JP2003294431A - Method and device for measurement of pattern film thickness in semiconductor manufacturing process - Google Patents

Method and device for measurement of pattern film thickness in semiconductor manufacturing process

Info

Publication number
JP2003294431A
JP2003294431A JP2002101309A JP2002101309A JP2003294431A JP 2003294431 A JP2003294431 A JP 2003294431A JP 2002101309 A JP2002101309 A JP 2002101309A JP 2002101309 A JP2002101309 A JP 2002101309A JP 2003294431 A JP2003294431 A JP 2003294431A
Authority
JP
Japan
Prior art keywords
thin film
film thickness
film pattern
pattern
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002101309A
Other languages
Japanese (ja)
Other versions
JP4124609B2 (en
Inventor
Norio Sasayama
則生 笹山
Kiyoshi Hasegawa
清 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002101309A priority Critical patent/JP4124609B2/en
Publication of JP2003294431A publication Critical patent/JP2003294431A/en
Application granted granted Critical
Publication of JP4124609B2 publication Critical patent/JP4124609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for easily measuring film thickness of a miniaturized repetitive thin film pattern by using X-ray fluorescence measurement. <P>SOLUTION: This method is for using X-ray fluorescence to measure film thickness of a pattern structure section. However, an excitation X-ray 1 used as a probe should be of its beam diameter larger than the pattern dimension of the measuring object so that its irradiation range includes a number of repetitive patterns. Also, the plane directional dimension of the pattern should be used when converting the detected X-ray dosage into the film thickness. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体製造工程
におけるパターン部膜厚を測定する方法と装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a pattern portion film thickness in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】半導体製造において半導体素子や配線を
形成するために、以下のような順序にて工程が繰り返さ
れる。まず、製膜工程によりウェハ全面に薄膜を形成す
る。次に、ウェハ全面にレジスト膜を塗布し、リソグラ
フィ工程によりパターン形状に合わせた露光を行い、露
光されたレジスト部分のみ、または露光されなかったレ
ジスト部分のみを除去する。次に、除去されずに残った
レジスト膜で保護されている部分以外の薄膜、つまり表
面が露出している薄膜部分をエッチング等で除去する。
最後に、エッチング時の保護膜として残っているレジス
ト膜を除去する。結果として、最初に形成した薄膜に露
光パターンが転写される。除去されずに残った薄膜の一
部が、半導体素子や配線として利用される。このような
工程で製作したパターンの表面はレジストで保護されて
いるので、エッチングによってその膜厚が変化すること
はない。したがって、パターン部膜厚を知りたい場合に
は、パターン形成前の薄膜の膜厚を測定すればよい。そ
のためには、4端子抵抗測定、渦電流測定、光干渉測
定、エリプソメータ測定、蛍光X線測定等の方法が用い
られる。
2. Description of the Related Art In order to form semiconductor elements and wirings in semiconductor manufacturing, steps are repeated in the following order. First, a thin film is formed on the entire surface of the wafer by a film forming process. Next, a resist film is applied on the entire surface of the wafer, and exposure is performed according to the pattern shape by a lithography process to remove only the exposed resist portion or only the unexposed resist portion. Next, the thin film other than the portion protected by the resist film that has not been removed, that is, the thin film portion whose surface is exposed is removed by etching or the like.
Finally, the resist film remaining as a protective film during etching is removed. As a result, the exposure pattern is transferred to the initially formed thin film. A part of the thin film left without being removed is used as a semiconductor element or wiring. Since the surface of the pattern manufactured in such a process is protected by the resist, the film thickness is not changed by etching. Therefore, when it is desired to know the film thickness of the pattern portion, the film thickness of the thin film before pattern formation may be measured. For that purpose, methods such as 4-terminal resistance measurement, eddy current measurement, optical interference measurement, ellipsometer measurement, and fluorescent X-ray measurement are used.

【0003】[0003]

【発明が解決しようとする課題】最近ではエッチングで
除去された溝部分に金属を埋め込んで配線として利用す
る方法も採用されている。この場合は、レジスト除去後
のウェハ全面に金属薄膜を製膜し、溝部分を埋めた金属
以外の金属薄膜をエッチバック工程、あるいはCMP工
程により除去する。CMPはChemical Mec
hanicalPolishingの略で、CMP工程
とは化学的、及び機械的に表面を研磨し、その過程で表
面の凸凹をならして平坦化する工程である。これらの工
程では、溝を構成する薄膜表面より高い部分の金属を全
て除去し、薄膜の厚さ,つまり溝の深さと同じ膜厚の金
属配線を残すことが基本となる。しかし、実際には、溝
を構成する薄膜自身の表面が一部除去され、同様に金属
配線の膜厚も元の溝の深さよりも薄くなる。また、薄膜
表面よりも金属配線部の方が多く除去されて、さらに配
線膜厚が薄くなることもある。このように、金属配線の
膜厚が溝を構成する薄膜の製膜直後の膜厚とは異なると
いう事態が生じる。
Recently, a method of embedding a metal in a groove portion removed by etching and using it as a wiring is also adopted. In this case, a metal thin film is formed on the entire surface of the wafer after removing the resist, and the metal thin film other than the metal filling the groove is removed by an etch back process or a CMP process. CMP is a Chemical Mec
The abbreviation of "hanical Polishing", the CMP process is a process of polishing the surface chemically and mechanically and smoothing the surface to smooth the surface. In these steps, it is basically necessary to remove all metal in a portion higher than the surface of the thin film forming the groove and leave a metal wiring having the same thickness as the thin film, that is, the depth of the groove. However, in reality, the surface of the thin film itself that constitutes the groove is partly removed, and similarly the film thickness of the metal wiring becomes thinner than the original depth of the groove. Further, the metal wiring portion may be removed more than the thin film surface, and the wiring film thickness may be further reduced. As described above, a situation occurs in which the film thickness of the metal wiring is different from the film thickness of the thin film forming the groove immediately after the film formation.

【0004】上記のような工程で作成される配線パター
ンの膜厚を測定しようとすると、パターン形成前の薄膜
の膜厚を測定する従来の方法は、以下のような問題を抱
えているために利用できない。第一に、配線パターンの
膜厚はパターン形成前の薄膜の膜厚とは異なる。したが
って、パターン形成後の測定が必要になる。4端子抵抗
測定、及び渦電流測定では面方向に構造のない広範囲の
薄膜を測定する必要があるので、パターン形成後には利
用できない。第二に、光干渉測定、及びエリプソメータ
測定は光を通す薄膜しか測定できないので、金属薄膜を
測定することはできない。第三に、蛍光X線測定では、
個々の配線パターンより小さなビーム径の励起X線を用
いれば個々の配線の膜厚を求めることができるが、パタ
ーン寸法ほどにビーム径を小さくすることは現実的では
ない。
When it is attempted to measure the film thickness of the wiring pattern formed by the above steps, the conventional method for measuring the film thickness of the thin film before pattern formation has the following problems. Not available. First, the film thickness of the wiring pattern is different from the film thickness of the thin film before pattern formation. Therefore, measurement after pattern formation is required. Since it is necessary to measure a wide range of thin films with no structure in the surface direction in 4-terminal resistance measurement and eddy current measurement, it cannot be used after pattern formation. Secondly, the optical interferometry and ellipsometer measurement cannot measure a metal thin film because only a thin film that transmits light can be measured. Third, in fluorescent X-ray measurement,
The film thickness of each wiring can be obtained by using an excited X-ray having a beam diameter smaller than that of each wiring pattern, but it is not realistic to make the beam diameter as small as the pattern size.

【0005】同様に、パターン構造に合わせて上層を選
択成長させるような場合も、工程途中に面方向に構造の
ない広範囲の薄膜が存在しないので、膜厚を測定する際
に同様の問題が生じる。
Similarly, when the upper layer is selectively grown in accordance with the pattern structure, there is no wide-area thin film having no structure in the surface direction during the process, and therefore the same problem occurs when measuring the film thickness. .

【0006】本発明の課題は、上記問題点を解決するた
めに、蛍光X線測定を用いて微細化された繰り返し薄膜
パターンの膜厚を簡便に測定する方法と装置を提案する
ことである。
An object of the present invention is to propose a method and apparatus for simply measuring the film thickness of a repetitive thin film pattern which has been miniaturized using fluorescent X-ray measurement, in order to solve the above problems.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では、蛍光X線を用いてパターン構造部分
の膜厚を測定する。ただし、その測定領域内に隙間なく
多数の繰り返し薄膜パターンが含まれるような構成をと
る。また、検出した蛍光X線量を膜厚に換算する際に、
薄膜パターンの面内寸法を用いる。
In order to solve the above problems, in the present invention, the film thickness of the pattern structure portion is measured using fluorescent X-rays. However, the structure is such that a large number of repetitive thin film patterns are included in the measurement region without gaps. Also, when converting the detected fluorescent X-ray dose into film thickness,
The in-plane dimension of the thin film pattern is used.

【0008】[0008]

【発明の実施の形態】蛍光X線を膜厚測定に利用する方
法はよく知られているが、物理的な測定対象は試料中の
原子数である。測定対象の薄膜は励起X線で照射されて
いる励起領域内で一様であると仮定し、かつ膜中の原子
数密度を仮定して、検出した蛍光X線量から膜厚に換算
する。このような制約を考えると、パターン構造を持っ
た薄膜の膜厚を測定するには、励起X線のビーム径をパ
ターン寸法以下にしなければならない。実際の測定対象
となるパターン寸法は1マイクロメートル以下と非常に
小さいので、小型の分析計測装置にそのような励起X線
を用意することは現実的ではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of utilizing fluorescent X-rays for film thickness measurement is well known, but the physical measurement target is the number of atoms in the sample. It is assumed that the thin film to be measured is uniform in the excitation region irradiated with the excitation X-ray, and the atomic number density in the film is assumed, and the detected fluorescence X-ray dose is converted into the film thickness. Considering such restrictions, in order to measure the film thickness of a thin film having a pattern structure, the beam diameter of excited X-rays must be equal to or smaller than the pattern size. Since the pattern size to be actually measured is as small as 1 micrometer or less, it is not realistic to prepare such an excitation X-ray in a small analytical measuring device.

【0009】本発明では、新たな発想を元に、測定対象
とする個々のパターン寸法よりも広い領域をまとめて測
定し、その薄膜パターンの膜厚を求めるための蛍光X線
測定を提案する。その新発想とは、測定対象は測定領域
内で一様な薄膜でなければならないという今までの制限
を取り払い、多数のパターンが繰り返されている広い領
域を測定領域とする点である。測定により得られる情報
は、個々のパターンの膜厚ではなく、測定領域内に含ま
れるパターンの平均膜厚である。したがって、測定対象
とする微細構造の寸法以下に測定領域を小さくする必要
が無く、逆に測定領域内に含まれる標本数が多いほど平
均値の精度が良くなるので、測定領域が広いほうが望ま
しい。また、測定領域が小さいほどその測定位置がずれ
ないように振動を低く抑える必要が生じるが、本発明に
おいてはそのような要求を抑えることができる。したが
って、測定対象とするパターン寸法のさらなる微細化に
対応することが容易である点が、この発明の優れた点で
ある。
The present invention proposes, based on a new idea, fluorescent X-ray measurement for collectively measuring a region wider than individual pattern dimensions to be measured and determining the film thickness of the thin film pattern. The new idea is to remove the limitation that the object to be measured should be a uniform thin film in the measurement area, and to make a wide area where many patterns are repeated as the measurement area. The information obtained by the measurement is not the film thickness of each pattern, but the average film thickness of the patterns included in the measurement region. Therefore, it is not necessary to make the measurement region smaller than the size of the fine structure to be measured, and conversely, the greater the number of samples contained in the measurement region, the higher the accuracy of the average value, and therefore the wider the measurement region is desirable. Further, it is necessary to suppress the vibration so that the measurement position does not shift as the measurement area becomes smaller. However, in the present invention, such a requirement can be suppressed. Therefore, it is an excellent point of the present invention that it is easy to cope with further miniaturization of the pattern dimension to be measured.

【0010】以下に、数式を利用して本発明の詳細を説
明する。まず、蛍光X線測定により検出される蛍光X線
量を以下のように表す。
The present invention will be described in detail below using mathematical expressions. First, the fluorescent X-ray dose detected by the fluorescent X-ray measurement is expressed as follows.

【0011】B = C・∫∫∫(a(x、y)・G1
(x、y、z))・D(x、y、z)・(e(x、y)
・G2(x、y、z))dx・dy・dz(積分範囲:
測定領域全面×厚み) ここで、Bは検出される蛍光X線量、D(x、y、z)
は位置(x、y、z)での膜中の測定対象元素の体積原
子数密度、(a(x、y)・G1(x、y、z))は位
置(x、y、z)での励起X線の照射密度、(e(x、
y)・G2(x、y、z))は位置(x、y、z)で出
射された蛍光X線に対する検出効率を示す。G1(x、
y、z)は、励起X線が位置(x、y、z)まで進入す
る時の透過率を示す。したがって、G1(x、y、0)
=1である。同様に、G2(x、y、z)は、位置
(x、y、z)で出射された蛍光X線が試料表面に達す
るまでの透過率を示す。したがって、G2(x、y、
0)=1である。Cは励起X線のエネルギー、測定対象
元素の種類、検出対象の蛍光X線エネルギー、測定時
間、式中の単位系等で決まる定数を表す。x、及びyは
試料表面に沿って直交する2軸上の座標を示し、zは試
料表面からの深さを示す。積分範囲における「厚み」
は、対象としている薄膜パターンの厚みを示す。積分中
でa(x、y)とe(x、y)の両方が正値の部分のみ
が、蛍光X線量Bに寄与する。その寄与領域が測定領域
である。
B = C · ∫∫∫ (a (x, y) · G1
(X, y, z)) ・ D (x, y, z) ・ (e (x, y)
-G2 (x, y, z)) dx-dy-dz (integration range:
(Entire measurement area × thickness) where B is the detected fluorescent X-ray dose, D (x, y, z)
Is the volume atom number density of the element to be measured in the film at the position (x, y, z), and (a (x, y) · G1 (x, y, z)) is the position (x, y, z). Excitation X-ray irradiation density of (e (x,
y) · G2 (x, y, z)) indicates the detection efficiency for the fluorescent X-ray emitted at the position (x, y, z). G1 (x,
y, z) indicates the transmittance when the excited X-ray enters the position (x, y, z). Therefore, G1 (x, y, 0)
= 1. Similarly, G2 (x, y, z) indicates the transmittance until the fluorescent X-ray emitted at the position (x, y, z) reaches the sample surface. Therefore, G2 (x, y,
0) = 1. C represents a constant determined by the energy of excited X-rays, the type of element to be measured, the fluorescent X-ray energy of the object to be detected, the measurement time, the unit system in the formula, and the like. x and y indicate coordinates on two axes orthogonal to each other along the sample surface, and z indicates a depth from the sample surface. "Thickness" in the integration range
Indicates the thickness of the target thin film pattern. Only a part where both a (x, y) and e (x, y) are positive values in the integration contributes to the fluorescence X-ray dose B. The contribution area is the measurement area.

【0012】試料表面に沿って2次元的にパターンが繰
り返される場合、上式を適切に近似変換して以下の式を
得ることができる。ここで、S1は単位構造の面積を示
す。
When the pattern is repeated two-dimensionally along the sample surface, the above equation can be appropriately approximated to obtain the following equation. Here, S1 represents the area of the unit structure.

【0013】∫∫∫G1(x、y、z)・D(x、y、
z)・G2(x、y、z)dx・dy・dz
(積分範囲:単位構造内)= S1・B/(C・(∫∫
a(x、y)・e(x、y)dx・dy))(積分範
囲:測定領域全面) 試料表面に沿った繰り返し構造が一方向にしか存在しな
い場合、繰り返し構造の無い軸上での繰り返し幅を任意
の適当な幅として定義する。そうすることで、上式中の
S1、及び積分範囲の「単位構造内」の定義を変更する
ことなく上記の基本式を利用できる。
∫∫∫G1 (x, y, z) D (x, y,
z) ・ G2 (x, y, z) dx ・ dy ・ dz
(Integration range: Within unit structure) = S1 ・ B / (C ・ (∫∫
a (x, y) · e (x, y) dx · dy)) (integration range: entire measurement area) When the repeating structure along the sample surface exists in only one direction, the Define the repeat width as any suitable width. By doing so, the above basic formula can be used without changing the definitions of S1 in the above formula and "in the unit structure" of the integration range.

【0014】式中の(∫∫a(x、y)・e(x、y)
dx・dy)は、光学素子の特性、配置等で決まるの
で、何らかの基準測定により較正した値を定数として使
用することができる。
In the equation, (∫∫a (x, y) · e (x, y)
Since dx · dy) is determined by the characteristics and arrangement of the optical element, the value calibrated by some reference measurement can be used as a constant.

【0015】次に、上式の左辺の積分を書き換えて、膜
厚を算出する式を導く。まず、以後の計算を明瞭に進め
られるように、試料内部でのX線の減衰が無視できる程
度に少ないと仮定し、G1(x、y、z)=G2(x、
y、z)=1とする。その結果、以下のように書き換え
ることができる。
Next, the equation for calculating the film thickness is derived by rewriting the integral on the left side of the above equation. First, assuming that the attenuation of X-rays inside the sample is negligibly small, G1 (x, y, z) = G2 (x,
Let y, z) = 1. As a result, it can be rewritten as follows.

【0016】∫∫∫G1(x、y、z)・D(x、y、
z)・G2(x、y、z)dx・dy・dz
(積分範囲:単位構造内)= ∫∫∫D(x、y、z)
dx・dy・dz (積分範囲:単位構造内) ここで、測定対象の薄膜試料を上から見た時に、xy面
内で測定対象元素を含む領域とそれ以外の領域が明確に
分かれ、それぞれの領域での原子数密度D(x、y、
z)がD、及び0となっている場合を考える。以後、単
位構造内での測定対象元素を含む範囲を単位測定対象範
囲と呼び、そのxy面内での面積を単位測定対象面積S
2とする。また、単位測定対象範囲での膜厚をT(x、
y)とする。これらの定義を用いてさらに式を変形す
る。続けて、単位測定対象範囲内での膜厚T(x、y)
を一定値Tとした場合も検討する。
∫∫∫G1 (x, y, z) D (x, y,
z) ・ G2 (x, y, z) dx ・ dy ・ dz
(Integration range: Within unit structure) = ∫∫∫D (x, y, z)
dx · dy · dz (integration range: within unit structure) Here, when the thin film sample to be measured is viewed from above, the region containing the element to be measured and the other region in the xy plane are clearly separated, and Atomic number density D (x, y,
Consider the case where z) is D and 0. Hereinafter, the range including the element to be measured in the unit structure is referred to as a unit measurement target range, and the area in the xy plane is the unit measurement target area S
Set to 2. In addition, the film thickness in the unit measurement target range is T (x,
y). We further transform the equation using these definitions. Subsequently, the film thickness T (x, y) within the unit measurement target range
Is also considered as a constant value T.

【0017】 ∫∫∫D(x、y、z)dx・dy・dz (積分範囲:単位構造内) = ∫∫∫Ddx・dy・dz (積分範囲:単位測定対象範囲×厚み) = D・∫∫T(x、y)dx・dy (積分範囲:単位測定対象範囲) = D・T・∫∫dx・dy (積分範囲:単位測定対象範囲) = D・T・S2 したがって、以下に示す2種の式を得ることができる。[0017]     ∫∫∫D (x, y, z) dx ・ dy ・ dz (integration range: within unit structure)     = ∫∫∫Ddx ・ dy ・ dz                                     (Integration range: Unit measurement target range x thickness)     = D ・ ∫∫T (x, y) dx ・ dy (integration range: unit measurement target range)     = D ・ T ・ ∫∫dx ・ dy (integration range: unit measurement target range)     = D ・ T ・ S2 Therefore, the following two equations can be obtained.

【0018】T = (S1/S2)・B/(C・D・
(∫∫a(x、y)・e(x、y)dx・dy))(積
分範囲:測定領域全面) ∫∫T(x、y)dx・dy (積分範囲:
単位測定対象範囲)= S1・B/(C・D・(∫∫a
(x、y)・e(x、y)dx・dy))(積分範囲:
測定領域全面) 前者の式より、蛍光X線量Bとパターン面積比(S1/
S2)をもとにTを求められることが分かる。
T = (S1 / S2) .B / (C.D.)
(∫∫a (x, y) ・ e (x, y) dx ・ dy)) (Integration range: whole measurement area) ∫∫T (x, y) dx ・ dy (Integration range:
Unit measurement target range) = S1 ・ B / (C ・ D ・ (∫∫a
(X, y) · e (x, y) dx · dy)) (integration range:
Based on the former formula, the fluorescent X-ray dose B and the pattern area ratio (S1 /
It can be seen that T can be obtained based on S2).

【0019】例えば、繰り返しパターンの配線構造(図
2を参照)であれば、配線幅W、及び繰り返しピッチ幅
Pの2種の寸法が分かれば、(S1/S2)=P/Wな
ので膜厚Tを求めることができる。図2は、薄膜の断面
図で、紙面に対して垂直方向に多数の配線が並んでいる
状態を示している。
For example, in the case of a wiring structure of a repeating pattern (see FIG. 2), if two dimensions of the wiring width W and the repeating pitch width P are known, (S1 / S2) = P / W, so the film thickness It is possible to obtain T. FIG. 2 is a cross-sectional view of the thin film, and shows a state in which a large number of wirings are arranged in a direction perpendicular to the paper surface.

【0020】例えば、繰り返しパターンのプラグ構造
(図3A、及び3Bを参照)であれば、単位構造の面積S
1とプラグの配線断面積S2の2種の値が分かれば、膜
厚Tを求めることができる。図3Aは、試料を上から見
た図で、xy面内でのプラグの繰り返し構造、及びS1
とS2に対応する範囲を示している。プラグとは、ウェ
ハ表面に対して平行な下層配線と上層配線の間を上下に
つなぐ短い配線である。プラグの配線断面積とは、プラ
グ配線をウェハ表面と平行な面(xy面)でカットした
時の断面積を指す。図3Bは、プラグ構造を立体的に示
した透視図である。
For example, in the case of a plug structure having a repeating pattern (see FIGS. 3A and 3B), the area S of the unit structure is
If the two values of 1 and the wiring cross-sectional area S2 of the plug are known, the film thickness T can be obtained. FIG. 3A is a view of the sample seen from above, showing a repetitive structure of plugs in the xy plane and S1.
And the range corresponding to S2 are shown. The plug is a short wiring that connects a lower layer wiring and an upper layer wiring, which are parallel to the wafer surface, up and down. The wiring cross-sectional area of the plug refers to a cross-sectional area when the plug wiring is cut along a plane (xy plane) parallel to the wafer surface. FIG. 3B is a perspective view showing the plug structure in three dimensions.

【0021】パターン面積比(S1/S2)を求める
際、パターン部の設計値をそのまま使用する方法もある
が、設計値とのずれが懸念される場合にはパターン部の
面内寸法を別の測定手段にて求める必要がある。したが
って、上記方法を取り入れた蛍光X線膜厚測定装置に、
光学顕微鏡、電子顕微鏡、またはSPM(Scanni
ng Probe Microscope)等の表面測
長機能を組み込むことで、同じ装置内で面方向の測長と
深さ方向の膜厚測定をまとめて行うことができる。SP
MとはSTM(Scanning Tunneling
Microscope)、AFM(Atomic F
orce Microscope)、SNOAM(Sc
anning Near−Field Optical
Atomic−Force Microscope)
等の総称で、先端のとがった針で試料表面をなぞり、そ
の電気的、物理的、光学的な特性を検出し、試料の表面
形状や特性を原子、分子サイズで測定する顕微鏡のこと
である。
When the pattern area ratio (S1 / S2) is calculated, the design value of the pattern portion may be used as it is. However, if a deviation from the design value is feared, the in-plane dimension of the pattern portion may be different. It is necessary to obtain it by measuring means. Therefore, in the fluorescent X-ray film thickness measuring device incorporating the above method,
Optical microscope, electron microscope, or SPM (Scanni)
By incorporating a surface length measuring function such as ng Probe Microscope), it is possible to perform length measurement in the surface direction and film thickness measurement in the depth direction at the same time in the same device. SP
M is STM (Scanning Tunneling)
Microscope), AFM (Atomic F)
orce Microscope), SNOAM (Sc
anning Near-Field Optical
Atomic-Force Microscope)
It is a general term for a microscope that traces the surface of a sample with a sharp-pointed needle, detects its electrical, physical, and optical characteristics, and measures the surface shape and characteristics of the sample with atomic and molecular sizes. .

【0022】後者の式に関しては、表面形状を示すF
(x、y)を用いて以下のような書き換えを行う。ここ
で、F(x、y)−F0=T(x、y)の関係を用い
る。SPM等による測定で表面形状F(x、y)を測定
した場合、それだけでは試料内部の情報を持たないの
で、膜厚T(x、y)との間にオフセットF0を考慮し
てなければならない。
Regarding the latter equation, F which indicates the surface shape
The following rewriting is performed using (x, y). Here, the relationship of F (x, y) -F0 = T (x, y) is used. When the surface shape F (x, y) is measured by SPM or the like, it does not have information on the inside of the sample, so the offset F0 must be taken into consideration with the film thickness T (x, y). .

【0023】 ∫∫T(x、y)dx・dy = ∫∫(F(x、y)−F0)dx・dy = ∫∫F(x、y)dx・dy−F0・S2 = ∫∫F(x、y)dx・dy−(F(x、y)−T(x、y))・S2 (積分範囲:単位測定対象範囲) 最終的に、以下の式を得ることができる。[0023]     ∫ ∫ T (x, y) dx ・ dy     = ∫∫ (F (x, y) -F0) dx · dy     = ∫∫F (x, y) dx · dy−F0 · S2     = ∫∫F (x, y) dx · dy− (F (x, y) −T (x, y)) · S2                                           (Integration range: Unit measurement target range) Finally, the following equation can be obtained.

【0024】T(x、y)= F(x、y)−(1/S
2)・∫∫F(x、y)dx・dy(積分範囲:単位測
定対象範囲)+(S1/S2)・B/(C・D・(∫∫
a(x、y)・e(x、y)dx・dy))(積分範
囲:測定領域全面) したがって、蛍光X線量B、S1、S2、及び表面形状
F(x、y)をもとにT(x、y)を求められることが
分かる。T(x、y)は表面形状F(x、y)に膜厚情
報が加わったもので、断面形状を表わしている。
T (x, y) = F (x, y)-(1 / S
2) ・ ∫∫F (x, y) dx ・ dy (integration range: unit measurement target range) + (S1 / S2) ・ B / (C ・ D ・ (∫∫
a (x, y) · e (x, y) dx · dy)) (integration range: entire measurement area) Therefore, based on the fluorescence X-ray doses B, S1, S2 and the surface shape F (x, y). It can be seen that T (x, y) is required. T (x, y) is the surface shape F (x, y) to which the film thickness information is added, and represents the cross-sectional shape.

【0025】次に、上式を用いて単位測定対象範囲内で
の平均膜厚Tを求める。結果は、以下のようになり、膜
厚一定の試料を測定した場合の膜厚Tと同じ結果を得
る。
Next, the average film thickness T in the unit measurement target range is obtained using the above equation. The results are as follows, and the same result as the film thickness T when a sample having a constant film thickness is measured is obtained.

【0026】T = (S1/S2)・B/(C・D・
(∫∫a(x、y)・e(x、y)dx・dy))(積
分範囲:測定領域全面) 表面形状F(x、y)、S1、及びS2を求める際にS
PM等による表面形状測定を行うが、本発明の蛍光X線
膜厚測定装置にその表面形状測定機能を組み込むこと
で、ひとつの装置内で断面形状測定を行うことができ
る。
T = (S1 / S2) .B / (C.D.)
(∫∫a (x, y) · e (x, y) dx · dy)) (integration range: entire measurement area) S when determining the surface shape F (x, y), S1, and S2
Although the surface shape is measured by PM or the like, by incorporating the surface shape measuring function in the fluorescent X-ray film thickness measuring apparatus of the present invention, the sectional shape can be measured in one apparatus.

【0027】ここまで、G1(x、y、z)=G2
(x、y、z)=1と仮定して計算を進めてきたが、こ
の仮定が適切でない場合には上記の計算のように膜厚
T、またはT(x、y)を単純な式で表すことはできな
くなる。そのような場合、まず、膜厚T、またはT
(x、y)を適当に仮定し、薄膜パターンの具体的な構
造を元に、G1(x、y、z)、及びG2(x、y、
z)を計算により求める。次に、そのG1(x、y、
z)、及びG2(x、y、z)を用いて、検出した蛍光
X線量から膜厚を求める。ここで得られた膜厚と最初に
仮定した膜厚が一致すれば、最初に仮定した膜厚が正し
かったことが分かる。もしずれていれば、補正した仮定
膜厚を用いて同じ事を繰り返す。仮定した膜厚と解析結
果の膜厚が一致した時、正しい膜厚が得られたことにな
る。また、実際の薄膜パターンの構造によっては、具体
的な構造を計算に組み込むことで、上記と同様に膜厚
T、またはT(x、y)を求める式を算出できる場合も
ある。その場合は、計算を繰り返す必要は無くなる。
Up to this point, G1 (x, y, z) = G2
The calculation has been advanced assuming that (x, y, z) = 1, but if this assumption is not appropriate, the film thickness T or T (x, y) can be calculated by a simple equation as in the above calculation. It cannot be represented. In such a case, first, the film thickness T or T
G1 (x, y, z) and G2 (x, y, based on the specific structure of the thin film pattern, assuming (x, y) as appropriate.
z) is calculated. Next, the G1 (x, y,
z) and G2 (x, y, z) are used to determine the film thickness from the detected fluorescence X-ray dose. If the film thickness obtained here matches the initially assumed film thickness, it can be seen that the initially assumed film thickness was correct. If there is a deviation, the same thing is repeated using the corrected assumed film thickness. When the assumed film thickness and the analyzed film thickness match, the correct film thickness is obtained. Further, depending on the actual structure of the thin film pattern, it may be possible to calculate an equation for obtaining the film thickness T or T (x, y) in the same manner as above by incorporating a specific structure in the calculation. In that case, it is not necessary to repeat the calculation.

【0028】[0028]

【実施例】実施例について図面を参照して説明する。本
実施例では、配線構造の試料に対する測定例を示した
が、繰り返し配線構造だけが対象試料ではない。例え
ば、プラグの繰り返しパターン構造も本発明の対象に含
まれる。
EXAMPLES Examples will be described with reference to the drawings. In this embodiment, the measurement example of the sample having the wiring structure is shown, but the repeated wiring structure is not the only target sample. For example, a repeating pattern structure of the plug is also included in the scope of the present invention.

【0029】図1は、測定試料と蛍光X線測定器を含め
て示した図である。ウェハ4の表面にTEG5を設け、
そこに励起X線1を照射する。TEG(Test El
ement Group)とは測定条件に合わせて作成
された測定専用領域で、直に測定できない実デバイスの
製造工程をモニターするために利用される。励起X線1
により照射された部分だけが測定領域15となり、そこ
から放出された蛍光X線14を蛍光X線用検出器3を用
いて測定する。また、励起X線1の照射範囲を絞るため
に励起X線用集光ミラー2を用いる。この方法で利用す
るTEGは、そのパターン形状が管理対象のパターンと
同じになるように、管理対象のパターンと同時に作成す
る。また、下部構造が測定に影響しないように、それ以
前の工程により作られる下部構造を制限する。励起X線
の照射範囲に多数のパターンが含まれるように、パター
ン寸法に合わせて、励起X線のビーム径、およびTEG
の大きさを設定する。集光ミラーの代わりにコリメータ
ーを利用して必要なビーム径の励起X線ビームを用意し
てもよい。実際の装置においては、ウェハ4内でのTE
G5の位置を特定し、測定領域をその位置に合わせる必
要があり、その目的のために内蔵された光学顕微鏡等を
利用する。
FIG. 1 is a diagram showing a measurement sample and a fluorescent X-ray measuring instrument. The TEG 5 is provided on the surface of the wafer 4,
Excited X-ray 1 is irradiated there. TEG (Test El
The “element group” is a measurement-dedicated area created according to the measurement conditions, and is used to monitor the manufacturing process of an actual device that cannot be directly measured. Excited X-ray 1
Only the portion irradiated by is the measurement region 15, and the fluorescent X-rays 14 emitted therefrom are measured using the fluorescent X-ray detector 3. Further, the excitation X-ray focusing mirror 2 is used to narrow the irradiation range of the excitation X-ray 1. The TEG used in this method is created at the same time as the pattern to be managed so that its pattern shape is the same as the pattern to be managed. It also limits the substructure created by previous processes so that the substructure does not affect the measurement. The beam diameter of the excitation X-ray and the TEG are adjusted according to the pattern size so that the irradiation range of the excitation X-ray includes many patterns.
Set the size of. A collimator may be used instead of the condenser mirror to prepare an excitation X-ray beam having a required beam diameter. In an actual device, TE in the wafer 4
It is necessary to specify the position of G5 and adjust the measurement area to that position, and an optical microscope or the like built in for that purpose is used.

【0030】図4は、CMP後の配線パターンを示してい
る。CMP後に残された配線部8は、表面が水平ではな
く、えぐれた形状をしている。配線パターンの配線ピッ
チ6、及び配線幅7をSEM測定によって求め、そこか
ら得られるパターン面積比(S1/S2)の値を元に配
線部の膜厚を求める。本発明による膜厚測定方法では破
線で示したような平均の膜厚9が求められる。
FIG. 4 shows a wiring pattern after CMP. The surface of the wiring portion 8 left after the CMP is not horizontal but has a hollow shape. The wiring pitch 6 and the wiring width 7 of the wiring pattern are obtained by SEM measurement, and the film thickness of the wiring portion is obtained based on the value of the pattern area ratio (S1 / S2) obtained therefrom. In the film thickness measuring method according to the present invention, the average film thickness 9 as shown by the broken line is obtained.

【0031】図5は、図4と同様のCMP後の配線パタ
ーンを示している。この例では、配線パターンの配線ピ
ッチ6、及び配線幅7をAFM測定によって求め、そこ
から得られるパターン面積比(S1/S2)の値を元に
配線部の膜厚9を求める。AFM測定では、さらに各配
線の表面形状10も測定することができる。したがっ
て、本発明により、破線で示した平坦な平均膜厚9だけ
ではなく、平均的な配線断面形状11も求めることがで
きる。したがって、配線側壁近傍での膜厚12、配線の
えぐれ形状の底部での膜厚13等を求めることができ
る。平坦膜厚9から求められる配線断面積と膜構造11
から求められる配線断面積は、ほぼ等しくなる。
FIG. 5 shows a wiring pattern after CMP similar to that of FIG. In this example, the wiring pitch 6 and the wiring width 7 of the wiring pattern are obtained by AFM measurement, and the film thickness 9 of the wiring portion is obtained based on the value of the pattern area ratio (S1 / S2) obtained therefrom. In the AFM measurement, the surface shape 10 of each wiring can also be measured. Therefore, according to the present invention, not only the flat average film thickness 9 shown by the broken line but also the average wiring cross-sectional shape 11 can be obtained. Therefore, the film thickness 12 in the vicinity of the side wall of the wiring, the film thickness 13 at the bottom of the cut-out shape of the wiring, and the like can be obtained. Wiring cross-sectional area and film structure 11 obtained from flat film thickness 9
The wiring cross-sectional areas obtained from are almost equal.

【0032】[0032]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。
The present invention is carried out in the form as described above, and has the following effects.

【0033】照射範囲内に多数の繰り返しパターンが含
まれるように励起X線を照射し、その照射範囲からの蛍
光X線量を測定することで、パターン面積比を元にパタ
ーン薄膜の平均膜厚を求めることができる。また、パタ
ーン表面形状を元にパターン薄膜の断面形状を求めるこ
とができる。
By irradiating excitation X-rays so that a large number of repetitive patterns are included in the irradiation range and measuring the fluorescent X-ray dose from the irradiation range, the average film thickness of the pattern thin film is determined based on the pattern area ratio. You can ask. Further, the cross-sectional shape of the pattern thin film can be obtained based on the pattern surface shape.

【0034】蛍光X線膜厚測定装置に、光学顕微鏡、電
子顕微鏡、またはSPM等の表面測長機能を組み込むこ
とで、同じ装置内で面方向の測長と深さ方向の膜厚測定
をまとめて行うことができる。また、SPM等の表面形
状測定機能を組み込むことで、同じ装置内でパターン部
の断面形状測定を行うことができる。
By incorporating a surface length measuring function such as an optical microscope, an electron microscope, or SPM into the fluorescent X-ray film thickness measuring device, the length measurement in the surface direction and the film thickness measurement in the depth direction can be summarized in the same device. Can be done by Further, by incorporating a surface shape measuring function such as SPM, it is possible to measure the sectional shape of the pattern portion in the same device.

【0035】測定領域を広くとれるため、ビームをパタ
ーン寸法ほどに集光したりする必要がなく、振動を低く
抑える必要も無いので、将来の半導体加工におけるさら
なる微細化に対応することが容易である。
Since the measurement area can be widened, it is not necessary to focus the beam to the extent of the pattern size, and it is not necessary to suppress the vibration to a low level. Therefore, it is easy to cope with further miniaturization in future semiconductor processing. .

【0036】半導体集積回路の配線に対して、その配線
幅とピッチをもとにして、配線部の膜厚を求めることが
できる。
With respect to the wiring of the semiconductor integrated circuit, the film thickness of the wiring portion can be obtained based on the wiring width and pitch.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における実施例をTEGと共に示す図で
ある。
FIG. 1 is a diagram showing an embodiment of the present invention together with a TEG.

【図2】パターン薄膜の断面図で、繰り返しパターンの
配線構造を示す図である。
FIG. 2 is a cross-sectional view of a patterned thin film showing a wiring structure of a repeating pattern.

【図3】Aは、プラグ構造の繰り返しパターンを薄膜の
上から見た図である。Bは、プラグ構造の繰り返しパタ
ーンを立体的に示した透視図である。
FIG. 3A is a view of a repeating pattern of a plug structure seen from above the thin film. FIG. 3B is a perspective view three-dimensionally showing a repeating pattern of the plug structure.

【図4】配線パターンの測定をSEMと組み合わせて行
う例を示す図である。
FIG. 4 is a diagram showing an example in which a wiring pattern is measured in combination with an SEM.

【図5】配線パターンの測定をAFMと組み合わせて行
う例を示す図である。
FIG. 5 is a diagram showing an example of performing measurement of a wiring pattern in combination with AFM.

【符号の説明】[Explanation of symbols]

1 励起X線 2 励起X線用集光ミラー 3 蛍光X線用検出器 4 ウェハ 5 TEG 6 配線ピッチ 7 配線幅 8 配線 9 膜厚(測定結果) 10 表面形状 11 膜構造(測定結果) 12 配線側壁近傍での膜厚 13 配線のえぐれ形状の底部での膜厚 14 蛍光X線 15 測定領域 1 Excited X-ray 2 Condensing mirror for excitation X-ray 3 Fluorescent X-ray detector 4 wafers 5 TEG 6 wiring pitch 7 wiring width 8 wiring 9 Film thickness (measurement result) 10 Surface shape 11 Membrane structure (measurement results) 12 Film thickness near wiring sidewall 13 Film thickness at the bottom of the cut-out shape of the wiring 14 X-ray fluorescence 15 measurement area

フロントページの続き Fターム(参考) 2F067 AA27 BB01 BB17 CC17 HH04 JJ03 KK01 2G001 AA01 BA04 CA01 KA11 LA11 MA05 RA04 SA02 4M106 AA01 BA04 CA48 DH03 DH25 DH34 Continued front page    F term (reference) 2F067 AA27 BB01 BB17 CC17 HH04                       JJ03 KK01                 2G001 AA01 BA04 CA01 KA11 LA11                       MA05 RA04 SA02                 4M106 AA01 BA04 CA48 DH03 DH25                       DH34

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 測定領域内に隙間なく多数の繰り返し薄
膜パターンが含まれるような構成をとり、前記測定領域
に励起X線を照射しそこから出射される蛍光X線を検出
し、その検出量と前記薄膜パターンの面内寸法をもとに
前記薄膜パターンの膜厚を求める薄膜パターン膜厚測定
方法。
1. A structure in which a large number of repetitive thin film patterns are included in a measurement region without gaps, the measurement region is irradiated with excitation X-rays, and fluorescent X-rays emitted therefrom are detected, and the detected amount thereof is detected. And a thin film pattern film thickness measuring method for obtaining the film thickness of the thin film pattern based on the in-plane dimension of the thin film pattern.
【請求項2】 面内寸法の測長機能を持つ測定方法によ
り測定した薄膜パターンの面内寸法をもとに薄膜パター
ン膜厚を求める請求項1記載の薄膜パターン膜厚測定方
法。
2. The thin film pattern film thickness measuring method according to claim 1, wherein the thin film pattern film thickness is obtained based on the in-plane size of the thin film pattern measured by a measuring method having a function of measuring the in-plane size.
【請求項3】 表面形状測定機能を持つ測定方法により
測定した表面形状情報をもとに薄膜パターン断面形状を
求める請求項2記載の薄膜パターン膜厚測定方法。
3. The thin film pattern film thickness measuring method according to claim 2, wherein the thin film pattern cross-sectional shape is obtained based on surface shape information measured by a measuring method having a surface shape measuring function.
【請求項4】 前記薄膜パターンが半導体集積回路配線
であり、前記面内寸法が前記半導体集積回路配線の配線
幅とピッチであることを特徴とする請求項1記載の薄膜
パターン膜厚測定方法。
4. The thin film pattern film thickness measuring method according to claim 1, wherein the thin film pattern is a semiconductor integrated circuit wiring, and the in-plane dimension is a wiring width and a pitch of the semiconductor integrated circuit wiring.
【請求項5】 測定領域内に隙間なく多数の繰り返し薄
膜パターンが含まれるような構成をとり、前記測定領域
に励起X線を照射する励起X線源と、前記励起X線を前
記測定領域に導く光学回路と、前記測定領域から出射さ
れる蛍光X線を検出するX線検出器と、前記測定領域か
ら出射された蛍光X線を前記X線検出器に導く光学回路
と、及び前記検出した蛍光X線量と前記薄膜パターンの
面内寸法をもとに前記薄膜パターンの膜厚を求めるため
の解析手段とを含む薄膜パターン膜厚測定装置。
5. An excitation X-ray source for irradiating the measurement region with excitation X-rays, wherein the measurement region includes a large number of repeating thin film patterns without gaps, and the excitation X-rays are applied to the measurement region. An optical circuit for guiding, an X-ray detector for detecting fluorescent X-rays emitted from the measurement region, an optical circuit for guiding the fluorescent X-rays emitted from the measurement region to the X-ray detector, and the detection. A thin film pattern film thickness measuring device comprising: an analyzing means for obtaining a film thickness of the thin film pattern based on a fluorescent X-ray dose and an in-plane dimension of the thin film pattern.
【請求項6】 面内寸法の測長機能を内蔵し、その機能
により測定した薄膜パターンの面内寸法をもとに薄膜パ
ターン膜厚を求める請求項5記載の薄膜パターン膜厚測
定装置。
6. The thin film pattern film thickness measuring device according to claim 5, wherein the thin film pattern film thickness measuring apparatus has a built-in in-plane dimension length measuring function, and obtains the thin film pattern film thickness based on the in-plane dimension of the thin film pattern measured by the function.
【請求項7】 表面形状測定機能を内蔵し、その機能に
より測定した表面形状情報をもとに薄膜パターン断面形
状を求める請求項6記載の薄膜パターン膜厚測定装置。
7. The thin film pattern film thickness measuring apparatus according to claim 6, which has a surface shape measuring function and obtains a thin film pattern cross-sectional shape based on surface shape information measured by the function.
【請求項8】 前記薄膜パターンが半導体集積回路配線
であり、前記面内寸法が前記半導体集積回路配線の配線
幅とピッチであることを特徴とする請求項5記載の薄膜
パターン膜厚測定装置。
8. The thin film pattern film thickness measuring device according to claim 5, wherein the thin film pattern is a semiconductor integrated circuit wiring, and the in-plane dimension is a wiring width and a pitch of the semiconductor integrated circuit wiring.
JP2002101309A 2002-04-03 2002-04-03 Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process Expired - Lifetime JP4124609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101309A JP4124609B2 (en) 2002-04-03 2002-04-03 Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101309A JP4124609B2 (en) 2002-04-03 2002-04-03 Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process

Publications (2)

Publication Number Publication Date
JP2003294431A true JP2003294431A (en) 2003-10-15
JP4124609B2 JP4124609B2 (en) 2008-07-23

Family

ID=29241744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101309A Expired - Lifetime JP4124609B2 (en) 2002-04-03 2002-04-03 Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process

Country Status (1)

Country Link
JP (1) JP4124609B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187655A (en) * 2005-12-23 2007-07-26 Jordan Valley Semiconductors Ltd Accurate measurement of layer dimension using xrf
JP2010054334A (en) * 2008-08-28 2010-03-11 Rigaku Corp X-ray fluorescence analyzer
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
JP2012523102A (en) * 2009-04-06 2012-09-27 イーグルピッチャー テクノロジーズ,エルエルシー System and method for verifying proper ordering of stack components
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187655A (en) * 2005-12-23 2007-07-26 Jordan Valley Semiconductors Ltd Accurate measurement of layer dimension using xrf
JP2010054334A (en) * 2008-08-28 2010-03-11 Rigaku Corp X-ray fluorescence analyzer
JP2012523102A (en) * 2009-04-06 2012-09-27 イーグルピッチャー テクノロジーズ,エルエルシー System and method for verifying proper ordering of stack components
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US8512796B2 (en) 2009-05-13 2013-08-20 Si02 Medical Products, Inc. Vessel inspection apparatus and methods
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Also Published As

Publication number Publication date
JP4124609B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP2003294431A (en) Method and device for measurement of pattern film thickness in semiconductor manufacturing process
US5920067A (en) Monocrystalline test and reference structures, and use for calibrating instruments
JP6320387B2 (en) Device correlation measurement method (DCM) for OVL with embedded SEM structure overlay target
TWI469182B (en) Structure and method for simultaneously determining an overlay accuracy and pattern placement error
KR100528109B1 (en) Method of correcting proximity effect of electronic beam exposure, exposure method, manufacturing method of semiconductor device, and proximity effect correction module
CN107924119A (en) Check equipment, inspection method and manufacture method
TW201131314A (en) Method of measuring properties of dynamic positioning errors in a lithographic apparatus, data processing apparatus, and computer program product
US5684301A (en) Monocrystalline test structures, and use for calibrating instruments
Gavrilenko et al. Measurement of dimensions of resist mask elements below 100 nm with help of a scanning electron microscope
JP3488745B2 (en) Dimension calibration sample mounting stage and dimensional calibration sample
JP2007177321A (en) Method of depositing metal layer onto substrate and method for measuring topographical feature of substrate in three dimensions
US6573498B1 (en) Electric measurement of reference sample in a CD-SEM and method for calibration
CN109324278A (en) The method of X-ray scatterometry
JP2005150340A (en) Method and device for specifying etching condition
JP2004003959A (en) Measuring method of fluorescent x-ray measuring method and apparatus, working method, and working apparatus
JP2009288016A (en) Fluorescent x-ray analyzer and evaluation system of semiconductor device using it
JPH05259152A (en) Manufacture of instrument metrological structure for particularly analyzing precision of device for measuring alignment on processed substrate
Novikov et al. Metrology of VLSI critical element sizes
US7393616B2 (en) Line end spacing measurement
KR20080086693A (en) Method for measuring overlay of semiconductor device
JP2022525861A (en) Methods and systems for monitoring sedimentation processes
Asano et al. Application of optical CD metrology for alternative lithography
Maas et al. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment
US6753963B1 (en) Method of calibration of magnification of optical devices
TWI811952B (en) Metrology methods and appratuses

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Ref document number: 4124609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term