JP2005057909A - Voltage variation compensator - Google Patents

Voltage variation compensator Download PDF

Info

Publication number
JP2005057909A
JP2005057909A JP2003287306A JP2003287306A JP2005057909A JP 2005057909 A JP2005057909 A JP 2005057909A JP 2003287306 A JP2003287306 A JP 2003287306A JP 2003287306 A JP2003287306 A JP 2003287306A JP 2005057909 A JP2005057909 A JP 2005057909A
Authority
JP
Japan
Prior art keywords
voltage
phase
compensation
superimposed
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003287306A
Other languages
Japanese (ja)
Other versions
JP4045218B2 (en
Inventor
Masaki Yamada
正樹 山田
Akihiko Iwata
明彦 岩田
Toshiyuki Kikunaga
敏之 菊永
Nobuhiko Hatano
伸彦 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2003287306A priority Critical patent/JP4045218B2/en
Publication of JP2005057909A publication Critical patent/JP2005057909A/en
Application granted granted Critical
Publication of JP4045218B2 publication Critical patent/JP4045218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a voltage variation compensator for compensating a voltage variation when a system voltage is interrupted instantaneously by outputting the voltage of a capacitor provided for each phase from a voltage compensation circuit for each phase connected in series with each phase of a power system in which voltage compensation is performed efficiently by utilizing the energy of the capacitor for each phase uniformly. <P>SOLUTION: The voltage variation is compensated by outputting the compensation voltage of each phase generated by superposing the same superposition voltage vector on the error voltage of each phase for compensating the system voltage of each phase to obtain a normal voltage from the voltage compensation circuit of each phase. The superposition voltage is operated repeatedly every specified unit time such that deviation in the voltage drop of the capacitor for each phase is eliminated during the periodic time of the system voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、負荷に供給される電力系統の電圧が瞬時的に変動した際に、それを検出して電圧変動を補償する電圧変動補償装置に関するものである。   The present invention relates to a voltage fluctuation compensator that detects and compensates for voltage fluctuation when the voltage of a power system supplied to a load fluctuates instantaneously.

雷などにより電力系統の電圧が瞬時的に低下し、工場などの精密機器などが誤作動や一時停止することにより、生産ラインで多大な被害を被ることがある。このような被害を防ぐために、電力系統の瞬時的電圧低下(以下、瞬低と称す)などの電圧変動を監視して、電圧低下を補償する電圧変動補償装置が用いられている。
従来の電圧変動補償装置は、電力系統に直列に接続され、正負いずれかの極性で補償電圧を出力する複数の電圧補償回路で構成される。各電圧補償回路には、ダイオードが逆並列に接続された4個の半導体スイッチング素子から成るフルブリッジインバータ、および充電コンデンサが備えられ、充電コンデンサの直流電圧を交流に変換して出力する。また、各電圧補償回路の出力端には、高速機械式の定常短絡スイッチが並列に設けられる。各電圧補償回路内の充電コンデンサは、充電ダイオードと充電用トランスによってそれぞれ異なる電圧が充電され、電圧の比は概ね2のべき乗比に設定される。
定常時、電流は定常短絡スイッチを流れる。また電力系統の瞬低時には、誤差電圧に応じて複数の電圧補償回路内から所望の組み合わせを選択し、その出力電圧の総和で電力系統の電圧低下を補償する(例えば、特許文献1参照)。
The voltage of the electric power system is instantaneously reduced by lightning, etc., and a precision device such as a factory malfunctions or is temporarily stopped, which may cause a great damage on the production line. In order to prevent such damage, a voltage fluctuation compensator that monitors voltage fluctuations such as an instantaneous voltage drop (hereinafter referred to as a momentary voltage drop) of the power system and compensates for the voltage drop is used.
A conventional voltage fluctuation compensator is configured by a plurality of voltage compensation circuits that are connected in series to a power system and output a compensation voltage with either positive or negative polarity. Each voltage compensation circuit is provided with a full bridge inverter composed of four semiconductor switching elements with diodes connected in antiparallel, and a charging capacitor, which converts the DC voltage of the charging capacitor into AC and outputs it. In addition, a high-speed mechanical steady short-circuit switch is provided in parallel at the output terminal of each voltage compensation circuit. The charging capacitors in each voltage compensation circuit are charged with different voltages by the charging diode and the charging transformer, and the voltage ratio is set to a power ratio of about 2.
Constantly, current flows through a steady short circuit switch. Further, when the power system is instantaneously reduced, a desired combination is selected from a plurality of voltage compensation circuits according to the error voltage, and the voltage drop of the power system is compensated by the sum of the output voltages (see, for example, Patent Document 1).

特開2002−359929号公報(第1頁、第6−第8頁、第1、第6図)JP 2002-359929 A (page 1, page 6, page 8, FIG. 1, FIG. 6)

従来の電圧変動補償装置は、系統電圧の各相をそれぞれ独立に補償しており、系統電圧の変動を検出すると、各相にそれぞれ必要な補償電圧を演算し、それらが各相の出力可能な電圧、即ちコンデンサの電圧以下の時、各相に補償電圧を出力するものであるため、必要な補償電圧がコンデンサの電圧を越える相が存在すると、電圧変動に対する補償が不可能となる。
このように、電圧変動補償装置が出力可能な補償電圧が、必要補償電圧に満たない相が1相でもあると補償不可となるため、コンデンサの電圧低下が最も大きい相で補償可能時間が決定され、他の相のエネルギを有効利用できず補償不可に陥りやすいという問題点があった。
The conventional voltage fluctuation compensator compensates each phase of the system voltage independently. When the system voltage fluctuation is detected, the compensation voltage required for each phase is calculated and can be output for each phase. Since the compensation voltage is output to each phase when the voltage is equal to or lower than the voltage of the capacitor, if there is a phase in which the required compensation voltage exceeds the voltage of the capacitor, compensation for the voltage variation becomes impossible.
In this way, if the compensation voltage that can be output by the voltage fluctuation compensator is less than the required compensation voltage, even if one phase is not compensated, compensation time is determined for the phase with the largest voltage drop of the capacitor. However, there is a problem that the energy of other phases cannot be effectively used and it is easy to fall out of compensation.

この発明は、上記のような問題点を解消するために成されたものであって、電圧系統の各相の電圧変動を補償する電圧変動補償装置において、各相のエネルギ蓄積手段のエネルギを全体として有効利用し、出力可能な補償電圧が必要補償電圧に満たない相が存在しても、継続して電圧補償できることを目的とする。   The present invention has been made to solve the above problems, and in a voltage fluctuation compensator that compensates for voltage fluctuations in each phase of the voltage system, the energy of the energy storage means in each phase is totally reduced. As a result, the voltage can be continuously compensated even if there is a phase whose compensation voltage that can be output is less than the required compensation voltage.

この発明による電圧変動補償装置は、電力系統における電圧変動の監視、およびそれに基づく給電制御を行う制御部と、該電力系統の各相にそれぞれ直列に接続し、各相毎に独立にコンデンサを有して該各相コンデンサの直流電圧を交流に変換して出力する各相電圧補償回路とを備えて、負荷に供給される電圧の変動を抑える。また、上記電力系統の電圧変動時に、各相の系統電圧を正常電圧に補償するための各相誤差電圧にそれぞれ同じ出力電圧(以下、重畳電圧と称す)を重畳して各相補償電圧を演算する補償電圧演算部と、上記重畳電圧を演算する重畳電圧演算部とを上記制御部内に備える。そして、上記重畳電圧演算部は、所定の単位時間毎に、上記各相コンデンサの電圧低下状態を検出してその各相間の偏りを、上記所定の単位時間よりも充分長い所定時間で無くすように、各相の電圧成分の合成で構成される上記重畳電圧を繰り返し演算し、該重畳電圧を用いて上記補償電圧演算部にて演算される上記各相補償電圧を上記各相電圧補償回路から出力して、上記電力系統における線間電圧の電圧変動を抑えるものである。   A voltage fluctuation compensator according to the present invention includes a control unit that monitors voltage fluctuation in a power system and performs power feeding control based on the voltage fluctuation, and is connected in series to each phase of the power system, and has a capacitor independently for each phase. In addition, each phase voltage compensation circuit that converts the DC voltage of each phase capacitor into AC and outputs it is used to suppress fluctuations in the voltage supplied to the load. Also, each phase compensation voltage is calculated by superimposing the same output voltage (hereinafter referred to as superimposed voltage) on each phase error voltage to compensate the system voltage of each phase to normal voltage when the voltage of the power system changes. A compensation voltage calculation unit for calculating the superimposed voltage and a superimposed voltage calculation unit for calculating the superimposed voltage. The superposed voltage calculation unit detects the voltage drop state of each phase capacitor every predetermined unit time, and eliminates the deviation between the phases for a predetermined time sufficiently longer than the predetermined unit time. , Repeatedly calculating the superimposed voltage constituted by combining the voltage components of each phase, and outputting each phase compensation voltage calculated by the compensation voltage calculation unit using the superimposed voltage from each phase voltage compensation circuit Thus, the voltage fluctuation of the line voltage in the power system is suppressed.

またこの発明による電圧変動補償装置は、電力系統の電圧変動時に、各相の系統電圧を正常電圧に補償するための各相誤差電圧にそれぞれ同じ出力電圧(以下、重畳電圧と称す)を重畳して各相補償電圧を演算する補償電圧演算部と、上記重畳電圧を演算する重畳電圧演算部とを上記制御部内に備えて、上記各相補償電圧を上記各相電圧補償回路から出力して上記電力系統における線間電圧の電圧変動を抑える。そして、上記重畳電圧演算部は、上記各相補償電圧と各相系統電流との位相角のずれθによるcosθが1に近い相ほど、上記各相電圧補償回路からの上記各相補償電圧の出力エネルギが大きくなるように上記重畳電圧を演算するものである。   The voltage fluctuation compensator according to the present invention superimposes the same output voltage (hereinafter referred to as a superimposed voltage) on each phase error voltage for compensating the system voltage of each phase to a normal voltage when the voltage of the power system fluctuates. A compensation voltage calculation unit that calculates each phase compensation voltage and a superimposed voltage calculation unit that calculates the superimposed voltage in the control unit, and outputs the phase compensation voltage from the phase voltage compensation circuit to output the phase compensation voltage. Suppresses voltage fluctuations in the line voltage in the power system. Then, the superimposed voltage calculation unit outputs the phase compensation voltage from the phase voltage compensation circuit as the phase where cos θ due to the phase angle shift θ between the phase compensation voltage and the phase system current is closer to 1 is obtained. The superimposed voltage is calculated so as to increase the energy.

このような電圧変動補償装置では、線間電圧の電圧変動を補償して負荷への電力供給の信頼性を保ちつつ、各相のコンデンサ電圧をほぼ均等に低下させることができる。このため、電圧変動補償装置全体のコンデンサのエネルギを有効利用でき、その結果電圧変動補償可能時間を延長することができる。   In such a voltage fluctuation compensator, it is possible to substantially uniformly reduce the capacitor voltage of each phase while maintaining the reliability of power supply to the load by compensating for the voltage fluctuation of the line voltage. For this reason, the energy of the capacitor of the entire voltage fluctuation compensation device can be effectively used, and as a result, the voltage fluctuation compensation possible time can be extended.

またこのような電圧変動補償装置では、力率が小さい場合に、各相補償電圧が高くなるのが抑制でき、コンデンサ電圧が比較的高いにもかかわらず補償電圧出力が不可能になるのが防止できる。このため、電圧変動補償装置全体のコンデンサのエネルギを有効利用でき、その結果電圧変動補償可能時間を延長することができる。   In addition, in such a voltage fluctuation compensator, when the power factor is small, it is possible to suppress an increase in the compensation voltage of each phase, and it is possible to prevent the compensation voltage from being output even though the capacitor voltage is relatively high. it can. For this reason, the energy of the capacitor of the entire voltage fluctuation compensation device can be effectively used, and as a result, the voltage fluctuation compensation possible time can be extended.

実施の形態1.
以下、この発明の実施の形態1について説明する。図1はこの発明の実施の形態1による電圧変動補償装置200の概略構成図である。
図1(a)に示すように、送電線1からの電力は、変圧器2により降圧されて、電圧変動補償装置200を介して需要家3(負荷)に接続され、電力が供給される。電圧変動補償装置200は図1(b)に示すように、3相交流(a相、b相、c相)のそれぞれの相について、コンデンサ10a、10b、10cを備えた各相電圧補償回路110a、110b、110cを直列に接続し、制御部として全相で共通の制御回路30を備えて、この制御回路30からの指令により、各相電圧補償回路110a、110b、110cから各相に補償電圧を出力して瞬低による電圧変動を補償する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below. FIG. 1 is a schematic configuration diagram of a voltage fluctuation compensating apparatus 200 according to Embodiment 1 of the present invention.
As shown to Fig.1 (a), the electric power from the transmission line 1 is stepped down by the transformer 2, is connected to the consumer 3 (load) via the voltage fluctuation compensation apparatus 200, and electric power is supplied. As shown in FIG. 1B, the voltage fluctuation compensator 200 includes a phase voltage compensation circuit 110a including capacitors 10a, 10b, and 10c for each of three phases of alternating current (a phase, b phase, and c phase). , 110b, 110c are connected in series, and a control circuit 30 that is common to all phases is provided as a control unit, and a compensation voltage is supplied from each phase voltage compensation circuit 110a, 110b, 110c to each phase according to a command from the control circuit 30. To compensate for voltage fluctuations due to instantaneous voltage drop.

各相電圧補償回路110a、110b、110cの詳細な構成は図2に基づいて以下に説明する。
図2に示すように、各相電圧補償回路110a、110b、110cは、複数(この場合3個)の電圧補償ユニット15で構成され、正負いずれかの極性で補償電圧を出力する電圧補償サブ回路PN1、PN2、PN3が電力系統に直列に接続される。各電圧補償ユニット15には、ダイオードが逆並列に接続された4個のIGBT9sw11〜9sw14、9sw21〜9sw24、9sw31〜9sw34から成るフルブリッジインバータ、およびサブコンデンサとしての充電コンデンサ10pn1〜10pn3で構成される各電圧補償サブ回路PN(PN1、PN2、PN3)と、充電コンデンサ10(10pn1〜10pn3)を充電するための充電ダイオード11と充電用トランス14の2次巻線13とが備えられる。また、充電コンデンサ10の充電電圧V1〜V3は、IGBT9(9sw11〜9sw14、9sw21〜9sw24、9sw31〜9sw34)のオン/オフ制御により正負いずれかの極性で電力系統に接続される。また、これら複数の充電コンデンサ10(10pn1〜10pn3)により、各相電圧補償回路110a、110b、110cが備える各コンデンサ10a、10b、10c(図1参照)はそれぞれ構成される。
The detailed configuration of each phase voltage compensation circuit 110a, 110b, 110c will be described below with reference to FIG.
As shown in FIG. 2, each phase voltage compensation circuit 110a, 110b, 110c is composed of a plurality of (in this case, three) voltage compensation units 15 and outputs a compensation voltage with either positive or negative polarity. PN1, PN2, and PN3 are connected in series to the power system. Each voltage compensation unit 15 is composed of four IGBTs 9sw11 to 9sw14, 9sw21 to 9sw24, 9sw31 to 9sw34 having diodes connected in antiparallel, and charging capacitors 10pn1 to 10pn3 as sub capacitors. Each voltage compensation subcircuit PN (PN1, PN2, PN3), a charging diode 11 for charging the charging capacitor 10 (10pn1 to 10pn3), and a secondary winding 13 of the charging transformer 14 are provided. The charging voltages V1 to V3 of the charging capacitor 10 are connected to the power system with either positive or negative polarity by on / off control of the IGBT 9 (9sw11 to 9sw14, 9sw21 to 9sw24, 9sw31 to 9sw34). Further, the capacitors 10a, 10b, and 10c (see FIG. 1) included in the phase voltage compensation circuits 110a, 110b, and 110c are configured by the plurality of charging capacitors 10 (10pn1 to 10pn3), respectively.

また、各相電圧補償回路110a、110b、110cの出力端には、並列に高速機械式の定常短絡スイッチ8が設けられる。なお、この定常短絡スイッチ8は、各電圧補償サブ回路PNと並列に複数個設けても良く、1つあるいは直列接続された複数の電圧補償サブ回路PNの出力端毎に設けられていれば良い。また、フルブリッジインバータはIGBT9以外の自己消弧型半導体スイッチング素子で構成しても良い。
充電コンデンサ10は充電ダイオード11と充電用トランス14の2次巻線13によってそれぞれ異なる電圧が充電され、充電用トランス1次巻線12は、電力系統と接続される。各電圧補償サブ回路PN1、PN2、PN3内の充電コンデンサ10に充電される電圧の比は概ね2のべき乗比に設定されている。つまり、以下の関係を満足させる。
V3=2×V2=2×2×V1
Further, a high-speed mechanical steady short-circuit switch 8 is provided in parallel at the output terminals of the phase voltage compensation circuits 110a, 110b, and 110c. Note that a plurality of the steady short-circuit switches 8 may be provided in parallel with each voltage compensation subcircuit PN, and may be provided for each output terminal of one or a plurality of voltage compensation subcircuits PN connected in series. . Further, the full bridge inverter may be formed of a self-extinguishing semiconductor switching element other than the IGBT 9.
The charging capacitor 10 is charged with different voltages by the charging diode 11 and the secondary winding 13 of the charging transformer 14, and the charging transformer primary winding 12 is connected to the power system. The ratio of the voltages charged in the charging capacitors 10 in the voltage compensation subcircuits PN1, PN2, and PN3 is set to a power ratio of about 2. That is, the following relationship is satisfied.
V3 = 2 × V2 = 2 × 2 × V1

各相電圧補償回路110a、110b、110cの定常短絡スイッチ8および各半導体スイッチング素子9は制御回路30に接続され、制御回路30からの指令信号z,g11〜g14,g21g〜24,g31〜g34により動作する。この制御回路30の構成および動作について、図3に基づいて以下に説明する。
図3に示すように、電力系統の各相の電圧、電流をモニタして観測される系統電圧Vx、系統電流Ixはそれぞれ制御回路30に入力される。また、各相電圧補償回路110a、110b、110c内の各コンデンサ10pn1〜10pn3の電圧をモニタした値Va1〜Va3、Vb1〜Vb3、Vc1〜Vc3もそれぞれ制御回路30に入力される。入力されたコンデンサ電圧Va1〜Va3、Vb1〜Vb3、Vc1〜Vc3は、電圧加算部40で各相ごとにコンデンサ電圧検出値としてのコンデンサ総和電圧Vca、Vcb、Vccが計算される。これらの各相のコンデンサ総和電圧Vca、Vcb、Vccは平均値演算部41にて全相のコンデンサ平均電圧Vcaveが計算される。
比較演算部44では、各相のコンデンサ総和電圧Vca、Vcb、Vccと全相のコンデンサ平均電圧Vcaveとの差Vca−Vcave、Vcb−Vcave、Vcc−Vcaveをそれぞれ計算する。
The steady short-circuit switch 8 and each semiconductor switching element 9 of each phase voltage compensation circuit 110a, 110b, 110c are connected to the control circuit 30, and by command signals z, g11-g14, g21g-24, g31-g34 from the control circuit 30. Operate. The configuration and operation of the control circuit 30 will be described below with reference to FIG.
As shown in FIG. 3, the system voltage Vx and the system current Ix observed by monitoring the voltage and current of each phase of the power system are respectively input to the control circuit 30. In addition, values Va1 to Va3, Vb1 to Vb3, and Vc1 to Vc3 obtained by monitoring the voltages of the capacitors 10pn1 to 10pn3 in the phase voltage compensation circuits 110a, 110b, and 110c are also input to the control circuit 30, respectively. The input capacitor voltages Va1 to Va3, Vb1 to Vb3, and Vc1 to Vc3 are calculated by the voltage adder 40 as the capacitor total voltage Vca, Vcb, Vcc as a capacitor voltage detection value for each phase. With respect to the total capacitor voltages Vca, Vcb, and Vcc of each phase, the average value calculation unit 41 calculates the capacitor average voltage Vcave for all phases.
The comparison operation unit 44 calculates differences Vca−Vcave, Vcb−Vcave, and Vcc−Vcave between the capacitor total voltages Vca, Vcb, and Vcc for each phase and the capacitor average voltage Vcave for all phases, respectively.

補償電圧演算部33では、各相の系統電圧Vx、系統電流Ix、正常時の系統電圧である各相の設定電圧31、各相のコンデンサ総和電圧Vca、Vcb、Vcc、全相のコンデンサ平均電圧Vcave、および比較演算部44からの出力が入力され、各相の系統電圧Vxが正常時の系統電圧である各相の設定電圧31に比して電圧低下したとき、各線間電圧の電圧変動を補償するように各相の補償電圧Via、Vib、Vicを演算する。上記各相の補償電圧Via、Vib、Vicの演算は、補償電圧演算部33内の重畳電圧演算部34で演算される全相に共通の重畳電圧ベクトルV0を重畳してなされるもので、以下に詳述する。   In the compensation voltage calculation unit 33, the system voltage Vx of each phase, the system current Ix, the set voltage 31 of each phase which is the system voltage at normal time, the total capacitor voltage Vca, Vcb, Vcc of each phase, and the average voltage of the capacitors of all phases When Vcave and the output from the comparison calculation unit 44 are input and the system voltage Vx of each phase is lower than the set voltage 31 of each phase, which is the system voltage at normal time, the voltage fluctuation of each line voltage is Compensation voltages Via, Vib, and Vic for each phase are calculated so as to compensate. The calculation of the compensation voltages Via, Vib, and Vic for each phase is performed by superimposing a common superimposed voltage vector V0 on all phases calculated by the superimposed voltage calculation unit 34 in the compensation voltage calculation unit 33. It will be described in detail.

図4は、電力系統の各相の電圧、電流をベクトル図で示したもので、図4(a)に、正常時の各相の電圧ベクトルVna、Vnb、Vnc(以下、正常電圧ベクトルと称す)、電流ベクトルIna、Inb、Inc(以下、正常電流ベクトルと称す)、および瞬低による電圧変動時の各相の電圧ベクトルVsa、Vsb、Vsc(以下、瞬低電圧ベクトルと称す)を示す。なお、θsa、θsb、θscは電圧変動時の瞬低電圧ベクトルと正常電流ベクトルとの位相差を表している。図4(b)に示すように、各相の瞬低電圧ベクトルVsa、Vsb、Vscを正常電圧ベクトルVna、Vnb、Vncに補償するための各相誤差電圧Vna−Vsa、Vnb−Vsb、Vnc−Vsc(以下、Vta、Vtb、Vtcと表す)に、それぞれ同じ出力電圧ベクトルである重畳電圧ベクトルV0を重畳(加算)して、図4(c)に示すように、各相の補償電圧である各相補償電圧ベクトルVia、Vib、Vicを演算する。
このとき、重畳電圧V0は、所定の単位時間Δt毎に繰り返し演算され、各演算時に、その時点の各相コンデンサの電圧低下の偏りを系統電圧の一周期の時間Tで無くすように、即ち、各相のコンデンサの電圧検出値(コンデンサ総和電圧)がほぼ均等になるように演算される。なお、上記演算の時間間隔Δtは、系統電圧の周期Tに比して十分短い時間である。この重畳電圧V0の演算方法の詳細については、後述する。
このように、各相の電圧変動によって変動した線間電圧を補償するように、重畳電圧V0を重畳して各相の補償電圧Via、Vib、Vicを演算する。
FIG. 4 is a vector diagram showing the voltage and current of each phase of the power system. FIG. 4A shows voltage vectors Vna, Vnb, and Vnc (hereinafter referred to as normal voltage vectors) of each phase in the normal state. ), Current vectors Ina, Inb, and Inc (hereinafter referred to as normal current vectors), and voltage vectors Vsa, Vsb, and Vsc (hereinafter referred to as instantaneous voltage drop vectors) of the respective phases at the time of voltage fluctuation due to an instantaneous drop. Note that θsa, θsb, and θsc represent phase differences between the instantaneous low voltage vector and the normal current vector when the voltage fluctuates. As shown in FIG. 4B, the phase error voltages Vna−Vsa, Vnb−Vsb, and Vnc− for compensating for the instantaneous voltage vectors Vsa, Vsb, and Vsc of the respective phases to the normal voltage vectors Vna, Vnb, and Vnc. A superimposed voltage vector V0, which is the same output voltage vector, is superimposed (added) on Vsc (hereinafter referred to as Vta, Vtb, and Vtc) to obtain a compensation voltage for each phase as shown in FIG. Each phase compensation voltage vector Via, Vib, Vic is calculated.
At this time, the superimposed voltage V0 is repeatedly calculated every predetermined unit time Δt, and at each calculation, the bias of the voltage drop of each phase capacitor at that time is eliminated by the time T of one cycle of the system voltage, that is, Calculation is performed so that the voltage detection values (capacitor total voltage) of the capacitors of each phase are substantially equal. Note that the time interval Δt of the above calculation is sufficiently shorter than the period T of the system voltage. Details of the method of calculating the superimposed voltage V0 will be described later.
In this way, the compensation voltages Via, Vib, and Vic for each phase are calculated by superimposing the superimposed voltage V0 so as to compensate for the line voltage that has fluctuated due to the voltage fluctuation of each phase.

系統電圧が通常時、定常短絡スイッチ8はオン状態で、電流は定常短絡スイッチ8を流れる。瞬低が発生すると、瞬低検出部37は瞬低を検出して、信号z(za、zb、zc)(=0)により各相電圧補償回路110a、110b、110cの定常短絡スイッチ8をオフする。この時、重畳電圧演算部34では、所定の単位時間Δt毎に重畳電圧V0を繰り返し演算し、補償電圧演算部33は各相の補償電圧Via、Vib、Vicを演算する。
各相の補償電圧Via、Vib、Vicが演算されると、図3に示すように、増幅回路35にて増幅し、さらに絶対値変換を施した後、A/Dコンバータ36にて各相毎に3ビットのデジタル信号(D1〜D3)に変換する。各相の補償電圧Via、Vib、Vicの大きさが、充電コンデンサ10pn1の充電電圧V1と等しくなったとき、A/Dコンバータ36からの出力信号における最下位ビットD1のみが1、即ち゛001゛となるよう、また、同様に゛010゛・・・゛111゛の場合も、充電コンデンサ10の充電電圧の組み合わせと等しくなるように増幅回路35のゲインは予め調整しておく。
When the system voltage is normal, the steady short-circuit switch 8 is on, and the current flows through the steady short-circuit switch 8. When a voltage sag occurs, the voltage sag detector 37 detects the voltage sag and turns off the steady short-circuit switch 8 of each phase voltage compensation circuit 110a, 110b, 110c by a signal z (za, zb, zc) (= 0). To do. At this time, the superimposed voltage calculation unit 34 repeatedly calculates the superimposed voltage V0 every predetermined unit time Δt, and the compensation voltage calculation unit 33 calculates the compensation voltages Via, Vib, and Vic for each phase.
When the compensation voltages Via, Vib, and Vic for each phase are calculated, as shown in FIG. 3, after being amplified by an amplifier circuit 35 and further subjected to absolute value conversion, each phase is corrected by an A / D converter 36. Are converted into 3-bit digital signals (D1 to D3). When the compensation voltages Via, Vib, Vic of each phase are equal to the charging voltage V1 of the charging capacitor 10pn1, only the least significant bit D1 in the output signal from the A / D converter 36 is 1, that is, “001”. Similarly, in the case of “010” to “111”, the gain of the amplifier circuit 35 is adjusted in advance so as to be equal to the combination of the charging voltages of the charging capacitor 10.

一方、演算された各相の補償電圧Via、Vib、Vicは、極性判定回路38にも入力され、極性が判定される。39a、39b、39cは、各相電圧補償回路110a、110b、110cに対して駆動信号ga、gb、gcを発生する駆動信号発生器であり、この各相の駆動信号ga、gb、gcは、各相電圧補償回路110a、110b、110c内の複数個の電圧補償サブ回路PNのインバータの12種の駆動信号g11〜g14,g21〜g24,g31〜g34でそれぞれ構成される。この駆動信号発生器39a、39b、39cにより、各相の補償電圧Via、Vib、Vicの極性が正・負の場合に応じて、デジタル信号D1〜D3にてアクテイブとなる信号を選択し、各相電圧補償回路110a、110b、110cに対し、駆動信号ga、gb、gcを発生する。   On the other hand, the calculated compensation voltages Via, Vib, and Vic for each phase are also input to the polarity determination circuit 38 to determine the polarity. 39a, 39b, 39c are drive signal generators that generate drive signals ga, gb, gc for the phase voltage compensation circuits 110a, 110b, 110c. The drive signals ga, gb, gc for each phase are Each phase voltage compensation circuit 110a, 110b, 110c is composed of 12 types of drive signals g11-g14, g21-g24, g31-g34 of inverters of a plurality of voltage compensation subcircuits PN. The drive signal generators 39a, 39b, and 39c select the signals that become active in the digital signals D1 to D3 according to the cases where the polarities of the compensation voltages Via, Vib, and Vic of each phase are positive and negative, Drive signals ga, gb, and gc are generated for the phase voltage compensation circuits 110a, 110b, and 110c.

例えば、図2で示す各相電圧補償回路110a、110b、110c内の電圧補償サブ回路PN1においては、最下位ビットD1=1のときに、系統電圧の極性が正の場合、スイッチング素子9sw11、9sw14をオンし、スイッチング素子9sw12、9sw13をオフすることにより、充電電圧V1を正極性で出力する。また系統電圧の極性が負の場合、スイッチング素子9sw12、9sw13をオンし、スイッチング素子9sw11、9sw14をオフすることにより、充電電圧V1を負極性で出力する。またD1=0のとき、スイッチング素子9sw11〜9sw14、のうち上アーム側9sw12、9sw14あるいは下アーム側9sw11、9sw13のどちらか一方をオン状態とし他方をオフ状態として出力端を短絡し、電圧補償サブ回路PN1からの出力をほぼゼロとする。
他の電圧補償サブ回路PN2、PN3からの出力も、対応するビットのデジタル信号D2、D3に応じて同様に行われ、即ち、各相電圧補償回路110a、110b、110c内において、デジタル信号D1〜D3によって選択された各補償サブ回路PN1、PN2、PN3から補償電圧が出力される。これらの出力は、系統にて組み合わされ、゛000゛〜゛111゛の8階調の電圧出力を各相で発生することができ、最大の補償電圧は、7×V1となる。
For example, in the voltage compensation subcircuit PN1 in each phase voltage compensation circuit 110a, 110b, 110c shown in FIG. 2, when the least significant bit D1 = 1 and the polarity of the system voltage is positive, the switching elements 9sw11, 9sw14 Is turned on, and the switching elements 9sw12 and 9sw13 are turned off, so that the charging voltage V1 is output in a positive polarity. When the polarity of the system voltage is negative, the switching elements 9sw12 and 9sw13 are turned on and the switching elements 9sw11 and 9sw14 are turned off to output the charging voltage V1 with a negative polarity. When D1 = 0, one of the upper arm side 9sw12 and 9sw14 or the lower arm side 9sw11 and 9sw13 among the switching elements 9sw11 to 9sw14 is turned on and the other is turned off, and the output terminal is short-circuited. The output from the circuit PN1 is almost zero.
The outputs from the other voltage compensation sub-circuits PN2 and PN3 are similarly performed according to the digital signals D2 and D3 of the corresponding bits, that is, in each phase voltage compensation circuit 110a, 110b, and 110c, the digital signals D1 to D1. A compensation voltage is output from each compensation subcircuit PN1, PN2, PN3 selected by D3. These outputs are combined in the system, and voltage output of 8 gradations of “000” to “111” can be generated in each phase, and the maximum compensation voltage is 7 × V1.

次に、重畳電圧V0の演算方法の詳細について説明する。
電圧変動補償時、各相電圧補償回路では、誤差電圧Vtに重畳電圧V0が重畳された補償電圧(Vt+V0)の出力により、時間の経過と共に、コンデンサ電圧Vcが低下する。時刻tにおけるコンデンサ電圧をVc(t)とすると、以下の式が成り立つ。
Next, details of a method for calculating the superimposed voltage V0 will be described.
At the time of voltage fluctuation compensation, in each phase voltage compensation circuit, the capacitor voltage Vc decreases with time due to the output of the compensation voltage (Vt + V0) in which the superimposed voltage V0 is superimposed on the error voltage Vt. If the capacitor voltage at time t is Vc (t), the following equation is established.

Figure 2005057909
ここで、Cはコンデンサ静電容量を、Pは皮相電力を、pfは負荷力率を、Tは系統電圧の周期を、Vnは正常時の系統電圧を表している。
重畳電圧V0を(V0+ΔV0)に変化させたときの、Vc(t)の変化量をΔVcとすると、(1)式より次の関係式が得られる。
Figure 2005057909
Here, C represents the capacitor capacitance, P represents the apparent power, pf represents the load power factor, T represents the system voltage period, and Vn represents the normal system voltage.
When the amount of change in Vc (t) when the superposed voltage V0 is changed to (V0 + ΔV0) is ΔVc, the following relational expression is obtained from the expression (1).

Figure 2005057909
Vc(t)をVn・Vcpuとおいて(2)式を変形すると、次式が得られる。
Figure 2005057909
When Vc (t) is set to Vn · Vcpu and the equation (2) is modified, the following equation is obtained.

Figure 2005057909
Figure 2005057909

上記(3)式に示すように、時刻毎の重畳電圧変化量ΔV0は、コンデンサ電圧の変化量ΔVcに基づいて決定されるものである。
この重畳電圧V0は、所定の単位時間Δt毎に繰り返し演算され、各演算時に、各相のコンデンサ総和電圧を検出して、これらがほぼ均等になるように重畳電圧演算部34で演算されるもので、各相の正常電圧ベクトルをVnj(j=a,b,c)とすると、以下の式で表される。
As shown in the above equation (3), the superimposed voltage change amount ΔV0 for each time is determined based on the change amount ΔVc of the capacitor voltage.
This superimposed voltage V0 is repeatedly calculated every predetermined unit time Δt, and at each calculation, the capacitor total voltage of each phase is detected and calculated by the superimposed voltage calculation unit 34 so that they are substantially equal. When the normal voltage vector of each phase is Vnj (j = a, b, c), it is expressed by the following equation.

Figure 2005057909
即ち、重畳電圧演算部34は、所定の単位時間Δt毎に、Vnjの係数であるSjを演算して重畳電圧V0を決定する。Sjの演算は、以下の式により行う。
Figure 2005057909
That is, the superimposed voltage calculation unit 34 calculates the superimposed voltage V0 by calculating Sj that is a coefficient of Vnj every predetermined unit time Δt. The calculation of Sj is performed by the following equation.

Figure 2005057909
但し、K,mは定数
Figure 2005057909
K and m are constants

このように各演算時tでのSj(t)を決定する。この演算は、その時tの各相のコンデンサ総和電圧Vcjと全相のコンデンサ平均電圧Vcaveとの差を、系統電圧の周期時間Tの間に無くすようにSj(t)を演算するものである。即ち、その時点の各相コンデンサの電圧低下の偏りを系統電圧の一周期の時間Tで無くすように演算する。
また、Sj(t)は前回演算時tn−1の値Sj(tn−1)、およびその時点(前回演算時からのΔtの間)のコンデンサの変化量ΔVcjに基づいて、演算される。即ち、時刻毎の重畳電圧変化量ΔV0を、コンデンサ電圧の変化量ΔVcに基づいて演算するものである。また、このように演算されるSj(t)は一時的には増加することもあるが、継続する補償時間の間に時間の経過と共に減少する傾向を示す。これにより、補償動作が継続してコンデンサ電圧が低下すると重畳電圧V0およびその変化量も低減する。
In this way, Sj (t n ) at each calculation time t n is determined. This operation is the difference between the phase of the capacitor sum voltage Vcj and all phases capacitor average voltage Vcave at that time t n, in which computing the Sj (t n) so as to eliminate during the period time T of the system voltage is there. That is, the calculation is performed so that the voltage drop bias of each phase capacitor at that time is eliminated by the time T of one cycle of the system voltage.
Further, Sj (t n) is the previous calculation time t n-1 value Sj (t n-1), and that time based on the capacitor variation ΔVcj of (Delta] t between the from the previous operation) is calculated The That is, the superposed voltage change amount ΔV0 for each time is calculated based on the change amount ΔVc of the capacitor voltage. Further, although Sj (t n ) calculated in this way may temporarily increase, it shows a tendency to decrease over time during the continuous compensation time. As a result, when the compensation operation continues and the capacitor voltage decreases, the superimposed voltage V0 and the amount of change thereof are also reduced.

この実施の形態では、各相電圧補償回路110a、110b、110cの各相のコンデンサ総和電圧Vca、Vcb、Vccのばらつきを無くすように重畳電圧V0を演算し、この重畳電圧V0を重畳して各相補償電圧Via、Vib、Vicを演算する。このため、線間電圧の電圧変動を補償して負荷3への電力供給の信頼性を保ちつつ、各相のコンデンサ総和電圧Vca、Vcb、Vccをほぼ均等に低下させることができる。このため、電圧変動補償装置200全体のコンデンサのエネルギを有効利用でき、その結果電圧変動補償可能時間を延長することができる。
また、上記(4)(5)式を用いることにより、確実に信頼性よく重畳電圧V0を演算することができ、上述した効果が容易に確実に達成できる。
また、補償動作が継続してコンデンサ電圧が低下すると重畳電圧V0およびその変化量が小さくなるようにしたため、コンデンサ電圧に対して重畳電圧V0の変化割合が大きくなり制御が発散するなどの問題が無く、補償動作の制御の安定性が向上する。また、供給電力に従った重畳電圧ベクトルV0の決定が可能となるため、制御の信頼性が高まる。
In this embodiment, the superposed voltage V0 is calculated so as to eliminate variations in the capacitor total voltages Vca, Vcb, Vcc of the respective phases of the phase voltage compensation circuits 110a, 110b, 110c, and the superposed voltage V0 is superposed to each other. Phase compensation voltages Via, Vib, Vic are calculated. For this reason, it is possible to reduce the capacitor total voltages Vca, Vcb, and Vcc of each phase substantially evenly while compensating for the voltage fluctuation of the line voltage and maintaining the reliability of power supply to the load 3. For this reason, the energy of the capacitor of the whole voltage fluctuation compensating apparatus 200 can be used effectively, and as a result, the voltage fluctuation compensation possible time can be extended.
Further, by using the above equations (4) and (5), the superimposed voltage V0 can be calculated reliably and reliably, and the above-described effects can be easily and reliably achieved.
Further, when the compensation operation is continued and the capacitor voltage is lowered, the superposed voltage V0 and the amount of change thereof are reduced, so that there is no problem that the control voltage diverges because the rate of change of the superposed voltage V0 increases with respect to the capacitor voltage. The stability of the compensation operation control is improved. In addition, since the superimposed voltage vector V0 can be determined according to the supplied power, the control reliability is improved.

実施の形態2.
上記実施の形態1において、補償動作の継続と共に、コンデンサ電圧Vcが低下し、演算された補償電圧(Vt+V0)がコンデンサ電圧Vcを超えると、補償不可となるため、この実施の形態では、重畳電圧V0をリミット値を設けて制限する。
各相補償電圧(Vnj−Vsj+V0)を各相コンデンサ電圧Vcj以内に収めるために、次の関係が必要である。
│Vnj−Vsj+V0│≦Vcj (j=a,b,c) ・・・(6)
任意の瞬間でVnj、Vsj、V0の各電圧は、上記(6)式を満たし、またVcjは正であるため、(6)式は次のように変形できる。
−Vcj≦Vnj−Vsj+V0≦Vcj (j=a,b,c) ・・・(7)
故に、
−Vcj−Vnj+Vsj≦V0≦Vcj−Vnj+Vsj (j=a,b,c) ・・・(8)
Embodiment 2. FIG.
In the first embodiment, as the compensation operation continues, the capacitor voltage Vc decreases. When the calculated compensation voltage (Vt + V0) exceeds the capacitor voltage Vc, the compensation cannot be performed. Limit V0 by setting a limit value.
In order to keep each phase compensation voltage (Vnj-Vsj + V0) within each phase capacitor voltage Vcj, the following relationship is required.
│Vnj-Vsj + V0│≤Vcj (j = a, b, c) (6)
Since Vnj, Vsj, and V0 satisfy the above equation (6) and Vcj is positive at an arbitrary moment, equation (6) can be transformed as follows.
-Vcj≤Vnj-Vsj + V0≤Vcj (j = a, b, c) (7)
Therefore,
−Vcj−Vnj + Vsj ≦ V0 ≦ Vcj−Vnj + Vsj (j = a, b, c) (8)

このため、図5に示すように、重畳電圧V0は、上記(4)(5)式を用いて演算した電圧を、上記(8)式で表されるリミット値を用いて制限することで、各相補償電圧(Vnj−Vsj+V0)を各相コンデンサ電圧Vcj以内に収めることができる。
なお、リミット値は、上記のように、その時点の各相のコンデンサ電圧検出値Vcjと誤差電圧(Vnj−Vsj)とによって決定される。
また、コンデンサ電圧検出値Vcjの変化は小さく、誤差電圧(Vnj−Vsj)は系統の基本周波数で変動するため、重畳電圧V0のリミット値は急変せず、安定した制御が行える。
For this reason, as shown in FIG. 5, the superimposed voltage V0 is obtained by limiting the voltage calculated using the above equations (4) and (5) using the limit value represented by the above equation (8). Each phase compensation voltage (Vnj-Vsj + V0) can be kept within each phase capacitor voltage Vcj.
As described above, the limit value is determined by the capacitor voltage detection value Vcj and the error voltage (Vnj−Vsj) of each phase at that time.
Further, since the change in the capacitor voltage detection value Vcj is small and the error voltage (Vnj−Vsj) fluctuates at the fundamental frequency of the system, the limit value of the superimposed voltage V0 does not change suddenly and stable control can be performed.

1相または2相の各相電圧補償回路110において、演算された補償電圧よりも各相のコンデンサ電圧の方が小さくなった後は、各相のコンデンサ電圧をほぼ均等に低下させる制御は不可能となる。しかし、補償に必要なエネルギーは保持している。この実施の形態では、出力補償電圧がコンデンサ電圧を超えた相が、コンデンサ電圧に等しい補償電圧を出力するように、重畳電圧V0にリミットをかけながら、補償を継続する。これにより、容易な制御で、更に三相の線間電圧を正常に保ったまま補償を継続することができる。   In the one-phase or two-phase voltage compensation circuit 110, after the capacitor voltage of each phase becomes smaller than the calculated compensation voltage, it is impossible to control to reduce the capacitor voltage of each phase almost uniformly. It becomes. However, it retains the energy required for compensation. In this embodiment, the compensation is continued while limiting the superimposed voltage V0 so that the phase in which the output compensation voltage exceeds the capacitor voltage outputs a compensation voltage equal to the capacitor voltage. Thus, the compensation can be continued with easy control while keeping the three-phase line voltage normal.

なお、各相をリミット値で制限する方法に限らず、演算された補償電圧よりも各相のコンデンサ電圧の方が小さくなった後は、演算された該各相補償電圧をキャンセルし、全ての相で各相補償電圧がコンデンサの電圧以下となるように重畳電圧V0を再演算すれば、同様に補償が継続できる。   Not only the method of limiting each phase with the limit value, but after the capacitor voltage of each phase becomes smaller than the calculated compensation voltage, the calculated each phase compensation voltage is canceled and all the phases are canceled. Compensation can be continued in the same way by recalculating the superimposed voltage V0 so that each phase compensation voltage is equal to or lower than the capacitor voltage.

実施の形態3.
この実施の形態3では、上記実施の形態1において、電圧変動補償中に系統電圧が正常に復電したときの制御について説明する。
電圧変動補償中に系統電圧が正常になったときには、所定の単位時間Δt毎に、Sjを演算して重畳電圧V0を決定していた重畳電圧演算部34では上記(5)式の計算を止め、それ以降、新たな演算は行わない。そして、前回演算時の重畳電圧V0を重畳した各相補償電圧の出力により補償動作を継続し、この重畳電圧V0の瞬時値が零になった時点で、常短絡スイッチ8を閉じて電圧変動補償装置の出力を停止する。
補償中の重畳電圧V0によって、負荷の中性点電圧は急変するものであるが、この実施の形態では、重畳電圧V0すなわち中性点電圧は零の状態で系統側からの給電となるため、負荷の中性点電圧の急変が無く安定な動作が行える。
Embodiment 3 FIG.
In the third embodiment, control when the system voltage is normally restored during voltage fluctuation compensation in the first embodiment will be described.
When the system voltage becomes normal during voltage fluctuation compensation, the superimposed voltage calculation unit 34 that has calculated Sj and determined the superimposed voltage V0 every predetermined unit time Δt stops the calculation of the above equation (5). Thereafter, no new operation is performed. Then, the compensation operation is continued by the output of each phase compensation voltage on which the superimposed voltage V0 at the previous calculation is superimposed. When the instantaneous value of the superimposed voltage V0 becomes zero, the normal short-circuit switch 8 is closed to compensate the voltage fluctuation. Stop device output.
The neutral point voltage of the load changes suddenly due to the superposed voltage V0 being compensated. In this embodiment, since the superposed voltage V0, that is, the neutral point voltage is zero, power is supplied from the system side. There is no sudden change in the neutral voltage of the load and stable operation can be performed.

実施の形態4.
上記実施の形態3では、電圧変動補償中に系統電圧が正常になったときには、(5)式の計算を止め、それ以降、新たな重畳電圧V0の演算は行わないようにしたが、この実施の形態4では、系統電圧が正常になった後も、少しの間、重畳電圧V0の演算を継続する。
重畳電圧演算部33では、電圧変動補償中に系統電圧が正常になったとき、各相のコンデンサ総和電圧Vca、Vcb、Vccが均等になるまで、所定の単位時間Δt毎に、(5)式によりSjを演算して重畳電圧V0を決定する処理を継続し、重畳電圧V0を重畳した各相補償電圧の出力により補償動作を継続させる。そして、Vca=Vcb=Vccとなった時点で、定常短絡スイッチ8を閉じて電圧変動補償装置の出力を停止する。
Embodiment 4 FIG.
In the third embodiment, when the system voltage becomes normal during the voltage fluctuation compensation, the calculation of the formula (5) is stopped, and the calculation of the new superimposed voltage V0 is not performed thereafter. In the fourth embodiment, the calculation of the superimposed voltage V0 is continued for a while even after the system voltage becomes normal.
In the superimposed voltage calculation unit 33, when the system voltage becomes normal during voltage fluctuation compensation, the equation (5) is used for each predetermined unit time Δt until the capacitor total voltages Vca, Vcb, Vcc of each phase become equal. Thus, the process of calculating Sj to determine the superimposed voltage V0 is continued, and the compensation operation is continued by outputting each phase compensation voltage on which the superimposed voltage V0 is superimposed. Then, when Vca = Vcb = Vcc, the steady short-circuit switch 8 is closed to stop the output of the voltage fluctuation compensator.

これによって、多重雷等により、繰り返しの瞬低が起こったときも、補償可能となり、補償動作の信頼性が向上する。
ここで、系統電圧が正常になってから、定常短絡スイッチ8を閉じるまでの時間は電圧の高い相の電圧補償回路110から低い相の電圧補償回路110へエネルギを移行することになる。
As a result, even when a repeated instantaneous drop occurs due to multiple lightning or the like, it is possible to compensate, and the reliability of the compensation operation is improved.
Here, during the time from when the system voltage becomes normal to when the steady short-circuit switch 8 is closed, energy is transferred from the voltage compensation circuit 110 having a higher voltage to the voltage compensation circuit 110 having a lower phase.

なお、上記実施の形態3の制御を組み合わせて適用することもできる。即ち、上記実施の形態4において、各相のコンデンサ総和電圧Vca、Vcb、Vccが均等になった時点で、上記(5)式の計算を止めて新たな重畳電圧V0の演算は行わず、前回演算時の重畳電圧V0を用いた各相補償電圧により補償動作を継続し、この重畳電圧V0の瞬時値が零になった時点で、補償動作を終了しても良い。これによって、多重雷等により、繰り返しの瞬低が起こったときも、補償可能となり、補償動作の信頼性が向上すると共に、負荷の中性点の電圧の急変を防ぐことができる。   The control of the third embodiment can be applied in combination. That is, in the fourth embodiment, when the total capacitor voltage Vca, Vcb, Vcc of each phase becomes equal, the calculation of the above equation (5) is stopped and the calculation of the new superimposed voltage V0 is not performed. The compensation operation may be continued with each phase compensation voltage using the superimposed voltage V0 at the time of calculation, and the compensation operation may be terminated when the instantaneous value of the superimposed voltage V0 becomes zero. This makes it possible to compensate even when repeated voltage drops occur due to multiple lightnings, etc., improving the reliability of the compensation operation and preventing sudden changes in the voltage at the neutral point of the load.

実施の形態5.
次に、この発明の実施の形態5による電圧変動補償装置について以下に説明する。
上記各実施の形態では、重畳電圧V0は、各相のコンデンサ総和電圧がほぼ均等になるように、所定の単位時間Δt毎に繰り返し演算したが、実施の形態2、3で示したように、各相のコンデンサ総和電圧を均等に保つための電圧が出力できなくなったときには、補償を継続させるために制御を変化させていた。
この実施の形態5では、各相補償電圧と各相系統電流との位相角のずれθによるcosθが1に近い相ほど、各相電圧補償回路110からの各相補償電圧の出力エネルギが大きくなるように重畳電圧V0を演算する。この重畳電圧V0の演算は、補償開始時に1度のみで良く、そのとき演算された重畳電圧V0を補償開始から終了まで用いる。
Embodiment 5 FIG.
Next, a voltage variation compensating apparatus according to Embodiment 5 of the present invention will be described below.
In each of the above embodiments, the superimposed voltage V0 is repeatedly calculated every predetermined unit time Δt so that the total capacitor voltage of each phase is substantially equal. However, as shown in the second and third embodiments, When it becomes impossible to output a voltage for keeping the total capacitor voltage of each phase uniform, the control is changed to continue the compensation.
In the fifth embodiment, the output energy of each phase compensation voltage from each phase voltage compensation circuit 110 increases as the cos θ due to the phase angle shift θ between each phase compensation voltage and each phase system current is closer to 1. The superimposed voltage V0 is calculated as follows. The calculation of the superposed voltage V0 may be performed only once at the start of compensation, and the superposed voltage V0 computed at that time is used from the start to the end of compensation.

重畳電圧V0および補償電圧Via、Vib、Vicの求め方について、以下に説明する。
図6は、この実施の形態5による電力系統の各相の電圧、電流、および重畳電圧、補償電圧をベクトル図で示したものである。図5(a)に示すように、正常電圧ベクトルVna、Vnb、Vncである系統電圧が、瞬低により瞬低電圧ベクトルVsa、Vsb、Vscとなったとき、各相の瞬低電圧ベクトルVsa、Vsb、Vscを正常電圧ベクトルVna、Vnb、Vncに補償するための各相誤差電圧Vna−Vsa、Vnb−Vsb、Vnc−Vscに、それぞれ同じ出力電圧ベクトルである重畳電圧ベクトルV0を重畳(加算)して、各相補償電圧ベクトルVia、Vib、Vicを演算する。このとき、図5(b)に示すように、各相補償電圧ベクトルVia、Vib、Vicと各相系統電流の正常電流ベクトルIna、Inb、Incとの位相角のずれθによるcosθが1に近い相ほど、即ち、力率が1に近いほど各相補償電圧ベクトルVia、Vib、Vicのエネルギが大きくなるようにする。また、各相補償電圧ベクトルVia、Vib、Vicと正常電流ベクトルIna、Inb、Incとがこのような関係を満たすように、重畳電圧ベクトルV0を、決定する。
A method for obtaining the superimposed voltage V0 and the compensation voltages Via, Vib, Vic will be described below.
FIG. 6 is a vector diagram showing the voltage, current, superimposed voltage, and compensation voltage of each phase of the power system according to the fifth embodiment. As shown in FIG. 5A, when the system voltages that are normal voltage vectors Vna, Vnb, and Vnc become instantaneous voltage vectors Vsa, Vsb, and Vsc due to an instantaneous voltage drop, the instantaneous voltage vectors Vsa, Vsa, A superimposed voltage vector V0, which is the same output voltage vector, is superimposed (added) on each phase error voltage Vna-Vsa, Vnb-Vsb, Vnc-Vsc for compensating Vsb, Vsc to normal voltage vectors Vna, Vnb, Vnc. Then, each phase compensation voltage vector Via, Vib, Vic is calculated. At this time, as shown in FIG. 5B, cos θ due to the phase angle deviation θ between each phase compensation voltage vector Via, Vib, Vic and normal current vectors Ina, Inb, Inc of each phase system current is close to 1. The energy of each phase compensation voltage vector Via, Vib, Vic is increased as the phase, that is, the power factor is closer to 1. Further, the superposed voltage vector V0 is determined so that the phase compensation voltage vectors Via, Vib, Vic and the normal current vectors Ina, Inb, Inc satisfy such a relationship.

仮に、図7に示すように、各相補償電圧ベクトルVia、Vib、Vicのエネルギが該均等になるように決定されると、図7(b)に示すように、各相補償電圧ベクトルVia、Vib、Vicと各相系統電流の正常電流ベクトルIna、Inb、Incとの位相角のずれθによるcosθが1から離れた相ほど、即ち、力率が小さいほど、各相補償電圧ベクトルVia、Vib、Vicの電圧が高くなる。このため、高い補償電圧が必要となる相の電圧補償回路110では、コンデンサ電圧が比較的高い状態でも補償電圧出力が不可能になってしまうことがある。   If the energy of each phase compensation voltage vector Via, Vib, Vic is determined to be equal as shown in FIG. 7, as shown in FIG. 7B, each phase compensation voltage vector Via, The phase compensation voltage vectors Via, Vib are reduced as the phase where the cos θ due to the phase angle deviation θ between Vib, Vic and the normal current vectors Ina, Inb, Inc of the respective phase system currents is away from 1, that is, the power factor is smaller. , The voltage of Vic increases. Therefore, in the phase voltage compensation circuit 110 that requires a high compensation voltage, it may be impossible to output the compensation voltage even when the capacitor voltage is relatively high.

この実施の形態では、各相補償電圧ベクトルVia、Vib、Vicと各相系統電流の正常電流ベクトルIna、Inb、Incとの位相角のずれθによるcosθが1に近い相ほど各相補償電圧ベクトルVia、Vib、Vicのエネルギが大きくなるようにすることにより、コンデンサ電圧が比較的高い状態で補償電圧出力が不可能になることはなく、電圧変動補償装置200全体のコンデンサのエネルギを有効利用でき、その結果電圧変動補償可能時間を延長することができる。
理想的には、補償電圧出力が不可能となり補償終了に至った時に、各相のコンデンサ総和電圧Vca、Vcb、Vccがそれぞれ各相補償電圧Via、Vib、Vicに一致していること、
即ち、│Via│=Vca、│Vib│=Vcb、│Vic│=Vccが同時に成立している状態で補償が終了することである。
In this embodiment, each phase compensation voltage vector becomes closer to a phase where cos θ due to a phase angle deviation θ between each phase compensation voltage vector Via, Vib, Vic and normal current vectors Ina, Inb, Inc of each phase system current is closer to 1. By increasing the energy of Via, Vib, and Vic, the compensation voltage output is not impossible when the capacitor voltage is relatively high, and the energy of the capacitor of the entire voltage fluctuation compensator 200 can be used effectively. As a result, the voltage fluctuation compensation possible time can be extended.
Ideally, when the compensation voltage output is impossible and the compensation is terminated, the total capacitor voltages Vca, Vcb, Vcc of each phase match the compensation voltages Via, Vib, Vic, respectively.
That is, the compensation ends when | Via | = Vca, | Vib | = Vcb, and | Vic | = Vcc are satisfied at the same time.

なお、この場合も、上記実施の形態3が適用でき、系統電圧が正常になったとき、補償動作をすぐに停止させず、重畳電圧V0の瞬時値が零になった時点で、常短絡スイッチ8を閉じて電圧変動補償装置の出力を停止する。これによって、負荷の中性点の電圧の急変を防ぐことができる。   In this case as well, the above-described third embodiment can be applied. When the system voltage becomes normal, the compensation operation is not immediately stopped, and when the instantaneous value of the superimposed voltage V0 becomes zero, the normal short-circuit switch 8 is closed to stop the output of the voltage fluctuation compensator. As a result, a sudden change in the voltage at the neutral point of the load can be prevented.

この発明の実施の形態1による電圧変動補償装置の概略構成図である。1 is a schematic configuration diagram of a voltage variation compensating apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1による各相電圧補償回路の構成図である。It is a block diagram of each phase voltage compensation circuit by Embodiment 1 of this invention. この発明の実施の形態1による電圧変動補償装置の制御回路の構成図である。It is a block diagram of the control circuit of the voltage fluctuation compensation apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電圧変動補償装置の動作を説明する電圧、電流のベクトル図である。It is a vector diagram of voltage and current for explaining the operation of the voltage fluctuation compensator according to Embodiment 1 of the present invention. この発明の実施の形態2による重畳電圧の決定方法の説明図である。It is explanatory drawing of the determination method of the superimposed voltage by Embodiment 2 of this invention. この発明の実施の形態5による電圧変動補償装置の動作を説明する電圧、電流のベクトル図である。It is a vector diagram of the voltage and current explaining the operation | movement of the voltage fluctuation compensation apparatus by Embodiment 5 of this invention. この発明の実施の形態5の比較例による動作を説明する電圧、電流のベクトル図である。It is a vector diagram of the voltage and current explaining the operation | movement by the comparative example of Embodiment 5 of this invention.

符号の説明Explanation of symbols

3 負荷、10,10a,10b,10c コンデンサ、
30 制御部としての制御回路、31 正常電圧としての設定電圧、
33 補償電圧演算部、34 重畳電圧演算部、37 瞬低検出部、
41 平均値演算部、44 電圧偏り検出部、110a〜110c 各相電圧補償回路、200 電圧変動補償装置、PN1,PN2,PN3 電圧補償サブ回路、
V0 重畳電圧、Via,Vib,Vic 各相補償電圧、Vsa,Vsb,Vsc 瞬低電圧、
Vca,Vcb,Vcc 各相コンデンサ検出電圧値(コンデンサ総和電圧)、
Vx 系統電圧、Ix 系統電流。
3 load, 10, 10a, 10b, 10c capacitor,
30 Control circuit as control unit, 31 Set voltage as normal voltage,
33 Compensation voltage calculator, 34 Superposed voltage calculator, 37 Instantaneous voltage drop detector,
41 average value calculation unit, 44 voltage deviation detection unit, 110a to 110c voltage compensation circuit for each phase, 200 voltage fluctuation compensation device, PN1, PN2, PN3 voltage compensation subcircuit,
V0 superimposed voltage, Via, Vib, Vic Compensation voltage for each phase, Vsa, Vsb, Vsc Instantaneous low voltage,
Vca, Vcb, Vcc each phase capacitor detection voltage value (capacitor total voltage),
Vx grid voltage, Ix grid current.

Claims (11)

電力系統における電圧変動の監視、およびそれに基づく給電制御を行う制御部と、該電力系統の各相にそれぞれ直列に接続し、各相毎に独立にコンデンサを有して該各相コンデンサの直流電圧を交流に変換して出力する各相電圧補償回路とを備えて、負荷に供給される電圧の変動を抑える電圧変動補償装置において、上記電力系統の電圧変動時に、各相の系統電圧を正常電圧に補償するための各相誤差電圧にそれぞれ同じ出力電圧(以下、重畳電圧と称す)を重畳して各相補償電圧を演算する補償電圧演算部と、上記重畳電圧を演算する重畳電圧演算部とを上記制御部内に備え、上記重畳電圧演算部は、所定の単位時間毎に、上記各相コンデンサの電圧低下状態を検出してその各相間の偏りを、上記所定の単位時間よりも充分長い所定時間で無くすように、各相の電圧成分の合成で構成される上記重畳電圧を繰り返し演算し、該重畳電圧を用いて上記補償電圧演算部にて演算される上記各相補償電圧を上記各相電圧補償回路から出力して、上記電力系統における線間電圧の電圧変動を抑えることを特徴とする電圧変動補償装置。 A control unit that monitors voltage fluctuations in the power system and performs power supply control based on the voltage fluctuation, and is connected in series to each phase of the power system, and has a capacitor independently for each phase, and the DC voltage of each phase capacitor A voltage fluctuation compensator that suppresses fluctuations in the voltage supplied to the load, and converts the system voltage of each phase to a normal voltage when the voltage of the power system fluctuates. A compensation voltage calculation unit for calculating each phase compensation voltage by superimposing the same output voltage (hereinafter referred to as a superimposed voltage) on each phase error voltage for compensation, and a superimposed voltage calculation unit for calculating the superimposed voltage; In the control unit, and the superimposed voltage calculation unit detects a voltage drop state of each phase capacitor every predetermined unit time, and the bias between the phases is a predetermined time sufficiently longer than the predetermined unit time. In time As described above, the superposed voltage constituted by combining the voltage components of the respective phases is repeatedly calculated, and the respective phase compensation voltages calculated by the compensation voltage calculating unit using the superposed voltage are converted into the respective phase voltage compensations. A voltage fluctuation compensator that outputs from a circuit and suppresses voltage fluctuation of a line voltage in the power system. 上記充分長い所定時間は、上記電力系統の周期に基づいて決定される時間であることを特徴とする請求項1記載の電圧変動補償装置。 2. The voltage fluctuation compensator according to claim 1, wherein the sufficiently long predetermined time is a time determined based on a cycle of the power system. 上記重畳電圧は、時間の経過と共に減少させることを特徴とする請求項1または2記載の電圧変動補償装置。 3. The voltage fluctuation compensator according to claim 1, wherein the superimposed voltage is decreased with the passage of time. 上記重畳電圧の各相成分は、上記所定の単位時間毎の前回演算値と当該相のコンデンサの電圧変化量とに応じて決定されることを特徴とする請求項3記載の電圧変動補償装置。 4. The voltage fluctuation compensator according to claim 3, wherein each phase component of the superimposed voltage is determined according to a previous calculation value for each predetermined unit time and a voltage change amount of a capacitor of the phase. 上記重畳電圧演算部は、その時点の上記各相誤差電圧と上記各相コンデンサの電圧検出値とに基づいて決定されたリミット値にて上記重畳電圧を制限して出力することを特徴とする請求項1〜4のいずれかに記載の電圧変動補償装置。 The superposed voltage calculation unit limits the superposed voltage to a limit value determined based on each phase error voltage at that time and a voltage detection value of each phase capacitor, and outputs the limited superposed voltage. Item 5. The voltage fluctuation compensation device according to any one of Items 1 to 4. 任意の相で上記各相補償電圧が当該相のコンデンサの電圧検出値を超えると、演算された該各相補償電圧をキャンセルすると共に、上記重畳電圧演算部は、全ての相で上記各相補償電圧が当該相のコンデンサの電圧検出値以下となるように上記重畳電圧を演算して、上記各相電圧補償回路から上記各相補償電圧を出力する補償動作を継続することを特徴とする請求項1〜4のいずれかに記載の電圧変動補償装置。 When each phase compensation voltage exceeds the voltage detection value of the capacitor of the phase in an arbitrary phase, the calculated phase compensation voltage is canceled, and the superimposed voltage calculation unit performs the phase compensation for all phases. 2. The compensation operation of calculating the superposed voltage so that the voltage is equal to or lower than a voltage detection value of the capacitor of the phase and outputting the phase compensation voltage from the phase voltage compensation circuit is continued. The voltage fluctuation compensation apparatus in any one of 1-4. 上記電力系統が電圧変動から正常電圧に復電すると、上記重畳電圧演算部は上記各相コンデンサの電圧に基づく重畳電圧演算を新たに行わず、前回演算時の上記重畳電圧を用いて演算された上記各相補償電圧を上記各相電圧補償回路から出力する補償動作を、当該重畳電圧の瞬時値が零になるまで継続することを特徴とする請求項1〜6のいずれかに記載の電圧変動補償装置。 When the power system recovers from the voltage fluctuation to the normal voltage, the superimposed voltage calculation unit does not newly calculate the superimposed voltage based on the voltage of each phase capacitor, and is calculated using the superimposed voltage at the previous calculation. 7. The voltage variation according to claim 1, wherein the compensation operation for outputting each phase compensation voltage from each phase voltage compensation circuit is continued until the instantaneous value of the superimposed voltage becomes zero. Compensation device. 上記電力系統が電圧変動から正常電圧に復電すると、上記各相コンデンサの電圧検出値が概均等になる時点まで上記重畳電圧演算部は繰り返し上記重畳電圧を演算し、上記各相電圧補償回路から上記各相補償電圧を出力する補償動作を上記時点まで継続することを特徴とする請求項1〜6のいずれかに記載の電圧変動補償装置。 When the power system recovers from the voltage fluctuation to the normal voltage, the superimposed voltage calculation unit repeatedly calculates the superimposed voltage until the voltage detection value of each phase capacitor becomes approximately equal, and from each phase voltage compensation circuit, 7. The voltage fluctuation compensating apparatus according to claim 1, wherein the compensation operation for outputting each phase compensation voltage is continued until the time point. 電力系統における電圧変動の監視、およびそれに基づく給電制御を行う制御部と、該電力系統の各相にそれぞれ直列に接続し、各相毎に独立にコンデンサを有して該各相コンデンサの直流電圧を交流に変換して出力する各相電圧補償回路とを備えて、負荷に供給される電圧の変動を抑える電圧変動補償装置において、上記電力系統の電圧変動時に、各相の系統電圧を正常電圧に補償するための各相誤差電圧にそれぞれ同じ出力電圧(以下、重畳電圧と称す)を重畳して各相補償電圧を演算する補償電圧演算部と、上記重畳電圧を演算する重畳電圧演算部とを上記制御部内に備えて、上記各相補償電圧を上記各相電圧補償回路から出力して上記電力系統における線間電圧の電圧変動を抑え、上記重畳電圧演算部は、上記各相補償電圧と各相系統電流との位相角のずれθによるcosθが1に近い相ほど、上記各相電圧補償回路からの上記各相補償電圧の出力エネルギが大きくなるように上記重畳電圧を演算することを特徴とする電圧変動補償装置。 A control unit that monitors voltage fluctuations in the power system and performs power supply control based on the voltage fluctuation, and is connected in series to each phase of the power system, and has a capacitor independently for each phase, and the DC voltage of each phase capacitor A voltage fluctuation compensator that suppresses fluctuations in the voltage supplied to the load, and converts the system voltage of each phase to a normal voltage when the voltage of the power system fluctuates. A compensation voltage calculation unit for calculating each phase compensation voltage by superimposing the same output voltage (hereinafter referred to as a superimposed voltage) on each phase error voltage for compensation, and a superimposed voltage calculation unit for calculating the superimposed voltage; In the control unit, the phase compensation voltage is output from the phase voltage compensation circuit to suppress voltage fluctuation of the line voltage in the power system, and the superimposed voltage calculation unit includes the phase compensation voltage and the phase compensation voltage. Each phase system The superimposed voltage is calculated so that the output energy of each phase compensation voltage from each phase voltage compensation circuit becomes larger in the phase where cos θ due to the phase angle deviation θ from the current is closer to 1. Fluctuation compensation device. 上記電力系統が電圧変動から正常電圧に復電すると、既に演算された上記重畳電圧を用いて上記各相電圧補償回路から上記各相補償電圧を出力する補償動作を、当該重畳電圧の瞬時値が零になるまで継続することを特徴とする請求項9に記載の電圧変動補償装置。 When the power system recovers from the voltage fluctuation to the normal voltage, the compensation operation for outputting the phase compensation voltage from the phase compensation circuit using the superimposed voltage that has already been calculated is performed using the instantaneous value of the superimposed voltage. 10. The voltage fluctuation compensating apparatus according to claim 9, wherein the voltage fluctuation compensator is continued until zero. 電力系統の各相にそれぞれ直列に接続される各相電圧補償回路は、それぞれ異なる電圧が充電されて上記コンデンサを構成するサブコンデンサを備え該サブコンデンサの電圧を交流に変換して出力する複数の電圧補償サブ回路を直列に接続して構成され、各相補償電圧出力時には、各相における上記複数の電圧補償サブ回路の中から所望の組み合わせを選択し、その出力電圧の総和で上記電力系統における線間電圧の電圧変動を抑えることを特徴とする請求項1〜10のいずれかに記載の電圧変動補償装置。 Each phase voltage compensation circuit connected in series to each phase of the power system includes a plurality of sub-capacitors, each of which is charged with a different voltage and constitutes the capacitor, and converts the voltage of the sub-capacitor into alternating current and outputs the plurality The voltage compensation subcircuits are connected in series, and when each phase compensation voltage is output, a desired combination is selected from the plurality of voltage compensation subcircuits in each phase, and the sum of the output voltages is used in the power system. The voltage fluctuation compensation apparatus according to claim 1, wherein voltage fluctuation of the line voltage is suppressed.
JP2003287306A 2003-08-06 2003-08-06 Voltage fluctuation compensation device Expired - Fee Related JP4045218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287306A JP4045218B2 (en) 2003-08-06 2003-08-06 Voltage fluctuation compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287306A JP4045218B2 (en) 2003-08-06 2003-08-06 Voltage fluctuation compensation device

Publications (2)

Publication Number Publication Date
JP2005057909A true JP2005057909A (en) 2005-03-03
JP4045218B2 JP4045218B2 (en) 2008-02-13

Family

ID=34366317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287306A Expired - Fee Related JP4045218B2 (en) 2003-08-06 2003-08-06 Voltage fluctuation compensation device

Country Status (1)

Country Link
JP (1) JP4045218B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271045A (en) * 2005-03-23 2006-10-05 Meidensha Corp Multi-phase serial multiplex power converter
JP2007280358A (en) * 2006-03-14 2007-10-25 Tokyo Institute Of Technology Self-excited reactive power compensation apparatus, capacitor voltage control method for self-excited reactive power compensation apparatus, power storage apparatus, and power storage apparatus control method
CN110389251A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of instantaneous voltage dq decomposition method for grid voltage sags detection
CN110389252A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of α β detection method for grid voltage sags

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271045A (en) * 2005-03-23 2006-10-05 Meidensha Corp Multi-phase serial multiplex power converter
JP4701770B2 (en) * 2005-03-23 2011-06-15 株式会社明電舎 Multiphase series multiple power converter
JP2007280358A (en) * 2006-03-14 2007-10-25 Tokyo Institute Of Technology Self-excited reactive power compensation apparatus, capacitor voltage control method for self-excited reactive power compensation apparatus, power storage apparatus, and power storage apparatus control method
CN110389251A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of instantaneous voltage dq decomposition method for grid voltage sags detection
CN110389252A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of α β detection method for grid voltage sags
CN110389252B (en) * 2019-08-16 2021-07-16 广西电网有限责任公司电力科学研究院 Alpha beta detection method for power grid voltage drop
CN110389251B (en) * 2019-08-16 2021-07-16 广西电网有限责任公司电力科学研究院 Instantaneous voltage dq decomposition method for power grid voltage drop detection

Also Published As

Publication number Publication date
JP4045218B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US8385096B2 (en) Unbalanced voltage compensation method, unbalanced voltage compensator, three-phase converter control method, and controller of three-phase converter
KR100240905B1 (en) Npc inverter control system
US20120212191A1 (en) Method for controlling power factor of three-phase converter, method for controlling reactive power of three-phase converter, and controller of three-phase converter
TWI554005B (en) Uninterruptible power supply device
KR101639192B1 (en) Apparatus for compensating reactive power
KR101529889B1 (en) Switchgear capable of power factor correction
JP3992679B2 (en) Power converter
Hung et al. Double-loop control structure using proportional resonant and sequence-decoupled resonant controllers in static coordinates for dynamic voltage restorer
JP4045218B2 (en) Voltage fluctuation compensation device
JP3911175B2 (en) Voltage fluctuation compensation device
KR101876667B1 (en) Reactive power compensation device and control method thereof
JP2010110120A (en) Ac power supply system
JP4113071B2 (en) Voltage fluctuation compensation device
He et al. A modified lyapunov-based control scheme for a three-phase ups with an optimal third-order load current observer
JP4010999B2 (en) Voltage fluctuation compensation device
JP2002272124A (en) Self-excitated type inverter controller
JP4113070B2 (en) Voltage fluctuation compensation device
JP2002300725A (en) Voltage fluctuation compensation device
JP3903421B2 (en) Voltage fluctuation compensation device
JP3887007B2 (en) Power output device
JP6053931B2 (en) Power converter
JP4005110B2 (en) Power output device
JP5050622B2 (en) Voltage fluctuation compensator control method
JP2006311735A (en) Operating method of inverter and inverter
JP4214078B2 (en) Voltage fluctuation compensation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees