JP2005056958A - Interposer - Google Patents

Interposer Download PDF

Info

Publication number
JP2005056958A
JP2005056958A JP2003284577A JP2003284577A JP2005056958A JP 2005056958 A JP2005056958 A JP 2005056958A JP 2003284577 A JP2003284577 A JP 2003284577A JP 2003284577 A JP2003284577 A JP 2003284577A JP 2005056958 A JP2005056958 A JP 2005056958A
Authority
JP
Japan
Prior art keywords
via conductors
signal
interposer
line
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284577A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sugimoto
康宏 杉本
Hiroyuki Deguchi
洋行 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003284577A priority Critical patent/JP2005056958A/en
Publication of JP2005056958A publication Critical patent/JP2005056958A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interposer that is connected between an integrated circuit element and a connecting-destination wiring board and can reduce the crosstalk among signal via conductors disposed in a matrix. <P>SOLUTION: The interposer has an intermediate coefficient of linear expansion between those of the integrated circuit element 30 and the connecting-destination wiring board 20, and relieves the strains of the circuit element 30 and the wiring board 20 caused by thermal expansion. In the interposer, grounding via conductors GV are distributed in a group of via conductors formed of the signal via conductors SV among via conductors which are disposed on the surface of a dielectric layer in a matrix after passing through the dielectric layer in the thickness direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、集積回路素子を配線基板に接続するための誘電体を使用したインターポーザである。   The present invention is an interposer using a dielectric for connecting an integrated circuit element to a wiring board.

LSIやICなどの半導体部品を搭載したり、あるいは基板内部に伝送線路、フィルタなどの回路素子を形成した配線基板として、セラミック等の誘電体を用いた配線基板が使用されている。このような配線基板に信号用(電気信号の送受)あるいは電源用(直流電源の供給)、グランド用(電気信号の接地)などの複数のビア導体を形成し、信号線の特性インピーダンスの精度並びに周波数特性を安定向上させることが行なわれている。例えば、配線基板の両面に形成された信号伝送線路の特性インピーダンスと信号ビア導体の特性インピーダンスを整合させる方法が特許文献1に提案されている。即ち、この両面に形成された信号伝送線路を接続する信号ビア導体に隣接してグランドビア導体を配置することで、信号ビア導体の特性インピーダンスを前記信号伝送線路の特性インピーダンスに精度良く一致させる。これによって、高速論理回路の信号波形の劣化を最小にしてその伝播を向上させる、というものである。   2. Description of the Related Art A wiring board using a dielectric material such as ceramic is used as a wiring board on which a semiconductor component such as LSI or IC is mounted, or a circuit element such as a transmission line or a filter is formed inside the board. A plurality of via conductors for signal (electric signal transmission / reception), power supply (DC power supply), ground (electric signal grounding), etc. are formed on such a wiring board, and the characteristic impedance of the signal line is improved. The frequency characteristics are being improved stably. For example, Patent Document 1 proposes a method for matching the characteristic impedance of signal transmission lines formed on both surfaces of a wiring board with the characteristic impedance of signal via conductors. That is, by arranging the ground via conductor adjacent to the signal via conductor connecting the signal transmission lines formed on both surfaces, the characteristic impedance of the signal via conductor is matched with the characteristic impedance of the signal transmission line with high accuracy. This minimizes the deterioration of the signal waveform of the high-speed logic circuit and improves its propagation.

特開平6−37416号公報JP-A-6-37416

しかし、このようなビア導体においては、クロック周波数1GHz以上の高速論理回路にこの配線基板を適用する場合には、高速論理回路の信号を伝送する信号ビア導体の高周波帯における特性インピーダンスZ0の安定性と隣接の信号ビア導体に与える電磁干渉、いわゆるクロストークが問題になる。特に、高速論理回路として、MPU、DSPあるいはRAMなどのLSIを配線基板に実装し、繰り返し周期TPがTP≦1nS、立ち上り、立下り時間t、tfがtr,tf≦100pSという急峻な高速パルス信号を配線基板を通して伝送する場合には、その高速パルス信号の周波数帯域はその高調波信号を含めて数百MHzから10GHz以上の周波数に亙る広帯域の高周波信号になる。このような高速パルス信号を伝送する信号ビア導体に隣接した他の信号ビア導体にクロストークを生じてLSIの高速論理回路の性能に少なからぬ影響(ノイズ・マージンの低下あるいは信号波形の歪等)を及ぼすことが多い。 However, in such a via conductor, when this wiring board is applied to a high-speed logic circuit with a clock frequency of 1 GHz or more, the characteristic impedance Z 0 in the high-frequency band of the signal via conductor that transmits the signal of the high-speed logic circuit is stabilized. And electromagnetic interference given to adjacent signal via conductors, so-called crosstalk becomes a problem. In particular, high-speed logic circuit, MPU, implement LSI such as a DSP or RAM on the wiring board, the repetition period T P is T P ≦ 1 nS, rising, falling time t r, t f is t r, t f ≦ 100pS In the case of transmitting a steep high-speed pulse signal through a wiring board, the frequency band of the high-speed pulse signal is a wide-band high-frequency signal ranging from several hundred MHz to 10 GHz or more including the harmonic signal. There is a considerable impact on the performance of LSI high-speed logic circuits by causing crosstalk in other signal via conductors adjacent to signal via conductors that transmit such high-speed pulse signals (such as noise margin reduction or signal waveform distortion). Is often affected.

本発明の課題は、高速論理回路の急峻な高速パルス信号を伝送する際に、隣接した信号ビア導体間に発生する電磁干渉、即ちクロストークを低減するインターポーザを提供することにある。   An object of the present invention is to provide an interposer that reduces electromagnetic interference, that is, crosstalk, generated between adjacent signal via conductors when a sharp high-speed pulse signal of a high-speed logic circuit is transmitted.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明は、集積回路素子の線膨張率と接続先配線基板の線膨張率との中間の線膨張率を有し、集積回路素子と接続先配線基板との熱膨張歪を緩和するためのインターポーザにおいて、
セラミック誘電体層の第一主表面側に集積回路素子を接続する第一側パッドアレイが形成され、
セラミック誘電体層の第二主表面側に集積回路素子の信号を授受する接続先配線基板に接続される第二側パッドアレイが形成され、
セラミック誘電体層を厚さ方向に貫通し、第一側パッドアレイと第二側パッドアレイとに導通するビア導体が縦横複数個ずつのマトリックス状に配置され、
ビア導体は 集積回路素子の信号出力、グランドにそれぞれ導通する信号ビア導体とグランドビア導体を有し、
信号ビア導体で形成された主ビア群にグランドビア導体が分散配置された主ビア群が、マトリックス状配置の少なくとも一部を構成し、
隣接するビア導体間の結合に伴なうクロストークを減少することを特徴とする。
In order to solve the above-mentioned problems, the present invention has an intermediate linear expansion coefficient between the linear expansion coefficient of the integrated circuit element and the linear expansion coefficient of the connection destination wiring board, and the thermal expansion between the integrated circuit element and the connection destination wiring board. In the interposer to reduce distortion,
A first side pad array connecting the integrated circuit elements is formed on the first main surface side of the ceramic dielectric layer,
A second side pad array connected to a connection destination wiring substrate that transmits and receives an integrated circuit element signal is formed on the second main surface side of the ceramic dielectric layer,
Via conductors that penetrate the ceramic dielectric layer in the thickness direction and are electrically connected to the first side pad array and the second side pad array are arranged in a matrix of a plurality of vertical and horizontal portions,
The via conductor has a signal via conductor and a ground via conductor that are respectively connected to the signal output of the integrated circuit element and the ground,
A main via group in which ground via conductors are dispersedly arranged in a main via group formed of signal via conductors constitutes at least a part of the matrix arrangement,
It is characterized in that crosstalk accompanying coupling between adjacent via conductors is reduced.

このように、集積回路素子の線膨張率と接続先配線基板の線膨張率との中間の線膨張率を有するインターポーザ(例えば、線膨張係数7〜8×10-6/℃)を、フリップチップを使用した集積回路素子(例えば、線膨張係数2〜3×10-6/℃)と樹脂製基板(例えば、線膨張係数15〜20×10-6/℃)を使用した接続先配線基板の間に挟み込むことによって集積回路素子と接続先配線基板との熱膨張歪を緩和する。具体的には、線膨張係数差によって、集積回路素子とインターポーザ、及びインターポーザと接続先配線基板間にて、端子間の面内方向の相対変位が生じようとするが、これが端子間のハンダ接合によって拘束されるため、端子間のハンダ接続部には剪断応力が付加される。この場合、インターポーザの要部をなす板状基体を、ヤング率の高いセラミック材料にて構成しておくとインターポーザの剛性が高められと共に、線膨張率差が存在しても、インターポーザの弾性変形量は少なく留まるから、結果的にハンダ接合部に作用する剪断変形も小さくなり、接続部の剥離や断線等の不具合を防ぐことができる。 In this way, an interposer (for example, a linear expansion coefficient of 7 to 8 × 10 −6 / ° C.) having a linear expansion coefficient intermediate between the linear expansion coefficient of the integrated circuit element and the linear expansion coefficient of the connection destination wiring substrate is flip-chip. Of connected wiring boards using integrated circuit elements (for example, linear expansion coefficient 2 to 3 × 10 −6 / ° C.) and resin substrates (for example, linear expansion coefficient 15 to 20 × 10 −6 / ° C.) The thermal expansion strain between the integrated circuit element and the connection destination wiring board is reduced by being sandwiched therebetween. Specifically, due to the difference in coefficient of linear expansion, relative displacement in the in-plane direction between the terminals is likely to occur between the integrated circuit element and the interposer, and between the interposer and the connection destination wiring board. Therefore, a shearing stress is applied to the solder connection portion between the terminals. In this case, if the plate-like substrate that forms the main part of the interposer is made of a ceramic material having a high Young's modulus, the rigidity of the interposer is increased, and the amount of elastic deformation of the interposer even if there is a difference in linear expansion coefficient. As a result, the shear deformation acting on the solder joint portion is reduced, and problems such as peeling of the connecting portion and disconnection can be prevented.

又、信号ビア導体の特性インピーダンスは単体の場合に対してマトリックス状に配置されると、対象の信号ビア導体(以降、単に「対象線路」ともいう)を囲む隣接した信号ビア導体(以降、単に「線路」ともいう)の数Mに対応して、対象線路の特性インピーダンスZ0を低減することができることがよく知られている。即ち、充填された誘電体の比誘電率をεrとし、線路の線径をd、隣接する線路の中心間距離をSとしたときに、その特性インピーダンスZ0は略次のように与えられる。Z0≒{138/(εr1/2}{(M+1)/M}log10{S/(M)1/(M+1)d}-----(201)。よってS/dを小さくして、かつ隣接線路数Mを大きくすればその特性インピーダンスZ0を一層小さくできる。さらにマトリックス状に配置された信号ビア導体にグランドビア導体(ビア導体が接続先配線基板のグランドに導通する、即ち接地されている)を分散配置することにより、対象線路の特性インピーダンスZ0を一層低減することが可能である。具体的には、図4の(4A)に示すように、対象線路とした信号ビア導体とそれに最隣接したグランドビア導体の中心間距離をHとしたときに、(4A)は概ね(4B)のように等価表示することができる。この場合、その信号ビア導体の対象線路の特性インピーダンスZ0は(4C)の(101)式に示されるように、その中心間距離Hを狭めることによって一層その特性インピーダンスZ0を低減することができる。上記のように、信号ビア導体をマトリックス配置しかつグランドビア導体を分散配列することにより、信号ビア導体の特性インピーダンスZ0を十分に小さくできるので、対象線路で電気信号を伝送するときに隣接線路に生じるクロストークは、その線路間(信号ビア導体間)の結合係数γが小さくなって、近端クロストーク信号及び遠端クロストーク信号を低減することができる。(詳細は後述)。 When the characteristic impedance of the signal via conductor is arranged in a matrix as compared with a single case, the adjacent signal via conductor (hereinafter simply referred to as “target line”) surrounding the target signal via conductor (hereinafter simply referred to as “target line”). It is well known that the characteristic impedance Z 0 of the target line can be reduced corresponding to the number M) (also referred to as “line”). That is, when the dielectric constant of the filled dielectric is ε r , the line diameter is d, and the distance between the centers of adjacent lines is S, the characteristic impedance Z 0 is given as follows. . Z 0 ≈ {138 / (ε r ) 1/2 } {(M + 1) / M} log 10 {S / (M) 1 / (M + 1) d} ----- (201). Therefore, the characteristic impedance Z 0 can be further reduced by reducing S / d and increasing the number M of adjacent lines. Further, by disposing ground via conductors (the via conductors are connected to the ground of the connection wiring board, that is, grounded) to the signal via conductors arranged in a matrix, the characteristic impedance Z 0 of the target line is further increased. It is possible to reduce. Specifically, as shown in (4A) of FIG. 4, when the distance between the centers of the signal via conductor as the target line and the ground via conductor nearest to it is H, (4A) is approximately (4B). Can be displayed as equivalent. In this case, the characteristic impedance Z 0 of the subject line of the signal via conductor as illustrated in (101) wherein the (4C), is possible to reduce the characteristic impedance Z 0 even by narrowing the distance between the centers H it can. As described above, the signal via conductors are arranged in a matrix and the ground via conductors are distributed, so that the characteristic impedance Z 0 of the signal via conductors can be made sufficiently small. In the crosstalk generated in, the coupling coefficient γ between the lines (between signal via conductors) becomes small, and the near-end crosstalk signal and the far-end crosstalk signal can be reduced. (Details will be described later).

又、本発明のインターポーザは、信号ビア導体の数をNSとし、グランドビア導体の数をNGとしたときに、その分散比率NS/NGが、1≦NS/NG≦3を満たすように構成することもできる。このようにグランドビア導体を信号ビア導体に対して分散配列すると、前述の対象線路の特性インピーダンスZ0を十分に低減、又はその容量CT11を十分に大きく
(詳細後述)して、結合係数γが約γ≦1/2と小さくなる。この結果、そのクロストークをグランドビア導体が分散配置されない場合(ビア導体は全て信号ビア導体のとき)に比べて1/2以下に低減できることが、解析および高周波シミュレーション(詳細後述、図15及び図18参照)の結果から判った。
Also, the interposer of the present invention, the number of signal via conductors and N S, the number of ground via conductors when a N G, whose distribution ratio N S / N G, 1 ≦ N S / N G ≦ 3 It can also be configured to satisfy. With this distributed array ground via conductors for signals via conductor, sufficiently reduce the characteristic impedance Z 0 of the aforementioned subject line, or sufficiently large that capacity C T11
(Details will be described later), and the coupling coefficient γ becomes smaller as about γ ≦ 1/2. As a result, it is possible to reduce the crosstalk to 1/2 or less compared to the case where the ground via conductors are not distributed (when all via conductors are signal via conductors), analysis and high frequency simulation (details will be described later, FIG. 15 and FIG. 18)).

又、本発明のインターポーザは、信号ビア導体とグランドビア導体が1つおきに縦横交互に配列される構成にしてもよい。このようにすると、図11に示すように各信号ビア導体は最隣接する4つのビア導体を全てグランドビア導体とすることが可能であり、即ち各信号ビア導体はグランドビア導体で囲まれた最良の配列となる。この場合に、解析の結果から、グランドビア導体GVの数NGと信号ビア導体SVの数NSとの比率n(n=NS/NG)がn=1のときに、最隣接した信号ビア導体間の結合係数γがγ≦1/3となり、その信号ビア導体間のクロストークが最小(クロストーク・ノイズが10%以下、詳細後述)となることが分かった。言い換えれば、信号ビア導体を内部導体、グランドビア導体を外部導体とする同軸線路に近い構造を形成することになり、該信号ビア導体と隣接の信号ビア導体間をグランドビア導体で遮蔽する電気的環境が形成される。このためこの信号ビア導体間のクロストークを大幅に低減すると共にインターポーザの外部から侵入するEMC(Electro Magnetic Compatibility)電磁干渉に伴なう種々のノイズを低減する効果も生まれる。 Further, the interposer of the present invention may be configured such that every other signal via conductor and ground via conductor are alternately arranged vertically and horizontally. In this way, as shown in FIG. 11, each signal via conductor can have all four neighboring via conductors as ground via conductors, that is, each signal via conductor is best surrounded by a ground via conductor. Becomes an array of In this case, from the result of analysis, when the ratio n (n = N S / N G ) between the number N G of the ground via conductors GV and the number N S of the signal via conductors SV is n = 1, the nearest neighbor It was found that the coupling coefficient γ between the signal via conductors was γ ≦ 1/3, and the crosstalk between the signal via conductors was minimized (crosstalk noise was 10% or less, details will be described later). In other words, a structure close to a coaxial line with the signal via conductor as the inner conductor and the ground via conductor as the outer conductor is formed, and the electrical via that shields the signal via conductor and the adjacent signal via conductor with the ground via conductor is formed. An environment is formed. For this reason, the crosstalk between the signal via conductors is greatly reduced, and various noises due to EMC (Electro Magnetic Compatibility) electromagnetic interference entering from the outside of the interposer are also reduced.

又、本発明のインターポーザは、信号ビア導体の軸線に垂直な断面の外径をdとし、最近接する隣接信号の軸線間距離をSとしたときに、d<S≦3dを満たす構成とすることもできる。このように構成すると、当然にS=dでは各ビア導体が互いにショートしてしまうのでこの条件は含まれないが、前述した(201)式にM=4(対象信号ビア導体の周囲に上下左右各1つ計4つの信号ビア導体が距離Sで配置されている)、S=3dを適用してZ0≒61/(εr1/2 ------(202)を得る。いま、誘電体をアルミナとして比誘電率εrをεr=9とすれば、(202)式よりZ0≒20(Ω)------(204) となる。d<S≦3d------ (205)の範囲にある本発明のインターポーザは各信号ビア導体の特性インピーダンスZ0は20(Ω)以下と小さくなって、そのクロストークを実用上支障の無い範囲に低減することができる。 Also, the interposer of the present invention is configured to satisfy d <S ≦ 3d, where d is the outer diameter of the cross section perpendicular to the axis of the signal via conductor, and S is the distance between the axes of adjacent signals adjacent to each other. You can also. This configuration naturally does not include this condition because each via conductor is short-circuited at S = d, but M = 4 (up, down, left, and right around the target signal via conductor) 4 signal via conductors are arranged at a distance S each), and applying S = 3d, Z 0 ≈61 / (ε r ) 1/2 ------ (202) is obtained. Now, assuming that the dielectric is alumina and the relative dielectric constant ε r is ε r = 9, Z 0 ≈20 (Ω) ------ (204) from the equation (202). d <S ≦ 3d ------ In the interposer of the present invention in the range of (205), the characteristic impedance Z 0 of each signal via conductor is as small as 20 (Ω) or less, and the crosstalk is practically hindered. It can be reduced to a range where there is no.

以下、添付の図面を参照しつつ本発明の最良形態を説明する。図1に本発明のインターポーザ10を主基板20並びに集積回路素子30に実装した状態を示す。
ここで集積回路素子30はMPU (Micro Processor Unit),DSP(Digital Signal Processor).RAM(Random Access Memory)等のLSIを使用したFlip Chip 又はCSP(Chip Size Package) を示す。又インターポーザ10の接続先配線基板である主基板20はエポキシ樹脂、ポリイミド樹脂、BT(ビスマレイミドトリアジン)樹脂、PPE(ポリフェニレンエーテル)樹脂等の樹脂基板あるいは前記の樹脂とガラス繊維やポリイミド繊維等の有機繊維との複合材料を用いた基板で構成される。
Hereinafter, the best mode of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a state in which the interposer 10 of the present invention is mounted on the main substrate 20 and the integrated circuit element 30.
Here, the integrated circuit element 30 is MPU (Micro Processor Unit), DSP (Digital Signal Processor). A Flip Chip or CSP (Chip Size Package) using an LSI such as RAM (Random Access Memory) is shown. Further, the main substrate 20 which is a connection wiring substrate of the interposer 10 is a resin substrate such as epoxy resin, polyimide resin, BT (bismaleimide triazine) resin, PPE (polyphenylene ether) resin, or the above resin and glass fiber or polyimide fiber. It is composed of a substrate using a composite material with organic fibers.

次に、このインターポーザ10の構造について図2を用いて簡単に説明する。(2A)はこのインターポーザ10の厚さ方向の断面図(側面からみた断面図)であり、そのFF断面の構造(上面からみた断面図)を(2B)に示す。先ず(2A)において、インターポーザ10の主要部をなす誘電体層11(セラミック誘電体層)は厚さ0.45〜0.75mmで、その材料にはアルミナ又はLTCC(名称をLow Temperature Cofire Ceramic といい、ホウケイ酸系ガラス或いはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを重量比40〜60%添加したガラスセラミック)を使用されている。その誘電体層11の厚さ方向をまっすぐに貫通するビア導体はその軸線と垂直な断面の断面形状が円形でその外径はdで、最隣接したビア導体に対する軸線間距離、即ちピッチはSで等間隔に配列されている。   Next, the structure of the interposer 10 will be briefly described with reference to FIG. (2A) is a cross-sectional view (cross-sectional view seen from the side) of the interposer 10 in the thickness direction, and the structure (cross-sectional view seen from the top) of the FF cross-section is shown in (2B). First, in (2A), the dielectric layer 11 (ceramic dielectric layer) forming the main part of the interposer 10 has a thickness of 0.45 to 0.75 mm, and the material thereof is alumina or LTCC (named Low Temperature Cofire Ceramic; A glass ceramic in which an inorganic ceramic filler such as alumina is added to acid glass or lead borosilicate glass in a weight ratio of 40 to 60% is used. A via conductor that passes straight through the thickness direction of the dielectric layer 11 has a circular cross-sectional shape perpendicular to its axis, and its outer diameter is d. The distance between axes with respect to the nearest via conductor, that is, the pitch is S Are arranged at equal intervals.

通常、このビア導体の配列の両端は集積回路素子30のグランド端子に導通するグランドビア導体GV1,GV2が位置し、その間に集積回路素子30の信号出力端子にそれぞれ導通する信号ビア導体SV1、SV2、------、SV9が配置されている。誘電体層11の第一主表面MS1側には第一側パッドアレイGPA11、SPA11、SPA12-----、GPA12が形成され、第二主表面MS2側には第二側パッドアレイGPA21、SPA21、SPA22、----、GPA22が形成され、接続用のハンダボール(ハンダバンプ)GSB11,GSB21他を介して集積回路素子30又は接続先配線基板20のそれぞれの相手先端子(電極パッド)に導通されている。なお、ハンダボール形成時のハンダ広がりを防ぐため、パッドアレイ部を除いた誘電体層11の両表面(第一主表面MS1と第二主表面MS2)に誘電体薄膜CTF1とCTF2が形成されている。(2A)のFF断面を表わした(2B)において、ビア導体はマトリックス状(格子状又は千鳥状に整然と配置されたものばかりでなく、ビア導体間の間隔が不均等な群状に配置されたものも含む)に配置され、ビア導体マトリックスMTXの最外縁にグランドビア導体GV1,GV2他が配列され、その内側領域に軸線間距離(ピッチ)Sで信号ビア導体SV1、SV2他が配列されている。多数を占める信号ビア導体SVで構成される主ビア群MSVGには信号ビア導体SVの数NSとグランドビア導体GVの数NGが所定の比率、例えばNG:NS=1:3で、少数のグランドビア導体GVが分散配置され、信号ビア導体SV間のクロストークを低減するようにインターポーザ10が構成されている。 Normally, the ground via conductors GV1 and GV2 that are connected to the ground terminal of the integrated circuit element 30 are positioned at both ends of the via conductor array, and the signal via conductors SV1 and SV2 that are respectively connected to the signal output terminals of the integrated circuit element 30 between them. , ------, SV9 is arranged. First side pad arrays GPA11, SPA11, SPA12 ----, GPA12 are formed on the first main surface MS1 side of the dielectric layer 11, and second side pad arrays GPA21, SPA21 are formed on the second main surface MS2 side. , SPA22, ----, GPA22 are formed, and are connected to the respective counterpart terminals (electrode pads) of the integrated circuit element 30 or the connection destination wiring substrate 20 through the connection solder balls (solder bumps) GSB11, GSB21, etc. Has been. In order to prevent the solder from spreading when forming the solder balls, dielectric thin films CTF1 and CTF2 are formed on both surfaces (first main surface MS1 and second main surface MS2) of the dielectric layer 11 excluding the pad array portion. Yes. In (2B), which represents the FF cross section of (2A), the via conductors are not only arranged in a matrix (lattice or zigzag), but are also arranged in groups with uneven spacing between the via conductors. The ground via conductors GV1, GV2 and others are arranged at the outermost edge of the via conductor matrix MTX, and the signal via conductors SV1, SV2, etc. are arranged at an inner area (pitch) S between them. Yes. The number N S and the number N G is a predetermined ratio of the ground via conductors GV signal via conductors SV in composed mainly via group MSVG the signal via conductors SV for the majority, for example, N G: N S = 1: 3 A small number of ground via conductors GV are distributed and the interposer 10 is configured to reduce crosstalk between the signal via conductors SV.

集積回路素子30としてSi製ICチップを適用した場合にその熱膨張係数2.6ppm/℃と、接続先配線基板20に樹脂基板を適用した場合にその熱膨張係数15〜20ppm/℃との間の熱膨張歪を緩和するために、インターポーザ10の誘電体層11の熱膨張係数は3〜8ppm/℃の範囲にあることが好ましい。この誘電体層11の誘電体には焼成温度が1000℃以上の高温焼成セラミック(アルミナ、酸化物系の絶縁性エンジニアリングセラミック、非酸化物系の絶縁性エンジニアリングセラミック等)と焼成温度が700℃〜800℃程度の低温焼成セラミック(ホウケイ酸ガラス、シリカなどを成分とした)を用いることもできる。なお、ビア導体を形成する導体金属としては、高温焼成セラミックに対しては1000℃を越える焼成時の高温で酸化したり蒸発したりしない、タングステン、モリブデン、タンタル及びニオブ等の高融点金属を、低温焼成セラミックに対しては同時焼成法を採用する場合に融点が比較的に低く導電性に優れた銅、銀及び金を使用することが出来る。   When an IC chip made of Si is applied as the integrated circuit element 30, the coefficient of thermal expansion is between 2.6 ppm / ° C. and when a resin substrate is applied to the connection wiring board 20, the coefficient of thermal expansion is between 15 and 20 ppm / ° C. In order to alleviate the thermal expansion strain, the thermal expansion coefficient of the dielectric layer 11 of the interposer 10 is preferably in the range of 3 to 8 ppm / ° C. The dielectric of the dielectric layer 11 includes a high-temperature fired ceramic (alumina, oxide-based insulating engineering ceramic, non-oxide-based insulating engineering ceramic, etc.) having a firing temperature of 1000 ° C. or higher, and a firing temperature of 700 ° C. to A low-temperature fired ceramic (containing borosilicate glass, silica, or the like) at about 800 ° C. can also be used. As the conductor metal forming the via conductor, a high melting point metal such as tungsten, molybdenum, tantalum and niobium, which does not oxidize or evaporate at a high temperature during firing exceeding 1000 ° C. for high temperature fired ceramics, For low-temperature fired ceramics, copper, silver and gold having a relatively low melting point and excellent conductivity can be used when the co-firing method is employed.

本発明のインターポーザ10の製造工程を簡単に説明すると次のようになる。先ず、セラミックグリーンシートの形成技術を使用してアルミナグリーンシートを作製する。このアルミナグリーンシートにビア(貫通孔)をドリル加工、パンチング加工又はレーザ加工で穿設する。次に、スクリーン印刷装置を使用して導電性金属を含むペーストをこのアルミナグリーンシートに印刷して、そのアルミナグリーンシートの両面に接続用パッドアレイを形成すると共にそのビア内部に該ペーストを充填する。そして、ペーストが充填されたアルミナグリーンシートを焼成炉に移して千数百℃に加熱することにより、アルミナ及びペースト中の金属が同時に焼結して両表面のパッドアレイ並びに貫通ビア導体を備えたインターポーザ10が得られる。なお、パッドアレイのハンダ流れ防止のためにアルミナグリーンシートの両表面にパッドアレイ部分を残して別のアルミナ薄膜シートを形成することもある。   The manufacturing process of the interposer 10 of the present invention will be briefly described as follows. First, an alumina green sheet is produced using a ceramic green sheet forming technique. Vias (through holes) are drilled, punched or laser processed in this alumina green sheet. Next, a paste containing a conductive metal is printed on the alumina green sheet by using a screen printing apparatus to form a pad array for connection on both sides of the alumina green sheet, and the via is filled in the via. . Then, the alumina green sheet filled with the paste was transferred to a firing furnace and heated to several hundreds of degrees C., whereby the alumina and the metal in the paste were simultaneously sintered to provide the pad array on both surfaces and the through via conductor. The interposer 10 is obtained. In order to prevent solder flow of the pad array, another alumina thin film sheet may be formed by leaving the pad array portions on both surfaces of the alumina green sheet.

ここで図3を用いて、インターポーザ10の集積回路素子30が接続される第一主表面MS1からみた、ビア導体の配置について説明する。該ビア導体の配置は集積回路素子30であるFlip Chip の電極端子の配置に合わせてそれぞれの位置が定まり、各ビア導体は千鳥の格子状に配置されている。この実施例では隣接する同列上の間隔(中心間距離)は230μm、上下の列の間隔は138μmであり、最隣接するビア導体間の軸線間距離、即ちピッチSはS=180μmになっている。各ビア導体の外径(線径)dはd=90μmであるから、インピーダンスの特性上でS=2dの最適配置となっている。   Here, the arrangement of via conductors as viewed from the first main surface MS1 to which the integrated circuit element 30 of the interposer 10 is connected will be described with reference to FIG. The positions of the via conductors are determined according to the arrangement of the electrode terminals of the Flip Chip which is the integrated circuit element 30, and the via conductors are arranged in a staggered lattice pattern. In this embodiment, the spacing between adjacent rows (center-to-center distance) is 230 μm, the spacing between the upper and lower rows is 138 μm, and the distance between the axes between the adjacent via conductors, that is, the pitch S is S = 180 μm. . Since the outer diameter (wire diameter) d of each via conductor is d = 90 μm, S = 2d is optimally arranged in terms of impedance characteristics.

次に、それぞれの信号ビア導体SVがもつ特性インピーダンス(以降、「自己インピーダンス」ともいう)Z0とその単位長当たりの容量(以降、「自己容量」ともいう)C11並びに最隣接した信号ビア導体SV間の結合に伴なう相互インピーダンスZMと線間結合容量(単位長当たり)C12、さらにその信号ビア導体SVと分散配置された最隣接のグランドビア導体GVがなす相互インピーダンスZGM(上記の信号ビア導体SV間の相互インピーダンスZMから区別するために「接地インピーダンス」という)と線間結合容量CG12(上記の信号ビア導体SV間の線間結合容量から区別するために「接地容量」という)を導出し、次のクロストーク解析の準備を行なう。先ず、図4を用いて信号ビア導体SV(クロストーク解析の対象線路)とそれに最隣接したグランドビア導体GVの間の結合について説明する。(4A)で表わされる2つの信号ビア導体SVとグランドビア導体GVの条件はグランドビア導体GVをグランド(接地導体)と見立てて概ね(4B)の等価条件に書き換えることができる。これによって、信号ビア導体SVとグランドビア導体GV間の相互インピーダンス、即ち上述の接地インピーダンスZGMは(101)で表わされ、その線間結合容量、即ち接地容量CG12は(102)式で与えられることが分かった。又、長さle、線径dのそれぞれの信号ビア導体SVのもつ自己インピーダンスZ0と自己容量C11は図5に示される(103)と(104)で与えられる。そして、最隣接する信号ビア導体SV1、SV2の結合に伴なう相互インピーダンスZMと線間結合容量C12は図6に示す(106)と(107)で与えられることが分かった。 Next, the characteristic impedance (hereinafter also referred to as “self-impedance”) Z 0 and the capacitance per unit length (hereinafter also referred to as “self-capacitance”) C 11 as well as the adjacent signal vias of each signal via conductor SV Mutual impedance Z M and line coupling capacitance (per unit length) C 12 due to coupling between conductors SV, and mutual impedance Z GM formed by the signal via conductor SV and the nearest ground via conductor GV dispersedly arranged (To distinguish from the mutual impedance Z M between the signal via conductors SV described above) and the line coupling capacitance C G12 (to distinguish from the line coupling capacitance between the signal via conductors SV above “ (Referred to as “grounding capacity”) and prepare for the next crosstalk analysis. First, the coupling between the signal via conductor SV (crosstalk analysis target line) and the nearest ground via conductor GV will be described with reference to FIG. The condition of the two signal via conductors SV and the ground via conductor GV represented by (4A) can be rewritten to the equivalent condition of (4B) by regarding the ground via conductor GV as a ground (grounding conductor). Accordingly, the mutual impedance between the signal via conductor SV and the ground via conductor GV, that is, the above-described ground impedance ZGM is expressed by (101), and the line coupling capacitance, that is, the ground capacitance CG12 is expressed by the equation (102). I understood that it was given. The self-impedance Z 0 and the self-capacitance C 11 of each signal via conductor SV having the length le and the wire diameter d are given by (103) and (104) shown in FIG. Then, it was found that the mutual impedance Z M and the line coupling capacitance C 12 associated with the coupling of the signal via conductors SV1 and SV2 that are closest to each other are given by (106) and (107) shown in FIG.

次に隣接する信号ビア導体SV間のクロストークについて配置の条件と所要のパラメータ及び定量的な関係式についてその要点を説明する。ビア導体を分布定数線路(以降、単に「線路」という)と考えて隣接するビア導体間、即ち隣接する線路間の電磁干渉、いわゆる「クロストーク」について図7、図8、図9、図10を用いて解析する。図7において、クロストークが生じるパラメータを(7A)に、隣接線路の関係を(7B)に、隣接する線路の構造と結合を(7C)に、線路の基本回路とクロストークの関係を(7D)に示す。線路間には(7A)に示す各結合(線路の軸線に垂直な面で捉えた)と(7C)に示す各結合(線路の軸線に平行な面で捉えた)が存在し、特に結合容量C12と相互インダクタンスLMがクロストークを生じる主因である。(7D)の基本回路において、数GHzの高速クロックパルス等の電気信号を伝送する線路1を「対象線路」とし、それに隣接して前記結合により対象線路に生じる電界及び磁界による電磁干渉を受ける線路2を「観測線路」とする。観測線路である線路2の両端で干渉信号を生じ、信号源のパルスジェネレータ側を近端クロストーク信号Vb、線路1の終端側を遠端クロストーク信号Vfという。このクロストーク信号の大きさは、図8の(1)式と(2)式に示されるように、主に線間の結合係数γと伝送信号の立ち上り時間tr(高速クロック信号のパルスの前縁/後縁の急峻の程度、即ちクロック信号の高調波で定まる広帯域高周波の上限周波数に相当する)と、線路長leで定まる。本インターポーザではTEM(Transverse Electromagnetic)線路(電界・磁界が線路に直交した面内に形成され、信号の進行方向には電界・磁界が生じない)とみなされk≒1になるので、この近端クロストーク信号Vbを取り上げてその線路の特性を解析評価する。 Next, the points of the arrangement conditions, required parameters, and quantitative relational expressions for crosstalk between adjacent signal via conductors SV will be described. 7, 8, 9, and 10 regarding electromagnetic interference between adjacent via conductors, that is, so-called “crosstalk”, considering via conductors as distributed constant lines (hereinafter simply referred to as “lines”). Analyze using In FIG. 7, the parameter causing crosstalk is (7A), the relationship between adjacent lines is (7B), the structure and coupling of adjacent lines is (7C), and the relationship between the basic circuit and crosstalk is (7D). ). Each coupling shown in (7A) (taken from a plane perpendicular to the axis of the line) and each coupling shown in (7C) (taken from a plane parallel to the axis of the line) exist between the lines, especially the coupling capacitance. C 12 and mutual inductance L M is a major cause resulting in cross-talk. In the basic circuit of (7D), a line 1 for transmitting an electrical signal such as a high-speed clock pulse of several GHz is a “target line”, and a line that receives electromagnetic interference due to an electric field and a magnetic field generated in the target line adjacent to the line 1 2 is an “observation line”. Interference signals are generated at both ends of the observation line 2 and the pulse generator side of the signal source is referred to as a near end crosstalk signal V b , and the end side of the line 1 is referred to as a far end crosstalk signal V f . The magnitude of the crosstalk signal, in FIG. 8 (1) and (2) as shown in the formula, mainly of the coupling coefficient γ and the transmission signal between the lines rise time t r (of the high-speed clock signal pulse The degree of steepness of the leading edge / rear edge, that is, the upper limit frequency of the broadband high frequency determined by the harmonics of the clock signal) and the line length le. This interposer is regarded as a TEM (Transverse Electromagnetic) line (electric and magnetic fields are formed in a plane perpendicular to the line, and no electric or magnetic field is generated in the signal traveling direction). The crosstalk signal Vb is taken up and the characteristics of the line are analyzed and evaluated.

次にこの結合係数γを導出するための準備として図9と図10を用いてその関係式を纏める。図9の(9A)に所要のパラメータを整理し、図8の(3)式から結合係数γをγ=C12/C11≒Z0/ZM------ (10) と求めた。この(10)式で求まるγを導くための線路間の関係パラメータを(9B)に示し、線路間の結合容量C12と相互インピーダンスZMの関係、並びに対象線路の特性インピーダンスZ0(通常これらのインピーダンスは相互インピーダンスに対比して「自己インピーダンス」と呼ばれる)と接地容量C11の関係を図10に纏めた。なお、線路間の相互インピーダンスZMは図6の(6A)に示すように線路の線径dと線間ピッチSで一義的に定まるが、対象線路の自己インピーダンスZ0は線路の環境条件(対象線路の周囲条件:信号ビア導体SVの数NSとグランドビア導体GVの数NGとの比率n等)によって異なる。 Next, as a preparation for deriving the coupling coefficient γ, the relational expressions are summarized using FIGS. 9 and 10. The required parameters are arranged in (9A) of FIG. 9, and the coupling coefficient γ is obtained as γ = C 12 / C 11 ≈Z 0 / Z M ------ (10) from the expression (3) of FIG. It was. The relationship parameter between the lines for deriving γ obtained by the equation (10) is shown in (9B), the relationship between the coupling capacitance C 12 between the lines and the mutual impedance Z M , and the characteristic impedance Z 0 of the target line (usually these 10 is called “self-impedance” in comparison with the mutual impedance) and the relationship between the ground capacitance C 11 is summarized in FIG. The mutual impedance Z M between the lines is uniquely determined by the line diameter d and the line pitch S as shown in FIG. 6 (6A), but the self-impedance Z 0 of the target line depends on the environmental conditions of the line ( ambient conditions of the subject line: signal via conductor ratio n such a number n S and the number n G of the ground via conductors GV of SV) by different.

次にインターポーザ10にマトリックス状に配置された信号ビア導体SVで構成される主ビア群MSVGとそれに分散配置されたグランドビア導体GVにおいて、信号ビア導体の数NSとグランドビア導体の数NGとの比率n{n=NS/NG-----(220)、以降この比率を単に、「分散比率n」という}変えたときに、対象線路の総合接地容量CT11と、対象線路と観測線路間の結合容量C12あるいはC22を分析することにより、最隣接した信号ビア導体SV間(対象線路と観測線路間)の結合状態の解析を進める。最初に、分散比率nがn=1となる場合について、図11を用いて説明する。このとき、信号ビア導体SVとグランドビア導体GVは(A)に示すように、一つおきに交互に配列されて、いずれの信号ビア導体SVはその上下左右、即ち四方を最近接のグランドビア導体GVで囲まれた配置となる。このため、(B)の[解析1]に示すように、対象線路に対しても観測線路に対しても、一つの信号ビア導体SVにグランドビア導体GVが4つ結合することになる。
即ち、その信号ビア導体SVである対象線路並びに観測線路にN=4-----(221)(このNを「接地係数」という)の線間結合容量、言い換えれば接地容量NCG12{図4の(102)参照}を生じることになる。但し、このとき、対象線路と観測線路間の中心間距離は(2)1/2Sとなるので、その線間結合容量C22はその中心間距離がSの場合の線間結合容量をC11として、C22=(2)-1/2C11-----(222)と与えられる。対象線路、観測線路のいずれに対しても総合接地容量CT11は(B)の[解析2]に示すように、線路の自己容量C11{図5の(104)参照}と上記接地容量NCG12の和として与えられるので、その総合接地容量CT11はCT11=NCG12+C11=4CG12+C11------(223)と求まる。
Next, in the ground via conductors GV which are distributed thereto and composed mainly via groups MSVG the signal via conductors SV arranged in a matrix form on the interposer 10, the number of numbers N S and the ground via conductors of the signal via conductor N G And the ratio n {n = N S / N G ----- (220), and when this ratio is simply referred to as “dispersion ratio n”}, the total ground capacitance C T11 of the target line and the target By analyzing the coupling capacitance C 12 or C 22 between the line and the observation line, the analysis of the coupling state between the signal via conductors SV adjacent to each other (between the target line and the observation line) is advanced. First, the case where the dispersion ratio n is n = 1 will be described with reference to FIG. At this time, as shown in (A), the signal via conductors SV and the ground via conductors GV are alternately arranged, and any of the signal via conductors SV is vertically and horizontally, that is, the ground vias closest to the four sides. The arrangement is surrounded by the conductor GV. For this reason, as shown in [Analysis 1] in (B), four ground via conductors GV are coupled to one signal via conductor SV for both the target line and the observation line.
That is, the line coupling capacitance of N = 4 ----- (221) (this N is referred to as “grounding coefficient”) in the target line and the observation line that are the signal via conductors SV, in other words, the grounding capacity NC G12 {Fig. 4 (see (102)). However, since the center-to-center distance between the target line and the observation line is (2) 1/2 S at this time, the line-to-line coupling capacitance C 22 is the line-to-line coupling capacity when the center-to-center distance is S. 11 , C 22 = (2) -1/2 C 11 ----- (222). As shown in [Analysis 2] of (B), the total ground capacitance C T11 for both the target line and the observation line is the self-capacitance C 11 of the line {see (104) in FIG. 5} and the ground capacitance NC. Since it is given as the sum of G12 , the total ground capacitance C T11 is obtained as C T11 = NC G12 + C11 = 4C G12 + C 11 ------ (223).

次に、分散比率nがn=2の場合について、図12を用いて説明する。このとき、信号ビア導体SVとグランドビア導体GVの配置は色々な配列をとり得るが、いずれにしても(A)に示すように、2つの信号ビア導体SVと1つのグランドビア導体GVが互いに隣接して一つの構成、即ちグループを形成する。このとき、いずれの信号ビア導体SVに対しても、それに最隣接(上下左右の)4つのビア導体又、その外側に位置する(対角線の)隣接の4つのビア導体、さらに其の外側に位置する隣接ビア導体を対象範囲にすると、ビア導体間のピッチSを単位として、少なくとも1+(2)1/2本のグランドビア導体GVが各信号ビア導体SVに対して隣接していることが分かる。このため、(B)の[解析1]に示すように、対象線路に対しても観測線路に対しても、一つの信号ビア導体SVにグランドビア導体GVがN=1+(2)1/2-----(224)で結合することになる。即ち、その信号ビア導体SVである対象線路並びに観測線路に接地係数Nの線間結合容量、言い換えれば接地容量NCG12を生じることになる。但し、このとき、対象線路と観測線路間の中心間距離はSであるから、その線間結合容量は中心間距離Sの場合の線間結合容量C12{図6の(107)参照}になる。対象線路、観測線路のいずれに対しても総合接地容量CT11は(B)の[解析2]に示すように、線路の自己容量C11と上記接地容量NCG12の和として与えられるので、その総合接地容量CT11はCT11=NCG12+C11={1+(2)1/2}CG12+C11≒2.4CG12+C11------(225)と求まる。 Next, the case where the dispersion ratio n is n = 2 will be described with reference to FIG. At this time, the arrangement of the signal via conductors SV and the ground via conductors GV can take various arrangements. In any case, as shown in (A), two signal via conductors SV and one ground via conductor GV are mutually connected. Adjacent to one another, that is, a group is formed. At this time, for any signal via conductor SV, the four adjacent via conductors (upper, lower, left and right), the adjacent four via conductors (diagonal lines), and the outer sides thereof are further positioned. When the adjacent via conductors are included in the target range, it can be seen that at least 1+ (2) 1/2 ground via conductors GV are adjacent to each signal via conductor SV with the pitch S between the via conductors as a unit. . Therefore, as shown in [Analysis 1] in (B), the ground via conductor GV is N = 1 + (2) 1/2 for one signal via conductor SV for both the target line and the observation line. ----- (224) will be combined. That is, the line coupling capacitance of the ground coefficient N, in other words, the ground capacitance NCG12 is generated in the target line and the observation line that are the signal via conductors SV. However, since the center-to-center distance between the target line and the observation line is S at this time, the line-to-line coupling capacitance is the line-to-line coupling capacitance C 12 in the case of the center-to-center distance S (see (107) in FIG. 6). Become. Subject line, total ground capacitance C T11 for any observation line, as shown in [Analysis 2] (B), since given as the sum of the self capacitance C 11 and the ground capacitance NC G12 of the line, that The total grounding capacitance C T11 is obtained as C T11 = NC G12 + C11 = {1+ (2) 1/2 } C G12 + C 11 ≈2.4C G12 + C 11 ------ (225).

又、分散比率nがn=3の場合について、図13を用いて説明する。このとき、信号ビア導体SVとグランドビア導体GVの配置は色々な配列をとり得るが、基本的には(A)に示すように、3つの信号ビア導体SVと1つのグランドビア導体GVが互いに隣接して一つの構成、即ちグループを形成する。このとき、いずれの信号ビア導体SVに対しても、それに最隣接(上下左右の)4つのビア導体又、その外側に位置する(対角線の)隣接の4つのビア導体、さらに其の外側に位置する隣接ビア導体を対象範囲にすると、ビア導体間のピッチSを単位として、少なくとも2本のグランドビア導体GVが各信号ビア導体SVに対して隣接していることが分かる。このため、(B)の[解析1]に示すように、対象線路に対しても観測線路に対しても、一つの信号ビア導体SVにグランドビア導体GVがN=2-----(226)で結合することになる。即ち、その信号ビア導体SVである対象線路並びに観測線路に接地係数Nの線間結合容量、言い換えれば接地容量NCG12を生じることになる。但し、このとき、対象線路と観測線路間の中心間距離はSであるから、その線間結合容量は中心間距離Sの場合の線間結合容量C12になる。対象線路、観測線路のいずれに対しても総合接地容量CT11は(B)の[解析2]に示すように、線路の自己容量C11と上記接地容量NCG12の和として与えられるので、その総合接地容量CT11はCT11=NCG12+C11=2CG12+C11------(227)と求まる。 The case where the dispersion ratio n is n = 3 will be described with reference to FIG. At this time, the arrangement of the signal via conductors SV and the ground via conductors GV can take various arrangements. Basically, as shown in (A), three signal via conductors SV and one ground via conductor GV are mutually connected. Adjacent to one another, that is, a group is formed. At this time, for any signal via conductor SV, the four adjacent via conductors (upper, lower, left and right), the adjacent four via conductors (diagonal lines), and the outer sides thereof are further positioned. When the adjacent via conductors are in the target range, it can be seen that at least two ground via conductors GV are adjacent to each signal via conductor SV with the pitch S between the via conductors as a unit. Therefore, as shown in [Analysis 1] in (B), the ground via conductor GV is N = 2−2 ---- (to one signal via conductor SV for both the target line and the observation line. 226) will be combined. That is, the line coupling capacitance of the ground coefficient N, in other words, the ground capacitance NCG12 is generated in the target line and the observation line that are the signal via conductors SV. However, at this time, since the center-to-center distance between the target line and the observation line is S, the line-to-line coupling capacity is the line-to-line coupling capacity C 12 in the case of the center-to-center distance S. Subject line, total ground capacitance C T11 for any observation line, as shown in [Analysis 2] (B), since given as the sum of the self capacitance C 11 and the ground capacitance NC G12 of the line, that The total grounding capacity C T11 is obtained as C T11 = NC G12 + C11 = 2C G12 + C 11 ------ (227).

対象線路と観測線路間の結合係数γは前記の図9の(10)式から、γ=C12/CT11又はγ=C22/CT11------(228)と与えられるので、前記のn=1、2、3の場合についてグランドビア導体GVが分散されない、即ちビア導体が全て信号ビア導体SVのときを比較の基準として、前記の(221)から(228)を使用して各分散比率nに対する結合係数を纏めると、図14の解析結果を得る。ここで、ビア導体の配置条件をそのピッチSをS=2d------(229)、各ビア導体の長さleをle=5d------(230)として結合係数γを試算し、図14に表示した。 The coupling coefficient γ between the target line and the observation line is given by γ = C 12 / C T11 or γ = C 22 / C T11 ------ (228) from the equation (10) in FIG. In the cases where n = 1, 2, and 3, the ground via conductors GV are not dispersed, that is, when the via conductors are all signal via conductors SV, the above (221) to (228) are used as a reference for comparison. When the coupling coefficients for the respective dispersion ratios n are collected, the analysis result of FIG. 14 is obtained. Here, the arrangement condition of via conductors is that the pitch S is S = 2d ------ (229), the length le of each via conductor is le = 5d ------ (230), and the coupling coefficient γ Was calculated and displayed in FIG.

この結合係数γを使用して、クロストークに適用する条件を、ビア導体の外径dをd=90μm、対象線路が伝送する高速クロックパルス(繰り返し周波数f=6GHz)のパルス立ち上がり時間trをtr=20psec (1psec=10-12sec)、インターポーザ10の誘電体層11のアルミナの比誘電率εrをεr=9として、図8の関係式から近端クロストーク信号Vb(1)式を導出すると、そのクロストークは図15のように求まる。この解析結果から、本発明のインターポーザ10において、分散比率nがn≦3であれば、グランドビア導体GVを分散配置しない場合の約1/3以下にクロストークを大幅に低減できることが分かる。 Using this coupling coefficient gamma, a condition applied to the crosstalk, the pulse rise time t r of the high-speed clock pulses of the outer diameter d of the via conductor d = 90 [mu] m, the target line is transmitted (repetition frequency f = 6 GHz) Assuming that t r = 20 psec (1 psec = 10 −12 sec) and the relative dielectric constant ε r of alumina of the dielectric layer 11 of the interposer 10 is ε r = 9, the near-end crosstalk signal V b (1 ), The crosstalk is obtained as shown in FIG. From this analysis result, it can be seen that in the interposer 10 of the present invention, if the dispersion ratio n is n ≦ 3, the crosstalk can be greatly reduced to about 1/3 or less of the case where the ground via conductors GV are not dispersedly arranged.

最後に、本発明のインターポーザの性能を確認するために、高周波シミュレーションを行なったのでその結果について説明する。図16と図17に、(A)グランドビア導体VGを分散配置しないとき、(B)分散比率n=2のとき、(C)分散比率n=3のとき、(D)分散比率n=1のとき、の4つの場合におけるクロストークの高周波シミュレーション結果を示す。6GHzの高速クロックパルスを対象線路に給電して本発明のインターポーザを第一主表面側(集積回路素子に導通する)側から第二主表面(接続先配線基板に導通)に伝送したときに、それに隣接した観測線路の第一主表面に生じた近端クロストーク信号Vbを調べたものである。電圧波形の大きな信号波形は対象線路を伝送する給電信号[図7の(7D)と対比して参照]Vkであり、小さい信号波形が前記近端クロストーク信号Vbであり、その信号Vbの尖頭値を給電信号Vkに対比させてクロストーク・ノイズ(Vb/Vk)(%)の大きさを観測する。各電圧波形の上側にインターポーザの一つの実施形態におけるビア導体の配置条件(ビア導体の外径dはd=90μm、最隣接ビア導体間のピッチSはS=2d)を示す。なおこの高周波シミュレーションはSPICE回路シミュレータ(アプライド・シミュレーション・テクノロジ社のApsim SPICE)を使用してpsec単位の高速過渡現象解析を行っている。 Finally, in order to confirm the performance of the interposer of the present invention, a high frequency simulation was performed, and the result will be described. 16 and 17, (A) When the ground via conductors VG are not dispersedly arranged, (B) When the dispersion ratio n = 2, (C) When the dispersion ratio n = 3, (D) The dispersion ratio n = 1 The results of high frequency simulation of crosstalk in the four cases are shown. When the 6 GHz high-speed clock pulse is fed to the target line and the interposer of the present invention is transmitted from the first main surface side (conductive to the integrated circuit element) to the second main surface (conductive to the connection destination wiring board), The near-end crosstalk signal V b generated on the first main surface of the observation line adjacent to it is examined. The large signal waveform of the voltage waveform is a supply signal [reference as opposed to (7D) of FIG. 7] V k of transmitting target line is the small signal waveform near-end crosstalk signal V b, the signal V The magnitude of the crosstalk noise (V b / V k ) (%) is observed by comparing the peak value of b with the feed signal V k . On the upper side of each voltage waveform, the arrangement conditions of the via conductor in one embodiment of the interposer (the outer diameter d of the via conductor is d = 90 μm, and the pitch S between the adjacent via conductors is S = 2d) are shown. This high-frequency simulation uses a SPICE circuit simulator (Apsim SPICE from Applied Simulation Technology) to perform high-speed transient analysis in psec units.

図16と図17の高周波シミュレーション結果を纏めると図18に示す、分散比率nとクロストーク・ノイズの関係を得る。この場合のビア導体の長さleはle=5d=450μmになっており、このビア導体の分布定数線路をこの高速クロックパルスVkが伝播する伝播時間は、その伝播速度をvp=C/(εr)1/2として,但しCは光速でC=3×1010(cm/S)、概ね5psec以下であり、高速クロックパルスVkの立上り時間tr≒20psecよりも短い極めて高速な観測を行ってクロストークの調査分析が行われた。この図18の高周波シミュレーションの結果と図15の前記の高周波線路解析結果を比較してみると両者はかなり良好に一致しており、本発明のインターポーザの性能が優れていることがよく分かる。 When the high-frequency simulation results of FIGS. 16 and 17 are summarized, the relationship between the dispersion ratio n and the crosstalk noise shown in FIG. 18 is obtained. In this case, the length le of the via conductor is le = 5d = 450 μm, and the propagation time of the high-speed clock pulse V k propagating through the distributed constant line of the via conductor is represented by v p = C / (ε r ) 1/2 , where C is the speed of light, C = 3 × 10 10 (cm / S), approximately 5 psec or less, and the high-speed clock pulse V k rise time tr ≈ 20 psec, extremely fast observation A crosstalk survey analysis was conducted. Comparing the result of the high frequency simulation shown in FIG. 18 with the result of the high frequency line analysis shown in FIG. 15 shows that both agree fairly well and that the performance of the interposer of the present invention is excellent.

本発明のインターポーザを集積回路素子と接続先配線基板に接続した構造模式図。The structure schematic diagram which connected the interposer of this invention to the integrated circuit element and the connecting point wiring board. 本発明のインターポーザの構造を表わす構造模式図。The structure schematic diagram showing the structure of the interposer of this invention. 本発明のインターポーザのビア導体の格子状配置を示す構造模式図。The structure schematic diagram which shows the grid | lattice-like arrangement | positioning of the via conductor of the interposer of this invention. 信号ビア導体に隣接したグランドビア導体の配置とその等価条件並びにその特性インピーダンスを表す図。The figure showing arrangement | positioning of the ground via conductor adjacent to a signal via conductor, its equivalent conditions, and its characteristic impedance. 信号ビア導体の構造とその特性インピーダンスを表す図。The figure showing the structure of a signal via conductor, and its characteristic impedance. 信号ビア導体である対象線路とそれに隣接した観測線路の配置並びに相互インピーダンスを表す図。The figure showing the arrangement | positioning and mutual impedance of the object track | line which is a signal via conductor, and the observation track | line adjacent to it. 信号ビア導体である対象線路とそれに隣接した観測線路の電磁干渉を説明する図。The figure explaining the electromagnetic interference of the object track | line which is a signal via conductor, and the observation track | route adjacent to it. 図7の電磁干渉におけるクロストークの関係式を表わす図。The figure showing the relational expression of the crosstalk in the electromagnetic interference of FIG. 図8のクロストークにおける結合係数γの関係式を表わす図。The figure showing the relational expression of coupling coefficient (gamma) in the crosstalk of FIG. 図9の結合係数γを求めるための線路インピーダンスと結合容量を導出する図。The figure which derives | leads-out the line impedance and coupling capacity for calculating | requiring the coupling coefficient (gamma) of FIG. 分散比率n=1における信号ビア導体とグランドビア導体の配置並びにその結合度の解析を表わす図。The figure showing the analysis of arrangement | positioning and the coupling degree of the signal via conductor and the ground via conductor in the dispersion ratio n = 1. 分散比率n=2における信号ビア導体とグランドビア導体の配置並びにその結合度の解析を表わす図。The figure showing the analysis of arrangement | positioning and the coupling | bonding degree of the signal via conductor and the ground via conductor in dispersion ratio n = 2. 分散比率n=3における信号ビア導体とグランドビア導体の配置並びにその結合度の解析を表わす図。The figure showing the analysis of arrangement | positioning and the coupling degree of the signal via conductor and ground via conductor in dispersion ratio n = 3. 各分散比率nに対する結合係数γの導出結果を表わした図。The figure showing the derivation | leading-out result of the coupling coefficient (gamma) with respect to each dispersion ratio n. 図14の結合係数γから導いたクロストーク・ノイズを表わした図。The figure showing the crosstalk noise derived from the coupling coefficient γ in FIG. 分散比率n=2他の条件における高周波シミュレーションで観測したクロストーク信号波形を表わす図。Dispersion ratio n = 2 A diagram showing a crosstalk signal waveform observed in a high-frequency simulation under other conditions. 分散比率n=1及びn=3の条件における高周波シミュレーションで観測したクロストーク信号波形を表わす図。The figure showing the crosstalk signal waveform observed in the high frequency simulation on condition of dispersion ratio n = 1 and n = 3. 図16と図17の観測波形に基づいて分散比率nとクロストーク・ノイズの関係を纏めた図。FIG. 18 is a diagram summarizing the relationship between the dispersion ratio n and crosstalk noise based on the observed waveforms in FIGS. 16 and 17.

符号の説明Explanation of symbols

10 インターポーザ
20 接続先配線基板
30 集積回路素子
SVG 信号ビア導体グループ
GV グランドビア導体
SV 信号ビア導体
Z0 特性インピーダンス(自己インピーダンス)
ZM 相互インピーダンス
Vb 近端クロストーク信号
Vf 遠端クロストーク信号
γ 結合係数
MTX ビア導体マトリックス
MSVG 主ビア群
11 誘電体層
PA 第一側パッドアレイ、第二側パッドアレイ
MS1 第一主表面
MS2 第二主表面
d ビア導体の軸線に垂直な円形断面の外径(ビア導体の線径、線路の外径)
S 最隣接するビア導体の軸線間距離(ビア導体のピッチ)
n 分散比率
N 接地係数
C11 単位長当りの容量(自己容量)
CG12 線間結合容量(接地容量)
CT11 総合接地容量
εr 比誘電率
le ビア導体の長さ(線路長)
tr 高速クロックパルスの立上り時間
10 Interposer
20 Connected wiring board
30 Integrated circuit elements
SVG signal via conductor group
GV ground via conductor
SV signal via conductor
Z 0 characteristic impedance (self-impedance)
Z M Mutual impedance
V b Near-end crosstalk signal
V f Far end crosstalk signal γ Coupling coefficient
MTX via conductor matrix
MSVG main beer group
11 Dielectric layer
PA 1st pad array, 2nd pad array
MS1 first main surface
MS2 2nd main surface d Outer diameter of circular section perpendicular to the axis of via conductor (diameter of via conductor, outer diameter of line)
S Distance between the axes of adjacent via conductors (via conductor pitch)
n Dispersion ratio
N Grounding factor
C 11 Capacity per unit length (self capacity)
C G12 line-to-line coupling capacitance (grounding capacitance)
C T11 Total grounding capacity ε r Relative permittivity
le Via conductor length (track length)
t r Fast clock pulse rise time

Claims (4)

集積回路素子の線膨張率と接続先配線基板の線膨張率との中間の線膨張率を有し、前記集積回路素子と前記接続先配線基板との熱膨張歪を緩和するためのインターポーザにおいて、
セラミック誘電体層の第一主表面側に前記集積回路素子を接続する第一側パッドアレイが形成され、
前記セラミック誘電体層の第二主表面側に前記集積回路素子の信号を授受する前記接続先配線基板に接続される第二側パッドアレイが形成され、
前記セラミック誘電体層を厚さ方向に貫通し、前記第一側パッドアレイと前記第二側パッドアレイとに導通するビア導体が縦横複数個ずつのマトリックス状に配置され、
前記ビア導体は 前記集積回路素子の信号出力、グランドにそれぞれ導通する信号ビア導体とグランドビア導体を有し、
前記信号ビア導体で形成された主ビア群に前記グランドビア導体が分散配置された該主ビア群が、前記マトリックス状配置の少なくとも一部を構成し、
隣接するビア導体間の結合に伴なうクロストークを減少することを特徴とするインターポーザ。
In the interposer for reducing the thermal expansion strain between the integrated circuit element and the connection destination wiring board, having an intermediate linear expansion coefficient between the linear expansion coefficient of the integrated circuit element and the connection destination wiring board,
A first side pad array for connecting the integrated circuit element is formed on the first main surface side of the ceramic dielectric layer,
A second side pad array connected to the connection destination wiring substrate for transmitting and receiving signals of the integrated circuit element is formed on the second main surface side of the ceramic dielectric layer;
Via conductors that penetrate the ceramic dielectric layer in the thickness direction and are electrically connected to the first side pad array and the second side pad array are arranged in a matrix of a plurality of vertical and horizontal portions,
The via conductor has a signal via conductor and a ground via conductor respectively conducting to the signal output of the integrated circuit element and the ground,
The main via group in which the ground via conductors are dispersedly arranged in the main via group formed of the signal via conductors constitutes at least a part of the matrix arrangement,
An interposer that reduces crosstalk associated with coupling between adjacent via conductors.
前記信号ビア導体の数をNSとし、前記グランドビア導体の数をNGをとしたときに、その分散比率NS/NGが、1≦NS/NG≦3を満たす請求項1に記載のインターポーザ。 The dispersion ratio N S / NG satisfies 1 ≦ N S / N G ≦ 3, where N S is the number of signal via conductors and N G is the number of ground via conductors. The interposer described in. 前記信号ビア導体と前記グランドビア導体が1つおきに縦横交互に配列された請求項1又は請求項2に記載のインターポーザ。 The interposer according to claim 1 or 2, wherein the signal via conductors and the ground via conductors are arranged alternately every other length and width. 前記信号ビア導体の軸線に垂直な断面の外径をdとし、最近接する隣接信号の軸線間距離をSとしたときに、d<S≦3dを満たす請求項1ないし請求項3のいずれか一項に記載のインターポーザ。 4. Any one of claims 1 to 3, wherein d <S ≦ 3d is satisfied, where d is an outer diameter of a cross section perpendicular to the axis of the signal via conductor, and S is an inter-axis distance between adjacent signals. Interposer as described in the section.
JP2003284577A 2003-07-31 2003-07-31 Interposer Pending JP2005056958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284577A JP2005056958A (en) 2003-07-31 2003-07-31 Interposer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284577A JP2005056958A (en) 2003-07-31 2003-07-31 Interposer

Publications (1)

Publication Number Publication Date
JP2005056958A true JP2005056958A (en) 2005-03-03

Family

ID=34364456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284577A Pending JP2005056958A (en) 2003-07-31 2003-07-31 Interposer

Country Status (1)

Country Link
JP (1) JP2005056958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021198A (en) * 2008-07-08 2010-01-28 Renesas Technology Corp Wiring substrate, and semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021198A (en) * 2008-07-08 2010-01-28 Renesas Technology Corp Wiring substrate, and semiconductor device using the same

Similar Documents

Publication Publication Date Title
JP3014503B2 (en) Package for integrated circuit
US8013427B2 (en) Wiring board and electrical signal transmission system
US20080169125A1 (en) Novel interconnection structure for improving signal integrity
US20070273026A1 (en) Semiconductor package substrate
CN1653340A (en) High peformance probe system for testing semiconductor wafers
US6235997B1 (en) LSI package with equal length transmission Lines
JPH04317359A (en) Package for ic
US6803252B2 (en) Single and multiple layer packaging of high-speed/high-density ICs
US20060044083A1 (en) Circuit board and method for producing a circuit board
JPH05129463A (en) Semiconductor chip carrier and module mounted therewith and electronic equipment said module incorporating
US20100265684A1 (en) Interposer substrate and including capacitor for adjusting phase of signal transmitted in same interposer substrate
CN110970386B (en) multi-pitch ball grid array
JP2005056961A (en) Interposer
JP6270762B2 (en) IC circuit
US11937368B2 (en) Structure for circuit interconnects
US6489679B2 (en) High-frequency package
Gu et al. High-density silicon carrier transmission line design for chip-to-chip interconnects
US20030095014A1 (en) Connection package for high-speed integrated circuit
Dehlaghi et al. Ultra-short-reach interconnects for die-to-die links: Global bandwidth demands in microcosm
JP2005056959A (en) Interposer
JP2010192767A (en) Wiring board and semiconductor device
JP2010093018A (en) Wiring board
JP2005056958A (en) Interposer
WO2009119849A1 (en) Composite wiring board
TW202013394A (en) Structure of circuit board and structure of conductive transmission line thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A02 Decision of refusal

Effective date: 20071010

Free format text: JAPANESE INTERMEDIATE CODE: A02