JP3745689B2 - Manufacturing method for continuous cast slabs with excellent cleanliness - Google Patents

Manufacturing method for continuous cast slabs with excellent cleanliness Download PDF

Info

Publication number
JP3745689B2
JP3745689B2 JP2002014685A JP2002014685A JP3745689B2 JP 3745689 B2 JP3745689 B2 JP 3745689B2 JP 2002014685 A JP2002014685 A JP 2002014685A JP 2002014685 A JP2002014685 A JP 2002014685A JP 3745689 B2 JP3745689 B2 JP 3745689B2
Authority
JP
Japan
Prior art keywords
molten steel
ladle
concentration
tundish
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002014685A
Other languages
Japanese (ja)
Other versions
JP2003220451A (en
Inventor
勝弘 淵上
昌光 若生
健 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002014685A priority Critical patent/JP3745689B2/en
Publication of JP2003220451A publication Critical patent/JP2003220451A/en
Application granted granted Critical
Publication of JP3745689B2 publication Critical patent/JP3745689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低コストで連々鋳の取鍋交換部の清浄性を向上させる連続鋳造鋳片の製造方法に関するものである。
【0002】
【従来の技術】
連続鋳造において安定的に鋳造できる定常部では、これまでの種々の対策により清浄性の向上が図られてきた。しかしながら、鋼材の高清浄性のユーザー要求は高まる一方であり、連続鋳造時の取鍋交換部いわゆる非定常部については、清浄性の悪化のため、歩留ロスが問題となっている。
【0003】
取鍋交換部の非定常部での清浄性悪化の原因としては、(1)取鍋内のスラグ流出、(2)取鍋の注入口の詰物、(3)空気、タンディッシュスラグ、耐火物による再酸化の影響が考えられる。(2)、(3)に関しては、種々の対策が行われているが、Alキルド鋼の場合は再酸化によるアルミナの増加であり、表面欠陥が問題となる。このような表面欠陥については、特開平05−154623号公報にあるように鋳型において電磁力を用いて溶鋼を攪拌することにより防止することが可能である。それに対して、(1)の取鍋内のスラグ流出に関しては、スラグ系介在物の鋳片内部への残存つまり内部欠陥の問題となる。表面欠陥と同様に、鋳型内の電磁力例えば電磁ブレーキなどによりノズルからの吐出流を抑制し、介在物の鋳片内部への侵入を抑制する技術がある。このような技術を利用しても、スラグ系介在物の鋳片内部への侵入は完全には抑制できない。
【0004】
そのため、(1)の取鍋内のスラグ流出に関しては、抜本的に取鍋からのスラグ流出を防止するか、もしくはタンディッシュにおいてスラグ系介在物を浮上させることが必要である。これまでの技術としては、特開昭55−117548号公報に代表されるように取鍋内に溶鋼を残し注入を停止することによりスラグの流出を防止する方法や特開平08−267223号公報に代表されるスラグ流出防止用の物体をスラグとメタルの間に挿入する方法や特開昭56−122656号公報に代表されるスラグ流出検知技術、さらに特開平05−169207号公報に代表されるタンディッシュでの形状などの改善が挙げられる。特開平08−267223号公報に代表されるようなスラグ流出防止用の物体をスラグとメタルの間に挿入する方法では、スラグ流出防止用の物体を挿入する際にスラグを巻き込むため、完全にスラグ流出を防止することが難しい。特開昭56−122656号公報などにおけるにおけるスラグ流出検知技術については、既にタンディッシュへスラグが流出したことを検知しているため、完全な流出防止はできない。また、タンディッシュの形状を変更する場合、特にタンディッシュの浴深を深くする場合には、非常に多大なコストが必要となる。
【0005】
いずれにしても、これまでの技術においては、操業性、スラグ流出の完全な防止ができない、多大なコスト増の問題があり、低コストで効果的な方法が求められる。
【0006】
【発明が解決しようとする課題】
連続鋳造の取鍋交換部の清浄性を低コストで改善する製造方法を確立することである。
【0009】
【課題を解決するための手段】
本発明の要旨は、以下の通りである。
【0010】
手段1は、鋳造中に取鍋を交換して連続鋳造鋳片を製造するに当たり、取鍋からタンディッシュへ溶鋼注入開始前までに取鍋内の溶鋼中のS濃度を0.006mass%以下にし、取鍋からタンディッシュに溶鋼を注入開始後に溶鋼高さHが下式(1)を満たすようにタンディッシュへの溶鋼の注入を停止し、取鍋交換して次の取鍋から溶鋼をタンディッシュ注入することを特徴とする清浄性に優れた連続鋳造鋳片の製造方法である。
1<H/D≦1.4 ・ ・ ・(1)
H:取鍋内溶鋼高さ(m)
D:取鍋の溶鋼注入口径(m)
【0011】
手段2は、鋳造中に取鍋を交換して連続鋳造鋳片を製造するに当たり、下式(2)を満たすようにタンディッシュ内の溶鋼にS、Se、Teのいずれか1種類もしくは2種類以上添加することを特徴とする上記手段1記載の清浄性に優れた連続鋳造鋳片の製造方法である。
[%S]+[%Se]+[%Te]≧0.008 ・ ・ ・(2)
[%S]:溶鋼中S濃度(mass%)
[%Se]:溶鋼中Se濃度(mass%)
[%Te]:溶鋼中Te濃度(mass%)
【0012】
手段3は、鋳造中に取鍋を交換して連続鋳造鋳片を製造するに当たり、取鍋交換時のタンディッシュ内の溶鋼高さが低下している間にタンディッシュから鋳型へ注入される溶鋼に、下式(2)を満たすようにタンディッシュ内でS、Se、Teのいずれか1種類もしくはS、Se、Teの2種類以上を添加することを特徴とする上記手段1記載の清浄性に優れた連続鋳造鋳片の製造方法である。
[%S]+[%Se]+[%Te]≧0.008 ・ ・ ・(2)
[%S]:溶鋼中S濃度(mass%)
[%Se]:溶鋼中Se濃度(mass%)
[%Te]:溶鋼中Te濃度(mass%)
【0013】
【発明の実施の形態】
連続鋳造の取鍋交換部における取鍋スラグ流出に伴う鋳片の清浄性改善のために、取鍋内に溶鋼を残しスラグ流出を防止することをまず検討した。供試鋼の成分は表1のAであり、低炭アルミキルド鋼である。取鍋内に溶鋼を残し、鋳造後に取鍋内に残存した溶鋼量を秤量して残溶鋼量を求めた。残溶鋼量は、取鍋における溶鋼高さHに換算し、取鍋の溶鋼注入口Dで規格化(H/D)した。取鍋の溶鋼注入口Dは、100mmである。鋳片の清浄性については、取鍋交換部前後のスラブの介在物をスライム法で調査し、得られた50μm超の介在物の組成をEPMAで定量分析してCaO>20%を含むCaO−Al23系の介在物をスラグ系介在物として個数測定し、定常部で得られるスラグ系介在物個数の平均値と標準偏差を足しあわせた値を1として規格化した。規格化した残溶鋼量(H/D)と規格化したスラグ系介在物個数との関係を図1に示す。図1に示すように、H/D>1でほぼ定常部と同等のスラグ系介在物個数となることがわかった。ただし、図1に示すように、H/D>1であっても、スラグ系介在物個数が多い場合があり、この原因について検討した。
【0014】
【表1】

Figure 0003745689
【0015】
残溶鋼量の指標H/D>1であってもスラグ系介在物が増加する要因として、(1)残溶鋼量が多い場合でも、溶鋼中に渦が発生しスラグが巻き込まれる、(2)二次精錬後からタンディッシュに注入するまでの間にスラグ系介在物が浮上し取鍋溶鋼の上部に濃化し、介在物が濃化した溶鋼が注入されるという2点が考えられる。ここで、スラグ巻き込みやスラグ系介在物の浮上現象に対して、スラグ/メタル界面エネルギーの影響が考えられるため、スラグ/メタル界面エネルギーに影響を与える溶質元素について検討した。スラグ/メタル界面エネルギーを低下させる元素としては、酸素と硫黄が考えられるが、今回検討しているものはAlキルド鋼であるために溶鋼中の硫黄濃度について検討した。
【0016】
まず、図1に示したH/D>1の領域について、S濃度とスラグ系介在物個数との関係を調査した。図2に溶鋼中S濃度と規格化したスラグ系介在物個数の関係を示す。図2に示すように、S濃度が0.006%以下では定常部のスラグ系介在物個数と同等以下であることがわかった。逆にS濃度が0.007%以上では、定常部よりも明らかにスラグ系介在物個数が増加する場合があることがわかった。S濃度が高くなると、スラグ/メタル界面エネルギーが低下し、スラグの巻き込みを助長するためと考えられる。
【0017】
次に、H/D>1の条件を満たし、鋳片の規格化したスラグ系介在物個数が1以下のものについて、冷延まで実施し、漏洩磁束を用いた内部欠陥探傷を行った。内部欠陥探傷の値は、定常部で得られる平均値と標準偏差を足しあわせた値を1として規格化し、S濃度との関係を調査した。図3に規格化した内部欠陥探傷結果とS濃度との関係を示す。図3に示すように、鋳片においてスラグ系介在物個数が定常部と同等であったにも関わらず、S濃度が0.007%以下において内部欠陥探傷結果が定常部よりも高めになっていることがわかった。逆に、S濃度が0.008%以上では、鋳片の規格化したスラグ系介在物個数が1以下であれば、内部欠陥探傷結果も定常部と同等の結果となった。この原因として、スラグ系介在物以外の連鋳パウダー系介在物、浸漬ノズル内に吹き込んでいる不活性ガスの残留気泡の影響が考えられる。取鍋交換部の非定常部においては、タンディッシュの溶鋼高さが低下するために、浸漬ノズル内の溶鋼流動状態が変化し、不活性ガスのボイリングなどが生じている可能性がある。特に、S濃度が低い場合には、ガス/メタル界面エネルギーが増加し、気泡が溶鋼中に安定して存在しにくくなるために、ボイリングなどを起こしやすい状態であると考えられる。
【0018】
以上の結果から、取鍋からタンディッシュに溶鋼を注入する際のスラグ流出を抑制するために、取鍋内の溶鋼中S濃度を0.006%以下とし、取鍋内の残溶鋼量がH/D>1となる条件とし、タンディッシュから鋳型内に溶鋼を注入する際には、パウダー系欠陥、気泡系欠陥を防止するためにタンディッシュ内の溶鋼中S濃度が0.008%以上とすることで、取鍋交換部の清浄性悪化を防止することが可能である。
【0019】
次に、実操業において取鍋交換部の清浄性を向上させるための具体的な操業方法について検討した。まず、取鍋からタンディッシュに溶鋼を注入する際には、取鍋スラグの流出を防止する目的から、二次精錬までの工程で溶鋼中S濃度を0.006%以下に低下させる必要がある。比較的グレードの低い鋼種においては、取鍋スラグの流出のみを防止することで問題はないが、極薄ブリキ用素材のようなグレードの高い鋼種においては、残留気泡や微量に存在するパウダー系介在物の影響が無視できないためにタンディッシュ内の溶鋼中S濃度を0.008%以上とすることが必要である。そこで、取鍋内溶鋼のS濃度を0.006%以下とし、タンディッシュ内の溶鋼にS濃度が0.008%以上となるようにSを添加することが必要である。タンディッシュ内にSを添加する場合には、Sの歩留などを考慮してFe−S合金をワイヤにより溶鋼中に添加することが好ましい。添加位置は、添加後の均一性を考慮して、取鍋から注入される注入流近傍に添加するのが好ましい。また、添加するタイミングについては、取鍋交換の際にタンディッシュの溶鋼高さが低くなっている状態の時にボイリングなどの影響が顕著となるために、取鍋交換部においてタンディッシュの溶鋼高さが低下する時期に鋳型へ注入する溶鋼について溶鋼中S濃度を0.008%以上にする必要がある。Sを添加する際には、溶鋼のスループット量と必要なS濃度からワイヤ添加速度を決める。定常部においても、Sの添加により品質の安定化が図れるため、定常部、取鍋交換部を問わずSを添加することは、品質上は好ましい。
【0020】
さらに、スラグ/メタル及びガス/メタル界面エネルギーを制御する元素として、S以外にSeやTeも同等の効果があり、Sの代替としてSeやTeを添加しても構わず、S、Se及びTeを2種以上混合して添加しても構わない。また、タンディッシュ内溶鋼にSを添加する場合には鋳片の内部割れやMnS等の影響を考えて、できるだけMn/S>20とすることが好ましい。
【0021】
本発明の対象鋼種は特に限定するものではないが、キルド鋼、特にアルミキルド鋼である。
【0022】
【実施例】
(実施例1)
自動車用冷延鋼板を対象に実施した。成分は前記した表1のAである。製造工程は、溶銑予備処理、転炉、二次精錬(RH)、連鋳である。代表的な条件を表2に示す。評価の指標としては、前述の規格化したスラグ系介在物個数(1以下が良好)と製品段階でのスラグ系介在物起因の欠陥(加工時の鋼板の割れや表面キズ)を指標化した。介在物性欠陥については、定常部における介在物性欠陥の発生率の平均値に標準偏差を足しあわせた値を1として規格し、1以下を良好とした。本発明例では、溶銑予備処理において、溶鋼中S濃度を0.005%以下とし、二次精錬の段階で復硫し溶鋼中S濃度が0.006%を超えている場合には脱硫処理を行い、溶鋼中S濃度を0.006%以下とした。さらに、取鍋からタンディッシュに溶鋼を注入する末期においては、取鍋内溶鋼高さ/取鍋の溶鋼注入口径>1(H/D>1)となる条件で溶鋼の注入を停止して次鍋の溶鋼注入を行う操業を行った。なお、取鍋の溶鋼注入口Dは、本発明例及び比較例とも100mmである。比較例1〜2では、溶鋼中S濃度の制御を行わず、取鍋の溶鋼注入末期の残溶鋼量の制御も実施しなかった。比較例3〜4では、溶鋼中S濃度の制御を行ったが、取鍋の溶鋼注入末期の残溶鋼量の制御は実施しなかった。比較例5〜6では、溶鋼中S濃度の制御を行わず、取鍋の溶鋼注入末期の残溶鋼量の制御のみを実施した。結果を表3に示す。
【0023】
【表2】
Figure 0003745689
【0024】
【表3】
Figure 0003745689
【0025】
本発明例1〜5では、取鍋内の溶鋼中S濃度を0.006%以下とし、かつ1.4≧H/D>1となるように取鍋内に溶鋼を残しているために、スラグ流出がなくスラグ系介在物指標、介在物性欠陥の指標とも1以下となり良好である。
【0026】
比較例1、2では、取鍋内の溶鋼中S濃度が0.008%以上であり、かつ残溶鋼量の指標H/D<1であるために、スラグ系介在物指標、介在物性欠陥指標とも大幅に1を超えている。
【0027】
比較例3、4では、取鍋内の溶鋼中S濃度が0.006%以下であるが、残溶鋼量の指標H/D<1であり、スラグ系介在物指標、介在物性欠陥指標とも1を超えている。
【0028】
比較例5、6では、残溶鋼量の指標H/D>1であるが、取鍋内の溶鋼中S濃度が0.007%以上であり、スラグ系介在物指標、介在物性欠陥指標とも1を超えている。
【0029】
(実施例2)
ブリキを対象に実施した。供試鋼の成分は、前記した表1のBである。製造工程は、溶銑予備処理、転炉、二次精錬(RH)、連鋳である。取鍋の溶鋼注入口Dは、100mmである。タンディッシュの溶鋼量は、定常部において60tonである。代表的な条件を表4に示す。評価の指標としては、前述の規格化したスラグ系介在物個数と冷延後の規格化した内部欠陥探傷指数(ともに1以下が良好)、さらに製品での介在物起因の欠陥の発生率を指標化した。介在物起因の欠陥の発生率については、定常部における介在物性欠陥の発生率の平均値に標準偏差を足しあわせた値を1として規格し、1以下を良好とした。本発明例では、溶銑予備処理において、溶鋼中S濃度を0.005%以下とし、二次精錬の段階で復硫し溶鋼中S濃度が0.006%を超えている場合には脱硫処理を行い、溶鋼中S濃度を0.006%以下とした。取鍋からタンディッシュに溶鋼を注入する末期においては、取鍋内溶鋼高さ/取鍋の溶鋼注入口径>1(H/D>1)となる条件で溶鋼の注入を停止して次鍋の溶鋼注入を行う操業を行った。さらにタンディッシュにおける溶鋼量が60tonであるために、取鍋の残溶鋼が60tonの時点から取鍋溶鋼注入流にワイヤ添加でFe−Sを添加し、タンディッシュでの溶鋼中S濃度を0.008%以上とした。本発明例5〜8においては、Fe−S、Se、Teを種々変えて添加した。比較例1〜2では、取鍋溶鋼のS濃度を0.006%とし、取鍋の溶鋼注入末期の残溶鋼量の制御も行ったが、タンディッシュへのS添加は実施しなかった。比較例3〜4では、溶鋼中S濃度の制御を行わなわず、取鍋の溶鋼注入末期の残溶鋼量の制御は本発明例と同様に行った。比較例5〜6では、取鍋の溶鋼注入末期の残溶鋼量の制御を行わず、溶鋼中S濃度の制御は本発明例と同様に行った。結果を表5に示す。
【0030】
【表4】
Figure 0003745689
【0031】
【表5】
Figure 0003745689
【0032】
本発明例1〜5では、取鍋内の溶鋼中S濃度を0.006%以下とし、かつ1.4≧H/D>1となるように取鍋内に溶鋼を残し、さらにタンディッシュでの溶鋼中S濃度を0.008%以上としたため、介在物性欠陥指標は1以下となり良好である。
【0033】
本発明例5〜8では、タンディッシュでの溶鋼成分[%S]+[%Se]+[%Te]>0.008%となるように添加しているが、介在物性欠陥指標は1以下となり良好である。
【0034】
比較例1〜2では、取鍋内溶鋼のS濃度の制御と取鍋内の残溶鋼量の制御も行っているため、スラグ系介在物個数指標は1以下であるが、タンディッシュへのS、Se、Te等の添加を行わなかったため、内部欠陥探傷指標が1を超え、介在物性欠陥指標も1を超えている。
【0035】
比較例3〜4は、取鍋内の溶鋼中S濃度が0.007%を超えていたために、スラグ系介在物個数指標が1以上であり、介在物性欠陥指標も1を超えている。
【0036】
比較例5〜6は、取鍋内の溶鋼中S濃度が0.006%以下で、タンディッシュ内の溶鋼中S濃度を0.008%以上に制御したが、取鍋内の残溶鋼量の制御を行っていないため、スラグ系介在物個数指標が1を超え、介在物性欠陥指標も1を超えている。
【0037】
【発明の効果】
以上の結果から、本発明法により取鍋交換部の清浄性を低コストで定常部並に向上させることができる。
【図面の簡単な説明】
【図1】取鍋内の残溶鋼量とスラグ系介在物個数の関係を示す図である。
【図2】溶鋼中S濃度とスラグ系介在物個数の関係を示す図である。
【図3】溶鋼中S濃度と内部欠陥探傷結果の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a continuous cast slab that improves the cleanliness of a continuous cast ladle replacement part at low cost.
[0002]
[Prior art]
In the steady portion that can be stably cast in the continuous casting, the cleanliness has been improved by various measures so far. However, the user demand for high cleanliness of steel materials is increasing, and the yield loss becomes a problem due to the deterioration of cleanliness in the ladle replacement part during so-called continuous casting.
[0003]
Causes of deterioration of cleanliness in the unsteady part of the ladle exchange part are (1) slag outflow in the ladle, (2) filling of the ladle inlet, (3) air, tundish slag, refractory The effect of reoxidation due to. Various measures have been taken for (2) and (3), but in the case of Al killed steel, alumina is increased by reoxidation, and surface defects become a problem. Such surface defects can be prevented by stirring the molten steel using electromagnetic force in the mold as disclosed in JP-A No. 05-154623. On the other hand, regarding the slag outflow in the ladle of (1), the slag inclusions remain inside the slab, that is, a problem of internal defects. As with surface defects, there is a technique for suppressing the discharge flow from the nozzle by electromagnetic force in the mold, for example, electromagnetic brake, and suppressing the entry of inclusions into the slab. Even if such a technique is used, the penetration of slag inclusions into the slab cannot be completely suppressed.
[0004]
Therefore, regarding the slag outflow in the ladle of (1), it is necessary to drastically prevent the slag outflow from the ladle or to raise the slag inclusions in the tundish. As a conventional technique, as represented by Japanese Patent Laid-Open No. 55-117548, a method of preventing the outflow of slag by leaving molten steel in the ladle and stopping the injection, or Japanese Patent Laid-Open No. 08-267223 has been disclosed. A method of inserting a representative slag outflow prevention object between the slag and the metal, a slag outflow detection technique represented by Japanese Patent Laid-Open No. 56-122656, and a tongue represented by Japanese Patent Laid-Open No. 05-169207. Improvements such as the shape of the dish. In a method of inserting an object for preventing slag outflow between a slag and a metal as represented by Japanese Patent Application Laid-Open No. 08-267223, since the slag is caught when the object for preventing outflow of slag is inserted, the slag completely It is difficult to prevent spillage. With regard to the slag outflow detection technology in Japanese Patent Application Laid-Open No. 56-122656, etc., since it has already been detected that the slag has flowed out to the tundish, complete outflow prevention cannot be performed. Moreover, when changing the shape of a tundish, especially when making the bath depth of a tundish deep, very large cost is needed.
[0005]
In any case, the conventional techniques have a problem of significant cost increase that cannot completely prevent operability and slag outflow, and a low-cost and effective method is required.
[0006]
[Problems to be solved by the invention]
It is to establish a manufacturing method that improves the cleanliness of the ladle replacement part for continuous casting at low cost.
[0009]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0010]
Means 1 is to manufacture the continuous cast slab by exchanging the ladle during casting, and before the start of pouring molten steel from the ladle to the tundish, the S concentration in the molten steel in the ladle should be 0.006 mass% or less. After pouring the molten steel from the ladle into the tundish, stop pouring the molten steel into the tundish so that the molten steel height H satisfies the following formula (1), replace the ladle, and tan the molten steel from the next ladle It is a method for producing a continuous cast slab excellent in cleanliness, characterized in that dish injection is performed.
1 <H / D ≦ 1.4 (1)
H: Molten steel height in the ladle (m)
D: Molten steel injection diameter of ladle (m)
[0011]
When manufacturing the continuous cast slab by exchanging the ladle during casting, means 2 is one or two of S, Se, and Te in the molten steel in the tundish so as to satisfy the following formula (2). The method for producing a continuous cast slab excellent in cleanliness as described in the above means 1, characterized in that it is added as described above.
[% S] + [% Se] + [% Te] ≧ 0.008 (2)
[% S]: S concentration in molten steel (mass%)
[% Se]: Se concentration in molten steel (mass%)
[% Te]: Te concentration in molten steel (mass%)
[0012]
Means 3 is that when the ladle is replaced during casting to produce a continuous cast slab, the molten steel injected from the tundish to the mold while the molten steel height in the tundish is reduced at the time of ladle replacement. In addition, one of S, Se, and Te, or two or more of S, Se, and Te are added in the tundish so as to satisfy the following formula (2). It is a manufacturing method of continuous cast slabs excellent in.
[% S] + [% Se] + [% Te] ≧ 0.008 (2)
[% S]: S concentration in molten steel (mass%)
[% Se]: Se concentration in molten steel (mass%)
[% Te]: Te concentration in molten steel (mass%)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve the cleanliness of the slabs due to ladle slag outflow in the ladle replacement part of continuous casting, we first studied to prevent slag outflow by leaving molten steel in the ladle. The composition of the test steel is A in Table 1 and is a low-carbon aluminum killed steel. The molten steel was left in the ladle, and the amount of molten steel remaining in the ladle after casting was weighed to determine the amount of residual molten steel. The amount of residual molten steel was converted into the molten steel height H in the ladle and normalized (H / D) at the molten steel inlet D of the ladle. The ladle inlet D of the ladle is 100 mm. Regarding the cleanability of the slab, the inclusions in the slab before and after the ladle replacement part were investigated by the slime method, and the composition of the inclusions obtained exceeding 50 μm was quantitatively analyzed by EPMA, and CaO-containing CaO> 20%. The number of Al 2 O 3 inclusions was measured as slag inclusions, and the value obtained by adding the average value and the standard deviation of the number of slag inclusions obtained in the stationary part was normalized as 1. The relationship between the normalized residual molten steel amount (H / D) and the normalized number of slag inclusions is shown in FIG. As shown in FIG. 1, it was found that the number of slag inclusions was almost equal to that of the stationary part when H / D> 1. However, as shown in FIG. 1, even when H / D> 1, there are cases where the number of slag-based inclusions is large, and this cause was examined.
[0014]
[Table 1]
Figure 0003745689
[0015]
Even if the index H / D> 1 of the residual molten steel, as a factor of increasing the slag inclusions, (1) even when the residual molten steel amount is large, vortex is generated in the molten steel and slag is involved (2) There are two possible points that the slag inclusions float and concentrate at the top of the ladle molten steel after the secondary refining until the molten steel is injected. Here, since the influence of slag / metal interface energy is considered on the slag entrainment and the slag-based inclusion floating phenomenon, solute elements that affect the slag / metal interface energy were examined. Oxygen and sulfur are conceivable as elements for lowering the slag / metal interface energy. However, since what is currently being examined is Al killed steel, the sulfur concentration in the molten steel was examined.
[0016]
First, the relationship between the S concentration and the number of slag inclusions was investigated in the region of H / D> 1 shown in FIG. FIG. 2 shows the relationship between the S concentration in molten steel and the number of standardized slag inclusions. As shown in FIG. 2, it was found that when the S concentration was 0.006% or less, it was equal to or less than the number of slag inclusions in the stationary part. On the contrary, it was found that when the S concentration is 0.007% or more, the number of slag inclusions may be clearly increased as compared with the steady portion. It is considered that when the S concentration is increased, the slag / metal interface energy is decreased, and the entrainment of the slag is promoted.
[0017]
Next, when the condition of H / D> 1 was satisfied and the standardized number of slag inclusions of the slab was 1 or less, cold rolling was performed, and internal defect inspection using leakage magnetic flux was performed. The value of the internal defect inspection was normalized by setting the value obtained by adding the average value and the standard deviation obtained in the stationary part to 1, and the relationship with the S concentration was investigated. FIG. 3 shows the relationship between the normalized internal defect inspection result and the S concentration. As shown in FIG. 3, although the number of slag inclusions in the slab was equal to that of the steady portion, the internal defect inspection result was higher than that of the steady portion when the S concentration was 0.007% or less. I found out. On the contrary, when the S concentration is 0.008% or more, if the number of standardized slag inclusions in the slab is 1 or less, the internal defect inspection result is the same as that of the stationary part. The cause of this is considered to be the influence of continuous casting powder type inclusions other than the slag type inclusions and residual bubbles of the inert gas blown into the immersion nozzle. In the unsteady part of the ladle exchange part, since the molten steel height of the tundish is lowered, there is a possibility that the molten steel flow state in the submerged nozzle changes and the boiling of the inert gas occurs. In particular, when the S concentration is low, the gas / metal interface energy is increased, and bubbles are less likely to exist stably in the molten steel, so that it is considered that boiling is likely to occur.
[0018]
From the above results, in order to suppress the slag outflow when pouring molten steel from the ladle into the tundish, the S concentration in the molten steel in the ladle is 0.006% or less, and the amount of residual molten steel in the ladle is H. When the molten steel is injected from the tundish into the mold under the condition of / D> 1, the S concentration in the molten steel in the tundish is 0.008% or more in order to prevent powder-type defects and bubble-type defects. By doing so, it is possible to prevent the cleanliness deterioration of the ladle replacement part.
[0019]
Next, the specific operation method for improving the cleanliness of the ladle exchange part in actual operation was examined. First, when pouring molten steel from the ladle into the tundish, it is necessary to reduce the S concentration in the molten steel to 0.006% or less in the process up to secondary refining in order to prevent the ladle slag from flowing out. . For steel grades with relatively low grades, there is no problem by preventing only ladle slag from flowing out, but for grades with high grade grades such as ultra-thin tinplate materials, residual air bubbles and small amounts of powder intervening exist. Since the influence of objects cannot be ignored, the S concentration in the molten steel in the tundish must be 0.008% or more. Therefore, it is necessary that the S concentration of the molten steel in the ladle is 0.006% or less, and S is added to the molten steel in the tundish so that the S concentration is 0.008% or more. When S is added to the tundish, it is preferable to add an Fe—S alloy to the molten steel by a wire in consideration of the yield of S and the like. In consideration of the uniformity after the addition, the addition position is preferably added in the vicinity of the injection flow injected from the ladle. Also, regarding the timing of addition, since the influence of boilering, etc. becomes significant when the molten steel height of the tundish is low when the ladle is replaced, the molten steel height of the tundish is changed at the ladle replacing part. It is necessary to make the S concentration in molten steel 0.008% or more with respect to the molten steel injected into the mold at the time when the temperature decreases. When S is added, the wire addition speed is determined from the throughput of molten steel and the required S concentration. Even in the stationary part, since the quality can be stabilized by adding S, it is preferable in terms of quality to add S regardless of the stationary part or the ladle changing part.
[0020]
In addition to S, Se and Te have the same effect as elements for controlling the slag / metal and gas / metal interface energy, and Se or Te may be added as an alternative to S. S, Se and Te Two or more of these may be mixed and added. In addition, when adding S to the molten steel in the tundish, it is preferable to set Mn / S> 20 as much as possible in consideration of the internal crack of the slab and MnS.
[0021]
The target steel type of the present invention is not particularly limited, but is killed steel, particularly aluminum killed steel.
[0022]
【Example】
Example 1
The test was conducted on cold-rolled steel sheets for automobiles. The component is A in Table 1 described above. The manufacturing process is hot metal pretreatment, converter, secondary refining (RH), and continuous casting. Typical conditions are shown in Table 2. As an evaluation index, the above-mentioned standardized number of slag inclusions (1 or less is good) and defects due to slag inclusions at the product stage (cracking or surface flaws during processing) were indexed. For the inclusion physical defect, a value obtained by adding the standard deviation to the average value of the incidence rate of the inclusion physical defect in the steady portion was standardized as 1, and 1 or less was regarded as good. In the present invention example, in the hot metal preliminary treatment, the sulfur concentration in the molten steel is set to 0.005% or less, and desulfurization treatment is performed when the sulfur concentration in the molten steel exceeds 0.006% by resulfurization in the secondary refining stage. The S concentration in the molten steel was made 0.006% or less. Furthermore, in the final stage of pouring molten steel from the ladle into the tundish, the molten steel injection is stopped under the condition that the molten steel height in the ladle / the molten steel inlet diameter of the ladle> 1 (H / D> 1) Operation to inject molten steel into the pan was performed. In addition, the molten steel inlet D of the ladle is 100 mm in both the present invention example and the comparative example. In Comparative Examples 1 and 2, the S concentration in the molten steel was not controlled, and the amount of residual molten steel at the end of the molten steel injection in the ladle was not performed. In Comparative Examples 3 and 4, the S concentration in the molten steel was controlled, but the amount of residual molten steel at the end of the molten steel injection in the ladle was not controlled. In Comparative Examples 5 to 6, only the control of the residual molten steel amount at the end of the molten steel injection in the ladle was performed without controlling the S concentration in the molten steel. The results are shown in Table 3.
[0023]
[Table 2]
Figure 0003745689
[0024]
[Table 3]
Figure 0003745689
[0025]
In the present invention examples 1 to 5, since the S concentration in the molten steel in the ladle is 0.006% or less, and the molten steel is left in the ladle so that 1.4 ≧ H / D> 1, There is no slag outflow, and both the slag inclusion index and the index of inclusion property defects are good, being 1 or less.
[0026]
In Comparative Examples 1 and 2, since the S concentration in the molten steel in the ladle is 0.008% or more and the index H / D <1 of the residual molten steel amount, the slag inclusion index, the inclusion property defect index Both greatly exceed 1.
[0027]
In Comparative Examples 3 and 4, the S concentration in the molten steel in the ladle is 0.006% or less, but the index H / D <1 of the amount of residual molten steel, and both the slag inclusion index and the inclusion property defect index are 1 Is over.
[0028]
In Comparative Examples 5 and 6, the residual molten steel amount index H / D> 1, but the S concentration in the molten steel in the ladle is 0.007% or more, and both the slag inclusion index and the inclusion property defect index are 1. Is over.
[0029]
(Example 2)
Conducted on tinplate. The composition of the test steel is B in Table 1 described above. The manufacturing process is hot metal pretreatment, converter, secondary refining (RH), and continuous casting. The ladle inlet D of the ladle is 100 mm. The amount of molten steel in the tundish is 60 tons in the stationary part. Typical conditions are shown in Table 4. As an evaluation index, the above-mentioned number of standardized slag inclusions and standardized internal defect inspection index after cold rolling (both are 1 or less are good), and the incidence of defects caused by inclusions in the product are also used. Turned into. Regarding the incidence of inclusion-induced defects, the value obtained by adding the standard deviation to the average value of the incidence of inclusion physical defects in the steady portion was standardized as 1, and 1 or less was considered good. In the present invention example, in the hot metal preliminary treatment, the sulfur concentration in the molten steel is set to 0.005% or less, and desulfurization treatment is performed when the sulfur concentration in the molten steel exceeds 0.006% by resulfurization in the secondary refining stage. The S concentration in the molten steel was made 0.006% or less. In the final stage of pouring molten steel from the ladle into the tundish, the molten steel injection is stopped under the condition that the molten steel height in the ladle / the molten steel inlet diameter of the ladle> 1 (H / D> 1) The operation of pouring molten steel was performed. Furthermore, since the amount of molten steel in the tundish is 60 tonnes, Fe-S is added to the ladle molten steel injection flow from the time when the residual molten steel in the ladle is 60 tonnes, and the S concentration in the molten steel in the tundish is set to 0. 008% or more. In Invention Examples 5 to 8, Fe-S, Se, and Te were added in various ways. In Comparative Examples 1 and 2, the S concentration of the ladle molten steel was set to 0.006%, and the amount of residual molten steel at the end of molten steel injection in the ladle was also controlled, but S addition to the tundish was not performed. In Comparative Examples 3 to 4, the S concentration in the molten steel was not controlled, and the amount of residual molten steel at the end of the molten steel injection in the ladle was controlled in the same manner as in the present invention example. In Comparative Examples 5 to 6, the amount of residual molten steel at the end of the ladle injection of the ladle was not controlled, and the control of the S concentration in the molten steel was performed in the same manner as in the present invention. The results are shown in Table 5.
[0030]
[Table 4]
Figure 0003745689
[0031]
[Table 5]
Figure 0003745689
[0032]
In Invention Examples 1-5, the S concentration in the molten steel in the ladle is 0.006% or less, and the molten steel is left in the ladle so that 1.4 ≧ H / D> 1. Since the S concentration in the molten steel is 0.008% or more, the inclusion physical defect index is 1 or less, which is favorable.
[0033]
In Invention Examples 5 to 8, the molten steel component [% S] + [% Se] + [% Te]> is added to be 0.008% in the tundish, but the inclusion physical property defect index is 1 or less. It is good.
[0034]
In Comparative Examples 1 and 2, since the control of the S concentration of the molten steel in the ladle and the control of the amount of residual molten steel in the ladle are also performed, the slag inclusion number index is 1 or less, but the S to the tundish , Se, Te, etc. were not added, so the internal defect inspection index exceeded 1, and the inclusion property defect index also exceeded 1.
[0035]
In Comparative Examples 3 to 4, since the S concentration in the molten steel in the ladle exceeded 0.007%, the slag inclusion number index was 1 or more, and the inclusion property defect index also exceeded 1.
[0036]
In Comparative Examples 5 to 6, the S concentration in the molten steel in the ladle was 0.006% or less, and the S concentration in the molten steel in the tundish was controlled to 0.008% or more. Since control is not performed, the slag inclusion number index exceeds 1, and the inclusion property defect index also exceeds 1.
[0037]
【The invention's effect】
From the above results, according to the method of the present invention, the cleanliness of the ladle replacement part can be improved at the same cost as the steady part.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the amount of residual molten steel in a ladle and the number of slag inclusions.
FIG. 2 is a diagram showing the relationship between the S concentration in molten steel and the number of slag inclusions.
FIG. 3 is a diagram showing the relationship between S concentration in molten steel and flaw detection results.

Claims (3)

鋳造中に取鍋を交換して連続鋳造鋳片を製造するに当たり、取鍋からタンディッシュへ溶鋼注入開始前までに取鍋内の溶鋼中のS濃度を0.006mass%以下にし、取鍋からタンディッシュに溶鋼を注入開始後に溶鋼高さHが下式(1)を満たすようにタンディッシュへの溶鋼の注入を停止し、取鍋交換して次の取鍋から溶鋼をタンディッシュ注入することを特徴とする清浄性に優れた連続鋳造鋳片の製造方法。
1<H/D≦1.4 ・ ・ ・(1)
H:取鍋内溶鋼高さ(m)
D:取鍋の溶鋼注入口径(m)
In producing a continuous cast slab by replacing the ladle during casting, the S concentration in the molten steel in the ladle is reduced to 0.006 mass% or less before the start of pouring molten steel from the ladle to the tundish. After injecting molten steel into the tundish, stop the injection of molten steel into the tundish so that the molten steel height H satisfies the following formula (1), replace the ladle and inject the molten steel from the next ladle. A method for producing a continuous cast slab excellent in cleanliness characterized by the above.
1 <H / D ≦ 1.4 (1)
H: Molten steel height in the ladle (m)
D: Molten steel injection diameter of ladle (m)
鋳造中に取鍋を交換して連続鋳造鋳片を製造するに当たり、下式(2)を満たすようにタンディッシュ内の溶鋼にS、Se、Teのいずれか1種類もしくは2種類以上添加することを特徴とする請求項1記載の清浄性に優れた連続鋳造鋳片の製造方法。
[%S]+[%Se]+[%Te]≧0.008 ・ ・ ・(2)
[%S]:溶鋼中S濃度(mass%)
[%Se]:溶鋼中Se濃度(mass%)
[%Te]:溶鋼中Te濃度(mass%)
When producing a continuous cast slab by replacing the ladle during casting, add one or more of S, Se, or Te to the molten steel in the tundish so that the following formula (2) is satisfied. The method for producing a continuous cast slab excellent in cleanliness according to claim 1.
[% S] + [% Se] + [% Te] ≧ 0.008 (2)
[% S]: S concentration in molten steel (mass%)
[% Se]: Se concentration in molten steel (mass%)
[% Te]: Te concentration in molten steel (mass%)
鋳造中に取鍋を交換して連続鋳造鋳片を製造するに当たり、取鍋交換時のタンディッシュ内の溶鋼高さが低下している間にタンディッシュから鋳型へ注入される溶鋼に、下式(2)を満たすようにタンディッシュ内でS、Se、Teのいずれか1種類もしくはS、Se、Teの2種類以上を添加することを特徴とする請求項1記載の清浄性に優れた連続鋳造鋳片の製造方法。
[%S]+[%Se]+[%Te]≧0.008 ・ ・ ・(2)
[%S]:溶鋼中S濃度(mass%)
[%Se]:溶鋼中Se濃度(mass%)
[%Te]:溶鋼中Te濃度(mass%)
When manufacturing the continuous cast slab by exchanging the ladle during casting, the following formula is applied to the molten steel injected from the tundish to the mold while the molten steel height in the tundish at the time of ladle replacement decreases. The continuous excellent in cleanliness according to claim 1, wherein any one of S, Se, Te or two or more of S, Se, Te is added in the tundish so as to satisfy (2). A method for producing cast slabs.
[% S] + [% Se] + [% Te] ≧ 0.008 (2)
[% S]: S concentration in molten steel (mass%)
[% Se]: Se concentration in molten steel (mass%)
[% Te]: Te concentration in molten steel (mass%)
JP2002014685A 2002-01-23 2002-01-23 Manufacturing method for continuous cast slabs with excellent cleanliness Expired - Fee Related JP3745689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014685A JP3745689B2 (en) 2002-01-23 2002-01-23 Manufacturing method for continuous cast slabs with excellent cleanliness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014685A JP3745689B2 (en) 2002-01-23 2002-01-23 Manufacturing method for continuous cast slabs with excellent cleanliness

Publications (2)

Publication Number Publication Date
JP2003220451A JP2003220451A (en) 2003-08-05
JP3745689B2 true JP3745689B2 (en) 2006-02-15

Family

ID=27742649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014685A Expired - Fee Related JP3745689B2 (en) 2002-01-23 2002-01-23 Manufacturing method for continuous cast slabs with excellent cleanliness

Country Status (1)

Country Link
JP (1) JP3745689B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700471A (en) * 2022-03-31 2022-07-05 乐清市和瑞恒模具科技有限公司 Deslagging operation method in casting pouring process

Also Published As

Publication number Publication date
JP2003220451A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
Zhang et al. State of the art in evaluation and control of steel cleanliness
Zhang et al. Evaluation and control of steel cleanliness-review
Zhang State of the art in the control of inclusions in tire cord steels‐a review
CN113444857B (en) Production process for increasing continuous casting furnace number of aluminum-deoxidized high-carbon chromium bearing steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
EP1952913B1 (en) Method for manufacture of ultra-low carbon steel slab
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
CN111032248B (en) Method for continuously casting steel and method for manufacturing thin steel plate
JP3745689B2 (en) Manufacturing method for continuous cast slabs with excellent cleanliness
EP3940088B1 (en) Method for producing ti-containing ultralow-carbon steel
JP6579147B2 (en) Manufacturing method of high cleanliness steel
JP4516923B2 (en) Continuously cast slab of aluminum killed steel and method for producing the same
Way Cleanness, castability, and surface quality of formable sheet steels
JP7364893B2 (en) Method of supplying molten steel
CN107338343B (en) Flux and casting method using the same
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP6337681B2 (en) Vacuum refining method for molten steel
JP3660811B2 (en) Steel wire rod and manufacturing method thereof
JP2004322140A (en) Steel continuous casting method
JP2019018238A (en) Method for producing low carbon steel thin slab, low carbon steel thin slab, and method for producing low carbon thin steel sheet
JP2007054860A (en) Ladle for continuous casting and method for producing cast slab
JP4409167B2 (en) Continuous casting method
JP3740084B2 (en) Manufacturing method of high cleanliness steel
JP2007254819A (en) Aluminum killed steel manufacturing method
US20100158746A1 (en) Extremely Low Carbon Steel Plate Excellent in Surface Characteristics, Workability, and Formability and a Method of Producing Extremely Low Carbon Cast Slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees