鋼中の脱酸元素であるAlやSiなどにより還元される。このような酸化還元反応が起こっているときには、スラグと溶鋼とは良く濡れる状態となっているので、次の取鍋からの落下流により激しく撹拌されると、スラグ中の酸化物は微細な介在物として溶鋼中に懸濁しやすい。
微細な介在物は浮上速度が小さいので、タンディッシュ内あるいは鋳型内で浮上せずに鋳片に残留しやすい。発明者はこのような溶鋼汚染を防止する方法として、次の取鍋からの注湯前に、予め注入管内のスラグを金属Al、Ca、Si、Mgなどにより脱酸しておくことが有効であることを把握した。すなわち、このような方法により、注入管内の酸化物量には変化が無くても、FeO、MnOなどの低級酸化物がAl2O3、CaO、MgO、SiO2などの比較的安定な酸化物に置換され、溶鋼との反応性に乏しいスラグとなるので、これらが次の取鍋からの落下流によりたたき込まれても、微細な介在物として懸濁しにくく、タンディッシュあるいは鋳型内において容易に浮上除去できることを見出し、本発明を完成するに至った。
The inventor has conducted various studies and experiments on contamination of molten steel by ladle slag generated in the injection pipe and a method for preventing the contamination, and completed the continuous casting method of the present invention. The details will be described below.
The slag that has flowed into the injection pipe at the end of pouring of the previous ladle contains a large amount of lower oxides such as FeO and MnO, and is reduced by Al, Si, etc., which are deoxidizing elements in the molten steel, immediately after the inflow. When such a redox reaction is taking place, the slag and molten steel are in a state of good wetting, so if they are vigorously stirred by the falling flow from the next ladle, the oxide in the slag will contain fine intervening. Easily suspended in molten steel as a product.
Since the fine inclusions have a low flying speed, they tend to remain in the slab without floating in the tundish or mold. As a method of preventing such molten steel contamination, the inventor is effective to previously deoxidize the slag in the injection pipe with metal Al, Ca, Si, Mg, etc. before pouring from the next ladle. I figured out that. That is, by such a method, even if there is no change in the amount of oxide in the injection tube, lower oxides such as FeO and MnO become relatively stable oxides such as Al 2 O 3 , CaO, MgO, and SiO 2. Since it is replaced and slag with poor reactivity with molten steel is produced, even if it is struck by the falling flow from the next ladle, it is difficult to suspend as fine inclusions and floats easily in the tundish or mold The inventors have found that it can be removed, and have completed the present invention.
1.第1発明について
本発明のうち、第1発明は、取鍋から注入管を用いてタンディッシュに注湯し、タンディッシュ内湯面が高さが注入管の下端よりも高い時期に、取鍋からの注湯を終了後、注入管内のスラグ上に金属AlまたはSiのうちの1種とCaまたはMgのうちの1種との合金を含有するスラグ脱酸剤を添加し、その後に次の取鍋からの注湯を開始する鋼の連続鋳造方法である。
本発明において、スラグの脱酸反応を速やかに進行させるためには、スラグ脱酸剤がガスを発生し、脱酸剤とスラグとの混合を促進しなければならない。スラグの脱酸反応を速やかに進めることが重要である理由は、還元反応が十分に進行しておらず反応が激しい時期に次の取鍋からの注湯が開始されると、反応性の高まっているスラグが溶鋼中に巻き込まれやすくなるからである。
ガス発生物質としては、金属Caあるいは金属Mgといった加熱により蒸気を発生するアルカリ土類金属をAlまたはSiと合金化して用いるのが適切である。合金化していない金属Caや金属Mgは、反応性が高く危険な上、迅速に気化しすぎてスラグ脱酸剤をスラグと混合する作用に乏しいからである。ガス発生物質として、炭酸カルシウムなどの炭酸塩を用いる方法もあるが、分解により発生する炭酸ガスが溶鋼を酸化するという点で、本発明法よりも劣る。金属Caや金属Mgは、ガス発生物質として作用することに加え、スラグ脱酸用物質としても作用するが、金属Mgの場合には合金化しても気化速度が大きいことからスラグの脱酸作用は大きくはない。
前の取鍋スラグの脱酸において、注入管が無い場合には、スラグはタンディッシュ内の全面に広がるので、効果的な脱酸は困難である。それに対して、タンディッシュ内の湯面が注入管下端よりも高い位置にあり、注入管内にスラグが留まっている時期に脱酸剤を添加すると、スラグ全体に脱酸剤が有効に作用する。そして、脱酸剤を添加した後にタンディッシュ内の湯面が注入管の下端よりも低下し、スラグがタンディッシュ内の全面に広がった場合には、スラグとともに脱酸剤の存在範囲も広がるので、有効な脱酸が可能である。
図1は、タンディッシュ内溶鋼の汚染を防止する連続鋳造方法の一例を模式的に示す図である。取鍋1内の溶鋼2は、注入管3を経てタンディッシュ4内に注湯され、さらにタンディッシュから浸漬ノズル6により連続鋳造鋳型7に供給された後、引き抜かれて鋳片となる。スラグ脱酸剤は、取鍋の交換時に上部の取鍋が上昇もしくは移動した時に、注入管蓋31を外すなどして注入管上部の開口部より注入管内に添加され、閉鎖空間8内において注入管内のスラグを脱酸する。
注入管3は、タンディッシュ蓋5を貫通してタンディッシュ蓋との隙間無く設置された耐火物製の筒を用いる。タンディッシュ蓋5との隙間をなくしたのは、タンディッシュ4内を密閉し、不活性ガスによるシール効果を高めるためである。注入管3に替えてタンディッシュ蓋5の下面から湯面21に浸漬するように設置された上堰によって閉じた空間を形成しても本発明の目的とする効果が得られる。
2.第2発明について
前述のとおり、第2発明は、前記第1発明に加えて、注入管の内径が円形断面換算で0.3〜1mであり、Ca−Al合金、Ca−Si合金またはAl−Mg合金のうちのいずれか1種以上を含有するスラグ脱酸剤を、金属Al、CaおよびSiの合計質量が1〜20kgの範囲内で添加した後、60秒以上の反応時間をおいて、注入管内にArガスを吹き込みながら次の取鍋からの注湯を開始するタンディッシュ内溶鋼の汚染を防止する鋼の連続鋳造方法である。
注入管の断面積には好ましい範囲が存在する。前記断面積が大きすぎる場合にはスラグと脱酸剤とが十分に混合することが困難となるので、注入管の内径は円形断面の直径に換算して1.0m以下が好ましい。一方、注入管の内径が円形断面の直径に換算して0.3m未満の場合には、注入管の内面に付着した地金による管の閉塞が発生しやすくなり、安定操業が困難となる。したがって、注入管の内径は円形断面の直径に換算して0.3〜1.0mであることが好ましい。
1. About the first invention
Of the present invention, the first invention is to pour hot water from the ladle into the tundish using the pouring pipe, and when the tundish hot water surface is higher than the lower end of the pouring pipe, After completion, a slag deoxidizer containing an alloy of one of metal Al or Si and one of Ca or Mg is added onto the slag in the injection pipe, and then a note from the next ladle is added. It is a continuous casting method of steel that starts hot water.
In the present invention, in order for the slag deoxidation reaction to proceed rapidly, the slag deoxidizer must generate gas and promote mixing of the deoxidizer and slag. The reason why it is important to proceed with the slag deoxidation promptly is that if the reduction reaction is not sufficiently advanced and the pouring from the next ladle is started when the reaction is intense, the reactivity increases. This is because the slag is easily caught in the molten steel.
As the gas generating substance, it is appropriate to use an alkaline earth metal such as metal Ca or metal Mg, which is vaporized by heating and alloyed with Al or Si. This is because non-alloyed metal Ca and metal Mg are highly reactive and dangerous, and are too vaporized so quickly that they have a poor effect of mixing a slag deoxidizer with slag. There is also a method using a carbonate such as calcium carbonate as a gas generating substance, but it is inferior to the method of the present invention in that carbon dioxide gas generated by decomposition oxidizes molten steel. In addition to acting as a gas generating substance, metal Ca and metal Mg also act as a slag deoxidation substance, but in the case of metal Mg, the deoxidation action of slag is high because the vaporization rate is high even when alloyed. Not big.
In the deoxidation of the previous ladle slag, if there is no injection pipe, the slag spreads over the entire surface of the tundish, so that effective deoxidation is difficult. On the other hand, if the deoxidizer is added when the hot water surface in the tundish is higher than the lower end of the injection pipe and the slag remains in the injection pipe, the deoxidizer effectively acts on the entire slag. And, after adding the deoxidizer, the hot water level in the tundish is lower than the lower end of the injection pipe, and when the slag spreads over the entire surface of the tundish, the range of the deoxidizer is expanded with the slag. Effective deoxidation is possible.
FIG. 1 is a diagram schematically illustrating an example of a continuous casting method for preventing contamination of molten steel in a tundish. The
The
2. About 2nd invention As mentioned above, in addition to the said 1st invention, as for 2nd invention, the internal diameter of an injection pipe is 0.3-1 m in conversion of a circular cross section, and it is Ca-Al alloy, Ca-Si alloy, or Al-. After adding a slag deoxidizer containing any one or more of Mg alloys within a range where the total mass of the metals Al, Ca and Si is 1 to 20 kg, a reaction time of 60 seconds or more is left, This is a continuous casting method of steel that prevents contamination of molten steel in the tundish, in which pouring from the next ladle is started while Ar gas is blown into the injection pipe.
There is a preferred range for the cross-sectional area of the injection tube. When the cross-sectional area is too large, it is difficult to sufficiently mix the slag and the deoxidizer. Therefore, the inner diameter of the injection tube is preferably 1.0 m or less in terms of the diameter of the circular cross section. On the other hand, when the inner diameter of the injection tube is less than 0.3 m in terms of the diameter of the circular cross section, the tube is likely to be clogged with the bare metal adhering to the inner surface of the injection tube, making stable operation difficult. Therefore, the inner diameter of the injection tube is preferably 0.3 to 1.0 m in terms of the diameter of the circular cross section.
また、脱酸剤の添加量は、スラグ量に応じて決定するのが理想的であるが、注入管内のスラグ量を正確に見積もるのは難しいため、脱酸剤の添加量を変化させながらその影響を調査する試験を行った。その結果、脱酸剤中の金属Al、CaおよびSiの合計質量が1〜20kgとなる量だけ添加した場合に、全体として良好な効果が得られた。前記脱酸金属元素の合計量が1kg未満では、十分な脱酸効果が得らず、一方、合計量が20kgを超える過剰な脱酸剤を添加すると、脱酸剤の金属元素による溶鋼成分の変化が大きくなり、問題を生じるからである。したがって、脱酸剤の添加量は、脱酸剤中の金属Al、CaおよびSiの合計量が1〜20kgの範囲であることが好ましい。なお、より好ましい添加量の範囲は、前記金属の合計量が2〜10kgである。
脱酸剤によりスラグを十分に脱酸するには一定の反応時間を確保することが好ましい。脱酸剤を添加後、次の取鍋からの注湯が開始されるまでの時間を60秒以上確保すると、本発明におけるスラグの脱酸が十分に進行し、本発明の効果が安定した。よって、脱酸剤添加後、次の取鍋からの注湯が開始されるまでに60秒以上を確保することが好ましい。
脱酸用物質は、コスト、安全性および添加効果の面で、Ca−Al合金、Ca−Si合金およびAl−Mg合金の3種類が有用である。これら3種類の脱酸用合金のうち1種以上を含有するスラグ脱酸剤を用いることが好ましい。
さらに、注入管内のスラグを脱酸した効果を活用するには、注入管内にArガスなどの不活性ガスを吹き込みながら次の取鍋からの注湯を開始し、溶鋼の空気酸化を低減することが好ましい。なお、より好ましくは、注入管内に吹き込むArガス流量を10〜120Nm3/hの範囲とするのがよい。Arガス流量が10Nm3/h未満では溶鋼の空気酸化を低減する効果が小さく、また、120Nm3/hを超えて吹き込んでも改善効果が飽和し、経済的でなくなるからである。
The addition amount of the deoxidizer is ideally determined according to the amount of slag, but it is difficult to accurately estimate the amount of slag in the injection pipe. A study was conducted to investigate the effects. As a result, when the amount of the total mass of the metals Al, Ca and Si in the deoxidizer was added in an amount of 1 to 20 kg, a good effect as a whole was obtained. When the total amount of the deoxidized metal elements is less than 1 kg, a sufficient deoxidation effect cannot be obtained. On the other hand, when an excessive deoxidizer with a total amount exceeding 20 kg is added, This is because the change becomes bigger and causes problems. Therefore, the addition amount of the deoxidizer is preferably in the range of 1 to 20 kg of the total amount of metal Al, Ca and Si in the deoxidizer. In addition, the range of the more preferable addition amount is 2-10 kg in the total amount of the said metal.
In order to sufficiently deoxidize slag with a deoxidizer, it is preferable to ensure a certain reaction time. After adding the deoxidizer and securing the time until the start of pouring from the next ladle to 60 seconds or more, the deoxidation of the slag in the present invention sufficiently progressed, and the effect of the present invention was stabilized. Therefore, it is preferable to secure 60 seconds or more before pouring from the next ladle after the deoxidizer is added.
Three types of deoxidizing substances, Ca—Al alloy, Ca—Si alloy, and Al—Mg alloy, are useful in terms of cost, safety, and addition effect. It is preferable to use a slag deoxidizer containing at least one of these three types of deoxidation alloys.
Furthermore, in order to utilize the effect of deoxidizing the slag in the injection pipe, start pouring hot water from the next ladle while blowing an inert gas such as Ar gas into the injection pipe to reduce the air oxidation of the molten steel. Is preferred. More preferably, the flow rate of Ar gas blown into the injection tube is in the range of 10 to 120 Nm 3 / h. This is because if the Ar gas flow rate is less than 10 Nm 3 / h, the effect of reducing the air oxidation of the molten steel is small, and even if it blows in excess of 120 Nm 3 / h, the improvement effect is saturated and it is not economical.
3.第3発明について
第3発明は、前記第1発明または第2発明において、次の取鍋からの注湯開始前に、一旦タンディッシュから鋳型への注湯を停止し、浸漬ノズル内を酸素ガスを用いて洗浄もしくは浸漬ノズルを交換した後、タンディッシュから鋳型への注湯停止から40分以内に次の取鍋からの注湯を開始することを特徴とするタンディッシュ内溶鋼の汚染を防止する鋼の連続鋳造方法である。
本発明の効果は、脱酸剤添加後、介在物の付着により閉塞したタンディッシュ下部浸漬ノズルの酸素による洗浄やノズルの交換作業などのように、操業上の都合により次の取鍋からの注湯開始までの時間が長くなる場合にも損なわれるものではない。しかしながら、 タンディッシュから鋳型への注湯停止から次の取鍋からの注湯開始までに40分以上を経過すると、タンディッシュ内温度が低下し、次の鋳造に支障をきたすので、経過時間は40分以内とすることが好ましい。さらに好ましくは、経過時間は30分以内とするのがよい。
鋳型への注湯を一旦停止する場合には、タンディッシュ内の溶鋼量を例えば5トン以下にまで減らしたり、全溶鋼を鋳型内に鋳込み切るか、または残鋼を排出しても構わない。また、浸漬ノズルの洗浄もしくは交換は鋳型上で行っても良いし、鋳込床上の別の場所にタンディッシュを移動して行ってもよい。タンディッシュ内の残鋼を排出した場合には、浸漬ノズルの洗浄とともに、スライディングゲートや上ノズルを洗浄してもよい。また、このようなタンディッシュの準備時間中に、鋳片を引き抜いてから新たにダミーバーを挿入して次の鋳込みに備えてもよいし、鋳型内に鋳片を留めたまま接続冶具を投入するなどして待機してもよい。
3. About 3rd invention 3rd invention is the said 1st invention or 2nd invention, before the start of the pouring from the next ladle, the pouring from a tundish to a casting mold is once stopped, and oxygen gas is filled in the immersion nozzle. Prevents contamination of molten steel in the tundish, characterized by starting pouring from the next ladle within 40 minutes after stopping pouring from the tundish to the mold after washing or replacing the immersion nozzle. This is a continuous casting method for steel.
The effect of the present invention is that, after adding a deoxidizer, the tundish lower immersion nozzle clogged due to inclusions is washed with oxygen or the nozzle is replaced from the next ladle for operational reasons. Even if the time until the hot water starts becomes long, it is not impaired. However, if more than 40 minutes elapse between the stoppage of pouring from the tundish to the mold and the start of pouring from the next ladle, the temperature in the tundish will drop and hinder the next casting. It is preferable to be within 40 minutes. More preferably, the elapsed time is within 30 minutes.
When the pouring of the mold into the mold is temporarily stopped, the amount of molten steel in the tundish may be reduced to, for example, 5 tons or less, the entire molten steel may be cast into the mold, or the remaining steel may be discharged. In addition, the cleaning or replacement of the immersion nozzle may be performed on the mold, or may be performed by moving the tundish to another place on the casting floor. When the remaining steel in the tundish is discharged, the sliding gate and the upper nozzle may be cleaned together with the cleaning of the immersion nozzle. Further, during the preparation time for such tundish, the cast piece may be pulled out and a new dummy bar may be inserted to prepare for the next casting, or the connecting jig is put in with the cast piece held in the mold. Etc. and may wait.
また、第3発明の方法を行う場合に、タンディッシュから鋳型への注湯を停止する直前の取鍋だけでなく、タンディッシュから鋳型への注湯が始まって以降全ての取鍋からの注湯終了時に、第1発明または第2発明の方法により注入管内のスラグを脱酸しておけば、より安定した効果が得られることは言うまでもない。 In addition, when performing the method of the third invention, not only the ladle just before stopping the pouring from the tundish to the mold, but also the pouring from all the ladles after the pouring from the tundish to the mold has started. It goes without saying that a more stable effect can be obtained if the slag in the injection tube is deoxidized by the method of the first or second invention at the end of the hot water.
本発明の連続鋳造方法の効果を確認するため、以下に示す本発明例および比較例についての試験を行い、その結果を評価した。表1および表2に試験条件および試験結果を示した。 In order to confirm the effect of the continuous casting method of the present invention, the following examples of the present invention and comparative examples were tested and the results were evaluated. Tables 1 and 2 show test conditions and test results.
(試験条件および結果の評価方法)
連続鋳造試験には、化学組成が質量%で、C:0.04〜0.25%、Si:0.04〜0.28%、Mn:0.4〜1.3%、sol.Al:0.02〜0.06%およびCa:0.0025%以下の普通鋼の溶鋼を用い、鋳造速度は定常部において1.0〜1.6m/minとした。
鋳片において観察された介在物は、ほとんどがアルミナ(Al2O3)あるいはカルシウムアルミネート(CaO−Al2O3)であった。懸濁しやすいFeOあるいはMnOなどの低級酸化物が発見されなかったのは、これらが鋼中のAlなどの脱酸元素により還元されたためと考えられた。
前記表1および表2中に記載された次の取鍋初期の介在物増加指数とは、SiO2チューブサンプラーによって採取した鋳型内溶鋼サンプルの化学分析により、次の取鍋初期の鋳型内における鋼中全酸素含有率;T.[O]の推移を求め、そのピーク値と前後の取鍋の鋳造定常部における平均値との差によって、表1の欄外に記述したとおり、5段階で評価したものである。
表1および表2中に記載された脱酸材として用いたCa−Alフラックス粒とは、質量%でCa:15%、Al:25%、CaO:32%、Al2O3:18%およびCaF2:10%を含有する粒度1〜3mmの粒であり、Ca−Si粒とは粒度2〜3mmのCa−Si合金粒であり、金属Al粒とは粒度3〜5mmのAl粒であり、そして、Al−Mg粒とは粒度3〜5mmのAl−Mg合金粒である。また、注入管は、断面形状が円形のものを用いた。
(試験結果)
試験番号A〜Fは、本発明例についての試験である。試験番号AおよびCは、容量35トンのタンディッシュに内径550mmの注入管を備えた連続鋳造機において、本発明の第1発明および第2発明の方法を試験した例であり、試験番号Bは、容量50トンのタンディッシュに内径600mmの注入管を備えた連続鋳造機において、本発明の第1発明および第2発明の方法を試験した例である。これらの試験では、いずれも、注入管内のスラグ中低級酸化物が有効に脱酸され、鋼中に巻き込まれにくくなった結果、次の取鍋初期における鋼中介在物の増加は抑えられ、軽微な増加に止まった。
(Test conditions and results evaluation method)
In the continuous casting test, the chemical composition was mass%, C: 0.04 to 0.25%, Si: 0.04 to 0.28%, Mn: 0.4 to 1.3%, sol. A molten steel of ordinary steel having Al: 0.02 to 0.06% and Ca: 0.0025% or less was used, and the casting speed was set to 1.0 to 1.6 m / min in the stationary part.
Most of the inclusions observed in the slab were alumina (Al 2 O 3 ) or calcium aluminate (CaO—Al 2 O 3 ). The reason why no low-grade oxides such as FeO or MnO, which are easily suspended, were found, was that they were reduced by deoxidizing elements such as Al in the steel.
The inclusion increase index at the beginning of the next ladle described in Table 1 and Table 2 is the steel in the mold at the beginning of the next ladle by chemical analysis of the molten steel sample in the mold taken by the SiO 2 tube sampler. Medium total oxygen content; The transition of [O] was obtained and evaluated in five stages as described in the margin of Table 1 by the difference between the peak value and the average value in the steady casting part of the ladle before and after.
The Ca—Al flux particles used as the deoxidizing material described in Tables 1 and 2 are, by mass%, Ca: 15%, Al: 25%, CaO: 32%, Al 2 O 3 : 18% and CaF 2 : It is a particle having a particle size of 1 to 3 mm containing 10%, the Ca—Si particle is a Ca—Si alloy particle having a particle size of 2 to 3 mm, and the metal Al particle is an Al particle having a particle size of 3 to 5 mm. The Al—Mg grains are Al—Mg alloy grains having a grain size of 3 to 5 mm. Further, the injection tube having a circular cross-sectional shape was used.
(Test results)
Test numbers A to F are tests for the examples of the present invention. Test numbers A and C are examples in which the methods of the first and second inventions of the present invention were tested in a continuous casting machine equipped with a 35-ton capacity tundish and an injection tube having an inner diameter of 550 mm. This is an example in which the methods of the first and second inventions of the present invention were tested in a continuous casting machine equipped with a tundish having a capacity of 50 tons and an injection pipe having an inner diameter of 600 mm. In each of these tests, the lower oxide in the slag in the injection pipe was effectively deoxidized and became less likely to be caught in the steel. The increase has stopped.
試験番号Fは、容量50トンのタンディッシュに内径600mmの注入管を備えた連続鋳造機において、本発明の第1発明の方法を試験した例である。試験番号Fにおいては添加脱酸剤量が第2発明で規定する範囲を超えて多すぎたために、次の取鍋初期に脱酸剤に起因して鋼中のCaおよびSi含有量が過剰になるという現象を生じた。
試験番号DおよびEは、本発明の第3発明で規定する条件を満たす例である。試験番号Dでは、前の取鍋からの注湯終了直後に内径630mmの注入管内にスラグ脱酸剤を添加した後、容量80トンのタンディッシュ内に5トンの溶鋼を残した状態でタンディッシュから鋳型への注湯を一旦停止した。その後、タンディッシュを鋳込床上の整備位置に移動し、浸漬ノズルを交換するとともに、鋳片引き抜きおよびダミーバーの再挿入を行った後、注入管内への脱酸剤添加から30分の間隔をおいて次の取鍋からの注湯を開始し、連続鋳造を再開した。
また、試験番号Eでは、前の取鍋からの注湯終了直後に内径600mmの注入管内にスラグ脱酸剤を添加し、容量50トンのタンディッシュ内溶鋼量がほとんど0になるまで鋳型内に鋳込んだ後、タンディッシュから鋳型への注湯を一旦停止した。その後、タンディッシュを鋳込床上の整備位置に移動して傾転し、可能な限りスラグを排出し、浸漬ノズルを酸素ランスを用いて洗浄するとともに、鋳型内鋳片は留め置いたまま鋳型内に接続用の冶具を投入して待機し、注入管内脱酸剤投入から18分の間隔をおいて次の取鍋からの注湯を開始し、連続鋳造を再開した。これらの試験においては、いずれも、注入管内のスラグ中の低級酸化物が有効に脱酸され、鋼中に巻き込まれにくくなった結果、次の取鍋初期における鋼中介在物の増加が抑制され、介在物の増加は比較的軽微であった。
Test No. F is an example in which the method of the first invention of the present invention was tested in a continuous casting machine having a tundish with a capacity of 50 tons and an injection pipe having an inner diameter of 600 mm. In test number F, the amount of added deoxidizer exceeded the range specified in the second invention, so that the Ca and Si contents in the steel were excessive due to the deoxidizer at the beginning of the next ladle. The phenomenon of becoming.
Test numbers D and E are examples that satisfy the conditions defined in the third invention of the present invention. In test number D, after adding the slag deoxidizer into the injection pipe having an inner diameter of 630 mm immediately after the pouring from the previous ladle, the tundish was left with 5 tons of molten steel left in the 80 tons capacity tundish. The pouring from the mold to the mold was temporarily stopped. After that, the tundish is moved to the maintenance position on the casting floor, the immersion nozzle is replaced, the slab is pulled out and the dummy bar is reinserted, and then an interval of 30 minutes is added from the addition of the deoxidizer into the injection pipe. Then, the pouring from the next ladle was started and continuous casting was resumed.
In test number E, slag deoxidizer was added to the 600 mm inner diameter injection tube immediately after the end of pouring from the previous ladle, and the molten steel in the tundish with a capacity of 50 tons was kept in the mold until the amount was almost zero. After casting, pouring from the tundish to the mold was temporarily stopped. After that, the tundish is moved to the maintenance position on the casting floor and tilted, slag is discharged as much as possible, the immersion nozzle is cleaned with an oxygen lance, and the cast in the mold is kept in the mold. Then, a connecting jig was put on standby, and pouring from the next ladle was started at an interval of 18 minutes from the introduction of the deoxidizer in the injection tube, and continuous casting was resumed. In each of these tests, the lower oxide in the slag in the injection pipe was effectively deoxidized and became less likely to be caught in the steel, so that the increase in inclusions in the steel at the initial stage of the next ladle was suppressed. Increasing inclusions were relatively minor.
試験番号DおよびEにおける次の取鍋初期における鋼中介在物の増加が試験番号A〜Cに比較して大きいのは、初期の鋳型内注湯時の大気による二次酸化や、試験番号A〜Cに比較して注入管内脱酸剤添加から次の取鍋からの注湯開始までに長時間を要したため、タンディッシュの温度が低下し介在物の浮上分離が悪化したことなどによると考えられる。
脱酸剤が含有する金属元素Al、Ca、SiおよびMgのうち、生成した酸化物が二次的にAlなどの鋼中脱酸元素により還元され溶鋼を汚染することを防止するには、例えばCa−SiのようにSiを使用するのではなく、Ca−AlのようにSi以外の他の元素を使用することが望ましいと考えられたが、本発明例では、Si添加の有無による明確な差は認められなかった。
The increase in inclusions in the steel at the beginning of the next ladle in test numbers D and E is larger than that in test numbers A to C. Secondary oxidation by the atmosphere during the initial pouring of the mold and test number A Compared to ~ C, it took a long time from the addition of the deoxidizer in the injection pipe to the start of pouring from the next ladle, so the temperature of the tundish decreased and the floating separation of inclusions deteriorated. It is done.
In order to prevent the generated oxide from the metal elements Al, Ca, Si and Mg contained in the deoxidizer from being reduced by the deoxidation element in the steel such as Al and contaminating the molten steel, for example, Although it was considered desirable to use other elements other than Si, such as Ca-Al, instead of using Si as Ca-Si, in the present invention example, it is clear that there is no addition of Si. There was no difference.
試験番号G〜Jは、本発明による注入管内スラグ脱酸を行わなかった比較例についての試験である。試験番号Gは、容量35トンのタンディッシュに内径550mmの注入管を備えた連続鋳造機において、注入管内スラグを金属Al粒を用いて脱酸した後、取鍋の交換作業を行ない、次の取鍋からの注湯を開始した例である。試験番号Gは、スラグ脱酸剤の組成のみが本発明で規定する範囲から外れている。試験番号Gにおける次の取鍋初期の介在物増加指数が本発明例に比べて劣るのは、脱酸剤として用いた金属Al粒をCaあるいはMgという気化性の強いアルカリ土類金属と合金化していなかったために、脱酸剤とスラグとの反応が遅く、十分に脱酸反応が進行しない時点で次の取鍋からの注湯が始まり、反応性が高まっていたスラグが溶鋼中に多く巻き込まれたことが原因と考えられる。 Test numbers G to J are tests for a comparative example in which the in-pipe slag deoxidation according to the present invention was not performed. Test No. G is a continuous casting machine having a 35-ton capacity tundish equipped with an injection pipe with an inner diameter of 550 mm. After deoxidizing the slag in the injection pipe using metal Al particles, the ladle was replaced. This is an example in which pouring from the ladle is started. In test number G, only the composition of the slag deoxidizer is outside the range defined in the present invention. The inclusion increase index at the beginning of the next ladle in test number G is inferior to that of the present invention. The metal Al particles used as a deoxidizer are alloyed with a highly vaporizable alkaline earth metal such as Ca or Mg. The reaction between the deoxidizer and the slag was slow, and when the deoxidation reaction did not proceed sufficiently, the pouring of the next ladle started, and a lot of slag that had increased reactivity was caught in the molten steel. This is thought to be the cause.
試験番号Hは、容量35トンのタンディッシュに内径550mmの注入管を備えた連続鋳造機において、注入管内スラグ脱酸を実施せずに通常の取鍋交換作業を行ない、次の取鍋からの注湯を開始した例である。試験番号Hでは、前の取鍋から注入管内に流出した取鍋スラグが溶鋼との反応性の高い低級酸化物を多く含んだまま、次の取鍋からの注湯流によってたたき込まれ、微細な介在物として溶鋼中に懸濁したために、介在物がタンディッシュ内で十分に浮上除去されずに鋳型内に流出し、次の取鍋初期における介在物が大幅に増加した。 Test No. H is a continuous casting machine having a 35-ton capacity tundish equipped with an injection pipe with an inner diameter of 550 mm, and performing normal ladle replacement work without carrying out slag deoxidation in the injection pipe. This is an example in which pouring is started. In test number H, the ladle slag that flowed into the injection pipe from the previous ladle was beaten by the pouring flow from the next ladle while containing a large amount of low oxides that are highly reactive with molten steel. Since the inclusions were suspended in the molten steel as the inclusions, the inclusions flowed into the mold without being sufficiently lifted and removed in the tundish, and the inclusions at the beginning of the next ladle increased greatly.
試験番号Iは、容量20トンのタンディッシュにロングノズルを用いて取鍋から注湯する場合に、通常の取鍋交換作業を行ない、ロングノズルをタンディッシュ内の湯面に浸漬しない状態で次の取鍋からの注湯を開始した例である。ロングノズルの場合、先端が湯面に浸漬した時点で、タンディッシュ内スラグのたたき込みが終了するので、微細介在物の懸濁は注入管を用いた試験番号Hに比べると軽微である。しかしながら、ロングノズルを用いる方式が介在物浮上特性に劣ることと相俟って、本発明例に比較して次の取鍋初期の介在物は増加した。 Test No. I is the following when the hot water is poured from the ladle using a long nozzle to a tundish with a capacity of 20 tons and the normal ladle replacement operation is performed and the long nozzle is not immersed in the hot water surface in the tundish. This is an example of starting pouring from a ladle. In the case of a long nozzle, since the tapping of the slag in the tundish is completed when the tip is immersed in the molten metal surface, the suspension of the fine inclusions is slight compared with the test number H using the injection tube. However, combined with the fact that the method using a long nozzle is inferior in inclusion floating characteristics, the inclusions in the initial stage of the ladle increased compared to the examples of the present invention.
試験番号Jでは、容量35トンのタンディッシュに内径550mmの注入管を備えた連続鋳造機において、前の取鍋からの注湯終了後、そのままタンディッシュ内溶鋼量が1トン以下になるまで鋳型内に注湯し、しかる後にタンディッシュから鋳型への注湯を一旦停止した。その後、タンディッシュを鋳込床上の整備位置に移動し、タンディッシュを正立させたまま、酸素ランスを用いてタンディッシュ内残鋼およびスラグを浸漬ノズルから可能な限り排出させつつ浸漬ノズル内を洗浄し、並行して、鋳片引き抜きおよびダミーバーの再挿入を行った後、前の取鍋からの注湯終了後23分の間隔をおいて次の取鍋からの注湯を開始し、連続鋳造を再開した。試験番号Jにおいては、前の取鍋から流出した取鍋スラグが溶鋼との反応性の高い低級酸化物を多く含んだままタンディッシュ内に広がり、十分に排出されないまま次の取鍋からの注湯流に巻き込まれて微細な介在物として溶鋼中に懸濁した。このため、鋳造開始時においてタンディッシュ内溶鋼滞留時間が短く、介在物の浮上時間が十分に確保できなかったことに加えて、介在物がタンディッシュ内で十分に浮上除去されずに鋳型内に流出し、次の取鍋初期における介在物が大幅に増加した。 For test number J, in a continuous casting machine equipped with a 35-ton capacity tundish and an injection pipe with an inner diameter of 550 mm, after pouring from the previous ladle, the mold until the molten steel in the tundish falls below 1 ton. Then, pouring from the tundish to the mold was temporarily stopped. After that, move the tundish to the maintenance position on the casting floor and keep the tundish upright while discharging the remaining steel and slag in the tundish from the immersion nozzle as much as possible using the oxygen lance. After cleaning, in parallel, pulling out the slab and reinserting the dummy bar, start pouring from the next ladle at an interval of 23 minutes after the end of pouring from the previous ladle. Casting resumed. In test number J, the ladle slag that flowed out from the previous ladle spreads in the tundish while containing a large amount of low oxides that are highly reactive with the molten steel, and the note from the next ladle is not fully discharged. It was caught in the hot water stream and suspended in the molten steel as fine inclusions. For this reason, in addition to the fact that the molten steel residence time in the tundish was short at the start of casting, and the floating time of inclusions could not be secured sufficiently, the inclusions were not sufficiently lifted and removed in the tundish, The inclusions at the beginning of the next ladle increased significantly.
本発明の連続鋳造方法によれば、取鍋から注入管を用いてタンディッシュに注湯する方
法において、鋳造定常部における介在物の高い浮上効率を確保しつつ、次の取鍋注湯による鋳造開始時における汚染を効果的に防止し、全鋳造領域において清浄度の高い鋳片を得ることができる。よって、本発明の方法は、簡便な設備により良好かつ安定した操作性のもとに、スラグからの介在物による溶鋼の汚染を防止し、高清浄度で良好な品質の鋳片を製造可能とする連続鋳造方法であり、鋼製品の高清浄化に広く適用できる価値ある鋳造方法である。
According to the continuous casting method of the present invention, in the method of pouring the tundish from the ladle using the injection tube, casting by the next ladle pouring while ensuring high floating efficiency of inclusions in the casting steady part. Contamination at the start can be effectively prevented, and a slab having a high cleanliness can be obtained in the entire casting region. Therefore, the method of the present invention prevents contamination of the molten steel by inclusions from the slag with a simple facility with good and stable operability, and can produce a slab of good quality with high cleanliness. This is a continuous casting method, and is a valuable casting method that can be widely applied to high purification of steel products.
1:取鍋、
2:溶鋼、
21:湯面、
3:注入管、
31:注入管蓋、
4:タンディッシュ、
5:タンディッシュ蓋、
6:浸漬ノズル、
7:連続鋳造鋳型、
8:閉鎖空間
1: Ladle,
2: Molten steel,
21: Hot water surface,
3: Injection tube,
31: injection tube lid,
4: Tundish
5: Tundish lid,
6: immersion nozzle,
7: Continuous casting mold,
8: enclosed space
Claims (3)
注入管の下端以上の高さにある期間に、取鍋からの注湯を終了後、注入管内のスラグ上に金属AlまたはSiのうちの1種とCaまたはMgのうちの1種との合金を含有するスラグ脱酸剤を添加し、その後に次の取鍋からの注湯を開始することを特徴とするタンディッシュ内溶鋼の汚染を防止する鋼の連続鋳造方法。 After pouring from the ladle into the tundish using the pouring pipe from the ladle and finishing the pouring from the ladle in the period when the level of the hot water in the tundish is higher than the lower end of the pouring pipe, Adding a slag deoxidizer containing an alloy of one of the metals Al or Si and one of Ca or Mg on the slag, and then starting pouring from the next ladle A continuous steel casting method that prevents contamination of molten steel in the tundish.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003291312A JP4042657B2 (en) | 2003-08-11 | 2003-08-11 | Continuous casting method of steel to prevent contamination of molten steel in tundish |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003291312A JP4042657B2 (en) | 2003-08-11 | 2003-08-11 | Continuous casting method of steel to prevent contamination of molten steel in tundish |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005059049A true JP2005059049A (en) | 2005-03-10 |
JP4042657B2 JP4042657B2 (en) | 2008-02-06 |
Family
ID=34369030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003291312A Expired - Fee Related JP4042657B2 (en) | 2003-08-11 | 2003-08-11 | Continuous casting method of steel to prevent contamination of molten steel in tundish |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4042657B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101356854B1 (en) | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356850B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356858B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356803B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356906B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
CN104325102A (en) * | 2014-11-25 | 2015-02-04 | 山东钢铁股份有限公司 | Protecting pouring method of crystallizer feeding steel belt |
CN106086301A (en) * | 2016-07-22 | 2016-11-09 | 中信重工机械股份有限公司 | Pouring procedure smelted by the different same stoves of steel grade, same to bag |
CN111220614A (en) * | 2018-11-27 | 2020-06-02 | 宝山钢铁股份有限公司 | Method for rapidly evaluating quality of molten steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102407305A (en) * | 2011-11-08 | 2012-04-11 | 南京钢铁集团冶金铸造有限公司 | Covering slag adding device for large die casting slab |
-
2003
- 2003-08-11 JP JP2003291312A patent/JP4042657B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101356854B1 (en) | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356850B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356858B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356803B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
KR101356906B1 (en) * | 2012-05-14 | 2014-01-28 | 주식회사 포스코 | Refining device of high purity molten steel |
CN104325102A (en) * | 2014-11-25 | 2015-02-04 | 山东钢铁股份有限公司 | Protecting pouring method of crystallizer feeding steel belt |
CN104325102B (en) * | 2014-11-25 | 2016-08-24 | 山东钢铁股份有限公司 | The molding casting method of steel band fed by a kind of crystallizer |
CN106086301A (en) * | 2016-07-22 | 2016-11-09 | 中信重工机械股份有限公司 | Pouring procedure smelted by the different same stoves of steel grade, same to bag |
CN111220614A (en) * | 2018-11-27 | 2020-06-02 | 宝山钢铁股份有限公司 | Method for rapidly evaluating quality of molten steel |
CN111220614B (en) * | 2018-11-27 | 2023-05-09 | 宝山钢铁股份有限公司 | Method for rapidly evaluating quality of molten steel |
Also Published As
Publication number | Publication date |
---|---|
JP4042657B2 (en) | 2008-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5772339B2 (en) | Reuse method of slag in ladle | |
JP4042657B2 (en) | Continuous casting method of steel to prevent contamination of molten steel in tundish | |
SK15902002A3 (en) | Carrier material and desulfurisation agent for desulfurising iron | |
JP3893770B2 (en) | Melting method of high clean ultra low carbon steel | |
JP2019214057A (en) | Continuous casting method | |
JP3924960B2 (en) | Hot metal desulfurization method | |
JP2018104805A (en) | Method of increasing temperature of molten iron | |
Behera et al. | Use of Al-killed ladle furnace slag in Si-killed steel process to reduce lime consumption, improve slag fluidity | |
Manninen et al. | Low reoxidation tundish metallurgy at Fundia Koverhar steel plant | |
Way | Cleanness, castability, and surface quality of formable sheet steels | |
JP3267177B2 (en) | Heated refining method for molten steel | |
JP3903603B2 (en) | Melting method of ultra-low carbon steel with excellent cleanability | |
RU2201458C1 (en) | Method of modification of steel | |
JP3230065B2 (en) | Manufacturing method of molten steel for continuous casting | |
JPH11293329A (en) | Production of extra-low carbon silicon-killed steel excellent in cleaning property | |
JP2005154877A (en) | Method for melting bearing steel | |
JP2006055889A (en) | Continuous casting method repeatedly using tundish under hot-state | |
JP3745689B2 (en) | Manufacturing method for continuous cast slabs with excellent cleanliness | |
KR101015283B1 (en) | tube submerged in melting steel | |
JP3277763B2 (en) | Refining method of ultra clean low carbon steel | |
JPH10314899A (en) | Method for continuously casting steel | |
KR800000618B1 (en) | Method for treatment of molten steel in a ladle | |
JPH11158536A (en) | Method for melting extra-low carbon steel excellent in cleanliness | |
SU1057554A1 (en) | Method for steel production | |
JP3892569B2 (en) | Method for cleaning molten steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4042657 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |