JP2005057243A - Method of inspecting laminated piezoelectric element - Google Patents

Method of inspecting laminated piezoelectric element Download PDF

Info

Publication number
JP2005057243A
JP2005057243A JP2004131810A JP2004131810A JP2005057243A JP 2005057243 A JP2005057243 A JP 2005057243A JP 2004131810 A JP2004131810 A JP 2004131810A JP 2004131810 A JP2004131810 A JP 2004131810A JP 2005057243 A JP2005057243 A JP 2005057243A
Authority
JP
Japan
Prior art keywords
piezoelectric element
voltage
detection current
laminated piezoelectric
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004131810A
Other languages
Japanese (ja)
Other versions
JP4655504B2 (en
Inventor
Atsushi Murai
敦司 村井
Toshiatsu Nagaya
年厚 長屋
Hirotaka Kubota
弘貴 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004131810A priority Critical patent/JP4655504B2/en
Priority to DE200410035195 priority patent/DE102004035195A1/en
Publication of JP2005057243A publication Critical patent/JP2005057243A/en
Application granted granted Critical
Publication of JP4655504B2 publication Critical patent/JP4655504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/22Measuring piezoelectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • G01N27/205Investigating the presence of flaws in insulating materials

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting a laminated piezoelectric element capable of easily and more certainly discovering defects. <P>SOLUTION: In a laminated piezoelectric element 1 constituted by alternately laminating a piezoelectric layer 11 and internal electrode layers 121, 122, defective goods are separated by monitoring a detection current which is generated by impressing a dc voltage to the laminated piezoelectric element 1 so that the internal electrode layers 121, 122 adjoining through the piezoelectric layer 11 may have different potentials. Besides, if an electric field strength at the time of impressing the dc voltage to the laminated piezoelectric element to be inspected is set to E (kV/mm), and if the detection current generated by impressing the dc current to the laminated piezoelectric element is set to X (μA), it is desirable to classify the case as the defective goods when there exist one or more peaks having a distance 0.008E or more between base lines in a wave representing a time variation of the detection current X. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層型圧電体素子を非破壊で検査する方法に関する。   The present invention relates to a method for nondestructively inspecting a laminated piezoelectric element.

積層型圧電体素子は、その製造工程等において、内部にデラミネーション(剥離)、クラック(割れ)、ポア(気孔、空洞)等の欠陥が発生することがある。
これらの欠陥を発見する検査方法として、高電圧を積層型圧電体素子に印加し、欠陥を劣化させた後に積層型圧電体素子の絶縁抵抗を測定する方法がある。
また、積層型圧電体素子に2種類の電圧を印加して測定する方法がある。
更に、積層型圧電体素子に短時間で定格電圧の数倍から数十倍の電圧を印加して、絶縁抵抗を測定する方法がある。
In the multilayer piezoelectric element, defects such as delamination (cracking), cracks, pores (pores, cavities), etc. may occur inside the manufacturing process.
As an inspection method for finding these defects, there is a method in which a high voltage is applied to the multilayer piezoelectric element and the insulation resistance of the multilayer piezoelectric element is measured after the defect is deteriorated.
There is also a method of measuring by applying two kinds of voltages to the laminated piezoelectric element.
Furthermore, there is a method of measuring the insulation resistance by applying a voltage several times to several tens of times the rated voltage in a short time to the multilayer piezoelectric element.

特開平8−186057号公報JP-A-8-186057 特開平11−345738号公報Japanese Patent Laid-Open No. 11-345738 特開平9−152455号公報JP-A-9-152455

しかしながら、欠陥があるにもかかわらず初期の絶縁抵抗が高く、従来方法で区別できない不良品が存在する。この不良品は超音波探傷装置等を用いることで非破壊で検査可能であるが、これらの方法は大量検査に向かない手法である。   However, although there are defects, there are defective products that have high initial insulation resistance and cannot be distinguished by conventional methods. This defective product can be inspected nondestructively by using an ultrasonic flaw detector or the like, but these methods are not suitable for mass inspection.

本発明は、かかる従来の問題点に鑑みてなされたもので、非破壊的で、欠陥を容易かつより確実に発見することができる積層型圧電体素子の検査方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and is intended to provide a method for inspecting a multilayer piezoelectric element that is nondestructive and can detect defects easily and more reliably. .

第1の発明は、圧電層と内部電極層とを交互に積層してなる積層型圧電体素子において、
圧電層を介して隣接する内部電極層が交互に異なる電位となるよう積層型圧電体素子に直流電圧を印加することにより発生する検出電流をモニタすることで不良品を分別することを特徴とする積層型圧電体素子の検査方法にある(請求項1)。
A first aspect of the present invention is a multilayer piezoelectric element formed by alternately laminating piezoelectric layers and internal electrode layers.
Defective products are separated by monitoring a detection current generated by applying a DC voltage to the stacked piezoelectric element so that adjacent internal electrode layers alternately have different potentials through the piezoelectric layer. A method for inspecting a multilayer piezoelectric element is provided.

次に、本発明の作用効果につき説明する。
積層型圧電体素子は、圧電層を挟む内部電極層の電位が異なるように積み重なって構成される。圧電層は誘電材料であり、積層型圧電体素子はコンデンサと同様の電気的特性を有する。
従って、正常な積層型圧電体素子に直流電圧を印加した場合、印加直後は電流が流れるが、時間の経過に応じて電流は単調に減衰し最終的には飽和状態となって、定常状態となる。欠陥のない理想的な積層型圧電体素子からは、後述する図3〜図8の実線に示すような特性を得る。
Next, the effects of the present invention will be described.
The stacked piezoelectric elements are stacked so that the internal electrode layers sandwiching the piezoelectric layers have different potentials. The piezoelectric layer is a dielectric material, and the laminated piezoelectric element has the same electrical characteristics as a capacitor.
Therefore, when a DC voltage is applied to a normal multilayer piezoelectric element, a current flows immediately after the application, but as the time passes, the current monotonously decays and eventually becomes a saturated state. Become. A characteristic as shown by the solid line in FIGS. 3 to 8 described later is obtained from an ideal laminated piezoelectric element having no defect.

ここで積層型圧電体素子の内部にデラミネーション(剥離)、クラック(割れ)、ポア(気孔、空洞)等の欠陥があると仮定する。欠陥が存在すると、該欠陥の近傍で微少電流が流れるため、後述する図3、図4の破線に示すように、ベースラインから逸脱する乱れ(鋭いピークやなだらかな盛り上がり)が発生する。ここで、検出電流に乱れがある場合、乱れを排除してチャート図または曲線関数によりピーク排除部に仮想曲線を形成したものをベースラインとする。あるいは、十分長い時間が経過しても電流が飽和状態とならずに図5の破線に示すように時間的に変動する。
従って、圧電層を介して隣接する内部電極層が異なる電位となるよう積層型圧電体素子に直流電圧を印加し、上記積層型圧電体素子に発生する検出電流をモニタすることで、不良品を分別することができる。
Here, it is assumed that the laminated piezoelectric element has defects such as delamination, cracks, pores (pores, cavities), and the like. If there is a defect, a minute current flows in the vicinity of the defect, and therefore, as shown by a broken line in FIGS. 3 and 4 to be described later, a disturbance deviating from the base line (a sharp peak or a gentle rise) occurs. Here, when there is a disturbance in the detected current, a base line is formed by eliminating the disturbance and forming a virtual curve in the peak exclusion portion by a chart diagram or a curve function. Alternatively, even if a sufficiently long time elapses, the current does not become saturated and changes with time as shown by a broken line in FIG.
Therefore, by applying a DC voltage to the multilayer piezoelectric element so that adjacent internal electrode layers have different potentials through the piezoelectric layer, and monitoring the detection current generated in the multilayer piezoelectric element, defective products can be detected. Can be separated.

積層型圧電体素子は駆動時に内部電極層が異なる電位となるように側面電極が設けてあり、従ってこの側面電極から直流電圧を印加して、積層型圧電体素子の内部電極層や側面電極層に流れる検出電流をモニタするという操作は容易で安価に実現することができる。 更に、欠陥のまったくない理想的な積層型圧電体素子の検出電流はコンデンサの特性から時間と共に指数関数的に減衰する。そのため、僅かの検出電流の乱れを検出することが容易であり、従って欠陥をより確実に発見することができる。   The laminated piezoelectric element is provided with side electrodes so that the internal electrode layers have different potentials when driven. Therefore, a DC voltage is applied from the side electrodes, and the internal electrode layer and side electrode layers of the laminated piezoelectric element are applied. The operation of monitoring the detected current flowing through the switch is easy and inexpensive. Furthermore, the detected current of an ideal laminated piezoelectric element having no defects attenuates exponentially with time due to the characteristics of the capacitor. Therefore, it is easy to detect a slight disturbance in the detection current, and therefore it is possible to detect defects more reliably.

以上、本発明によれば、非破壊的で、欠陥を容易かつより確実に発見することができる積層型圧電体素子の検査方法を提供することができる。   As described above, according to the present invention, it is possible to provide a method for inspecting a laminated piezoelectric element that is nondestructive and can detect defects easily and more reliably.

本発明にかかる検査方法は、さまざまな種類の積層型圧電体素子に対し利用することができる。
積層型圧電体素子は一般に全面電極構成と部分電極構成とが知られており、全面電極構成は、圧電層と内部電極層の断面形状(積層方向と直交する方向に切断した際の形状)が同程度に構成され、内部電極層が積層型圧電体素子の側面に露出する。
また、部分電極構成は、圧電層の断面形状よりも内部電極層の断面形状が小さく、側面電極(後述参照)と電気的に接続すべき内部電極層だけが側面に露出する。
The inspection method according to the present invention can be used for various types of laminated piezoelectric elements.
Multilayer piezoelectric elements are generally known to have a full-surface electrode configuration and a partial electrode configuration. The full-surface electrode configuration has a cross-sectional shape of a piezoelectric layer and an internal electrode layer (a shape when cut in a direction perpendicular to the stacking direction). The internal electrode layer is exposed to the side surface of the multilayer piezoelectric element.
Further, in the partial electrode configuration, the cross-sectional shape of the internal electrode layer is smaller than the cross-sectional shape of the piezoelectric layer, and only the internal electrode layer to be electrically connected to the side electrode (see later) is exposed on the side surface.

また、内部電極層と圧電層とを交互に所望の枚数を一括して積層した一体型のタイプがあり、内部電極層と圧電層とを交互に積層して構成した圧電ユニットを所望の個数積層したユニット式の素子とがある。
このような素子の種類や構成等を選ぶことなく本発明にかかる検査方法は、欠陥のある不良品を発見することができる。
In addition, there is an integrated type in which a desired number of internal electrode layers and piezoelectric layers are alternately stacked together, and a desired number of piezoelectric units configured by alternately stacking internal electrode layers and piezoelectric layers are stacked. Unit type elements.
The inspection method according to the present invention can find a defective product having a defect without selecting such a kind or configuration of the element.

また、欠陥のない積層型圧電体素子に直流電圧を印加することで発生する検出電流の時間変化であり、時間の経過により指数関数的に減衰する波形をベースラインとし、検査対象である積層型圧電体素子に直流電圧を印加する際の電界強度をE(kV/mm)、上記直流電圧を印加することにより発生する検出電流をX(μA)とすると、
上記ベースラインとの間で0.008E以上の距離を有するピーク部が1個以上、上記Xの時間変化を表す波形にある場合を不良品と分別することが好ましい(請求項2)。
In addition, it is a time change of the detection current generated by applying a DC voltage to a defect-free multilayer piezoelectric element, and a waveform that decays exponentially with the passage of time is used as a baseline, and the multilayer When the electric field strength when applying a DC voltage to the piezoelectric element is E (kV / mm) and the detection current generated by applying the DC voltage is X (μA),
It is preferable that one or more peak portions having a distance of 0.008E or more between the base line and the waveform representing the time change of X are classified as defective products (claim 2).

欠陥が存在しない理想的な積層型圧電体素子に直流電圧を加えた際は、後述する図3〜図8の実線に示すように時間と共に電流が指数関数的に減衰して最後は定常状態となる。
このように無欠陥の積層型圧電体素子から得られる指数関数的に減衰する電流をベースラインとし、このベースラインから逸脱するピーク部があり、図3〜図8に示すごとくピーク部のベースラインからの距離が0.008E以上である場合、積層型圧電体素子のどこかに欠陥があり、該欠陥の近傍で微少電流が流れている証拠である。
When a DC voltage is applied to an ideal laminated piezoelectric element having no defect, the current decays exponentially with time as shown by the solid line in FIGS. Become.
Thus, an exponentially decaying current obtained from a defect-free multilayer piezoelectric element is used as a base line, and there is a peak portion that deviates from the base line. As shown in FIGS. When the distance from the substrate is 0.008E or more, this is evidence that there is a defect somewhere in the laminated piezoelectric element and a minute current flows in the vicinity of the defect.

また、検査対象である積層型圧電体素子に直流電圧を印加する際の電界強度をE(kV/mm)、上記直流電流を印加することにより発生する検出電流をX(μA)とすると、120秒後に、Xが0.024E以上であるものを不良品と分別することを不良品と分別することが好ましい(請求項3)。   Further, when the electric field strength when applying a DC voltage to the multilayer piezoelectric element to be inspected is E (kV / mm) and the detection current generated by applying the DC current is X (μA), 120 It is preferable that after X seconds, X is 0.024E or more to be separated from defective products.

上述したごとく、積層型圧電体素子はコンデンサと同様の電気特性を持つので、直流電圧を印加した際は最終的に電流が殆ど流れなくなる。
直流電流を印加することで発生する検出電流Xが120秒後に0.024E以上である場合は、積層型圧電体素子のどこかに欠陥があり、該欠陥の近傍で微少電流が流れている証拠である。
As described above, the multilayer piezoelectric element has electric characteristics similar to those of a capacitor. Therefore, when a DC voltage is applied, the current hardly finally flows.
If the detection current X generated by applying a direct current is 0.024E or more after 120 seconds, there is a defect somewhere in the laminated piezoelectric element, and evidence that a minute current flows in the vicinity of the defect It is.

次に、上記直流電圧は、上記圧電層の抗電界よりも高く、上記圧電層の耐電圧よりも低いことが好ましい(請求項4)。   Next, the DC voltage is preferably higher than the coercive electric field of the piezoelectric layer and lower than the withstand voltage of the piezoelectric layer.

これにより、電気双極子の回転等による影響を排除することができ、更に積層型圧電体素子の絶縁破壊による自己破壊を防止することができる。
ここで抗電界とは、十分に分極させた強誘電体に、分極方向とは逆方向の電圧を増加していくと、分極が減少し、遂には分極が消失する電圧の絶対値のことであり、分極反転電流が観測される電圧値を指す。また、耐電圧とは、被試験サンプルが破壊しないで耐えることの出来る最高電圧のことである。
Thereby, it is possible to eliminate the influence due to the rotation of the electric dipole or the like, and it is possible to prevent the self-destruction due to the dielectric breakdown of the multilayer piezoelectric element.
Here, the coercive electric field is the absolute value of the voltage at which the polarization decreases when the voltage in the direction opposite to the polarization direction is increased in a sufficiently polarized ferroelectric. Yes, it refers to the voltage value at which the polarization reversal current is observed. The withstand voltage is the highest voltage that the sample under test can withstand without breaking.

次に、上記直流電圧は、上記圧電層の抗電界をE0、耐電圧をE1とすると、1.5E0〜0.9E1の範囲であることが好ましい(請求項5)。   Next, the DC voltage is preferably in the range of 1.5E0 to 0.9E1, where E0 is the coercive electric field of the piezoelectric layer and E1 is the withstand voltage.

上記範囲にかかる直流電圧を与えることで、電気双極子の回転等による影響をより確実に排除し、更に積層型圧電体素子の自己破壊をより確実に防止することができる。   By applying a DC voltage in the above range, it is possible to more reliably eliminate the influence of rotation of the electric dipole or the like, and to more reliably prevent self-destruction of the laminated piezoelectric element.

また、上記直流電圧は、1.8E0〜0.6E1の範囲であることが好ましい(請求項6)。
この場合には、電気双極子の回転等による影響を排除し、積層型圧電体素子の自己破壊を防止し得るという作用効果を一層、高めることができる。
The DC voltage is preferably in the range of 1.8E0 to 0.6E1.
In this case, it is possible to further enhance the effect of eliminating the influence due to the rotation of the electric dipole or the like and preventing the self-destruction of the multilayer piezoelectric element.

以下に、図面を用いて本発明の実施例について説明する。
(実施例1)
本例は、図1、図2に示すごとく、圧電層11と内部電極層121、122とを交互に積層してなる積層型圧電体素子1において、圧電層11を介して隣接する内部電極層121、122が異なる電位となるよう積層型圧電体素子1に直流電圧を印加することで発生する検出電流をモニタすることで不良品を分別する方法について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
(Example 1)
In this example, as shown in FIGS. 1 and 2, in the stacked piezoelectric element 1 in which the piezoelectric layers 11 and the internal electrode layers 121 and 122 are alternately stacked, the internal electrode layers adjacent to each other via the piezoelectric layer 11. A method for separating defective products by monitoring a detection current generated by applying a DC voltage to the multilayer piezoelectric element 1 so that 121 and 122 have different potentials will be described.

本例で検査する積層型圧電体素子1は、図1、図2に示すごとく、圧電層11と内部電極層121、122とを交互に積層し、圧電層11を挟んで隣接する内部電極層121の一方は図面右方の側面電極131と導通するよう側面101に露出し、他方は図面左方の側面電極132と導通するよう側面102に露出する。また、積層方向の両端は積層型圧電体素子1の駆動時に伸張しないダミー層151、152である。
検査の際は、図1に示すごとく、積層型圧電体素子1の側面電極131、132に検査回路2を接続して直流電圧を印加する。この直流電圧は定電圧である。
上記検査回路2は、保護回路21、直流電源22、抵抗231、該抵抗231に対し並列に接続した電圧計232、電流モニタ装置24からなる。
As shown in FIGS. 1 and 2, the multilayer piezoelectric element 1 to be inspected in this example is formed by alternately stacking piezoelectric layers 11 and internal electrode layers 121 and 122, and adjacent internal electrode layers with the piezoelectric layer 11 interposed therebetween. One of 121 is exposed on the side surface 101 so as to be electrically connected to the side electrode 131 on the right side of the drawing, and the other is exposed on the side surface 102 so as to be electrically connected to the side electrode 132 on the left side of the drawing. Further, both ends in the stacking direction are dummy layers 151 and 152 that do not expand when the stacked piezoelectric element 1 is driven.
At the time of inspection, as shown in FIG. 1, the inspection circuit 2 is connected to the side electrodes 131 and 132 of the multilayer piezoelectric element 1 and a DC voltage is applied. This DC voltage is a constant voltage.
The inspection circuit 2 includes a protection circuit 21, a DC power supply 22, a resistor 231, a voltmeter 232 connected in parallel to the resistor 231, and a current monitor device 24.

この検査回路2でいくつかの積層型圧電体素子1について検査を行った。
まず積層型圧電体素子1は、圧電層11がPZT(ジルコン酸チタン酸鉛)、内部電極層121、122がAg−Pd、側面電極131、132が焼付銀からなる。
直流電源22は通常のDC電源で出力200V、保護回路21は188kΩの抵抗器、抵抗231は10kΩの抵抗器、電圧計232はデジタルマルチメータ、電流モニタ装置24は専用PCを使用する。
The inspection circuit 2 inspected several laminated piezoelectric elements 1.
First, in the multilayer piezoelectric element 1, the piezoelectric layer 11 is made of PZT (lead zirconate titanate), the internal electrode layers 121 and 122 are made of Ag—Pd, and the side electrodes 131 and 132 are made of baked silver.
The DC power supply 22 is a normal DC power supply with an output of 200 V, the protection circuit 21 uses a 188 kΩ resistor, the resistor 231 uses a 10 kΩ resistor, the voltmeter 232 uses a digital multimeter, and the current monitoring device 24 uses a dedicated PC.

そして、各内部電極層121−122の間に電界強度が2.0kV/mmとなるよう直流電圧を120秒間、印加する。電流モニタ装置24を流れる検出電流の形状をモニタする。この時、2秒以内に所要の電界強度となるよう矩形電圧を印加する。
モニタされた検出電流の一例を図3〜図8に記載した。なお、各図面において太い実線で記載された曲線がベースライン、すなわち本例にかかる積層型圧電体素子1が欠陥のない状態であった場合に観察されると思われる電流である。破線で示した曲線が実際に測定された検出電流である。
本例では、図3〜図5は不良品、図6〜図8は良品と判定した。
Then, a DC voltage is applied for 120 seconds between the internal electrode layers 121-122 so that the electric field strength becomes 2.0 kV / mm. The shape of the detected current flowing through the current monitoring device 24 is monitored. At this time, a rectangular voltage is applied so that the required electric field strength is obtained within 2 seconds.
An example of the monitored detection current is shown in FIGS. In each drawing, the curve indicated by the thick solid line is the base line, that is, the current that is supposed to be observed when the multilayer piezoelectric element 1 according to this example is in a state without defects. The curve indicated by the broken line is the actually measured detected current.
In this example, it was determined that FIGS. 3 to 5 were defective and FIGS. 6 to 8 were non-defective.

すなわち、図3にかかる検出電流は、波形の途中にピークがあって、このピークのベースラインからの逸脱が0.016(=2.0×0.008)μA以上であった。
図4は波形がなだらかに盛り上がって、この盛り上がりのベースラインからの逸脱が0.02μA以上であった。
また、図5は、波形が部分的に盛り上がって、更に120秒経過した後も検出電流が0.048(=2.0×0.024)μA以下とならなかった。
なお、ベースラインの逸脱量は、乱れ(破線)とベースライン(太い実線)との間のY軸方向の距離の最大値である。
That is, the detected current according to FIG. 3 had a peak in the middle of the waveform, and the deviation of the peak from the baseline was 0.016 (= 2.0 × 0.008) μA or more.
In FIG. 4, the waveform gently swelled, and the deviation of the swell from the baseline was 0.02 μA or more.
Further, in FIG. 5, the detected current did not become 0.048 (= 2.0 × 0.024) μA or less even after 120 seconds had passed since the waveform was partially raised.
Note that the deviation amount of the baseline is the maximum value of the distance in the Y-axis direction between the disturbance (broken line) and the baseline (thick solid line).

また、図6にかかる検出電流は、図3と同様のピークがあるが、ピークの高さが小さく、積層型圧電体素子1内に欠陥はあるが、欠陥が非常に小さく、実用上問題ないため良品と判断された。
図7にかかる検出電流は、図4と同様の盛り上がりがあるが、盛り上がりの高さが小さく、積層型圧電体素子1内に欠陥はあるが、欠陥が非常に小さく、実用上問題ないため良品と判断された。
6 has the same peak as that in FIG. 3, but the peak height is small and there is a defect in the multilayer piezoelectric element 1, but the defect is very small, and there is no practical problem. Therefore, it was judged as a good product.
The detected current according to FIG. 7 has the same rise as in FIG. 4, but the height of the rise is small, and there is a defect in the multilayer piezoelectric element 1, but the defect is very small and no problem in practical use. It was judged.

図8にかかる検出電流は、図5とは異なり、通電開始より120秒経過した後は検出電流が0.048(=2.0×0.024)μA以下となっていた。従って、積層型圧電体素子1内に欠陥がないか、または欠陥が非常に小さく、実用上問題ないため良品と判断された。   Unlike the case of FIG. 5, the detected current according to FIG. 8 is 0.048 (= 2.0 × 0.024) μA or less after 120 seconds from the start of energization. Accordingly, the multilayer piezoelectric element 1 was judged to be a good product because there was no defect in the multilayer piezoelectric element 1 or the defect was very small and there was no practical problem.

本例にかかる積層型圧電体素子1は、駆動時に内部電極層121、122が異なる電位となるように側面電極131、132が設けてある。
側面電極131、132から直流電圧を印加して、積層型圧電体素子1の内部電極層121、122や側面電極層131、132に流れる検出電流をモニタするという操作は容易で安価に実現することができる。
The laminated piezoelectric element 1 according to this example is provided with side electrodes 131 and 132 so that the internal electrode layers 121 and 122 have different potentials when driven.
The operation of applying a DC voltage from the side electrodes 131 and 132 and monitoring the detection current flowing in the internal electrode layers 121 and 122 and the side electrode layers 131 and 132 of the multilayer piezoelectric element 1 should be realized easily and inexpensively. Can do.

更に、欠陥のまったくない積層型圧電体素子に直流電圧を与えた場合に流れる電流は、コンデンサの特性と同様に、時間と共に指数関数的に減衰して定常状態となる。そのため、僅かの検出電流の乱れを検出することが容易であり、従って本例によれば積層型圧電体素子における欠陥の有無をより確実に発見することができる。   Furthermore, the current that flows when a DC voltage is applied to a multilayer piezoelectric element having no defects is exponentially attenuated with time and becomes a steady state, similar to the characteristics of the capacitor. Therefore, it is easy to detect a slight disturbance in the detection current, and according to this example, the presence or absence of a defect in the multilayer piezoelectric element can be detected more reliably.

以上、本例によれば、非破壊的で、欠陥を容易かつ確実に発見することができる積層型圧電体素子の検査方法を提供することができる。   As described above, according to this example, it is possible to provide a method for inspecting a multilayer piezoelectric element that is non-destructive and capable of easily and reliably finding defects.

なお、本例では部分電極構成の積層型圧電体素子の検査を行ったが、全面電極構成の素子に対しても適用することができる。
また、図3、図4、図6、図7にかかる検出電流はピークを一つだけ持つが、複数のピークが表れる場合もある。このようなケースでは、各ピークについてベースラインからの逸脱について調べて、不良品を分別することができる。
In this example, the multilayered piezoelectric element having the partial electrode configuration is inspected, but the present invention can also be applied to an element having a full-surface electrode configuration.
Moreover, although the detection current concerning FIG.3, FIG.4, FIG.6 and FIG. 7 has only one peak, a some peak may appear. In such a case, each peak can be examined for deviation from the baseline, and defective products can be sorted.

実施例1における、積層型圧電体素子と検査回路の説明図。2 is an explanatory diagram of a multilayer piezoelectric element and an inspection circuit in Embodiment 1. FIG. 実施例1における、積層型圧電体素子における圧電層と内部電極層の積層状態にかかる説明図。FIG. 3 is an explanatory diagram according to a stacked state of a piezoelectric layer and an internal electrode layer in a stacked piezoelectric element in Example 1. 実施例1における、検出電流の時間変化を示す線図。FIG. 3 is a diagram illustrating a change in detection current with time in Example 1; 実施例1における、検出電流の時間変化を示す線図。FIG. 3 is a diagram illustrating a change in detection current with time in Example 1; 実施例1における、検出電流の時間変化を示す線図。FIG. 3 is a diagram illustrating a change in detection current with time in Example 1; 実施例1における、検出電流の時間変化を示す線図。FIG. 3 is a diagram illustrating a change in detection current with time in Example 1; 実施例1における、検出電流の時間変化を示す線図。FIG. 3 is a diagram illustrating a change in detection current with time in Example 1; 実施例1における、検出電流の時間変化を示す線図。FIG. 3 is a diagram illustrating a change in detection current with time in Example 1;

符号の説明Explanation of symbols

1 積層型圧電体素子
11 圧電層
121、122 内部電極層
1 Stacked Piezoelectric Element 11 Piezoelectric Layer 121, 122 Internal Electrode Layer

Claims (6)

圧電層と内部電極層とを交互に積層してなる積層型圧電体素子において、
圧電層を介して隣接する内部電極層が交互に異なる電位となるよう積層型圧電体素子に直流電圧を印加することにより発生する検出電流をモニタすることで不良品を分別することを特徴とする積層型圧電体素子の検査方法。
In a laminated piezoelectric element formed by alternately laminating piezoelectric layers and internal electrode layers,
Defective products are separated by monitoring a detection current generated by applying a DC voltage to the stacked piezoelectric element so that adjacent internal electrode layers alternately have different potentials through the piezoelectric layer. Inspection method for multilayer piezoelectric element.
請求項1において、欠陥のない積層型圧電体素子に直流電圧を印加することで発生する検出電流の時間変化であり、時間の経過により指数関数的に減衰する波形をベースラインとし、検査対象である積層型圧電体素子に直流電圧を印加する際の電界強度をE(kV/mm)、上記直流電圧を印加することにより発生する検出電流をX(μA)とすると、
上記ベースラインとの間で0.008E以上の距離を有するピーク部が1個以上、上記Xの時間変化を表す波形にある場合を不良品と分別することを特徴とする積層型圧電体素子の検査方法。
2. The detection current according to claim 1, which is a time change of a detection current generated by applying a DC voltage to a multilayer piezoelectric element having no defect, and has a waveform that decays exponentially with the passage of time as a baseline, When the electric field strength when applying a DC voltage to a certain laminated piezoelectric element is E (kV / mm) and the detection current generated by applying the DC voltage is X (μA),
A multilayer piezoelectric element characterized in that one or more peak portions having a distance of 0.008E or more between the base line and the waveform indicating the time variation of X are classified as defective products. Inspection method.
請求項1または2において、検査対象である積層型圧電体素子に直流電圧を印加する際の電界強度をE(kV/mm)、上記直流電流を印加することにより発生する検出電流をX(μA)とすると、120秒後に、Xが0.024E以上であるものを不良品と分別することを特徴とする積層型圧電体素子の検査方法。   3. The electric field intensity at the time of applying a DC voltage to the multilayer piezoelectric element to be inspected is E (kV / mm), and a detection current generated by applying the DC current is X (μA). ), A method for inspecting a laminated piezoelectric element characterized in that, after 120 seconds, X is 0.024E or more and is classified as a defective product. 請求項1〜3のいずれか1項において、上記直流電圧は、上記圧電層の抗電界よりも高く、上記圧電層の耐電圧よりも低いことを特徴とする積層型圧電体素子の検査方法。   4. The method for inspecting a laminated piezoelectric element according to claim 1, wherein the DC voltage is higher than a coercive electric field of the piezoelectric layer and lower than a withstand voltage of the piezoelectric layer. 請求項1〜3のいずれか1項において、上記直流電圧は、上記圧電層の抗電界をE0、耐電圧をE1とすると、1.5E0〜0.9E1の範囲であることを特徴とする積層型圧電体素子の検査方法。   4. The laminate according to claim 1, wherein the DC voltage is in a range of 1.5E0 to 0.9E1 where E0 is a coercive electric field of the piezoelectric layer and E1 is a withstand voltage. Inspection method for a piezoelectric element. 請求項5において、上記直流電圧は、1.8E0〜0.6E1の範囲であることを特徴とする積層型圧電体素子の検査方法。   6. The method for inspecting a laminated piezoelectric element according to claim 5, wherein the DC voltage is in a range of 1.8E0 to 0.6E1.
JP2004131810A 2003-07-22 2004-04-27 Inspection method for multilayer piezoelectric element Expired - Fee Related JP4655504B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004131810A JP4655504B2 (en) 2003-07-22 2004-04-27 Inspection method for multilayer piezoelectric element
DE200410035195 DE102004035195A1 (en) 2003-07-22 2004-07-21 Test method for laminated piezoelectric element involves applying direct voltage to element to set internal electrode layers to different potentials and monitoring detection current that flows when direct voltage applied

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003277443 2003-07-22
JP2004131810A JP4655504B2 (en) 2003-07-22 2004-04-27 Inspection method for multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2005057243A true JP2005057243A (en) 2005-03-03
JP4655504B2 JP4655504B2 (en) 2011-03-23

Family

ID=34228001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131810A Expired - Fee Related JP4655504B2 (en) 2003-07-22 2004-04-27 Inspection method for multilayer piezoelectric element

Country Status (2)

Country Link
JP (1) JP4655504B2 (en)
DE (1) DE102004035195A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338383B1 (en) 2013-01-07 2013-12-10 주식회사 코러스트 Piezoelectric transducer with a function of self performance testing and ultrasonic device including the same
CN107207018A (en) * 2015-02-04 2017-09-26 川崎重工业株式会社 The state monitoring apparatus of the leaf spring of railcar bogie

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083481B2 (en) * 2017-12-22 2022-06-13 国立研究開発法人宇宙航空研究開発機構 Multi-layer insulation, spacecraft, damage diagnostic equipment, and detection methods for objects to be detected

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151812A (en) * 1993-11-29 1995-06-16 Hitoshi Terase Automatic insulating diagnostic apparatus
JPH07235488A (en) * 1994-02-24 1995-09-05 Toshiba Corp Formation of semiconductor layer
JPH1040967A (en) * 1996-07-26 1998-02-13 Nippon Telegr & Teleph Corp <Ntt> Storage battery capacity estimation method and storage battery capacity estimation device
JP2001311757A (en) * 2000-04-28 2001-11-09 Nec Corp Inspecting device for array type electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151812A (en) * 1993-11-29 1995-06-16 Hitoshi Terase Automatic insulating diagnostic apparatus
JPH07235488A (en) * 1994-02-24 1995-09-05 Toshiba Corp Formation of semiconductor layer
JPH1040967A (en) * 1996-07-26 1998-02-13 Nippon Telegr & Teleph Corp <Ntt> Storage battery capacity estimation method and storage battery capacity estimation device
JP2001311757A (en) * 2000-04-28 2001-11-09 Nec Corp Inspecting device for array type electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338383B1 (en) 2013-01-07 2013-12-10 주식회사 코러스트 Piezoelectric transducer with a function of self performance testing and ultrasonic device including the same
CN107207018A (en) * 2015-02-04 2017-09-26 川崎重工业株式会社 The state monitoring apparatus of the leaf spring of railcar bogie
CN107207018B (en) * 2015-02-04 2020-05-01 川崎重工业株式会社 State monitoring device for leaf spring of railway vehicle bogie

Also Published As

Publication number Publication date
DE102004035195A1 (en) 2005-03-31
JP4655504B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
CN110178075B (en) Method for detecting substrate fracture of switchable optical element and switchable optical device
JP3603640B2 (en) Screening method of multilayer ceramic capacitor
JP4655504B2 (en) Inspection method for multilayer piezoelectric element
TW202028758A (en) Capacitor inspection device and capacitor inspection method that includes a variable voltage source, a current detection section, and an inspection section
CA1237772A (en) Nondestructive testing of multilayers ceramic capacitors
KR101012077B1 (en) Inspection method for an organic electro luminescence device
TW200947577A (en) Evaluating method and measuring circuit of insulating film
JPH10293107A (en) Internal defect inspection method for multilayer ceramic capacitor
WO2002039128A1 (en) Method and apparatus of nondestructive insulation test for small electric machine
Bowen et al. Impedance spectroscopy of piezoelectric actuators
KR101412902B1 (en) Examination apparatus and method for bending strength of electronic parts
JP7352209B2 (en) Mechanism to detect abnormal current
JPS59500288A (en) electrical inspection
JPH07174802A (en) Method for detecting internal crack in electronic part
US6509741B2 (en) Method for screening multi-layer ceramic electronic component
El-amiri et al. Infrared thermography detection of flex cracks in multi-layer ceramic capacitors (MLCCs)
JP2006278762A (en) Inspection method and inspection apparatus for multilayered substrate
JPH11219871A (en) Method for detecting defect inside electronic component
JP2005057555A (en) Inspection method of piezoelectric diaphragm
JPH07161570A (en) Method of detecting internal crack of multilayer ceramic capacitor
JP3524049B2 (en) Wiring pattern inspection method
Jiang et al. Fatigue evaluation of piezo impact drive mechanism
Bowen et al. Non-destructive evaluation of multi-layer actuators
JP2006201006A (en) Transfer impedance evaluation method for piezoelectric thin film
JPH10308330A (en) Screening method of laminated ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees