JP2005055376A - Flow velocity measuring system - Google Patents

Flow velocity measuring system Download PDF

Info

Publication number
JP2005055376A
JP2005055376A JP2003288406A JP2003288406A JP2005055376A JP 2005055376 A JP2005055376 A JP 2005055376A JP 2003288406 A JP2003288406 A JP 2003288406A JP 2003288406 A JP2003288406 A JP 2003288406A JP 2005055376 A JP2005055376 A JP 2005055376A
Authority
JP
Japan
Prior art keywords
flow velocity
water
flow
pressure
river
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003288406A
Other languages
Japanese (ja)
Inventor
Koji Ueno
浩二 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003288406A priority Critical patent/JP2005055376A/en
Publication of JP2005055376A publication Critical patent/JP2005055376A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately grasp a flow velocity in real time even in floodwater. <P>SOLUTION: A flow velocity measuring system 1 concerned in the present invention is constituted mainly of an earth pressure gauge 3 of a water pressure measuring means and a pore water pressure gauge 4 of a static pressure measuring means attached to a bridge pier 2 of a bridge 12 installed in a river bottom, a radio equipment 5 of a transmission means, a processor 8 and a memory 9 incorporated in a personal computer 7 installed in a river control office 6 built in the vicinity of the river 12, and a liquid crystal monitor 10 of an output means. The processor 8 calculates a water level of a river based on static pressure, reads out a water flow cross-section corresponding to the water level from the memory 9, and calculates a flow rate, using the read-out water flow cross-section and a flow velocity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、河川の流速や流量を測定する場合に用いる流速測定システムに関する。   The present invention relates to a flow velocity measurement system used when measuring the flow velocity and flow rate of a river.

河川を管理する上で、利水や治水の面から河川の流量を的確に把握することが重要であるが、流量は気象等によって変動するため、正確に流量を把握するには、リアルタイムで河川の流速や水位を測定することが必要となる。   In managing rivers, it is important to accurately grasp the flow rate of rivers from the viewpoint of water use and flood control. However, since the flow rate varies depending on the weather, etc. It is necessary to measure the flow velocity and water level.

従来、河川の流速を測定する際は、平常時においては、水の流れによる羽根の回転速度から流速を求める回転式流速計や、ファラデーの電磁誘導の法則を利用して水が磁界を流れるときに生じる起電力から流速を求める電磁流速計などを用いて行っていた。   Conventionally, when measuring the flow velocity of a river, under normal circumstances, when water flows through a magnetic field using a rotary anemometer that obtains the flow velocity from the rotation speed of the blades caused by the flow of water or Faraday's law of electromagnetic induction This was done using an electromagnetic anemometer or the like that obtains the flow velocity from the electromotive force generated in the circuit.

しかしながら、これらの測定方法では、流速計を直接水中に挿入して測定を行うため、河川の流れが激しくなるとともに流木やゴミ等の障害物が多数流下する洪水時においては、流速計を水中に挿入しての計測が困難であった。   However, in these measurement methods, the anemometer is inserted directly into the water and the measurement is performed. Therefore, during floods where the flow of the river becomes intense and many obstacles such as driftwood and trash flow down, the anemometer is placed in the water. Measurement after insertion was difficult.

そのため、洪水時は、観測員が、橋梁等から河川に浮子を落として該浮子が所定の距離を流れる時間を計測することにより流速を算出するという、浮子観測による方法で流速を測定していた。   Therefore, at the time of flooding, the observer measured the flow velocity by a method based on floating observation, in which the floating velocity was calculated by dropping the float from the bridge or the like into the river and measuring the time that the floating float traveled a predetermined distance. .

特開2002−214246号公報JP 2002-214246 A 特開2001−343266号公報JP 2001-343266 A 特開平7−5188号公報Japanese Patent Laid-Open No. 7-5188

しかしながら、浮子による流速観測は、専門の観測員が必要となるとともに、リアルタイムでの連続的な測定をすることができず、特に、洪水時における初期段階は観測員が測定場所に到着するのに時間を要するためデータ収集が困難であるという問題を生じていた。   However, the observation of flow velocity by floats requires specialized observers and cannot perform continuous measurements in real time, especially when the observers arrive at the measurement site during the initial stage of floods. The problem was that data collection was difficult due to the time required.

また、観測員による測定のため、人的誤差が生じるとともに、偏流等によって浮子がまっすぐ流れずに誤差が大きくなる場合があるという問題も生じていた。   In addition, due to the measurement by the observer, a human error occurs, and there is a problem that the error may increase due to drift or the like, and the float does not flow straight.

一方、近年では、ドップラー効果を利用して流速を計測する電波流速計及び超音波流速計や、画像処理を用いて流速を計測するPIV式やオプティカルフロー式の流速計など、計測器を直接水中に挿入せずに測定を行う非接触型の流速計も使用されるようになってきたが、非接触型の流速計で得られるのは表面流速のみであるため、平均流速を正確に求めることが難しく、また、表面流速は風の影響を受けやすいため、かかる影響を除去するための補正も必要となるという問題を生じていた。   On the other hand, in recent years, measuring instruments such as radio wave velocimeters and ultrasonic velocimeters that measure flow velocity using the Doppler effect, and PIV and optical flow velocimeters that measure flow velocity using image processing are directly used in water. Non-contact type velocimeters that measure without being inserted into the tube have also been used, but since non-contact type velocimeters can only obtain surface flow velocity, the average flow velocity must be accurately determined. In addition, since the surface flow velocity is easily affected by wind, there is a problem that correction is necessary to remove such influence.

さらに、画像処理を用いた流速計は、夜間の計測には照明が必要となるとともに、霧や夜間の強雨時等には測定不能となる場合があるという問題を生じていた。   Furthermore, the anemometer using the image processing has a problem that illumination is necessary for measurement at night, and measurement may not be possible in fog or heavy rain at night.

本発明は、上述した事情を考慮してなされたもので、洪水時においてもリアルタイムで正確に流速を把握することが可能な流速測定システムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a flow velocity measurement system that can accurately grasp a flow velocity in real time even during a flood.

上記目的を達成するため、本発明に係る流速測定システムは請求項1に記載したように、河川底に立設された橋脚の上流側周面に取り付けられ該取付け位置における水圧を測定するための水圧測定手段と、前記橋脚の周面であって前記水圧測定手段と同一深さとなるように取り付けられ該取付け位置における静水圧を測定するための静水圧測定手段と、前記水圧及び前記静水圧の測定データを送信するための送信手段と、前記水圧と前記静水圧との差から流水圧を計算するとともに該流水圧から流速を計算するための演算処理装置とを備えるものである。   In order to achieve the above object, a flow velocity measuring system according to the present invention is attached to an upstream peripheral surface of a bridge pier standing on a river bottom, and measures water pressure at the attachment position. A hydrostatic pressure measuring means, a hydrostatic pressure measuring means for measuring the hydrostatic pressure at the mounting position, the hydrostatic pressure measuring means being mounted on the peripheral surface of the pier and having the same depth as the hydrostatic pressure measuring means; Transmitting means for transmitting measurement data, and an arithmetic processing unit for calculating a flowing water pressure from the difference between the water pressure and the hydrostatic pressure and calculating a flow velocity from the flowing water pressure.

また、本発明に係る流速測定システムは、前記演算処理装置を、前記静水圧から前記河川の水位を計算するように構成したものである。   In the flow velocity measuring system according to the present invention, the arithmetic processing unit is configured to calculate the water level of the river from the hydrostatic pressure.

また、本発明に係る流速測定システムは、前記河川の任意の水位における流水断面形状又は流水断面積を記憶した記憶装置を備えるとともに、前記演算処理装置を、前記計算された水位に対応する前記流水断面形状又は流水断面積を前記記憶装置から読み出すとともに読み出された前記流水断面形状又は流水断面積と前記流速とを用いて流量を計算するように構成したものである。   In addition, the flow velocity measurement system according to the present invention includes a storage device that stores a flowing water cross-sectional shape or a flowing water cross-sectional area at an arbitrary water level of the river, and the arithmetic processing device includes the flowing water corresponding to the calculated water level. The flow rate is calculated using the flowing water cross-sectional shape or flowing water cross-sectional area and the flow velocity read out from the storage device while reading the cross-sectional shape or flowing water cross-sectional area from the storage device.

また、本発明に係る流速測定システムは、前記水圧測定手段を土圧計とするとともに、前記静水圧測定手段を間隙水圧計としたものである。   In the flow velocity measuring system according to the present invention, the water pressure measuring means is a soil pressure gauge, and the hydrostatic pressure measuring means is a pore water pressure gauge.

本発明に係る流速測定システムにおいては、まず、河川底に立設された橋脚の上流側周面に取り付けられた水圧測定手段で取付け位置における水圧を測定するとともに、橋脚の周面であって水圧測定手段と同一深さとなるように取り付けられた静水圧測定手段で取付け位置における静水圧を測定する。   In the flow velocity measurement system according to the present invention, first, the water pressure at the attachment position is measured by the water pressure measuring means attached to the upstream peripheral surface of the pier standing on the river bottom, and the water pressure at the peripheral surface of the pier is The hydrostatic pressure at the mounting position is measured by the hydrostatic pressure measuring means attached so as to have the same depth as the measuring means.

次に、水圧及び静水圧の測定データを送信手段で演算処理装置に送信する。   Next, the measurement data of the water pressure and the hydrostatic pressure are transmitted to the arithmetic processing device by the transmission means.

次に、演算処理装置で水圧と静水圧との差から流水圧を計算するとともに該流水圧から流速を計算する。   Next, the flowing water pressure is calculated from the difference between the water pressure and the hydrostatic pressure by the arithmetic processing unit, and the flow velocity is calculated from the flowing water pressure.

このようにすると、水圧及び静水圧の自動測定が可能となり、河川の流速を洪水時においてもリアルタイムで正確に把握することができる。   In this way, automatic measurement of water pressure and hydrostatic pressure becomes possible, and the flow velocity of the river can be accurately grasped in real time even during a flood.

水圧測定手段及び静水圧測定手段をいくつ設けるかは任意であり、例えば、異なる深さで鉛直方向に複数設置するようにしてもかまわないし、橋脚が複数ある場合には、各橋脚にそれぞれ設置するようにしてもかまわない。なお、河川は場所によって流速が異なる場合が多いため、設置する数が多いほど正確な流速を把握することが可能となる。   The number of the water pressure measuring means and the hydrostatic pressure measuring means is arbitrary. For example, a plurality of water pressure measuring means and a hydrostatic pressure measuring means may be installed in the vertical direction at different depths. It doesn't matter if you do. Since rivers often have different flow rates depending on the location, the more the number of rivers installed, the more accurate the flow rate can be ascertained.

また、水圧測定手段及び静水圧測定手段の周囲には、水圧測定手段及び静水圧測定手段を流下物等の障害物から防護するための防護工を設けておくのが望ましい。   In addition, it is desirable to provide a protective work for protecting the water pressure measuring means and the hydrostatic pressure measuring means from obstacles such as falling objects around the water pressure measuring means and the hydrostatic pressure measuring means.

送信手段は、水圧測定手段及び静水圧測定手段で測定したデータを演算処理装置へ送信することができるのであれば、どのようなものを用いるかは任意であり、有線か無線かも問わない。   The transmission means is arbitrary as long as it can transmit the data measured by the water pressure measurement means and the hydrostatic pressure measurement means to the arithmetic processing device, and may be wired or wireless.

演算処理装置は、水圧と静水圧との差から流水圧を計算するとともに該流水圧から流速を計算することができるのであれば、どのように構成するかは任意である。   As long as the arithmetic processing unit can calculate the flowing water pressure from the difference between the water pressure and the hydrostatic pressure and can calculate the flow velocity from the flowing water pressure, the configuration is arbitrary.

なお、流速を計算するにあたっては、水圧測定手段及び静水圧測定手段を異なる深さで鉛直方向に複数設置した場合においては、それぞれの深さにおける流速から平均流速を計算するのが望ましい。   In calculating the flow velocity, when a plurality of water pressure measuring means and hydrostatic pressure measuring means are installed in the vertical direction at different depths, it is desirable to calculate the average flow velocity from the flow velocity at each depth.

また、演算処置装置を流速のみを計算するように構成してもかまわないが、ここで、演算処理装置を、静水圧から河川の水位を計算するように構成した場合においては、気象の変化等によって変動する河川の水位をリアルタイムで正確に把握することが可能となる。   In addition, the arithmetic treatment device may be configured to calculate only the flow velocity. However, when the arithmetic processing device is configured to calculate the water level of the river from the hydrostatic pressure, a change in weather, etc. This makes it possible to accurately grasp the water level of a river that fluctuates in real time in real time.

さらに、河川の任意の水位における流水断面形状又は流水断面積を記憶した記憶装置を備えるとともに、演算処理装置を、計算された水位に対応する流水断面形状又は流水断面積を記憶装置から読み出すとともに読み出された流水断面形状又は流水断面積と流速とを用いて流量を計算するように構成した場合においては、河川の流量についてもリアルタイムで正確に把握することが可能となる。   In addition, a storage device that stores the flow cross-sectional shape or flow cross-sectional area at an arbitrary water level of the river is provided, and the arithmetic processing unit reads and reads the flow cross-sectional shape or flow cross-sectional area corresponding to the calculated water level from the storage device. In the case where the flow rate is calculated using the flowing water cross-sectional shape or the flowing water cross-sectional area and the flow velocity, the flow rate of the river can be accurately grasped in real time.

流量を計算するにあたっては、例えば、計算された水位と該水位に対応する流水断面形状とから流水断面積を計算し、或いは、流水断面積が記憶されている場合には計算された水位に対応する流水断面積を直接読み出す一方、平均流速を計算し、該平均流速と流水断面積との積から流量を計算することが考えられる。   When calculating the flow rate, for example, calculate the flow cross-sectional area from the calculated water level and the cross-sectional shape of the flowing water corresponding to the water level, or if the flow cross-sectional area is stored, correspond to the calculated water level. It is conceivable to calculate the average flow velocity and calculate the flow rate from the product of the average flow velocity and the flowing water cross-sectional area while directly reading out the flowing water cross-sectional area.

記憶装置は、河川の任意の水位における流水断面形状又は流水断面積が記憶されているのであれば、どのように構成するかは任意である。   The storage device may be configured in any manner as long as the flowing water cross-sectional shape or the flowing water cross-sectional area at an arbitrary water level in the river is stored.

水圧測定手段は、水圧を測定することができるのであればどのように構成するかは任意であり、また、静水圧測定手段も、静水圧を測定することができるのであればどのように構成するかは任意であるが、ここで、水圧測定手段を土圧計とするとともに、静水圧測定手段を間隙水圧計とすることができる。   The hydrostatic pressure measuring means is arbitrarily configured as long as it can measure the hydrostatic pressure, and the hydrostatic pressure measuring means is also configured as long as it can measure the hydrostatic pressure. However, the water pressure measuring means can be a soil pressure gauge and the hydrostatic pressure measuring means can be a pore water pressure gauge.

以下、本発明に係る流速測定システムの実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   Embodiments of a flow velocity measuring system according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る流速測定システムを示した概略図である。同図に示すように、本実施形態に係る流速測定システム1は、河川底に立設された橋梁12の橋脚2に取り付けられた水圧測定手段である土圧計3及び静水圧測定手段である間隙水圧計4と、送信手段である無線機5と、橋梁12近傍に建てられた河川管理事務所6内に設置されたパソコン本体7に内蔵された演算処理装置8及び記憶装置9と、出力手段である液晶モニタ10とで概ね構成してある。   FIG. 1 is a schematic view showing a flow velocity measuring system according to the present embodiment. As shown in the figure, the flow velocity measuring system 1 according to the present embodiment includes a soil pressure gauge 3 that is a water pressure measuring means attached to a pier 2 of a bridge 12 that is erected on the bottom of a river, and a gap that is a hydrostatic pressure measuring means. Water pressure gauge 4, wireless device 5 as transmission means, arithmetic processing device 8 and storage device 9 built in personal computer main body 7 installed in river management office 6 built in the vicinity of bridge 12, output means The liquid crystal monitor 10 is generally configured.

土圧計3は、橋脚2の上流側周面に異なる深さで複数取り付けてあるとともに、間隙水圧計4は、各土圧計3と同一深さとなるように橋脚2の上流側周面に各土圧計3と隣接するように複数取り付けてある。   A plurality of earth pressure gauges 3 are attached to the upstream circumferential surface of the pier 2 at different depths, and the pore water pressure gauge 4 is arranged on the upstream circumferential surface of the pier 2 so as to have the same depth as each earth pressure gauge 3. A plurality of pressure gauges 3 are attached so as to be adjacent to the pressure gauge 3.

土圧計3は、受圧面に作用する水圧、すなわち静水圧と流水圧とを合わせた水圧を測定することができるように構成してあるが、汎用品から適宜選択して用いればよい。また、土圧計3を取り付けるにあたっては、静水圧及び流水圧を測定することができるように土圧計3の受圧面が河川の流れに対して直交するように配置するとともに、受圧面が上流側を向くように取り付けておく。   The earth pressure gauge 3 is configured so as to be able to measure the water pressure acting on the pressure receiving surface, that is, the combined water pressure of the hydrostatic pressure and the flowing water pressure, but may be appropriately selected from general-purpose products. In addition, when installing the earth pressure gauge 3, the earth pressure gauge 3 is arranged so that the pressure receiving surface of the earth pressure gauge 3 is orthogonal to the flow of the river so that the hydrostatic pressure and the flowing water pressure can be measured. Install it so that it faces.

間隙水圧計4は、静水圧を測定することができるよう構成してあるが、汎用品から適宜選択して用いればよい。なお、間隙水圧計4を取り付けるにあたっては、流水圧の影響を受けることがないよう、必要に応じて受圧面が非上流側を向くように取り付ける。   The pore water pressure gauge 4 is configured to measure the hydrostatic pressure, but may be appropriately selected from general-purpose products. In addition, when attaching the pore water pressure gauge 4, it attaches so that a receiving surface may face the non-upstream side as needed so that it may not receive to the influence of flowing water pressure.

また、土圧計3及び間隙水圧計4を囲むように、コの字状に折り曲げた複数の鉄筋で構成した防護工を取り付けてあり、土圧計3及び間隙水圧計4を流下物等の障害物から防護することができるようになっている。   In addition, a protective work composed of a plurality of reinforcing bars bent in a U-shape is attached so as to surround the earth pressure gauge 3 and the pore water pressure gauge 4, and the earth pressure gauge 3 and the pore water pressure gauge 4 are connected to obstacles such as falling objects. Can be protected from.

無線機5は、橋梁12の中央近傍に設置してあり、土圧計3で測定された水圧の測定データ及び間隙水圧計4で測定された静水圧の測定データを演算処理装置8が内蔵されたパソコン本体7へ送信することができるようになっている。なお、各土圧計3及び間隙水圧計4は、それぞれ無線機5にケーブル11を介して接続してある。   The wireless device 5 is installed in the vicinity of the center of the bridge 12, and the processing device 8 is built in the measurement data of the water pressure measured by the earth pressure gauge 3 and the measurement data of the hydrostatic pressure measured by the pore water pressure gauge 4. It can be transmitted to the personal computer body 7. Each earth pressure gauge 3 and pore water pressure gauge 4 are connected to the radio device 5 via a cable 11.

記憶装置9は、土圧計3及び間隙水圧計4が取り付けられた位置を含む鉛直面における流水断面積を、任意の水位における流水断面積として、換言すれば該鉛直面における水位をパラメータとした流水断面積として記憶してある。   The storage device 9 uses the flow cross-sectional area on the vertical plane including the position where the earth pressure gauge 3 and the pore water pressure gauge 4 are attached as the flow cross-sectional area at an arbitrary water level, in other words, the water flow using the water level on the vertical plane as a parameter. It is stored as a cross-sectional area.

すなわち、記憶装置9は、図2(a)に示すように、かかる鉛直面を、隣り合う橋脚2,2の径間中心(図中の実線で示した鉛直線)で3つの流域21,22,23に区分することにより、上述した流水断面積を各流域ごとの流水断面積A1,A2,A3として記憶させてある。なお、水位をパラメータとした河川の流水断面積に関しては、事前に測定を行っておくとともに、例えば洪水などによって河川底の形状が変化した場合は、適宜測定をやり直すことで記憶装置9に記憶されたデータを常に現状と一致させておくのが望ましい。 That is, as shown in FIG. 2 (a), the storage device 9 has three vertical basins 21 and 22 at the center of the span of adjacent piers 2 and 2 (vertical lines indicated by solid lines in the figure). , 23, the above-described flow cross-sectional areas are stored as flow cross-sectional areas A 1 , A 2 , A 3 for each basin. Note that the river cross-sectional area of the river with the water level as a parameter is measured in advance, and if the shape of the river bottom changes due to, for example, flooding, it is stored in the storage device 9 by performing measurement again as appropriate. It is desirable to keep the data consistent with the current situation.

また、記憶装置9は、無線機5から送信された測定データや演算処理装置8での計算結果も記憶することができるようになっている。   The storage device 9 can also store the measurement data transmitted from the wireless device 5 and the calculation result of the arithmetic processing device 8.

演算処理装置8は、水圧と静水圧との差から流水圧を計算するとともに該流水圧から流速を計算することができるようになっている。さらに、演算処理装置8は、静水圧から河川の水位を計算し、かかる水位に対応する流水断面積を記憶装置9から読み出すとともに読み出された流水断面積と流速とを用いて流量を計算することができるように構成してある。   The arithmetic processing unit 8 can calculate the flowing water pressure from the difference between the water pressure and the hydrostatic pressure, and can calculate the flow velocity from the flowing water pressure. Further, the arithmetic processing unit 8 calculates the water level of the river from the hydrostatic pressure, reads the flow cross-sectional area corresponding to the water level from the storage device 9, and calculates the flow rate using the read water cross-sectional area and the read flow velocity. It is configured to be able to.

液晶モニタ10は、演算処理装置8で計算された流速、水位及び流量をリアルタイムで表示することができるようになっている。   The liquid crystal monitor 10 can display the flow velocity, water level, and flow rate calculated by the arithmetic processing unit 8 in real time.

本実施形態に係る流速測定システム1においては、まず、河川底に立設された橋脚2の上流側周面に取り付けられた土圧計3で水圧を測定するとともに、橋脚2の周面であって土圧計3と同一深さとなるように取り付けられた間隙水圧計4で静水圧を測定する。   In the flow velocity measuring system 1 according to the present embodiment, first, the water pressure is measured by the earth pressure gauge 3 attached to the upstream peripheral surface of the pier 2 erected on the river bottom, and the peripheral surface of the pier 2 is The hydrostatic pressure is measured with a pore water pressure gauge 4 attached so as to have the same depth as the earth pressure gauge 3.

次に、水圧及び静水圧の測定データを無線機5でパソコン本体7に内蔵された演算処理装置8に送信する。   Next, the measurement data of the water pressure and the hydrostatic pressure are transmitted to the arithmetic processing unit 8 built in the personal computer body 7 by the wireless device 5.

次に、無線機5から送信された水圧及び静水圧の測定データと記憶装置9に記憶された河川の流水断面積のデータから、流水圧、流速、水位及び流量を演算処理装置8で計算する。   Next, the flow pressure, flow velocity, water level, and flow rate are calculated by the arithmetic processing unit 8 from the measurement data of the water pressure and the hydrostatic pressure transmitted from the wireless device 5 and the river flow cross-sectional area data stored in the storage device 9. .

具体的には、図2(b)に示すように、水中では、水深に比例して作用する静水圧(図中の破線部分)と、流速に比例して作用する流水圧(図中の斜線部分)とを合わせた水圧が作用しているため、まず、土圧計3で計測された水圧から間隙水圧計4で計測された静水圧を引いて流水圧を計算し、次いで、かかる流水圧から流速を計算する。   Specifically, as shown in FIG. 2 (b), underwater, the hydrostatic pressure acting in proportion to the water depth (broken line portion in the figure) and the flowing water pressure acting in proportion to the flow velocity (shaded line in the figure). Therefore, first, subtract the hydrostatic pressure measured by the pore pressure gauge 4 from the hydraulic pressure measured by the earth pressure gauge 3 to calculate the flowing water pressure. Calculate the flow rate.

さらに、土圧計3及び間隙水圧計4は各橋脚2の鉛直方向に沿って異なる深さで複数設置してあるため、同図(a)に示すように、各橋脚2ごとに取り付けた土圧計3及び間隙水圧計4の測定データから得られた各流速の値を平均し、これらの値をそれぞれ各流域21,22,23における平均流速v1,v2,v3とする。 Furthermore, since a plurality of earth pressure gauges 3 and pore water pressure gauges 4 are installed at different depths along the vertical direction of each pier 2, earth pressure gauges installed for each pier 2 as shown in FIG. 3 and average values of the flow velocities obtained from the measurement data of the pore water pressure gauge 4 are taken as average flow velocities v 1 , v 2 , v 3 in the basins 21, 22, 23, respectively.

一方、静水圧からその測定時における河川の水位を計算し、かかる水位における各流域21,22,23の流水断面積A1,A2,A3を記憶装置9から読み出す。 On the other hand, the water level of the river at the time of the measurement is calculated from the hydrostatic pressure, and the flow cross-sectional areas A 1 , A 2 , A 3 of the basins 21, 22, 23 at the water level are read from the storage device 9.

次に、平均流速viと流水断面積Aiとの積から、以下のように河川の流量Qを計算する。
Q=Σvi・Ai
Next, the flow rate Q of the river is calculated from the product of the average flow velocity v i and the flowing water cross-sectional area A i as follows.
Q = Σv i · A i

次に、液晶モニタ10で、計算された流速、水位及び流量を表示する。   Next, the calculated flow velocity, water level and flow rate are displayed on the liquid crystal monitor 10.

以上説明したように、本実施形態に係る流速測定システム1によれば、土圧計3及び間隙水圧計4を橋脚2に取り付けて水圧及び静水圧を測定するとともに、測定データを送信して演算処理装置8で流速を計算するようにしたので、水圧及び静水圧の自動測定が可能となり、河川の流速を洪水時においてもリアルタイムで正確に把握することができる。ちなみに、洪水に関する情報をインターネットを用いてリアルタイムで共有あるいは公開することも可能となることは言うまでもない。   As described above, according to the flow velocity measurement system 1 according to the present embodiment, the earth pressure gauge 3 and the pore water pressure gauge 4 are attached to the bridge pier 2 to measure the water pressure and the hydrostatic pressure, and the measurement data is transmitted to perform arithmetic processing. Since the flow velocity is calculated by the device 8, automatic measurement of water pressure and hydrostatic pressure is possible, and the flow velocity of the river can be accurately grasped in real time even during a flood. Incidentally, it goes without saying that flood information can be shared or disclosed in real time using the Internet.

また、本実施形態に係る流速測定システム1によれば、静水圧から河川の水位を計算するように演算処理装置8を構成したので、気象の変化等によって変動する河川の水位をリアルタイムで正確に把握することが可能となる。   Moreover, according to the flow velocity measuring system 1 according to the present embodiment, the arithmetic processing unit 8 is configured to calculate the river level from the hydrostatic pressure, so that the river level that fluctuates due to changes in weather and the like can be accurately determined in real time. It becomes possible to grasp.

また、本実施形態に係る流速測定システム1によれば、河川の任意の水位における流水断面積を記憶した記憶装置9を備えるとともに、測定された水位に対応する流水断面積を記憶装置9から読み出すとともに読み出された流水断面積と流速とを用いて流量を計算するように演算処理装置8を構成したので、河川の流量についてもリアルタイムで正確に把握することが可能となる。   Moreover, according to the flow velocity measurement system 1 according to the present embodiment, the storage device 9 that stores the flowing water cross-sectional area at an arbitrary water level of the river is provided, and the flowing water cross-sectional area corresponding to the measured water level is read from the storage device 9. Since the arithmetic processing unit 8 is configured to calculate the flow rate using the flowing water cross-sectional area and the flow velocity read together, the river flow rate can be accurately grasped in real time.

本実施形態では、演算処理装置8を流速に加えて水位及び流量も計算するように構成したが、演算処置装置は必ずしもこのように構成する必要はなく、上述した水位及び流量の計算を省略して流速のみを計算するように構成してもかまわないし、流量の計算を省略して流速及び水位を計算するように構成してもかまわない。   In the present embodiment, the arithmetic processing device 8 is configured to calculate the water level and the flow rate in addition to the flow velocity, but the arithmetic treatment device is not necessarily configured in this way, and the above-described calculation of the water level and the flow rate is omitted. The flow rate alone may be calculated, or the flow rate may be omitted and the flow rate and water level may be calculated.

また、本実施形態では、記憶装置9に任意の水位における流水断面積を記憶するように構成したが、これに代えて、記憶装置に任意の水位における流水断面形状を記憶するように構成してもかまわない。かかる場合においては、演算処理装置を用いて流量を計算する際は、まず、計算された水位に対応する流水断面形状を記憶装置から読み出して該流水断面形状と水位とから流水断面積を計算し、次いで、該流水断面積と流速から流量を計算することとなる。   In the present embodiment, the storage device 9 is configured to store the flowing water cross-sectional area at an arbitrary water level. Instead, the storage device is configured to store the flowing water cross-sectional shape at an arbitrary water level. It doesn't matter. In such a case, when calculating the flow rate using the arithmetic processing unit, first, the flow cross-sectional shape corresponding to the calculated water level is read from the storage device, and the flow cross-sectional area is calculated from the flow cross-sectional shape and the water level. Then, the flow rate is calculated from the flowing water cross-sectional area and the flow velocity.

また、本実施形態では、土圧計3及び間隙水圧計4をそれぞれ複数取り付けるように構成したが、例えば水位が低い場合などは、一つだけでもかまわない。   Further, in the present embodiment, a plurality of earth pressure gauges 3 and pore water pressure gauges 4 are respectively attached. However, for example, when the water level is low, only one may be used.

また、本実施形態では、水圧測定手段を土圧計3とするとともに、静水圧測定手段を間隙水圧計4としたが、水圧測定手段は水圧を測定できるのならばどのようなものであるかは任意であり、例えば水圧計を用いるようにしてもかまわないし、静水圧測定手段も静水圧を測定できるのならばどのようなものでもかまわない。   In the present embodiment, the water pressure measuring means is the earth pressure gauge 3 and the hydrostatic pressure measuring means is the pore water pressure gauge 4. However, what is the water pressure measuring means as long as the water pressure can be measured? For example, a hydrometer may be used, and any hydrostatic pressure measuring means may be used as long as the hydrostatic pressure can be measured.

また、本実施形態では、無線機5を用いて演算処理装置8に測定データを送信するように構成したが、必ずしも無線機5を用いる必要はなく、例えば、無線機5を省略して演算処理装置までケーブルでつなぐようにしてもかまわないし、水圧測定手段及び静水圧測定手段に送信手段を内蔵しておき、ケーブルを用いずに直接送信するようにしてもかまわない。   In the present embodiment, the wireless device 5 is used to transmit the measurement data to the arithmetic processing unit 8. However, the wireless device 5 is not necessarily used. For example, the wireless device 5 is omitted and the arithmetic processing is performed. The device may be connected with a cable, or the transmission means may be built in the water pressure measurement means and the hydrostatic pressure measurement means, and may be directly transmitted without using a cable.

また、本実施形態では、出力手段として液晶モニタ10を使用するように構成した、これに変えて、例えばディスプレイやプリンタを出力手段としてもかまわない。   In the present embodiment, the liquid crystal monitor 10 is used as the output means. Instead, for example, a display or a printer may be used as the output means.

また、本実施形態では、各橋脚2ごとに取り付けた土圧計3及び間隙水圧計4の測定データから得られた各流速の値を平均し、これらの値をそれぞれ各流域21,22,23における平均流速v1,v2,v3としたが、土圧計3及び間隙水圧計4の測定データから得られた各流速は、橋脚2の背後に生じる渦流等の影響のため、実際の河川の流速とは誤差が生じる場合がある。かかる場合には、解析や実験を行うことによって測定データから得られた各流速を適宜補正するようにすればよい。 Moreover, in this embodiment, the value of each flow velocity obtained from the measurement data of the earth pressure gauge 3 and the pore water pressure gauge 4 attached to each pier 2 is averaged, and these values are respectively obtained in the basins 21, 22 and 23. Although the average flow velocities v 1 , v 2 , and v 3 are used, the flow velocities obtained from the measured data of the earth pressure gauge 3 and the pore water pressure gauge 4 are affected by eddy currents behind the pier 2 and so on. An error may occur with the flow velocity. In such a case, each flow rate obtained from the measurement data by performing analysis or experiment may be corrected as appropriate.

同様に、各橋脚2ごとに取り付けた土圧計3及び間隙水圧計4の数が少ない場合には、それらの測定データから得られた流速ひいては河川の流量は、実際の流量と誤差が生じることが考えられる。   Similarly, when the number of earth pressure gauges 3 and pore water pressure gauges 4 attached to each pier 2 is small, the flow rate obtained from the measurement data and thus the river flow rate may cause an error from the actual flow rate. Conceivable.

かかる場合には、測定箇所あるいは測定点の数と実際の流速あるいは流量との相関関係を解析や実験によって予め求めて補正曲線とし、該補正曲線に測定箇所や測定点の数をあてはめることによって、流速あるいは流量を適宜補正するようにすればよい。   In such a case, the correlation between the number of measurement points or measurement points and the actual flow velocity or flow rate is obtained in advance by analysis or experiment as a correction curve, and by fitting the number of measurement points or measurement points to the correction curve, What is necessary is just to correct | amend a flow velocity or a flow volume suitably.

本実施形態に係る流速測定システムを示した概略図。Schematic which showed the flow velocity measurement system which concerns on this embodiment. 本実施形態に係る流速測定システムの作用を示した断面図。Sectional drawing which showed the effect | action of the flow velocity measuring system which concerns on this embodiment.

符号の説明Explanation of symbols

1 流速測定システム
2 橋脚
3 土圧計(水圧測定手段)
4 間隙水圧計(静水圧測定手段)
5 無線機(送信手段)
8 演算処理装置
9 記憶装置
1 Flow velocity measurement system 2 Bridge pier 3 Earth pressure gauge (water pressure measurement means)
4 pore water pressure gauge (hydrostatic pressure measuring means)
5 Radio (Transmission means)
8 Arithmetic processing device 9 Storage device

Claims (4)

河川底に立設された橋脚の上流側周面に取り付けられ該取付け位置における水圧を測定するための水圧測定手段と、前記橋脚の周面であって前記水圧測定手段と同一深さとなるように取り付けられ該取付け位置における静水圧を測定するための静水圧測定手段と、前記水圧及び前記静水圧の測定データを送信するための送信手段と、前記水圧と前記静水圧との差から流水圧を計算するとともに該流水圧から流速を計算するための演算処理装置とを備えることを特徴とする流速測定システム。 A water pressure measuring means attached to the upstream peripheral surface of the bridge pier standing on the river bottom, and measuring the water pressure at the mounting position, and the peripheral surface of the bridge pier and having the same depth as the water pressure measuring means. The hydrostatic pressure measuring means for measuring the hydrostatic pressure attached and at the mounting position, the transmitting means for transmitting the hydrostatic pressure and the hydrostatic pressure measurement data, and the flowing water pressure from the difference between the hydrostatic pressure and the hydrostatic pressure. A flow velocity measurement system comprising: an arithmetic processing unit for calculating and calculating a flow velocity from the flowing water pressure. 前記演算処理装置を、前記静水圧から前記河川の水位を計算するように構成した請求項1記載の流速測定システム。 The flow velocity measurement system according to claim 1, wherein the arithmetic processing unit is configured to calculate a water level of the river from the hydrostatic pressure. 前記河川の任意の水位における流水断面形状又は流水断面積を記憶した記憶装置を備えるとともに、前記演算処理装置を、前記計算された水位に対応する前記流水断面形状又は流水断面積を前記記憶装置から読み出すとともに読み出された前記流水断面形状又は流水断面積と前記流速とを用いて流量を計算するように構成した請求項2記載の流速測定システム。 A storage device that stores a flow cross-sectional shape or a flow cross-sectional area at an arbitrary water level of the river is provided, and the arithmetic processing unit is configured to store the flow cross-sectional shape or the flow cross-sectional area corresponding to the calculated water level from the storage device. The flow velocity measurement system according to claim 2, wherein the flow rate is calculated using the flowing water cross-sectional shape or flowing water cross-sectional area and the flow velocity read out and read out. 前記水圧測定手段を土圧計とするとともに、前記静水圧測定手段を間隙水圧計とした請求項1乃至請求項3のいずれか一記載の流速測定システム。 The flow velocity measuring system according to any one of claims 1 to 3, wherein the water pressure measuring means is a soil pressure gauge, and the hydrostatic pressure measuring means is a pore water pressure gauge.
JP2003288406A 2003-08-07 2003-08-07 Flow velocity measuring system Withdrawn JP2005055376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288406A JP2005055376A (en) 2003-08-07 2003-08-07 Flow velocity measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288406A JP2005055376A (en) 2003-08-07 2003-08-07 Flow velocity measuring system

Publications (1)

Publication Number Publication Date
JP2005055376A true JP2005055376A (en) 2005-03-03

Family

ID=34367065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288406A Withdrawn JP2005055376A (en) 2003-08-07 2003-08-07 Flow velocity measuring system

Country Status (1)

Country Link
JP (1) JP2005055376A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304061A (en) * 2006-05-15 2007-11-22 Kensetsu Kankyo Kenkyusho:Kk Electromagnetic flow rate sensor for river, and flow rate measuring device and system for river
KR100849955B1 (en) 2007-03-29 2008-08-01 한국해양연구원 System and method for measuring fluid flow velocity using wireless communication technology
TWI497038B (en) * 2011-08-12 2015-08-21 Yi Jiun Liao Auto-measuring system for measuring a plurality of data of a river
WO2020071584A1 (en) * 2018-10-04 2020-04-09 대한민국(행정안전부 국립재난안전연구원장) Mobile flow rate measurement device and flow rate measurement method
CN112305261A (en) * 2020-09-07 2021-02-02 南京睿和致胜信息技术咨询有限公司 Method for measuring average flow velocity of vertical line
CN112729433A (en) * 2020-12-28 2021-04-30 长江水利委员会水文局 River flow and sand transportation field real-time synchronous monitoring method integrated with pressure sensing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304061A (en) * 2006-05-15 2007-11-22 Kensetsu Kankyo Kenkyusho:Kk Electromagnetic flow rate sensor for river, and flow rate measuring device and system for river
KR100849955B1 (en) 2007-03-29 2008-08-01 한국해양연구원 System and method for measuring fluid flow velocity using wireless communication technology
TWI497038B (en) * 2011-08-12 2015-08-21 Yi Jiun Liao Auto-measuring system for measuring a plurality of data of a river
WO2020071584A1 (en) * 2018-10-04 2020-04-09 대한민국(행정안전부 국립재난안전연구원장) Mobile flow rate measurement device and flow rate measurement method
CN112305261A (en) * 2020-09-07 2021-02-02 南京睿和致胜信息技术咨询有限公司 Method for measuring average flow velocity of vertical line
CN112729433A (en) * 2020-12-28 2021-04-30 长江水利委员会水文局 River flow and sand transportation field real-time synchronous monitoring method integrated with pressure sensing
CN112729433B (en) * 2020-12-28 2022-05-27 长江水利委员会水文局 River flow and sand transportation field real-time synchronous monitoring method integrated with pressure sensing

Similar Documents

Publication Publication Date Title
Dramais et al. Advantages of a mobile LSPIV method for measuring flood discharges and improving stage–discharge curves
JP6641410B2 (en) Terrain structure monitoring system
ITRM20070134A1 (en) METHOD OF MEASURING THE FLOW RATE IN A WATER COURSE AND ITS SYSTEM
Zanuttigh Numerical modelling of the morphological response induced by low-crested structures in Lido di Dante, Italy
JP4009696B2 (en) Fluid flow rate calculation method
JP5420378B2 (en) River flow measurement method and river flow measurement device
Gunawan et al. Assessing and Testing Hydrokinetic Turbine Performance and Effects on Open Channel Hydrodynamics: An Irrigation Canal Case Study.
JP2005055376A (en) Flow velocity measuring system
JP2010190775A (en) Ultrasonic flow rate measurement method and flow rate measurement apparatus
JP4520878B2 (en) River flow monitoring system
JP2008039407A (en) Method of monitoring scour of river bed
Arnott et al. Friction dominated exchange in a Florida estuary
EP4109054A1 (en) Non-invasive method and system to measure the surface velocity of a fluid flowing in a river, open channel or in an underground pipe
CN114659490A (en) Real-time monitoring and bank-caving early warning method for displacement of underwater bank slope at bank-caving easy-to-occur section
JP2009168464A (en) Contamination monitoring system and method
JP2017138190A (en) Water-level measurement device, method, and program
Atashi et al. Characteristics of Seasonality on 3D Velocity and Bathymetry Profiles in Red River of the North
JP3546349B2 (en) Water surface gradient observation system
KR101554615B1 (en) Apparatus and method for estimating size of external force applied to ships and apparatus for generating ships route information
JP3776801B2 (en) Overtopping measurement device
Abreu et al. Analysis of Nonlinear Wave Parameters on Ofir Sandy Beach (NW Portugal)
KR20040011398A (en) Monitoring system of bridge scour using TDR(Time Domain Reflectometry) or OTDR(Optical Time Domain Reflectometry)
Lee et al. Scaling issues for laboratory modeling of bridge pier scour
Walker Field measurements of local pier scour in a tidal inlet
JP2005284325A (en) River disaster prevention system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107