JP2005057037A - Calculation method of amount of resist shrink - Google Patents

Calculation method of amount of resist shrink Download PDF

Info

Publication number
JP2005057037A
JP2005057037A JP2003285774A JP2003285774A JP2005057037A JP 2005057037 A JP2005057037 A JP 2005057037A JP 2003285774 A JP2003285774 A JP 2003285774A JP 2003285774 A JP2003285774 A JP 2003285774A JP 2005057037 A JP2005057037 A JP 2005057037A
Authority
JP
Japan
Prior art keywords
resist pattern
resist
pattern width
amount
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285774A
Other languages
Japanese (ja)
Inventor
Miyo Sato
三代 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003285774A priority Critical patent/JP2005057037A/en
Publication of JP2005057037A publication Critical patent/JP2005057037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate a real shrink amount which is not affected by an outer environment such as length measurement SEM chamber atmosphere and the state of a substrate. <P>SOLUTION: A relation between the number of measuring times of resist pattern width and a variation of resist pattern width is guided. The relation between the number of measuring times of resist pattern width and the variation of resist pattern width by contamination is guided from the variation of resist pattern width after the prescribed number of measuring times, in which the variation of resist pattern width with respect to the number of measuring times of resist pattern width is almost constant. Then, the relation between the number of measuring times of resist pattern width and the variation of resist pattern width by resist shrink is guided from the relation between the number of measuring times of resist pattern width and the variation of resist pattern width, and the relation between the number of measuring times of resist pattern width and the variation of resist pattern width by contamination. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はレジストシュリンク量の算出方法に関する。詳しくは、測長SEMによってレジストパターンに電子ビームを照射することによるレジストシュリンク量の算出方法に係るものである。   The present invention relates to a method for calculating a resist shrink amount. Specifically, the present invention relates to a method for calculating a resist shrink amount by irradiating a resist pattern with an electron beam by a length measuring SEM.

レジストパターンに測長SEMによって電子ビームを照射した場合、レジストを構成する樹脂間の架橋現象によってレジストがシュリンクすることが知られており、従来、同一のレジストパターンを連続測長して、その測長回数に応じたレジストのシュリンク量を得るという方法が行われている。   It is known that when a resist pattern is irradiated with an electron beam by a length measuring SEM, the resist shrinks due to a cross-linking phenomenon between the resins constituting the resist. Conventionally, the same resist pattern is continuously measured and the measurement is performed. A method of obtaining a resist shrink amount corresponding to the number of times is performed.

しかしながら、同一のレジストパターンを連続して測長した場合には、レジストのシュリンク現象と同時にSEMチャンバー内のコンタミネーションや基板から発生されるコンタミネーションがレジストパターンに付着して発生するレジストパターンの線幅太り現象も生じている。
即ち、上記した従来のシュリンク量の測定は、コンタミネーションによる線幅太りをも含めたレジストのシュリンク量を求めており、コンタミネーションが多い環境や材料を用いた場合には、真のシュリンク量を求め難いという不都合があった。
However, when the same resist pattern is continuously measured, the resist pattern lines generated when the contamination in the SEM chamber or the contamination generated from the substrate adheres to the resist pattern simultaneously with the shrinking phenomenon of the resist. A thickening phenomenon has also occurred.
In other words, the conventional shrink amount measurement described above calculates the resist shrink amount including the line width thickening due to contamination. If an environment or material with much contamination is used, the true shrink amount is obtained. There was an inconvenience that it was difficult to find.

本発明は、以上の点に鑑みて創案されたものであって、測長SEMチャンバーの雰囲気や基板の状態等といった環境に影響されることのない、真のシュリンク量を求めるレジストシュリンク量の算出方法を提供することを目的とするものである。   The present invention was devised in view of the above points, and is a resist shrink amount calculation for obtaining a true shrink amount that is not affected by the environment such as the atmosphere of the length measurement SEM chamber or the state of the substrate. It is intended to provide a method.

上記の目的を達成するために、本発明のレジストシュリンク量の算出方法は、測長SEMによってレジストパターン幅を複数回測定して、レジストパターン幅の測定回数とレジストパターン幅の変化量の関係を導く工程と、前記レジストパターン幅の測定回数に対するレジストパターン幅の変化量が略一定である所定の測定回数以降におけるレジストパターン幅の変化量より、レジストパターン幅の測定回数とコンタミネーションによるレジストパターン幅の変化量の関係を導く工程と、前記レジストパターン幅の測定回数とレジストパターン幅の変化量の関係及び前記レジストパターン幅の測定回数とコンタミネーションによるレジストパターン幅の変化量の関係から、レジストパターン幅の測定回数とレジストシュリンクによるレジストパターン幅の変化量の関係を導く工程とを備える。   In order to achieve the above object, the resist shrink amount calculation method of the present invention measures the resist pattern width a plurality of times by a length measurement SEM, and shows the relationship between the number of times the resist pattern width is measured and the amount of change in the resist pattern width. The resist pattern width is determined by the number of times the resist pattern width is measured and the number of contaminations, and the amount of change in the resist pattern width after the predetermined number of measurements is approximately constant. From the step of deriving the relationship of the change amount of the resist pattern, the relationship between the number of times the resist pattern width is measured and the change amount of the resist pattern width, and the relationship between the number of times the resist pattern width is measured and the amount of change in the resist pattern width due to contamination Width measurement times and resist shrink resist And a step of directing the variation of the relationship between the turn width.

ここで、レジストパターン幅の測定回数とレジストパターン幅の変化量の関係及びレジストパターン幅の測定回数とコンタミネーションによるレジストパターン幅の変化量の関係から、レジストパターン幅の測定回数とレジストシュリンクによるレジストパターン幅の変化量の関係を導くことによって、外部要因に影響されることの無い客観的であると共に正確なレジストシュリンク量を算出することができる。   Here, the resist pattern width measurement count and the resist pattern width change amount, and the resist pattern width measurement count and the resist pattern width change amount due to contamination, the resist pattern width measurement count and the resist shrink resist By deriving the relationship between the change amounts of the pattern width, it is possible to calculate an objective and accurate resist shrink amount that is not influenced by external factors.

本発明のレジストシュリンク量の算出方法では、測長SEMチャンバーの雰囲気や基板の状態等といった環境に影響されることのない、真のシュリンク量を算出することができる。   In the method for calculating the resist shrink amount of the present invention, the true shrink amount can be calculated without being influenced by the environment such as the atmosphere of the length measurement SEM chamber or the state of the substrate.

以下、本発明の実施の形態を図面を参照しながら説明し、本発明の理解に供する。
図1は本発明を適用したレジストシュリンク量の算出方法の一例のフローチャートを示しており、本発明を適用したレジストシュリンク量の算出方法の一例は、先ず、レジストパターンの作製を行う。即ち、シリコンウェーハ上にシュリンク量の算出を行うレジストのパターンを作製する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to provide an understanding of the present invention.
FIG. 1 shows a flowchart of an example of a method for calculating a resist shrink amount to which the present invention is applied. First, a resist pattern is prepared in an example of a method for calculating a resist shrink amount to which the present invention is applied. That is, a resist pattern for calculating the shrink amount is produced on the silicon wafer.

ここで、レジストパターンの下地やパターン形状、パターン形成条件等については任意であるが、レジストシュリンク量はパターン形成条件と強い相関関係があるために、目標としているレジストパターンや実デバイス上のパターンと合わせた方が好ましい。   Here, although the resist pattern base, pattern shape, pattern formation conditions, etc. are arbitrary, the resist shrink amount has a strong correlation with the pattern formation conditions. It is preferable to combine them.

次に、作製したレジストパターンのある任意の個所を測長SEMを用いてレジストパターン幅(以下、レジストの線幅と言う)の増加量が一定となるまで連続して測長する。   Next, an arbitrary portion of the produced resist pattern is continuously measured using a length measuring SEM until the amount of increase in resist pattern width (hereinafter referred to as resist line width) becomes constant.

ここで、測長の際の電子ビーム照射条件、画像処理条件、測長値演算方法等は任意に設定して良いが、連続測長する間はこれらの条件は全て同一条件で実施する必要がある。
また、連続測長を行うことによるレジストの線幅の挙動はレジストの特性によって異なるが、共通したレジストの線幅の挙動として、測長開始から所定の変化点まではレジストの線幅は減少し続け、所定の変化点以降のレジストの線幅は増加し続ける。
Here, the electron beam irradiation conditions, image processing conditions, length measurement value calculation method, etc. during length measurement may be arbitrarily set, but these conditions must all be performed under the same conditions during continuous length measurement. is there.
In addition, although the behavior of the resist line width due to continuous length measurement varies depending on the resist characteristics, as a common resist line width behavior, the resist line width decreases from the start of length measurement to a predetermined change point. Subsequently, the resist line width after the predetermined change point continues to increase.

なお、上記で説明した連続測長を行うことによるレジストの線幅の挙動は、測長SEMを用いた測長対象としてレジストラインを選択した場合であり、測長対象としてレジストスペースやホールレジストパターンを選択した場合には測長開始から所定の変化点まではレジストの線幅は増加し続け、所定の変化点以降のレジストの線幅は減少し続けることとなる。   In addition, the behavior of the resist line width by performing the continuous length measurement described above is a case where a resist line is selected as the length measurement target using the length measurement SEM, and the resist space or the hole resist pattern is the length measurement target. When is selected, the resist line width continues to increase from the start of length measurement to a predetermined change point, and the resist line width after the predetermined change point continues to decrease.

次に、上記した測長SEMによる連続測長によって得られた測定回数とレジストの線幅との関係から図2で示す様なグラフを作成する。
ここで、レジストのシュリンクはレジストを構成する樹脂間の架橋現象によって生じていることが明らかであり、レジストのシュリンクは飽和することから、図2中符号でa示す領域ではレジストのシュリンクによる影響は無く、コンタミネーションによる線幅太りの影響のみによってレジストの線幅が変化していると考えることができる。
Next, a graph as shown in FIG. 2 is created from the relationship between the number of measurements obtained by continuous length measurement by the length measurement SEM and the line width of the resist.
Here, it is clear that the resist shrinkage is caused by the cross-linking phenomenon between the resins constituting the resist. Since the resist shrinkage is saturated, the influence of the resist shrinkage in the region indicated by a in FIG. In addition, it can be considered that the line width of the resist is changed only by the influence of the line width thickening due to contamination.

次に、上記した測長SEMによる連続測長によって得られた測長値のうち、図2中符号aで示す領域の測長値を抜粋し、コンタミネーションによる線幅太りの影響のみによってレジストの線幅が変化している場合における測定回数とレジストの線幅の関係を導く。
以下、コンタミネーションによる線幅太りの影響のみによってレジストの線幅が変化している場合における測定回数とレジストの線幅の関係の具体的な導き方について説明する。
Next, out of the length measurement values obtained by the continuous length measurement by the length measurement SEM, the length measurement value of the area indicated by the symbol a in FIG. 2 is extracted, and only the influence of the line width thickening due to contamination is used for the resist. The relationship between the number of measurements and the line width of the resist when the line width changes is derived.
Hereinafter, a specific method for deriving the relationship between the number of measurements and the line width of the resist when the line width of the resist is changed only by the influence of the line width increase due to contamination will be described.

コンタミネーションによる線幅太りの影響のみによってレジストの線幅が変化している場合における測定回数とレジストの線幅の関係を導くには、先ず、図2中符号bで示す変曲点以降の全ての測長値の一次近似を行い、その時の相関関数を算出する。次に、変曲点に近い側の測長値を1点除いて同様に一次近似を行い、その時の相関関数を算出する。同様に、変曲点に近い側の測長値を2点、3点、・・除いて一次近似を行い、その時の相関関数を算出し、図3で示す様な測長値除去数と相関係数の関係を導く。
上記の様にして導かれた測長値除去数と相関係数の関係から、相関係数が略一定値となっている図3中符号cで示す領域を求め、相関係数が略一定値となる領域、即ち、図2中符号aで示す領域について、一次近似法によってコンタミネーションによる線幅太りの影響のみによってレジストの線幅が変化している場合における測定回数とレジストの線幅の関係を導く。
In order to derive the relationship between the number of measurements and the line width of the resist when the line width of the resist changes only due to the influence of the line width thickening due to contamination, first, all the points after the inflection point indicated by symbol b in FIG. The first-order approximation of the measured value is performed, and the correlation function at that time is calculated. Next, a linear approximation is performed in the same manner except for one length measurement value closer to the inflection point, and a correlation function at that time is calculated. Similarly, remove the length measurement value near the inflection point by 2 points, 3 points,..., Perform a linear approximation and calculate the correlation function at that time. Guide the relationship of the number of relationships.
From the relationship between the length measurement value removal number derived as described above and the correlation coefficient, an area indicated by reference sign c in FIG. 3 in which the correlation coefficient is substantially constant is obtained, and the correlation coefficient is substantially constant. 2, that is, the region indicated by the symbol a in FIG. 2, the relationship between the number of measurements and the line width of the resist when the line width of the resist is changed only by the influence of the line width thickening due to contamination by the linear approximation method. Lead.

ここで、上記では一次近似法によって図2中符号aで示す領域の測定回数とレジストの線幅の関係、即ち、コンタミネーションによる線幅太りの影響のみによってレジストの線幅が変化している場合における測定回数とレジストの線幅の関係を導いているが、これらの関係を導くことができるのであれば、必ずしも一次近似法を用いる必要が無く、いかなる方法によって導いても良いのは勿論である。   Here, in the above, when the line width of the resist is changed only by the relationship between the number of times of measurement of the region indicated by symbol a in FIG. The relationship between the number of measurements and the line width of the resist is derived. However, as long as these relationships can be derived, it is not always necessary to use the first-order approximation method. .

その後、上記した測長SEMを用いた連続測長によって得られた測長値からコンタミネーションによる線幅太り成分の差し引きを行い、図4で示す様な測定回数と補正後の測長値であるコンタミネーションによる線幅太りの影響が無いレジストシュリンク量の関係を導くことができる。   Thereafter, the line width thickening component due to contamination is subtracted from the length measurement value obtained by continuous length measurement using the length measurement SEM described above, and the number of measurements and the length measurement value after correction are as shown in FIG. It is possible to derive a relationship between resist shrink amounts that are not affected by line width increase due to contamination.

上記した本発明を適用したレジストシュリンク量の算出方法の一例では、コンタミネーションによる線幅太りの影響の無いレジストシュリンク量を算出することができ、正確なレジスト評価を行うことができる。
即ち、SEMチャンバーの雰囲気や基板の状態等の外部環境に左右されるコンタミネーションによる線幅太りの影響を受けることが無いレジストシュリンク量を算出することができるために、外部要因に左右されることの無い客観的であると共に正確なレジスト評価を行うことができる。
In an example of the method for calculating the resist shrink amount to which the present invention is applied, the resist shrink amount without the influence of the line width increase due to contamination can be calculated, and accurate resist evaluation can be performed.
In other words, the amount of resist shrink that is not affected by line width increase due to contamination that depends on the external environment such as the atmosphere of the SEM chamber and the state of the substrate can be calculated. This makes it possible to carry out resist evaluation that is objective and accurate.

また、レジストシュリンク量を定量化することによって、半導体製造工程における線幅モニターのレジストシュリンク量から正確に実際の出来上がりパターン線幅を算出することが可能となる。特に、通常は測長SEMによるレジストパターンの測長回数は1回であるために、測長回数が1回の場合における線幅モニターのレジストシュリンク量から実際の出来上がりパターン線幅を算出することができる。   Further, by quantifying the resist shrink amount, it is possible to accurately calculate the actual finished pattern line width from the resist shrink amount of the line width monitor in the semiconductor manufacturing process. In particular, since the number of times of length measurement of the resist pattern by the length measurement SEM is usually one, it is possible to calculate the actual finished pattern line width from the resist shrink amount of the line width monitor when the length measurement number is one. it can.

更に、レジストシュリンク量を定量化することによって、測長SEM装置の評価をも行うことができる。即ち、レジストシュリンク量が定量化されることによって、測長SEMによってレジストパターンの測長を行った場合におけるコンタミネーションによる線幅太り量が算出されることとなり、コンタミネーションによる線幅太り量の多少に基づいて測長SEMの評価を行うことができる。   Further, the length measurement SEM apparatus can be evaluated by quantifying the resist shrink amount. That is, when the resist shrink amount is quantified, the line width thickening amount due to contamination when the resist pattern is measured by the length measurement SEM is calculated. The length measurement SEM can be evaluated based on the above.

本発明を適用したレジストシュリンク量の算出方法のプロセスフローである。It is a process flow of the calculation method of the resist shrink amount to which the present invention is applied. 測定回数とレジストの線幅との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of a measurement, and the line | wire width of a resist. 測定値除去数と相関係数との関係を示すグラフである。It is a graph which shows the relationship between the measured value removal number and a correlation coefficient. 測定回数とレジストシュリンク量との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of a measurement, and a resist shrink amount.

Claims (3)

測長SEMによってレジストパターン幅を複数回測定して、レジストパターン幅の測定回数とレジストパターン幅の変化量の関係を導く工程と、
前記レジストパターン幅の測定回数に対するレジストパターン幅の変化量が略一定である所定の測定回数以降におけるレジストパターン幅の変化量より、レジストパターン幅の測定回数とコンタミネーションによるレジストパターン幅の変化量の関係を導く工程と、
前記レジストパターン幅の測定回数とレジストパターン幅の変化量の関係及び前記レジストパターン幅の測定回数とコンタミネーションによるレジストパターン幅の変化量の関係から、レジストパターン幅の測定回数とレジストシュリンクによるレジストパターン幅の変化量の関係を導く工程とを備える
ことを特徴とするレジストシュリンク量の算出方法。
A step of measuring the resist pattern width a plurality of times by the length measurement SEM, and deriving a relationship between the number of times the resist pattern width is measured and the amount of change in the resist pattern width
From the amount of change in the resist pattern width after a predetermined number of times that the change amount of the resist pattern width with respect to the number of times of measurement of the resist pattern width is substantially constant, the amount of change in the resist pattern width due to the number of times of resist pattern width measurement and contamination The process of guiding the relationship;
From the relationship between the resist pattern width measurement count and the change amount of the resist pattern width and the relationship between the resist pattern width measurement count and the resist pattern width change amount due to contamination, the resist pattern width measurement count and the resist pattern by resist shrink And a step of deriving a relationship of the amount of change in width.
前記レジストパターン幅の測定回数とコンタミネーションによるレジストパターン幅の変化量の関係は、レジストパターン幅の測定回数とレジストパターン幅の変化量の関係における変曲点以降の測定回数におけるレジストパターン幅の測長値について一次近似法を用いて導く
ことを特徴とする請求項1に記載のレジストシュリンク量の算出方法。
The relationship between the resist pattern width measurement count and the amount of change in the resist pattern width due to contamination is the same as the resist pattern width measurement count after the inflection point in the relationship between the resist pattern width measurement count and the resist pattern width change amount. The method for calculating the resist shrink amount according to claim 1, wherein the long value is derived using a first-order approximation method.
更に、レジストパターン幅の測定回数とレジストシュリンクによるレジストパターン幅の変化量の関係から、測定回数が1回の場合におけるレジストシュリンクによるレジストパターン幅の変化量を導く工程を備える
ことを特徴とする請求項1または請求項2に記載のレジストシュリンク量の算出方法。
The method further comprises a step of deriving a change amount of the resist pattern width due to the resist shrink when the number of measurement times is 1, based on a relationship between the number of measurement times of the resist pattern width and the change amount of the resist pattern width due to the resist shrink. The method for calculating the amount of resist shrink according to claim 1 or 2.
JP2003285774A 2003-08-04 2003-08-04 Calculation method of amount of resist shrink Pending JP2005057037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285774A JP2005057037A (en) 2003-08-04 2003-08-04 Calculation method of amount of resist shrink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285774A JP2005057037A (en) 2003-08-04 2003-08-04 Calculation method of amount of resist shrink

Publications (1)

Publication Number Publication Date
JP2005057037A true JP2005057037A (en) 2005-03-03

Family

ID=34365303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285774A Pending JP2005057037A (en) 2003-08-04 2003-08-04 Calculation method of amount of resist shrink

Country Status (1)

Country Link
JP (1) JP2005057037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160080A (en) * 2009-01-09 2010-07-22 Hitachi High-Technologies Corp Method of measuring size using charged particle beam and size measuring instrument
JP2012002765A (en) * 2010-06-21 2012-01-05 Hitachi High-Technologies Corp Pattern dimension measurement device and contour line formation device
WO2013051456A1 (en) * 2011-10-06 2013-04-11 株式会社日立ハイテクノロジーズ Measuring method, data processing apparatus and electron microscope using same
CN103456654A (en) * 2012-05-30 2013-12-18 中芯国际集成电路制造(上海)有限公司 Measurement method
US9830524B2 (en) 2011-08-22 2017-11-28 Hitachi High-Technologies Corporation Method for estimating shape before shrink and CD-SEM apparatus
CN109254495A (en) * 2017-07-13 2019-01-22 三星电子株式会社 Optical adjacent correction method and the method that mask is manufactured by using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160080A (en) * 2009-01-09 2010-07-22 Hitachi High-Technologies Corp Method of measuring size using charged particle beam and size measuring instrument
JP2012002765A (en) * 2010-06-21 2012-01-05 Hitachi High-Technologies Corp Pattern dimension measurement device and contour line formation device
US9830524B2 (en) 2011-08-22 2017-11-28 Hitachi High-Technologies Corporation Method for estimating shape before shrink and CD-SEM apparatus
WO2013051456A1 (en) * 2011-10-06 2013-04-11 株式会社日立ハイテクノロジーズ Measuring method, data processing apparatus and electron microscope using same
JP2013083466A (en) * 2011-10-06 2013-05-09 Hitachi High-Technologies Corp Measuring method, data processing apparatus and electron microscope using the same
KR101623283B1 (en) 2011-10-06 2016-05-20 가부시키가이샤 히다치 하이테크놀로지즈 Measuring method, data processing apparatus and electron microscope using same
CN103456654A (en) * 2012-05-30 2013-12-18 中芯国际集成电路制造(上海)有限公司 Measurement method
CN109254495A (en) * 2017-07-13 2019-01-22 三星电子株式会社 Optical adjacent correction method and the method that mask is manufactured by using it

Similar Documents

Publication Publication Date Title
KR101662306B1 (en) Method of measuring critical dimension of pattern and apparatus for performing the method
JP2006038779A5 (en)
KR100881194B1 (en) Method of inspecting mask using aerial image inspection equipment
JP4240066B2 (en) Etching process monitoring method and etching process control method
JP2005286095A (en) Exposure process monitoring method, and its equipment
JP2003294431A (en) Method and device for measurement of pattern film thickness in semiconductor manufacturing process
JP2005057037A (en) Calculation method of amount of resist shrink
JP4220335B2 (en) 3D shape measuring device
US7200950B2 (en) Process for monitoring measuring device performance
US20200018709A1 (en) Wafer distortion measurement and overlay correction
JP5880134B2 (en) Pattern measuring method and pattern measuring apparatus
US8723116B2 (en) Method of determining an applicable threshold for determining the critical dimension of at least one category of patterns imaged by atomic force scanning electron microscopy
JPH05259152A (en) Manufacture of instrument metrological structure for particularly analyzing precision of device for measuring alignment on processed substrate
KR100850134B1 (en) Measurement method of a thickness in an epitaxial process using a surface step
CN103681393A (en) Etching method
US6541779B2 (en) Charged-particle-beam microlithography apparatus including selectable systems for determining alignment-mark position, and device-fabrication methods utilizing same
JP2004045432A (en) Scanning electron microscope system and method of manufacturing integrated circuit
CN107924803B (en) Single wafer real-time etch rate and uniformity predictor for plasma etch processes
KR20040062341A (en) Method of monitoring a process repeatedly using a single test wafer
JP2005235899A (en) Feedback method of semiconductor manufacturing step
Pradelles et al. Can remote SEM contours be used to match various SEM tools in fabs?
US7029593B2 (en) Method for controlling CD during an etch process
CN108508333B (en) Reliability evaluation method of back-end dielectric material
KR20090070983A (en) Method for measuring of cylindrical by using cylindrical critical dimension standard wafer
JP3928598B2 (en) Manufacturing method of semiconductor device