JP2005055209A - Extra-precision movable carriage device - Google Patents

Extra-precision movable carriage device Download PDF

Info

Publication number
JP2005055209A
JP2005055209A JP2003206369A JP2003206369A JP2005055209A JP 2005055209 A JP2005055209 A JP 2005055209A JP 2003206369 A JP2003206369 A JP 2003206369A JP 2003206369 A JP2003206369 A JP 2003206369A JP 2005055209 A JP2005055209 A JP 2005055209A
Authority
JP
Japan
Prior art keywords
movable
parallel
movable frame
beams
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003206369A
Other languages
Japanese (ja)
Other versions
JP4362326B2 (en
Inventor
Tetsuya Ishikawa
哲也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AINO SANGYO KK
EIKOH CO Ltd
KOSHIEN KINZOKU KK
Nippon Pillar Packing Co Ltd
Aiden KK
Original Assignee
AINO SANGYO KK
EIKOH CO Ltd
KOSHIEN KINZOKU KK
Nippon Pillar Packing Co Ltd
Aiden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AINO SANGYO KK, EIKOH CO Ltd, KOSHIEN KINZOKU KK, Nippon Pillar Packing Co Ltd, Aiden KK filed Critical AINO SANGYO KK
Priority to JP2003206369A priority Critical patent/JP4362326B2/en
Publication of JP2005055209A publication Critical patent/JP2005055209A/en
Application granted granted Critical
Publication of JP4362326B2 publication Critical patent/JP4362326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extra-precision movable carriage device 4 capable of improving greatly moving precision. <P>SOLUTION: A movable frame 2 is supported to be relatively movable in the direction of X with a fixed frame 1 by a first and a second parallel beams 51, 52 comprising T-shaped beams. A movable body 3 having a movable carriage 4 is supported to be relatively movable in the direction of Y with the movable frame 2 by a third and a fourth parallel beams 61, 62 comprising the T-shaped beams. The movable carriage 4 is relatively and linearly displaced relative to the fixed frame 1 in the direction of X while elastically deforming the first and second parallel beams 51, 52 by applying pushing force or pulling force to the movable frame 2 in the direction of X. The movable carriage 4 is relatively and linearly displaced relative to the movable frame 2 in the direction of X while elastically deforming the third and fourth parallel beams 61, 62 by applying the pushing force or the pulling force to the movable body 3 in the direction of Y. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、放射光施設・光学系、マイクロビーム関連部品、X線リソグラフィ、マイクロマシン製作、高分解顕微鏡ステージ等に使用される超精密移動台装置であって、移動台を2次元方向(X方向及びY方向)へ超精密に微動させうるように構成された超精密移動台装置に関するものである。
【0002】
【従来の技術】
この種の超精密移動台装置としては、固定台にX方向に相対移動する第1ステージを支持する共に、第1ステージにY方向に相対移動する第2ステージを支持させて、第1ステージを固定台に対してX方向に移動させ且つ第2ステージを第2ステージに対してY方向に移動させることにより、第2ステージに設けた移動台を2次元方向に移動させるように構成したものが周知である。而して、かかる装置にあっては、各ステージを一定方向(X方向又はY方向)に直線運動可能にガイドしておくための手段として、一般に、各ステージの目的方向以外への移動をこれに接触する転動部材や摺動部材(クロスローラーガイド等)により規制するようにしたものが採用されている。
【0003】
【発明が解決しようとする課題】
しかし、このようなガイド手段を使用した場合、転動部材や摺動部材の加工精度等の不可避的要因により、各ステージの移動精度を一定以上に高くすることができない。例えば、クロスローラーガイドを使用する場合、その精度はクロスローラの真円度に起因して、縦横の揺れを±10秒程度に抑えるのが限度であり、放射光を用いた光学系等においては使用することができない。放射光を用いた光学系においては、縦横の揺れが共に±0.5μRad(約0.1秒)程度の精度が要求されている。なお、移動台の移動精度(各ステージの移動精度)を高めるために、移動補正をピエゾ素子を用いた電気的な制御により行うようにすることも提案されてはいるが、かかる制御手段を使用したものでは、高価であること及び使用上の制約が多いこと等の問題がある。
【0004】
本発明は、このような点に鑑みてなされたもので、転動部材や摺動部材を全く使用せず且つ移動補正を行うための制御手段を必要としないガイド手段を採用することにより、移動精度の大幅な向上を図りうる超精密移動台装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、装置設置面に固定される固定枠と、固定枠内に配置された可動枠と、可動枠内に配置された可動体と、可動体に設けられた移動台と、可動枠を固定枠に相対的にX方向に往復移動自在にガイドする第1ガイド手段と、可動体を可動枠に相対的にY方向に往復移動自在に支持する第2ガイド手段と、可動枠を固定枠に対して相対的にX方向に強制移動させる第1移動手段と、可動体を固定枠に対して相対的にY方向に強制移動させる第2移動手段と、を具備する超精密移動台装置であって、第1ガイド手段が、可動枠とこれにY方向において対向する固定枠部分たる第1固定枠部分とを連結する一対の第1平行梁と、可動枠とこれにZ方向において対向する固定枠部分たる第2固定枠部分とを連結する一対の第2平行梁とで構成されており、第2ガイド手段が、可動体とこれにX方向において対向する可動枠部分たる第1可動枠部分とを連結する一対の第3平行梁と、可動体とこれにZ方向において対向する可動枠部分たる第2可動枠部分とを連結する一対の第4平行梁とで構成されており、移動台が、第1移動手段により可動枠にX方向への押圧力又は引張力を作用させることによって第1及び第2平行梁を弾性変形しつつ固定枠に対してX方向に相対直線変位せしめられると共に、第2移動手段により可動体にY方向への押圧力又は引張力を作用させることによって第3及び第4平行梁を弾性変形しつつ可動枠に対してX方向に相対直線変位せしめられ、且つ上記押圧力又は引張力を解除することによって第1及び第2平行梁又は第3及び第4平行梁が変形前の状態に弾性復帰するように構成してあることを特徴とする超精密移動台装置を提案する。
【0006】
而して、かかる超精密移動装置にあっては、各平行梁が(1)又は(2)のように構成される。
(1)各第1平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動枠に連結されてY方向に延びる第1主梁とX方向に延びて両端部が第1固定枠部分に連結され且つ中央部が第1主梁の先端部に一体連結された第1ヒンジ梁とからなる一対の第1T字状梁で構成されており、各第2平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動枠に連結されてZ方向に延びる第2主梁とX方向に延びて両端部が第2固定枠部分に連結され且つ中央部が第2主梁の先端部に一体連結された第2ヒンジ梁とからなる一対の第2T字状梁で構成されており、各第3平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動体に連結されてX方向に延びる第3主梁とY方向に延びて両端部が第1可動枠部分に連結され且つ中央部が第3主梁の先端部に一体連結された第3ヒンジ梁とからなる一対の第3T字状梁で構成されており、各第4平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動体に連結されてZ方向に延びる第4主梁とY方向に延びて両端部が第2可動枠部分に連結され且つ中央部が第4主梁の先端部に一体連結された第4ヒンジ梁とからなる一対の第4T字状梁で構成されている。
(2)各第1平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、Y方向に延びる第1主梁と、X方向に延びて両端部が第1固定枠部分に連結され且つ中央部が第1主梁の先端部に一体連結された第1ヒンジ梁と、X方向に延びて両端部が可動枠に連結され且つ中央部が第1主梁の基端部に一体連結された第1副ヒンジ梁とからなる一対の第1H字状梁で構成されており、各第2平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、Z方向に延びる第2主梁と、X方向に延びて両端部が第2固定枠部分に連結され且つ中央部が第2主梁の先端部に一体連結された第2ヒンジ梁と、X方向に延びて両端部が可動枠に連結され且つ中央部が第2主梁の基端部に一体連結された第2副ヒンジ梁とからなる一対の第2H字状梁で構成されており、各第3平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、X方向に延びる第3主梁と、Y方向に延びて両端部が第1可動枠部分に連結され且つ中央部が第3主梁の先端部に一体連結された第3ヒンジ梁と、Y方向に延びて両端部が可動体に連結され且つ中央部が第3主梁の基端部に一体連結された第3副ヒンジ梁とからなる一対の第3H字状梁で構成されており、各第4平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、Z方向に延びる第4主梁と、Y方向に延びて両端部が第2可動枠部分に連結され且つ中央部が第4主梁の先端部に一体連結された第4ヒンジ梁と、Y方向に延びて両端部が可動体に連結され且つ中央部が第4主梁の基端部に一体連結された第4副ヒンジ梁とからなる一対の第4H字状梁で構成されている。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図10及び図11〜図20に基づいて説明する。
【0008】
図1〜図10は第1の実施の形態を示しており、この実施の形態における本発明の超精密移動台装置(以下「第1装置M1」という)は、図1に示す如く、装置設置面に固定される固定枠1と、固定枠1内に配置された可動枠2と、可動枠2内に配置された可動体3と、可動体3に設けられた移動台4と、可動枠3を固定枠1に相対的にX方向に往復移動自在に支持する第1ガイド手段5と、可動体3を可動枠2に相対的にY方向に往復移動自在に支持する第2ガイド手段6と、可動枠2を固定枠1に対して相対的にX方向に強制移動させる第1移動手段7と、可動体3を固定枠1に対して相対的にY方向に強制移動させる第2移動手段8とを具備する。
【0009】
固定枠1は所定の装置設置面(例えば水平面)上に固定されており、図1及び図2に示す如く、Y方向に対向して平行する一対の第1固定枠部分11,11と、Z方向に対向して平行する一対の第2固定枠部分12,12と、X方向に対向して平行する一対の第3固定枠部分13,13とからなる中空の一体構造物に構成されている。各第1及び第2固定枠部分11,12はX方向に長尺な矩形状をなしており、各第3固定枠部分13は中心部から矩形状腕がY方向及びZ方向に張り出す十字形状をなしている。第1固定枠部分11,11の両端部間及び第2固定枠部分12,12の両端部間は、夫々、第3固定枠部分13,13により連結されている。
【0010】
可動枠2は、図1、図7及び図8に示す如く、X方向に所定範囲で移動可能な状態で固定枠1内に配置されており、図3に示す如く、X方向に対向して平行する一対の第1可動枠部分21,21と、Z方向に対向して平行する一対の第2可動枠部分22,22と、Y方向に対向して平行する一対の第3可動枠部分23,23と、X方向及びY方向に対向して平行する二対の第4可動枠部分24,24及び24,24と、X方向及びZ方向に対向して平行する二対の第5可動枠部分25,25及び25,25と、X方向に対向して平行する一対の第6可動枠部分26,26とからなる中空構造物である。各第1及び第2可動枠部分21,22はY方向に長尺な矩形状をなしており、各第3可動枠部分23は中心部から矩形状腕がZ方向及びX方向に張り出す十字形状をなしている。両第2可動枠部分22,22の各端部間は、第3可動枠部分23で連結されている。各第4可動枠部分24は矩形状をなしており、Y方向に対向する各一対の第4可動枠部分24,24は、第1可動枠部分21のY方向両端部と両第3可動枠部分23におけるX方向に延びる矩形腕の端部との間を当該中空構造物の内部側において連結している。各第5可動枠部分25は矩形状をなしており、Z方向に対向する各一対の第5可動枠部分25,25は、第6可動枠部分26のZ方向両端部に固着されている。すなわち、当該一対の第5可動枠部分25,25を第6可動枠部分26を介して一体的に連結されている。この一体連結物25,25,26は、Y方向に対向する一対の第4可動枠部分24,24間に位置した状態で、第1可動枠部分21の中央部に固着されている。なお、第2可動枠部分22,22と第3可動枠部分23,23とは、一体構造の矩形枠に構成されているが、その他の各可動枠部分21,24,25,26は各々独立した部材であり、これらの可動枠部分21,24,25,26相互間及び上記一体構造の矩形枠との間における連結ないし固着は、夫々、適宜の接着手段(例えば、接着剤又はビス等)により行われている。
【0011】
可動体3は、図1、図9及び図10に示す如く、Y方向に所定範囲で移動可能な状態で可動枠2内に配置されており、図4に示す如く、X方向及びY方向に対向して平行する二対の第1可動体部分31,31及び31,31と、X方向に対向して平行する一対の第2可動体部分32,32と、Y方向及びZ方向に対向して平行する二対の第3可動体部分33,33及び33,33と、Y方向に対向して平行する一対の第4可動体部分34,34とからなる矩形体構造物である。各可動体部分31,32,33,34は各々独立した矩形状部材であり、相互に次のように連結されている。すなわち、Y方向に対向する各一対の第1可動体部分31,31は、第2可動体部分32のY方向両端部に固着されている。Z方向に対向する各一対の第3可動体部分33,33は、第4可動体部分34のZ方向両端部に固着されており、第4可動体部分34を介して一体的に連結されている。第4可動体部分34は、これに固着した第3可動体部分33,33を両第2可動体部分32,32間に位置させた状態で、両第2可動体部分32,32に固着されている。なお、各可動体部分31,32,33,34間の連結ないし固着は、適宜の接着手段(例えば、接着剤又はビス等)により行われる。
【0012】
移動台4は、図1及び図5に示す如く、所定の被移動機器(例えば、光学機器やウエハ等の部材)を取付、載置又は支持するための矩形板41と、その4隅部に設けた矩形状の支柱体42…とからなる一体構造物であり、図1に示す如く、矩形板41を固定枠1外に位置させた状態で可動体3に取り付けられている。すなわち、支柱体42…を、図1に示す如く、第2固定枠部分12をY方向において跨ぐと共に第2可動枠部分22をX方向に跨いだ状態で、両第2可動体部分32,32に固着して、可動枠2が固定枠1に対してY方向に相対移動した場合及び可動体3が可動枠2に対してX方向に相対移動した場合において、各支柱体42が第2固定枠部分12及び第2可動枠部分22に干渉することなく、移動台4を固定枠1に対してX方向及びY方向に所定範囲で移動できるようになっている。なお、各支柱体42の第2可動体部分32への固着手段としては接着剤等が使用される。
【0013】
第1ガイド手段5は、図1、図7及び図8に示す如く、可動枠2とこれにY方向において対向する固定枠1の第1固定枠部分11,11とを連結する一対の第1平行梁51,51と、可動枠2とこれにZ方向において対向する固定枠1の第2固定枠部分12,12とを連結する一対の第2平行梁52,52とで構成されている。
【0014】
各第1平行梁51は、板面がZ方向に平行するバネ板からなる一対の第1T字状梁51A,51Aで構成されている。各第1T字状梁51Aは、図2に示す如く、基端部が可動枠2の第4可動枠部分24に一体連結されてY方向に延びる第1主梁51aと、X方向に延びて両端部が固定枠1の第1固定枠部分11に一体連結され且つ中央部が第1主梁51aの先端部に一体連結された第1ヒンジ梁51bとからなる。
【0015】
各第2平行梁52は、板面がZ方向に平行するバネ板からなる一対の第2T字状梁52A,52Aで構成されている。各第2T字状梁52Aは、図2に示す如く、基端部が可動枠2の第5可動枠部分25に連結されてZ方向に延びる第2主梁52aと、X方向に延びて両端部が固定枠1の第2固定枠部分12に一体連結され且つ中央部が第2主梁52aの先端部に一体連結された第2ヒンジ梁52bとからなる。
【0016】
第2ガイド手段6は、図1、図9及び図10に示す如く、可動体3とこれにX方向において対向する可動枠2の第1可動枠部分21とを連結する一対の第3平行梁61,61と、可動体3とこれにZ方向において対向する可動枠2の第2可動枠部分22とを連結する一対の第4平行梁62,62とで構成されている。
【0017】
各第3平行梁61は、板面がZ方向に平行するバネ板からなる一対の第3T字状梁61A,61Aで構成されている。各第3T字状梁61Aは、図3に示す如く、基端部が可動体3の第1可動体部分31に一体連結されてX方向に延びる第3主梁61aと、Y方向に延びて両端部が可動枠2の第1可動枠部分21に一体連結され且つ中央部が第3主梁61aの先端部に一体連結された第3ヒンジ梁61bとからなる。
【0018】
各第4平行梁62は、板面がZ方向に平行するバネ板からなる一対の第4T字状梁62A,62Aで構成されている。各第4T字状梁62Aは、図3に示す如く、基端部が可動体3の第3可動体部分33に一体連結されてZ方向に延びる第4主梁62aと、Y方向に延びて両端部が可動枠2の第2可動枠部分22に一体連結され且つ中央部が第4主梁62aの先端部に一体連結された第4ヒンジ梁62bとからなる。
【0019】
各T状梁51A,52A,61A,62Aは同一形状且つ同一材質のものであって、同一の弾性変形能を有するものとされている。また、各ヒンジ梁51b,52b,61b,62bは、その弾性変形を容易ならしめるべく、図6に示す如く、板厚Tを主梁51a,52a,61a,62aの板厚Tに比して小さく設定されている(例えば、T=1mm,T=0.2mmに設定される)。但し、各主梁51a,52a,61a,62aの両端部については、可動枠2又は可動体3の移動に伴う主梁51a,52a,61a,62aの変位を容易ならしめるべく、図6に示す如く、その板厚T,Tをヒンジ梁51b,52b,61b,62bの板厚Tと同程度に設定されている(例えば、T=T=0.3mmに設定される)。
【0020】
ところで、各T字状梁51A,52A,61A,62Aは、弾性限界の高い金属材(チタン等)や非金属材(FRP,カーボン等)により一体成形されることが好ましく、その連結部材である固定枠1、可動枠2及び可動体3とも一体成形されることが好ましい。しかし、各T字状梁51A,52A,61A,62Aと固定枠1、可動枠2及び可動体3とを一体成形することは実質的に不可能であることから、この例では、可動枠2内への可動体3の組み込み並びに固定枠1内への可動枠2及び可動体3の組み込みを容易ならしめるために、図2〜図4に示す如く、可動枠2及び可動体3を各T字状梁51A,52A,61A,62Aの連結部分とこれらの連結部分間を接続するための接続部分とに分割して、これらを各別に成形した上で、組み立てるように工夫している。すなわち、第1及び第2平行梁51,51及び52,52については、図2に示す如く、固定枠1とこれに連結される各第1及び第2T字状梁51,52と各主梁51a,52aが各別に連結される可動枠部分(第4可動枠部分24)とからなる一体構造物として、放電加工等により製作される。また、各第3平行61については、図3及び図4に示す如く、第1可動枠部分21とこれに連結される一対の第3T字状梁61,61とその各主梁61aが各別に連結される可動体部分(第1可動体部分31)とからなる一体構造物として、放電加工等により製作される。また、第4平行梁62,62については、図3及び図4に示す如く、両第2可動枠部分21,21(第3可動枠部分23,23と一体構造をなす)とこれに連結される二対の第4T字状梁62,62及び62,62とその各主梁62aが各別に連結される可動体部分(第3可動体部分33)とからなる一体構造物として、放電加工等により製作される。これらの一体構造物の構成材としては、MH51が使用されている。而して、これらの一体構造物を、直接に又は前記接続部分(第6可動枠部分26、第2可動体部分32及び第4可動体部分34)を介して間接的に連結することによって、図1に示す如く、第1装置M1を組み立てることができる。
【0021】
第1移動手段7は、可動枠2(並びに当該可動枠2に各第3及び第4T字状梁61A,62Aにより支持された可動体3及び移動台4)をこれにX方向への押圧力又は引張力を作用させることによってX方向に強制移動させるものであり、周知のマイクロメータ,ステッピングモータ等のアクチュエータが使用される。この例では、図1〜図3に示す如く、可動枠2のX方向端部である第1可動枠部分21にX方向に伸びる作動軸71を固着すると共に、固定枠1の第3固定枠部分13に作動軸71の挿通孔72を穿設して、この作動軸71をマイクロメータ等によりX方向に進退移動させることによって、可動枠2を固定枠1に対してX方向に強制移動させうるようになっている。
【0022】
第2移動手段8は、可動体3(及び当該可動体3に固着された移動台4)をこれにY方向への押圧力又は引張力を作用させることによってY方向に強制移動させるものであり、周知のマイクロメータ等のアクチュエータが使用される。この例では、図1〜図5に示す如く、可動体3のY方向端部である第4可動体部分34にY方向に伸びる作動軸81を固着すると共に、第1固定枠部分11及び第3可動枠部分23に作動軸81の挿通孔82,83を穿設して、この作動軸81をマイクロメータ等によりY方向に進退移動させることによって、可動体3を固定枠1及び可動枠2に対してY方向に強制移動させうるようになっている。なお、作動軸81(及びこれを進退移動させる手段)は、固定枠1に対して、第1移動手段7による可動枠2の移動に伴ってX方向にスライドしうるようになっており、第1固定枠部分11に形成される形成される挿通孔82は、第1移動手段7による可動枠2のX方向への移動範囲に相当する長さの長孔とされている。
【0023】
以上のように構成された第1装置M1にあっては、第1移動手段7により作動軸71を介して可動枠2をX方向に押圧(又は引張)すると、図7に実線で示す如く、各第1平行梁51を構成する一対の第1T字状梁51A,51Aが同一形態に弾性変形すると共に両第1平行梁51,51が可動枠2に対して対称形態に弾性変形し、同時に、図8に実線で示す如く、各第2平行梁52を構成する一対の第2T字状梁52A,52Aが同一形態に弾性変形すると共に両第2平行梁52,52が可動枠2に対して対称形態に弾性変形しつつ、可動枠2がX−Y面上でX方向に移動される。すなわち、可動枠2の移動に伴って、各第1及び第2主梁51a,52aが伸張,屈曲変形することなく主梁基端部を中心として回動変位し、各第1及び第2主梁51a,52aの回動変位に伴う主梁先端部の変位を許容すべく、当該主梁先端部に一体連結された各第1及び第2ヒンジ梁51b,52bが屈曲変形されることになる。かかる可動枠2の移動によって、可動枠2に第3及び第4平行梁61,62及び可動体2を介して固定支持された移動台4は、X―Y面上でX方向に可動枠2の移動量と同一量だけ移動されることになる。
【0024】
このとき、可動枠2が各第1及び第2平行梁51,52によりX−Y面及びX−Z面の両面において支持されていることから、可動枠2のX−Y面上における移動が高精度に行われる。また、可動体3及びこれに固着された移動台4がX方向には変形しない各第3及び第4平行梁61,62を介して可動枠2に支持されていることから、可動枠2の移動によって可動体3及び移動台4がX方向に変位することがない。その結果、移動台4の固定枠1に対するX方向への移動が高精度に行われる。
【0025】
そして、この状態から第2移動手段8により作動軸81を介して可動体3をY方向に押圧(又は引張)すると、図9に実線で示す如く、各第3平行梁61を構成する一対の第3T字状梁61A,61Aが同一形態に弾性変形すると共に両第3平行梁61,61が可動体3に対して対称形態に弾性変形し、同時に、図10に実線で示す如く、各第4平行梁62を構成する一対の第4T字状梁62A,62Aが同一形態に弾性変形すると共に両第4平行梁62,62が可動体3に対して対称形態に弾性変形しつつ、可動体3が可動枠2及び固定枠1に対してX―Y面上でY方向に移動される。すなわち、可動体3の移動に伴って、各第3及び第4梁61a,62aが伸張,屈曲変形することなく主梁基端部を中心として回動変位し、各第3及び第4主梁61a,62aの回動変位に伴う主梁先端部の変位を許容すべく、当該主梁先端部に一体連結された各第3及び第4ヒンジ梁61b,62bが屈曲変形されることになる。かかる可動体3の移動によって、可動枠2に設けられた移動台4は、X―Y面上でY方向に可動体3の移動量と同一量だけ移動されることになる。
【0026】
このとき、可動体3(及び移動台4)が各第3及び第4平行梁61,62によりX−Y面及びX−Z面の両面において支持されていることから、可動体3のX−Y面上における移動が高精度に行われる。また、可動体3を支持する可動枠2がY方向には変形しない各第1及び第2平行梁51,52を介して固定枠1に支持されていることから、可動体3の移動によって可動枠2がY方向に変位することがない。その結果、移動台4の固定枠1に対するY方向への移動が高精度に行われる。
【0027】
したがって、第1装置M1によれば、可動枠2を固定枠1に対してX方向に移動させると共に可動体3を可動枠2に対してY方向に移動させることにより、移動台4を固定枠1に対してX方向及びY方向の2元方向に高精度に移動させることできる。
【0028】
そして、第1移動手段7による可動枠2への押圧力(又は引張力)を解除すると、全ての第1及び第2T字状梁51A…,52A…が、図7及び図8に鎖線で示す如く、Y方向に平行する状態に弾性復帰して、可動枠2(及び移動台4)をX方向における中立位置に自動復帰せしめられる。また、第2移動手段8による可動体3への押圧力(又は引張力)を解除すると、全ての第3及び第4T字状梁61A…,62A…が、図9及び図10に鎖線で示す如く、X方向に平行する状態に弾性復帰して、可動体3及び移動台4をY方向における中立位置に自動復帰せしめられる。
【0029】
したがって、第1装置M1によれば、移動台4のX方向及びY方向への2元移動を高精度に行うことができ、移動台4の移動及び位置決めを正確に行うことができる。
【0030】
図10〜図20は第2の実施の形態を示すもので、この実施の形態における本発明に係る超精密移動台装置(以下「第2装置」という)M2にあっては、各平行梁51,52,61,62が各々一対のH字状梁で構成されている。なお、第2装置M2の構成は、以下に述べる点を除いて、第1装置M1と同一であるから、第1装置M1の各構成部材と同一の構成部材については、図10〜図20に同一の符号を付して、その詳細な説明は省略する。
【0031】
各第1平行梁51は、板面がZ方向に平行するバネ板からなる一対の第1H字状梁51B,51Bで構成されている。各第1H字状梁51Bは、図11及び図12に示す如く、Y方向に延びる第1主梁51aと、X方向に延びて両端部が固定枠1の第1固定枠部分11に一体連結され且つ中央部が第1主梁51aの先端部に一体連結された第1ヒンジ梁51bと、X方向に延びて両端部が可動枠2の第4可動枠部分24に一体連結され且つ中央部が第1主梁51aの基端部に一体連結された第1副ヒンジ梁51cとからなる。第1副ヒンジ梁51cは、第4可動枠部分24における主梁51aの連結部分にZ方向に貫通し且つX方向に延びる長孔24aを穿設することによって、当該第4可動枠部分24に一体形成されている。
【0032】
各第2平行梁52は、板面がZ方向に平行するバネ板からなる一対の第2H字状梁52B,52Bで構成されている。各第2H字状梁52Bは、図11及び図12に示す如く、Z方向に延びる第2主梁52aと、X方向に延びて両端部が固定枠1の第2固定枠部分12に一体連結され且つ中央部が第2主梁52aの先端部に一体連結された第2ヒンジ梁52bと、X方向に延びて両端部が可動枠2の第5可動枠部分25に一体連結され且つ中央部が第2主梁52aの基端部に一体連結された第2副ヒンジ梁52cとからなる。第2副ヒンジ梁52cは、第5可動枠部分25における主梁52aの連結部分にY方向に貫通し且つX方向に延びる長孔25aを穿設することによって、第5可動枠部分24に一体形成されている。
【0033】
各第3平行梁61は、板面がZ方向に平行するバネ板からなる一対の第3H字状梁61B,61Bで構成されている。各第3H字状梁61Bは、図13及び図14に示す如く、X方向に延びる第3主梁61aと、Y方向に延びて両端部が可動枠2の第1可動枠部分21に一体連結され且つ中央部が第3主梁61aの先端部に一体連結された第3ヒンジ梁61bと、Y方向に延びて両端部が可動体3の第1可動体部分31に一体連結され且つ中央部が第3主梁61aの基端部に一体連結された第3副ヒンジ梁61cとからなる。第3副ヒンジ梁61cは、可動体3の第1可動体部分31における主梁61aの連結部分にZ方向に貫通し且つY方向に延びる長孔31aを穿設することによって、第1可動体部分31に一体形成されている。
【0034】
各第4平行梁62は、板面がZ方向に平行するバネ板からなる一対の第4H字状梁62B,62Bで構成されている。各第4H字状梁62Bは、図13及び図14に示す如く、Z方向に延びる第4主梁62aと、Y方向に延びて両端部が可動枠2の第2可動枠部分22に連結され且つ中央部が第4主梁62aの先端部に一体連結された第4ヒンジ梁62bと、Y方向に延びて両端部が可動体3の第3可動体部分33に一体連結され且つ中央部が第4主梁62aの基端部に一体連結された第4副ヒンジ梁62cとからなる。第4副ヒンジ梁62cは、第3可動体部分33における主梁62aの連結部分にX方向に貫通し且つY方向に延びる長孔33aを穿設することによって、第3可動体部分33に一体形成されている。
【0035】
なお、可動体3は、第1装置M1と同様に、図14に示す如く組み立てられ、図15に示す如く移動台4が固着されるものであるが、第4副ヒンジ梁62cの変形が第2可動体部分32によって阻害されないように、第4副ヒンジ梁62cが形成される第3可動体部分33と第2可動体部分32との間には若干の隙間が形成されている。
【0036】
各H状梁51B,52B,61B,62Bは同一形状且つ同一材質のものであって、同一の弾性変形能を有するものとされている。また、各ヒンジ梁51b,52b,61b,62bは、その弾性変形を容易ならしめるべく、図16に示す如く、板厚Tを主梁51a,52a,61a,62aの板厚Tに比して小さく設定されている(例えば、T=1mm,T=0.2mmに設定される)。但し、各主梁51a,52a,61a,62aの両端部については、可動枠2又は可動体3の移動に伴う主梁51a,52a,61a,62aの変位を容易ならしめるべく、図16に示す如く、その板厚T,Tをヒンジ梁51b,52b,61b,62bの板厚Tと同程度に設定されている(例えば、T=T=0.3mmに設定される)。副ヒンジ梁51c,52c,61c,62cの長さは、その機能上、ヒンジ梁51b,52b,61b,62bより短くて足り、板厚はヒンジ梁51b,52b,61b,62bの板厚Tと同程度に設定される。
【0037】
各H字状梁51B,52B,61B,62Bは、弾性限界の高い金属材(チタン等)や非金属材(FRP,カーボン等)により、その連結部材と、一体形成(放電加工等による)されている。この例では、前記T字状梁51A,52A,61A,62Aと同様に、可動枠2内への可動体3の組み込み並びに固定枠1内への可動枠2及び可動体3の組み込みを容易ならしめるために、図12〜図14に示す如く、可動枠2及び可動体3を各H字状梁51B,52B,61B,62Bの連結部分とこれらの連結部分間を接続するための接続部分とに分割して、これらを各別に成形した上で、組み立てるように工夫している。すなわち、第1及び第2平行梁51,51及び52,52については、図12に示す如く、固定枠1とこれに連結される各第1及び第2T字状梁51,52と各副ヒンジ梁51c,52cが各別に連結される可動枠部分(第4可動枠部分24)とからなる一体構造物として、放電加工等により製作される。また、各第3平行61については、図13及び図14に示す如く、第1可動枠部分21とこれに連結される一対の第3T字状梁61,61とその各副ヒンジ梁61cが各別に連結される可動体部分(第1可動体部分31)とからなる一体構造物として、放電加工等により製作される。また、第4平行梁62,62については、図13及び図14に示す如く、両第2可動枠部分21,21(第3可動枠部分23,23と一体構造をなす)とこれに連結される二対の第4T字状梁62,62及び62,62とその各副ヒンジ梁62cが各別に連結される可動体部分(第3可動体部分33)とからなる一体構造物として、放電加工等により製作される。これらの一体構造物の構成材としては、MH51が使用されている。而して、これらの一体構造物を、直接に又は前記接続部分(第6可動枠部分26、第2可動体部分32及び第4可動体部分34)を介して間接的に連結することによって、図11に示す如く、第2装置M2を組み立てることができる。
【0038】
このようなH字状梁51,52,61,62によれば、主梁51a,52a,61a,62aの基端部を中心とする回動変位が、図17〜図20に実線で示す如く、副ヒンジ梁51c,52c,61c,62cの弾性変形によってより容易に行われることから、T字状梁51A,52A,61A,62Aによる場合に比して、梁の弾性変形がより円滑に行われる。また、可動枠2のX方向における中立位置(図17及び図18に鎖線で示す位置)からの移動量又は可動体3のY方向における中立位置(図19及び図20に鎖線で示す位置)からの移動量を大きくすると、主梁51a,52a,61a,62aの端部連結点に最大応力が作用し、平行梁51,52,61,62が長期使用によって塑性変形する虞れがあるが、主梁51a,52a,61a,62aの基端部を副ヒンジ梁51c,52c,61c,62cを介して可動枠2又は可動体3に連結しておくと、かかる虞れを回避して装置寿命を向上させることができる。
【0039】
なお、本発明は上記した各実施の形態に限定されるものでなく、本発明の基本原理を逸脱しない範囲において適宜に改良,変更することができる。例えば、主梁及びヒンジ梁は直線状のものとせず、湾曲状ないし屈曲状のものとすることができる。また、T字状梁又はH字状梁は独立部材に構成して、T字状梁における主梁の基端部若しくはヒンジ梁の両端部又はH字状梁におけるヒンジ梁若しくは副ヒンジ梁の両端部を固定枠等に固着する(例えば、接着剤による接着やはんだ付け等)ようにすることも可能である。また、移動手段7,8の構成も任意であり、例えば、ワイヤー,微小径(例えば1mm以下)のロッド,帯板等の自由度の高い作動部材を、第1移動手段7においては可動枠2に、また第2移動手段8においては可動体3に、夫々連結して、これらの作動部材に引張力を与えることにより、可動枠2を固定枠1に対してX方向に強制移動させうると共に可動体3を固定枠1及び可動枠2に対してY方向に強制移動させうるように構成しておくことができる。
【0040】
【発明の効果】
本発明の超精密移動台装置は、可動枠の固定枠への支持及び可動体の可動枠への支持を平行梁により行うと共に、平行梁を変形容易なT字状梁又はH字状梁で構成したものであるから、可動部材をこれに接触(転接,摺接)する部材によってガイドさせるようにした従来装置に比して、X−Y面上での移動台の移動精度やその信頼性を大幅に向上させることができ、微動装置としての実用的価値が極めて大きいものである。
【図面の簡単な説明】
【図1】第1装置を示す斜視図である。
【図2】第1装置の固定枠を示す斜視図である。
【図3】第1装置の可動枠を示す斜視図である。
【図4】第1装置の可動体を示す斜視図である。
【図5】第1装置の可動体及び移動台を示す斜視図である。
【図6】第1装置の要部(T字状梁)を示す平面図である。
【図7】第1装置における可動枠の移動状態及び第1平行梁の変形状態を示す概略平面図である。
【図8】第1装置における可動枠の移動状態及び第2平行梁の変形状態を示す概略側面図である。
【図9】第1装置における可動体の移動状態及び第3平行梁の変形状態を示す概略平面図である。
【図10】第1装置における可動体の移動状態及び第4平行梁の変形状態を示す概略正面図である。
【図11】第2装置を示す斜視図である。
【図12】第2装置の固定枠を示す斜視図である。
【図13】第2装置の可動枠を示す斜視図である。
【図14】第2装置の可動体を示す斜視図である。
【図15】第2装置の可動体及び移動台を示す斜視図である。
【図16】第2装置の要部(H字状梁)を示す平面図である。
【図17】第2装置における可動枠の移動状態及び第1平行梁の変形状態を示す概略平面図である。
【図18】第2装置における可動枠の移動状態及び第2平行梁の変形状態を示す概略側面図である。
【図19】第2装置における可動体の移動状態及び第3平行梁の変形状態を示す概略平面図である。
【図20】第2装置における可動体の移動状態及び第4平行梁の変形状態を示す概略正面図である。
【符号の説明】
M1…第1装置(超精密移動台装置)、M2…第2装置(超精密移動台装置)、1…固定枠、2…可動枠、3…可動体、4…移動台、5…第1ガイド手段、6…第2ガイド手段、7…第1移動手段、8…第2移動手段、11…第1固定枠部分、12…第2固定枠部分、13…第3可動枠部分、21…第1可動枠部分、22…第2可動枠部分、23…第3可動枠部分、24…第4可動枠部分、25…第5可動枠部分、31…第1可動体部分、32…第2可動体部分、33…第3可動体部分、34…第4可動体部分、51…第1平行梁、51A…第1T字状梁、51B…第1H字状梁、51a,52a,61a,62a…主梁、51b,52b,61b,62b…ヒンジ梁、51c,52c,61c,62c…副ヒンジ梁、52…第2平行梁、52A…第2T字状梁、52B…第2H字状梁、61…第3平行梁、61A…第3T字状梁、61B…第3H字状梁、62…第4平行梁、62A…第4T字状梁、62B…第4H字状梁。
[0001]
BACKGROUND OF THE INVENTION
The present invention is an ultra-precise moving table apparatus used for synchrotron radiation facilities / optical systems, microbeam-related parts, X-ray lithography, micromachine fabrication, high resolution microscope stage, etc. And a Y-direction).
[0002]
[Prior art]
In this type of ultra-precise moving table apparatus, the first stage is supported by supporting the first stage relatively moving in the X direction on the fixed table, and supporting the second stage relatively moving in the Y direction on the first stage. What is configured to move the movable stage provided in the second stage in the two-dimensional direction by moving in the X direction with respect to the fixed base and moving the second stage in the Y direction with respect to the second stage. It is well known. Thus, in such an apparatus, as a means for guiding each stage so as to be linearly movable in a certain direction (X direction or Y direction), generally, the movement of each stage in a direction other than the target direction is performed. What is regulated by a rolling member or a sliding member (cross roller guide or the like) in contact with is used.
[0003]
[Problems to be solved by the invention]
However, when such a guide means is used, the moving accuracy of each stage cannot be increased beyond a certain level due to inevitable factors such as the processing accuracy of the rolling member and the sliding member. For example, when using a cross roller guide, the accuracy of the cross roller is limited to the roundness of the cross roller, and the limit is to suppress vertical and horizontal fluctuations to about ± 10 seconds. In an optical system using radiated light, etc. Cannot be used. In an optical system using synchrotron radiation, both vertical and horizontal fluctuations are required to have an accuracy of about ± 0.5 μRad (about 0.1 second). In order to improve the movement accuracy of the moving table (movement accuracy of each stage), it has been proposed to perform movement correction by electrical control using a piezo element, but such control means is used. However, there are problems such as high cost and many restrictions on use.
[0004]
The present invention has been made in view of the above points, and by adopting a guide means that does not use any rolling member or sliding member and does not require a control means for performing movement correction, the present invention can be moved. It is an object of the present invention to provide an ultra-precise moving table apparatus capable of greatly improving accuracy.
[0005]
[Means for Solving the Problems]
The present invention includes a fixed frame fixed to the apparatus installation surface, a movable frame disposed in the fixed frame, a movable body disposed in the movable frame, a moving table provided in the movable body, and a movable frame. First guide means for reciprocally guiding the fixed frame in the X direction, second guide means for supporting the movable body reciprocally movable in the Y direction relative to the movable frame, and the movable frame as the fixed frame A first moving means forcibly moving relative to the X direction and a second moving means for forcibly moving the movable body relative to the fixed frame in the Y direction. The first guide means opposes the pair of first parallel beams that connect the movable frame and the first fixed frame portion, which is the fixed frame portion facing the movable frame in the Y direction, and the movable frame and the first parallel beam in the Z direction. It is composed of a pair of second parallel beams that connect the second fixed frame part as the fixed frame part. The second guide means includes a pair of third parallel beams that connect the movable body and the first movable frame portion that is the movable frame portion facing the movable body in the X direction, the movable body, and the movable body facing the movable body in the Z direction. It is comprised by a pair of 4th parallel beam which connects the 2nd movable frame part which is a frame part, and a moving stand applies the pressing force or tensile force to an X direction to a movable frame by a 1st moving means. By causing the first and second parallel beams to be elastically deformed and linearly displaced relative to the fixed frame in the X direction, and by applying a pressing force or tensile force in the Y direction to the movable body by the second moving means. The third and fourth parallel beams are elastically deformed and are linearly displaced in the X direction relative to the movable frame, and the first and second parallel beams or the third and second are released by releasing the pressing force or tensile force. 4 Parallel beams are in the state before deformation Suggest ultra-precision moving table device, characterized in that is arranged to sexual restored.
[0006]
Thus, in such an ultra-precision moving device, each parallel beam is configured as (1) or (2).
(1) Each first parallel beam is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and the first main beam is connected to the movable frame and extends in the Y direction. And a pair of first T-shaped beams comprising a first hinge beam extending in the X direction and having both ends connected to the first fixed frame portion and the central portion integrally connected to the tip of the first main beam. Each of the second parallel beams is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and a second main beam extending in the Z direction with a base end portion connected to the movable frame. And a pair of second T-shaped beams comprising a second hinge beam extending in the X direction and having both ends connected to the second fixed frame portion and the central portion integrally connected to the tip of the second main beam. Each of the third parallel beams is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and their base ends are connected to the movable body and extend in the X direction. A pair of third T-shaped beams comprising a third main beam and a third hinge beam extending in the Y direction and having both ends connected to the first movable frame portion and the central portion integrally connected to the tip of the third main beam. Each fourth parallel beam is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and the base ends are connected to the movable body in the Z direction. A pair of fourth T-shaped members comprising a fourth main beam extending and a fourth hinge beam extending in the Y direction and having both ends connected to the second movable frame portion and the center connected integrally to the tip of the fourth main beam. It is made up of shaped beams.
(2) Each first parallel beam is a pair of H-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, the first main beam extending in the Y direction, and both ends of the first parallel beam extending in the X direction. A first hinge beam connected to the first fixed frame portion and having a central portion integrally connected to the distal end portion of the first main beam, and extending in the X direction and having both ends connected to the movable frame and the central portion being the first main beam It consists of a pair of first H-shaped beams consisting of a first sub hinge beam integrally connected to the base end of each beam, and each second parallel beam is made of a spring plate whose plate surface is parallel to the Z direction. A pair of H-shaped beams, a second main beam extending in the Z direction, extending in the X direction, both ends are connected to the second fixed frame portion, and the central portion is integrally connected to the tip of the second main beam And a second sub hinge beam extending in the X direction and having both ends connected to the movable frame and the central portion integrally connected to the base end of the second main beam. Each of the third parallel beams is a pair of H-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and each of the third main beams extends in the X direction. A beam, a third hinge beam extending in the Y direction and having both ends connected to the first movable frame portion and a central portion integrally connected to the tip of the third main beam, and both ends extending in the Y direction are movable Each of the fourth parallel beams is composed of a pair of third H-shaped beams which are connected to the body and have a third sub-hinge beam whose central portion is integrally connected to the base end portion of the third main beam. A pair of H-shaped beams comprising spring plates whose surfaces are parallel to the Z direction, a fourth main beam extending in the Z direction, and extending in the Y direction, both ends thereof being connected to the second movable frame portion and the center portion Is a fourth hinge beam integrally connected to the distal end portion of the fourth main beam, and extends in the Y direction so that both end portions are connected to the movable body and the central portion is the base end portion of the fourth main beam. The fourth and a pair of the 4H-shaped beams consisting of a sub-hinge beam which is bodily connected.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 10 and FIGS.
[0008]
1 to 10 show a first embodiment, and an ultra-precise moving table apparatus (hereinafter referred to as “first apparatus M1”) according to the present embodiment is installed as shown in FIG. A fixed frame 1 fixed to the surface, a movable frame 2 disposed in the fixed frame 1, a movable body 3 disposed in the movable frame 2, a movable table 4 provided in the movable body 3, a movable frame The first guide means 5 that supports the movable body 3 so as to be reciprocally movable in the X direction relative to the fixed frame 1 and the second guide means 6 that supports the movable body 3 so as to be reciprocally movable relative to the movable frame 2 in the Y direction. A first moving means 7 forcibly moving the movable frame 2 relative to the fixed frame 1 in the X direction; and a second movement forcibly moving the movable body 3 relative to the fixed frame 1 in the Y direction. Means 8.
[0009]
The fixed frame 1 is fixed on a predetermined device installation surface (for example, a horizontal plane), and as shown in FIGS. 1 and 2, a pair of first fixed frame portions 11, 11 that are parallel to each other in the Y direction, and Z And a pair of second fixed frame portions 12 and 12 parallel to each other in the direction and a pair of third fixed frame portions 13 and 13 parallel to each other in the X direction. . Each of the first and second fixed frame portions 11 and 12 has a rectangular shape elongated in the X direction, and each third fixed frame portion 13 has a cross shape in which a rectangular arm projects from the center portion in the Y direction and the Z direction. It has a shape. The both ends of the first fixed frame portions 11 and 11 and the both ends of the second fixed frame portions 12 and 12 are connected by third fixed frame portions 13 and 13, respectively.
[0010]
The movable frame 2 is disposed in the fixed frame 1 so as to be movable within a predetermined range in the X direction as shown in FIGS. 1, 7 and 8, and is opposed to the X direction as shown in FIG. A pair of parallel first movable frame portions 21 and 21, a pair of second movable frame portions 22 and 22 facing and parallel to the Z direction, and a pair of third movable frame portions 23 facing and parallel to the Y direction. , 23, two pairs of fourth movable frame portions 24, 24 and 24, 24 facing and parallel to the X direction and the Y direction, and two pairs of fifth movable frames facing and parallel to the X direction and the Z direction. This is a hollow structure composed of portions 25, 25 and 25, 25 and a pair of sixth movable frame portions 26, 26 facing and parallel to the X direction. Each of the first and second movable frame portions 21 and 22 has a rectangular shape that is long in the Y direction, and each third movable frame portion 23 is a cross in which a rectangular arm projects from the center in the Z direction and the X direction. It has a shape. The end portions of both the second movable frame portions 22 and 22 are connected by a third movable frame portion 23. Each fourth movable frame portion 24 has a rectangular shape, and each pair of fourth movable frame portions 24, 24 facing each other in the Y direction includes both ends in the Y direction of the first movable frame portion 21 and both third movable frames. The portion 23 is connected to the end of the rectangular arm extending in the X direction on the inner side of the hollow structure. Each fifth movable frame portion 25 has a rectangular shape, and each pair of fifth movable frame portions 25 and 25 facing each other in the Z direction is fixed to both ends of the sixth movable frame portion 26 in the Z direction. That is, the pair of fifth movable frame portions 25 and 25 are integrally connected via the sixth movable frame portion 26. The integrally connected objects 25, 25, 26 are fixed to the central portion of the first movable frame portion 21 in a state of being positioned between the pair of fourth movable frame portions 24, 24 facing in the Y direction. The second movable frame portions 22 and 22 and the third movable frame portions 23 and 23 are configured as an integral rectangular frame, but the other movable frame portions 21, 24, 25, and 26 are independent of each other. Each of these movable frame parts 21, 24, 25, 26 and the above-mentioned rectangular frame of the integral structure is connected or fixed to each other by appropriate bonding means (for example, an adhesive or a screw). It is done by.
[0011]
As shown in FIGS. 1, 9 and 10, the movable body 3 is disposed in the movable frame 2 so as to be movable within a predetermined range in the Y direction. As shown in FIG. 4, the movable body 3 is arranged in the X direction and the Y direction. Two pairs of first movable body portions 31, 31 and 31, 31 facing and parallel to each other and a pair of second movable body portions 32 and 32 facing and parallel to each other in the X direction are opposed to each other in the Y direction and the Z direction. And a pair of third movable body portions 33, 33 and 33, 33 which are parallel to each other and a pair of fourth movable body portions 34, 34 which are parallel to each other in the Y direction. Each movable body portion 31, 32, 33, 34 is an independent rectangular member and is connected to each other as follows. That is, each pair of first movable body portions 31, 31 facing each other in the Y direction is fixed to both ends of the second movable body portion 32 in the Y direction. Each pair of third movable body portions 33, 33 facing each other in the Z direction is fixed to both ends of the fourth movable body portion 34 in the Z direction, and is integrally connected via the fourth movable body portion 34. Yes. The fourth movable body portion 34 is fixed to the second movable body portions 32 and 32 in a state where the third movable body portions 33 and 33 fixed to the fourth movable body portion 34 are positioned between the second movable body portions 32 and 32. ing. In addition, connection or fixation between the movable body portions 31, 32, 33, and 34 is performed by an appropriate bonding means (for example, an adhesive or a screw).
[0012]
As shown in FIGS. 1 and 5, the movable table 4 has a rectangular plate 41 for mounting, mounting or supporting a predetermined device to be moved (for example, a member such as an optical device or a wafer), and four corners thereof. As shown in FIG. 1, the rectangular plate 41 is attached to the movable body 3 in a state where the rectangular plate 41 is positioned outside the fixed frame 1. That is, as shown in FIG. 1, both the second movable body portions 32, 32 straddle the second fixed frame portion 12 in the Y direction and the second movable frame portion 22 in the X direction. When the movable frame 2 moves relative to the fixed frame 1 in the Y direction and when the movable body 3 moves relative to the movable frame 2 in the X direction, each support column 42 is second fixed. The movable table 4 can be moved in a predetermined range in the X direction and the Y direction with respect to the fixed frame 1 without interfering with the frame portion 12 and the second movable frame portion 22. Note that an adhesive or the like is used as a means for fixing each support body 42 to the second movable body portion 32.
[0013]
As shown in FIGS. 1, 7, and 8, the first guide means 5 is a pair of first guides that connect the movable frame 2 and the first fixed frame portions 11, 11 of the fixed frame 1 facing the movable frame 2 in the Y direction. The parallel beams 51 and 51 are composed of a pair of second parallel beams 52 and 52 that connect the movable frame 2 and the second fixed frame portions 12 and 12 of the fixed frame 1 facing the movable frame 2 in the Z direction.
[0014]
Each of the first parallel beams 51 is composed of a pair of first T-shaped beams 51A and 51A made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIG. 2, each first T-shaped beam 51A has a base end portion integrally connected to the fourth movable frame portion 24 of the movable frame 2 and a first main beam 51a extending in the Y direction, and extending in the X direction. The first hinge beam 51b is integrally connected to the first fixed frame portion 11 of the fixed frame 1 at both ends and the central portion is integrally connected to the tip of the first main beam 51a.
[0015]
Each of the second parallel beams 52 is composed of a pair of second T-shaped beams 52A and 52A made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIG. 2, each second T-shaped beam 52 </ b> A has a base end portion connected to the fifth movable frame portion 25 of the movable frame 2 and a second main beam 52 a extending in the Z direction, and both ends extending in the X direction. The second hinge beam 52b is integrally connected to the second fixed frame portion 12 of the fixed frame 1 and the central portion is integrally connected to the distal end portion of the second main beam 52a.
[0016]
As shown in FIGS. 1, 9 and 10, the second guide means 6 is a pair of third parallel beams that connect the movable body 3 and the first movable frame portion 21 of the movable frame 2 facing the movable body 3 in the X direction. 61 and 61, and a pair of 4th parallel beams 62 and 62 which connect movable body 3 and the 2nd movable frame part 22 of movable frame 2 which counters this in the Z direction.
[0017]
Each of the third parallel beams 61 is composed of a pair of third T-shaped beams 61A and 61A made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIG. 3, each third T-shaped beam 61 </ b> A has a base end portion integrally connected to the first movable body portion 31 of the movable body 3 and a third main beam 61 a extending in the X direction, and extending in the Y direction. Both ends are integrally connected to the first movable frame portion 21 of the movable frame 2, and the central portion is composed of a third hinge beam 61 b integrally connected to the distal end portion of the third main beam 61 a.
[0018]
Each of the fourth parallel beams 62 is composed of a pair of fourth T-shaped beams 62A and 62A made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIG. 3, each fourth T-shaped beam 62 </ b> A has a base end portion integrally connected to the third movable body portion 33 of the movable body 3 and a fourth main beam 62 a extending in the Z direction, and extending in the Y direction. Both end portions are integrally connected to the second movable frame portion 22 of the movable frame 2 and the center portion is composed of a fourth hinge beam 62b integrally connected to the tip end portion of the fourth main beam 62a.
[0019]
Each of the T-shaped beams 51A, 52A, 61A, 62A has the same shape and the same material, and has the same elastic deformability. Each hinge beam 51b, 52b, 61b, 62b has a thickness T as shown in FIG. 6 in order to facilitate its elastic deformation. 4 The plate thickness T of the main beams 51a, 52a, 61a, 62a 1 (For example, T 1 = 1mm, T 4 = 0.2 mm). However, the end portions of the main beams 51a, 52a, 61a, 62a are shown in FIG. 6 in order to facilitate the displacement of the main beams 51a, 52a, 61a, 62a accompanying the movement of the movable frame 2 or the movable body 3. The thickness T 2 , T 3 The thickness T of the hinge beams 51b, 52b, 61b, 62b 4 (For example, T 2 = T 3 = 0.3 mm).
[0020]
By the way, each of the T-shaped beams 51A, 52A, 61A, and 62A is preferably integrally formed of a metal material (such as titanium) or a non-metal material (such as FRP or carbon) having a high elastic limit, and is a connecting member thereof. It is preferable that the fixed frame 1, the movable frame 2, and the movable body 3 are integrally formed. However, it is substantially impossible to integrally form the T-shaped beams 51A, 52A, 61A, 62A and the fixed frame 1, the movable frame 2, and the movable body 3. Therefore, in this example, the movable frame 2 In order to facilitate the incorporation of the movable body 3 into the interior and the movable frame 2 and the movable body 3 into the fixed frame 1, the movable frame 2 and the movable body 3 are attached to each T as shown in FIGS. The connecting portions of the character beams 51A, 52A, 61A and 62A are divided into connecting portions for connecting the connecting portions, and these are separately formed and devised to be assembled. That is, for the first and second parallel beams 51, 51 and 52, 52, as shown in FIG. 2, the fixed frame 1, the first and second T-shaped beams 51, 52 connected to the fixed frame 1, and the main beams. As an integral structure composed of a movable frame portion (fourth movable frame portion 24) to which 51a and 52a are separately connected, it is manufactured by electric discharge machining or the like. For each third parallel 61, as shown in FIGS. 3 and 4, the first movable frame portion 21, a pair of third T-shaped beams 61, 61 connected thereto, and their main beams 61a are separately provided. As an integral structure composed of a movable body portion (first movable body portion 31) to be connected, it is manufactured by electric discharge machining or the like. Further, as shown in FIGS. 3 and 4, the fourth parallel beams 62 and 62 are connected to both the second movable frame portions 21 and 21 (integrated with the third movable frame portions 23 and 23) and the second movable frame portions 21 and 21. As an integral structure composed of two pairs of fourth T-shaped beams 62, 62 and 62, 62 and the movable body portions (third movable body portions 33) to which the main beams 62a are separately connected, electric discharge machining, etc. It is manufactured by. MH51 is used as a constituent material of these integrated structures. Thus, by connecting these integrated structures directly or indirectly via the connecting portions (the sixth movable frame portion 26, the second movable body portion 32, and the fourth movable body portion 34), As shown in FIG. 1, the first device M1 can be assembled.
[0021]
The first moving means 7 pushes the movable frame 2 (and the movable body 3 and the movable table 4 supported on the movable frame 2 by the third and fourth T-shaped beams 61A and 62A) to the X direction. Alternatively, it is forcibly moved in the X direction by applying a tensile force, and a known actuator such as a micrometer or a stepping motor is used. In this example, as shown in FIGS. 1 to 3, the operating shaft 71 extending in the X direction is fixed to the first movable frame portion 21 which is the end portion of the movable frame 2 in the X direction, and the third fixed frame of the fixed frame 1 is fixed. The insertion hole 72 of the operating shaft 71 is formed in the portion 13 and the operating shaft 71 is moved forward and backward in the X direction by a micrometer or the like, so that the movable frame 2 is forcibly moved in the X direction with respect to the fixed frame 1. It has become possible.
[0022]
The second moving means 8 forcibly moves the movable body 3 (and the movable table 4 fixed to the movable body 3) in the Y direction by applying a pressing force or a tensile force in the Y direction to the movable body 3. A known actuator such as a micrometer is used. In this example, as shown in FIGS. 1 to 5, an operating shaft 81 extending in the Y direction is fixed to a fourth movable body portion 34 that is an end portion of the movable body 3 in the Y direction, and the first fixed frame portion 11 and the 3 Inserting holes 82 and 83 of the operating shaft 81 in the movable frame portion 23 and moving the operating shaft 81 forward and backward in the Y direction with a micrometer or the like, the movable body 3 is fixed to the fixed frame 1 and the movable frame 2. Can be forcibly moved in the Y direction. The operating shaft 81 (and the means for moving it back and forth) can slide in the X direction with respect to the fixed frame 1 as the movable frame 2 is moved by the first moving means 7. The insertion hole 82 formed in the first fixed frame portion 11 is a long hole having a length corresponding to the moving range of the movable frame 2 in the X direction by the first moving means 7.
[0023]
In the first apparatus M1 configured as described above, when the movable frame 2 is pressed (or pulled) in the X direction via the operating shaft 71 by the first moving means 7, as shown by a solid line in FIG. A pair of first T-shaped beams 51A and 51A constituting each first parallel beam 51 are elastically deformed into the same form, and both the first parallel beams 51 and 51 are elastically deformed into a symmetrical form with respect to the movable frame 2, and at the same time. 8, a pair of second T-shaped beams 52A and 52A constituting each second parallel beam 52 are elastically deformed in the same form and both the second parallel beams 52 and 52 are moved with respect to the movable frame 2 as indicated by a solid line in FIG. The movable frame 2 is moved in the X direction on the XY plane while being elastically deformed into a symmetrical form. That is, with the movement of the movable frame 2, the first and second main beams 51a and 52a are rotated and displaced around the main beam base end without extending and bending, and the first and second main beams 51a. , 52a, the first and second hinge beams 51b, 52b integrally connected to the main beam front end are bent and deformed to allow displacement of the main beam front end due to the rotational displacement of the main beam. Due to the movement of the movable frame 2, the movable table 4 fixedly supported by the movable frame 2 via the third and fourth parallel beams 61 and 62 and the movable body 2 moves the movable frame 2 in the X direction on the XY plane. The amount of movement is the same as the amount of movement.
[0024]
At this time, since the movable frame 2 is supported on both the XY plane and the XZ plane by the first and second parallel beams 51, 52, the movable frame 2 is moved on the XY plane. Performed with high accuracy. Further, since the movable body 3 and the movable table 4 fixed to the movable body 3 are supported by the movable frame 2 via the third and fourth parallel beams 61 and 62 that do not deform in the X direction, The movable body 3 and the movable table 4 are not displaced in the X direction by the movement. As a result, the movement of the movable table 4 in the X direction with respect to the fixed frame 1 is performed with high accuracy.
[0025]
Then, when the movable body 3 is pressed (or pulled) in the Y direction by the second moving means 8 via the operating shaft 81 from this state, a pair of third parallel beams 61 constituting each third parallel beam 61 is formed as shown by a solid line in FIG. The third T-shaped beams 61A and 61A are elastically deformed in the same form and the third parallel beams 61 and 61 are elastically deformed in a symmetrical form with respect to the movable body 3, and at the same time, as shown by the solid line in FIG. The pair of fourth T-shaped beams 62A and 62A constituting the four parallel beams 62 are elastically deformed in the same form, and both the fourth parallel beams 62 and 62 are elastically deformed in a symmetrical form with respect to the movable body 3, while the movable body 3 is moved in the Y direction on the XY plane with respect to the movable frame 2 and the fixed frame 1. That is, as the movable body 3 moves, the third and fourth beams 61a and 62a are rotationally displaced about the main beam base end without extending and bending, and the third and fourth main beams 61a, The third and fourth hinge beams 61b and 62b integrally connected to the main beam front end are bent and deformed to allow the displacement of the main beam front end due to the rotational displacement of 62a. By such movement of the movable body 3, the movable table 4 provided on the movable frame 2 is moved by the same amount as the movement amount of the movable body 3 in the Y direction on the XY plane.
[0026]
At this time, since the movable body 3 (and the movable table 4) is supported on both the XY plane and the XZ plane by the third and fourth parallel beams 61 and 62, the X- Movement on the Y plane is performed with high accuracy. Further, since the movable frame 2 that supports the movable body 3 is supported by the fixed frame 1 via the first and second parallel beams 51 and 52 that do not deform in the Y direction, the movable frame 3 can be moved by the movement of the movable body 3. The frame 2 is not displaced in the Y direction. As a result, the movement of the movable table 4 in the Y direction with respect to the fixed frame 1 is performed with high accuracy.
[0027]
Therefore, according to the first device M1, the movable base 4 is moved in the X direction with respect to the fixed frame 1, and the movable body 3 is moved in the Y direction with respect to the movable frame 2, thereby moving the movable table 4 to the fixed frame. 1 can be moved with high accuracy in the binary direction of the X direction and the Y direction.
[0028]
When the pressing force (or tensile force) applied to the movable frame 2 by the first moving means 7 is released, all the first and second T-shaped beams 51A, 52A,... Are shown by chain lines in FIGS. As described above, the movable frame 2 (and the movable table 4) is automatically returned to the neutral position in the X direction by elastically returning to the state parallel to the Y direction. When the pressing force (or tensile force) applied to the movable body 3 by the second moving means 8 is released, all the third and fourth T-shaped beams 61A, 62A,... Are shown by chain lines in FIGS. As described above, the movable body 3 and the movable table 4 are automatically returned to the neutral position in the Y direction by elastically returning to a state parallel to the X direction.
[0029]
Therefore, according to the first device M1, the two-way movement of the movable table 4 in the X direction and the Y direction can be performed with high accuracy, and the movable table 4 can be accurately moved and positioned.
[0030]
10 to 20 show a second embodiment. In the ultra-precision moving table apparatus (hereinafter referred to as “second apparatus”) M2 according to the present invention in this embodiment, each parallel beam 51 is shown. , 52, 61, 62 are each composed of a pair of H-shaped beams. Since the configuration of the second device M2 is the same as that of the first device M1 except for the points described below, the same components as those of the first device M1 are shown in FIGS. The same reference numerals are given and detailed description thereof is omitted.
[0031]
Each first parallel beam 51 is composed of a pair of first H-shaped beams 51B and 51B made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIGS. 11 and 12, each first H-shaped beam 51 </ b> B is integrally connected to the first main beam 51 a extending in the Y direction and the first fixed frame portion 11 of the fixed frame 1 at both ends extending in the X direction. The first hinge beam 51b integrally connected to the tip of the first main beam 51a, and the both ends of the first hinge beam 51b extending in the X direction are integrally connected to the fourth movable frame portion 24 of the movable frame 2 and the central portion. Comprises a first sub hinge beam 51c integrally connected to the proximal end portion of the first main beam 51a. The first sub hinge beam 51c is formed in the fourth movable frame portion 24 by forming a long hole 24a penetrating in the Z direction and extending in the X direction in the connecting portion of the main beam 51a in the fourth movable frame portion 24. It is integrally formed.
[0032]
Each of the second parallel beams 52 is composed of a pair of second H-shaped beams 52B and 52B made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIGS. 11 and 12, each second H-shaped beam 52 </ b> B is integrally connected to the second main beam 52 a extending in the Z direction and the second fixed frame portion 12 of the fixed frame 1 at both ends extending in the X direction. And a second hinge beam 52b whose central portion is integrally connected to the tip of the second main beam 52a, and both ends thereof are integrally connected to the fifth movable frame portion 25 of the movable frame 2 and extend in the X direction. Comprises a second sub hinge beam 52c integrally connected to the proximal end portion of the second main beam 52a. The second sub hinge beam 52c is integrated with the fifth movable frame portion 24 by forming a long hole 25a extending in the Y direction and extending in the X direction in the connecting portion of the main beam 52a in the fifth movable frame portion 25. Is formed.
[0033]
Each third parallel beam 61 is composed of a pair of third H-shaped beams 61B and 61B made of spring plates whose plate surfaces are parallel to the Z direction. As shown in FIGS. 13 and 14, each third H-shaped beam 61 </ b> B is integrally connected to the third main beam 61 a extending in the X direction and the first movable frame portion 21 of the movable frame 2 at both ends extending in the Y direction. And a third hinge beam 61b whose central portion is integrally connected to the distal end portion of the third main beam 61a, and both ends extending in the Y direction are integrally connected to the first movable body portion 31 of the movable body 3 and the central portion. Comprises a third sub hinge beam 61c integrally connected to the base end of the third main beam 61a. The third sub hinge beam 61c is formed by forming a long hole 31a penetrating in the Z direction and extending in the Y direction in the connecting portion of the main beam 61a in the first movable body portion 31 of the movable body 3. The portion 31 is integrally formed.
[0034]
Each of the fourth parallel beams 62 is composed of a pair of fourth H-shaped beams 62B and 62B made of spring plates whose plate surfaces are parallel to the Z direction. Each of the fourth H-shaped beams 62B is connected to the fourth main beam 62a extending in the Z direction and the second movable frame portion 22 of the movable frame 2 at both ends as shown in FIGS. In addition, the fourth hinge beam 62b whose central portion is integrally connected to the distal end portion of the fourth main beam 62a, and the both ends thereof are integrally connected to the third movable body portion 33 of the movable body 3 and the central portion is extended in the Y direction. The fourth sub hinge beam 62c is integrally connected to the base end portion of the fourth main beam 62a. The fourth sub hinge beam 62c is integrated with the third movable body portion 33 by forming a long hole 33a penetrating in the X direction and extending in the Y direction in the connecting portion of the main beam 62a in the third movable body portion 33. Is formed.
[0035]
The movable body 3 is assembled as shown in FIG. 14 and the movable table 4 is fixed as shown in FIG. 15 as in the first device M1, but the deformation of the fourth sub hinge beam 62c is the first. A slight gap is formed between the third movable body portion 33 and the second movable body portion 32 where the fourth sub hinge beam 62c is formed so that the second movable body portion 32 is not obstructed.
[0036]
Each of the H-shaped beams 51B, 52B, 61B, and 62B has the same shape and the same material, and has the same elastic deformability. Further, each of the hinge beams 51b, 52b, 61b, and 62b has a plate thickness T as shown in FIG. 16 in order to facilitate its elastic deformation. 4 The plate thickness T of the main beams 51a, 52a, 61a, 62a 1 (For example, T 1 = 1mm, T 2 = 0.2 mm). However, the end portions of each main beam 51a, 52a, 61a, 62a are shown in FIG. 16 in order to facilitate the displacement of the main beams 51a, 52a, 61a, 62a accompanying the movement of the movable frame 2 or the movable body 3. The thickness T 2 , T 3 The thickness T of the hinge beams 51b, 52b, 61b, 62b 4 (For example, T 2 = T 3 = 0.3 mm). The length of the sub hinge beams 51c, 52c, 61c, and 62c is shorter than the length of the hinge beams 51b, 52b, 61b, and 62b. 4 Is set to the same level.
[0037]
Each of the H-shaped beams 51B, 52B, 61B, and 62B is integrally formed (by electric discharge machining or the like) with its connecting member using a metal material (titanium or the like) or a non-metal material (FRP or carbon or the like) having a high elastic limit. ing. In this example, as in the case of the T-shaped beams 51A, 52A, 61A, and 62A, it is easy to incorporate the movable body 3 into the movable frame 2 and the movable frame 2 and the movable body 3 into the fixed frame 1. 12 to 14, the movable frame 2 and the movable body 3 are connected to the connecting portions of the H-shaped beams 51B, 52B, 61B, and 62B and the connecting portions for connecting the connecting portions. It has been devised so that it can be assembled after being divided into two parts. That is, for the first and second parallel beams 51, 51 and 52, 52, as shown in FIG. 12, the fixed frame 1, the first and second T-shaped beams 51, 52 connected to the fixed frame 1, and the sub-hinges. The beam 51c, 52c is manufactured by electric discharge machining or the like as an integral structure including a movable frame portion (fourth movable frame portion 24) to which the beams 51c and 52c are separately connected. Further, for each third parallel 61, as shown in FIGS. 13 and 14, the first movable frame portion 21, a pair of third T-shaped beams 61, 61 connected thereto, and the sub hinge beams 61c thereof are respectively It is manufactured by electric discharge machining or the like as an integral structure composed of a movable body portion (first movable body portion 31) separately connected. Further, as shown in FIGS. 13 and 14, the fourth parallel beams 62 and 62 are connected to both the second movable frame portions 21 and 21 (integrated with the third movable frame portions 23 and 23) and the second movable frame portions 21 and 21, respectively. As an integral structure composed of two pairs of fourth T-shaped beams 62, 62 and 62, 62 and movable body portions (third movable body portion 33) to which the sub-hinge beams 62c are individually connected, electric discharge machining Etc. MH51 is used as a constituent material of these integrated structures. Thus, by connecting these integral structures directly or indirectly via the connecting portions (the sixth movable frame portion 26, the second movable body portion 32, and the fourth movable body portion 34), As shown in FIG. 11, the second device M2 can be assembled.
[0038]
According to such H-shaped beams 51, 52, 61, and 62, the rotational displacement about the base ends of the main beams 51a, 52a, 61a, and 62a is as shown by the solid lines in FIGS. Since the auxiliary hinge beams 51c, 52c, 61c, and 62c are more easily deformed by elastic deformation, the elastic deformation of the beams is performed more smoothly than in the case of the T-shaped beams 51A, 52A, 61A, and 62A. Is called. Further, the amount of movement from the neutral position in the X direction of the movable frame 2 (the position indicated by the chain line in FIGS. 17 and 18) or the neutral position in the Y direction of the movable body 3 (the position indicated by the chain line in FIGS. 19 and 20). If the movement amount of the main beam 51a is increased, the maximum stress acts on the end connection points of the main beams 51a, 52a, 61a, 62a, and the parallel beams 51, 52, 61, 62 may be plastically deformed by long-term use. If the base ends of the main beams 51a, 52a, 61a, 62a are connected to the movable frame 2 or the movable body 3 via the sub-hinge beams 51c, 52c, 61c, 62c, such a risk can be avoided and the life of the apparatus can be avoided. Can be improved.
[0039]
It should be noted that the present invention is not limited to the above-described embodiments, and can be appropriately improved and changed without departing from the basic principle of the present invention. For example, the main beam and the hinge beam are not linear but can be curved or bent. In addition, the T-shaped beam or the H-shaped beam is formed as an independent member, and the base end portion of the main beam or both ends of the hinge beam in the T-shaped beam, or both ends of the hinge beam or the sub hinge beam in the H-shaped beam. It is also possible to fix the part to a fixed frame or the like (for example, bonding with an adhesive or soldering). Further, the configuration of the moving means 7 and 8 is also arbitrary. For example, an operating member having a high degree of freedom such as a wire, a rod having a minute diameter (for example, 1 mm or less), a band plate, or the like is used. In addition, the second moving means 8 can be forcibly moved in the X direction with respect to the fixed frame 1 by being connected to the movable body 3 and applying a tensile force to these operating members. The movable body 3 can be configured to be forcibly moved in the Y direction with respect to the fixed frame 1 and the movable frame 2.
[0040]
【The invention's effect】
The ultra-precise moving table apparatus of the present invention supports the movable frame to the fixed frame and supports the movable body to the movable frame by parallel beams, and the parallel beams are easily deformed with T-shaped beams or H-shaped beams. Compared to the conventional device in which the movable member is guided by a member that makes contact (rolling or sliding) with the movable member, the moving accuracy of the movable table on the XY plane and its reliability are compared. Therefore, the practical value as a fine movement device is extremely large.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first device.
FIG. 2 is a perspective view showing a fixed frame of the first device.
FIG. 3 is a perspective view showing a movable frame of the first device.
FIG. 4 is a perspective view showing a movable body of the first device.
FIG. 5 is a perspective view showing a movable body and a moving table of the first device.
FIG. 6 is a plan view showing a main part (T-shaped beam) of the first device.
FIG. 7 is a schematic plan view showing a moving state of the movable frame and a deformed state of the first parallel beam in the first device.
FIG. 8 is a schematic side view showing a moving state of the movable frame and a deformed state of the second parallel beam in the first device.
FIG. 9 is a schematic plan view showing a moving state of the movable body and a deformed state of the third parallel beam in the first device.
FIG. 10 is a schematic front view showing a moving state of a movable body and a deformed state of a fourth parallel beam in the first device.
FIG. 11 is a perspective view showing a second device.
FIG. 12 is a perspective view showing a fixed frame of the second device.
FIG. 13 is a perspective view showing a movable frame of the second device.
FIG. 14 is a perspective view showing a movable body of the second device.
FIG. 15 is a perspective view showing a movable body and a moving table of the second device.
FIG. 16 is a plan view showing a main part (H-shaped beam) of the second device.
FIG. 17 is a schematic plan view showing a moving state of the movable frame and a deformed state of the first parallel beam in the second device.
FIG. 18 is a schematic side view showing a moving state of the movable frame and a deformed state of the second parallel beam in the second device.
FIG. 19 is a schematic plan view showing the moving state of the movable body and the deformed state of the third parallel beam in the second device.
FIG. 20 is a schematic front view showing a moving state of the movable body and a deformed state of the fourth parallel beam in the second device.
[Explanation of symbols]
M1 ... first device (ultra-precision moving table device), M2 ... second device (ultra-precision moving table device), 1 ... fixed frame, 2 ... movable frame, 3 ... movable body, 4 ... moving table, 5 ... first Guide means, 6 ... 2nd guide means, 7 ... 1st moving means, 8 ... 2nd moving means, 11 ... 1st fixed frame part, 12 ... 2nd fixed frame part, 13 ... 3rd movable frame part, 21 ... 1st movable frame part, 22 ... 2nd movable frame part, 23 ... 3rd movable frame part, 24 ... 4th movable frame part, 25 ... 5th movable frame part, 31 ... 1st movable body part, 32 ... 2nd Movable body part, 33 ... third movable body part, 34 ... fourth movable body part, 51 ... first parallel beam, 51A ... first T-shaped beam, 51B ... first H-shaped beam, 51a, 52a, 61a, 62a ... Main beam, 51b, 52b, 61b, 62b ... Hinge beam, 51c, 52c, 61c, 62c ... Sub hinge beam, 52 ... Second parallel beam, 5 A ... 2nd T-shaped beam, 52B ... 2nd H-shaped beam, 61 ... 3rd parallel beam, 61A ... 3rd T-shaped beam, 61B ... 3rd H-shaped beam, 62 ... 4th parallel beam, 62A ... 4th T Shaped beam, 62B ... 4th H-shaped beam.

Claims (2)

装置設置面に固定される固定枠と、固定枠内に配置された可動枠と、可動枠内に配置された可動体と、可動体に設けられた移動台と、可動枠を固定枠に相対的にX方向に往復移動自在に支持する第1ガイド手段と、可動体を可動枠に相対的にY方向に往復移動自在に支持する第2ガイド手段と、可動枠を固定枠に対して相対的にX方向に強制移動させる第1移動手段と、可動体を固定枠に対して相対的にY方向に強制移動させる第2移動手段と、を具備する超精密移動台装置であって、
第1ガイド手段が、可動枠とこれにY方向において対向する固定枠部分たる第1固定枠部分とを連結する一対の第1平行梁と、可動枠とこれにZ方向において対向する固定枠部分たる第2固定枠部分とを連結する一対の第2平行梁とで構成されており、
第2ガイド手段が、可動体とこれにX方向において対向する可動枠部分たる第1可動枠部分とを連結する一対の第3平行梁と、可動体とこれにZ方向において対向する可動枠部分たる第2可動枠部分とを連結する一対の第4平行梁とで構成されており、
各第1平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動枠に連結されてY方向に延びる第1主梁とX方向に延びて両端部が第1固定枠部分に連結され且つ中央部が第1主梁の先端部に一体連結された第1ヒンジ梁とからなる一対の第1T字状梁で構成されており、
各第2平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動枠に連結されてZ方向に延びる第2主梁とX方向に延びて両端部が第2固定枠部分に連結され且つ中央部が第2主梁の先端部に一体連結された第2ヒンジ梁とからなる一対の第2T字状梁で構成されており、
各第3平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動体に連結されてX方向に延びる第3主梁とY方向に延びて両端部が第1可動枠部分に連結され且つ中央部が第3主梁の先端部に一体連結された第3ヒンジ梁とからなる一対の第3T字状梁で構成されており、
各第4平行梁は、板面がZ方向に平行するバネ板からなる一対のT字状梁であって、基端部が可動体に連結されてZ方向に延びる第4主梁とY方向に延びて両端部が第2可動枠部分に連結され且つ中央部が第4主梁の先端部に一体連結された第4ヒンジ梁とからなる一対の第4T字状梁で構成されており、
移動台が、第1移動手段により可動枠にX方向への押圧力又は引張力を作用させることによって第1及び第2平行梁を弾性変形しつつ固定枠に対してX方向に相対直線変位せしめられると共に、第2移動手段により可動体にY方向への押圧力又は引張力を作用させることによって第3及び第4平行梁を弾性変形しつつ可動枠に対してX方向に相対直線変位せしめられ、且つ上記押圧力又は引張力を解除することによって第1及び第2平行梁又は第3及び第4平行梁が変形前の状態に弾性復帰するように構成してあることを特徴とする超精密移動台装置。
A fixed frame fixed to the apparatus installation surface, a movable frame arranged in the fixed frame, a movable body arranged in the movable frame, a moving table provided in the movable body, and the movable frame relative to the fixed frame First guide means for reciprocally supporting in the X direction, second guide means for supporting the movable body reciprocally in the Y direction relative to the movable frame, and relative to the fixed frame. A first moving means for forcibly moving in the X direction and a second moving means for forcibly moving the movable body in the Y direction relative to the fixed frame,
The first guide means includes a pair of first parallel beams that connect the movable frame and a first fixed frame portion that is a fixed frame portion that opposes the movable frame in the Y direction, a movable frame, and a fixed frame portion that opposes the movable frame in the Z direction. It is composed of a pair of second parallel beams that connect the second fixed frame portion.
The second guide means includes a pair of third parallel beams that connect the movable body and a first movable frame portion that is a movable frame portion facing the movable body in the X direction, a movable body, and a movable frame portion facing the movable body in the Z direction. It is composed of a pair of fourth parallel beams that connect the second movable frame portion.
Each first parallel beam is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, the first main beam extending in the Y direction with the base end connected to the movable frame, and the X direction. And a pair of first T-shaped beams consisting of a first hinge beam having both ends connected to the first fixed frame portion and a central portion integrally connected to the tip of the first main beam,
Each of the second parallel beams is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and a second main beam extending in the Z direction with a proximal end connected to the movable frame and the X direction. And a pair of second T-shaped beams consisting of a second hinge beam having both ends connected to the second fixed frame portion and a central portion integrally connected to the tip of the second main beam,
Each third parallel beam is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and a third main beam extending in the X direction with a base end connected to the movable body and the Y direction. And a pair of third T-shaped beams comprising both ends connected to the first movable frame portion and a third hinge beam integrally connected to the tip of the third main beam.
Each of the fourth parallel beams is a pair of T-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, and a fourth main beam extending in the Z direction with a base end connected to the movable body and the Y direction. And a pair of fourth T-shaped beams comprising a fourth hinge beam having both ends connected to the second movable frame portion and a central portion integrally connected to the tip of the fourth main beam,
The moving table causes the first and second parallel beams to be displaced relative to the fixed frame in the X direction while elastically deforming the first and second parallel beams by applying a pressing force or tensile force in the X direction to the movable frame by the first moving means. In addition, by applying a pressing force or a tensile force in the Y direction to the movable body by the second moving means, the third and fourth parallel beams are relatively linearly displaced in the X direction with respect to the movable frame while elastically deforming the third and fourth parallel beams. And the first and second parallel beams or the third and fourth parallel beams are elastically returned to the state before deformation by releasing the pressing force or tensile force. Mobile stand device.
装置設置面に固定される固定枠と、固定枠内に配置された可動枠と、可動枠内に配置された可動体と、可動体に設けられた移動台と、可動枠を固定枠に相対的にX方向に往復移動自在に支持する第1ガイド手段と、可動体を可動枠に相対的にY方向に往復移動自在に支持する第2ガイド手段と、可動枠を固定枠に対して相対的にX方向に強制移動させる第1移動手段と、可動体を固定枠に対して相対的にY方向に強制移動させる第2移動手段と、を具備する超精密移動台装置であって、
第1ガイド手段が、可動枠とこれにY方向において対向する固定枠部分たる第1固定枠部分とを連結する一対の第1平行梁と、可動枠とこれにZ方向において対向する固定枠部分たる第2固定枠部分とを連結する一対の第2平行梁とで構成されており、
第2ガイド手段が、可動体とこれにX方向において対向する可動枠部分たる第1可動枠部分とを連結する一対の第3平行梁と、可動体とこれにZ方向において対向する可動枠部分たる第2可動枠部分とを連結する一対の第4平行梁とで構成されており、
各第1平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、Y方向に延びる第1主梁と、X方向に延びて両端部が第1固定枠部分に連結され且つ中央部が第1主梁の先端部に一体連結された第1ヒンジ梁と、X方向に延びて両端部が可動枠に連結され且つ中央部が第1主梁の基端部に一体連結された第1副ヒンジ梁とからなる一対の第1H字状梁で構成されており、
各第2平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、Z方向に延びる第2主梁と、X方向に延びて両端部が第2固定枠部分に連結され且つ中央部が第2主梁の先端部に一体連結された第2ヒンジ梁と、X方向に延びて両端部が可動枠に連結され且つ中央部が第2主梁の基端部に一体連結された第2副ヒンジ梁とからなる一対の第2H字状梁で構成されており、
各第3平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、X方向に延びる第3主梁と、Y方向に延びて両端部が第1可動枠部分に連結され且つ中央部が第3主梁の先端部に一体連結された第3ヒンジ梁と、Y方向に延びて両端部が可動体に連結され且つ中央部が第3主梁の基端部に一体連結された第3副ヒンジ梁とからなる一対の第3H字状梁で構成されており、
各第4平行梁は、板面がZ方向に平行するバネ板からなる一対のH字状梁であって、Z方向に延びる第4主梁と、Y方向に延びて両端部が第2可動枠部分に連結され且つ中央部が第4主梁の先端部に一体連結された第4ヒンジ梁と、Y方向に延びて両端部が可動体に連結され且つ中央部が第4主梁の基端部に一体連結された第4副ヒンジ梁とからなる一対の第4H字状梁で構成されており、
移動台が、第1移動手段により可動枠にX方向への押圧力又は引張力を作用させることによって第1及び第2平行梁を弾性変形しつつ固定枠に対してX方向に相対直線変位せしめられると共に、第2移動手段により可動体にY方向への押圧力又は引張力を作用させることによって第3及び第4平行梁を弾性変形しつつ可動枠に対してX方向に相対直線変位せしめられ、且つ上記押圧力又は引張力を解除することによって第1及び第2平行梁又は第3及び第4平行梁が変形前の状態に弾性復帰するように構成してあることを特徴とする超精密移動台装置。
A fixed frame fixed to the apparatus installation surface, a movable frame arranged in the fixed frame, a movable body arranged in the movable frame, a moving table provided in the movable body, and the movable frame relative to the fixed frame First guide means for reciprocally supporting in the X direction, second guide means for supporting the movable body reciprocally in the Y direction relative to the movable frame, and relative to the fixed frame. A first moving means for forcibly moving in the X direction and a second moving means for forcibly moving the movable body in the Y direction relative to the fixed frame,
The first guide means includes a pair of first parallel beams that connect the movable frame and a first fixed frame portion that is a fixed frame portion that opposes the movable frame in the Y direction, a movable frame, and a fixed frame portion that opposes the movable frame in the Z direction. It is composed of a pair of second parallel beams that connect the second fixed frame portion.
The second guide means includes a pair of third parallel beams that connect the movable body and a first movable frame portion that is a movable frame portion facing the movable body in the X direction, a movable body, and a movable frame portion facing the movable body in the Z direction. It is composed of a pair of fourth parallel beams that connect the second movable frame portion.
Each first parallel beam is a pair of H-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction. The first main beam extends in the Y direction, and both ends are fixed in the X direction. A first hinge beam coupled to the frame portion and having a central portion integrally coupled to a tip portion of the first main beam, and extending in the X direction and having both end portions coupled to the movable frame and the central portion serving as a base of the first main beam; It is composed of a pair of first H-shaped beams consisting of a first sub hinge beam integrally connected to the end,
Each of the second parallel beams is a pair of H-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, the second main beam extending in the Z direction, and both ends of the second fixed beam are fixed in the X direction. A second hinge beam connected to the frame portion and having a central portion integrally connected to a tip portion of the second main beam; and extending in the X direction and having both end portions connected to the movable frame and the central portion being a base of the second main beam. It is composed of a pair of second H-shaped beams consisting of a second sub hinge beam integrally connected to the end,
Each third parallel beam is a pair of H-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction. The third main beam extends in the X direction, and both ends are first movable in the Y direction. A third hinge beam connected to the frame portion and having a central portion integrally connected to a tip portion of the third main beam, and extending in the Y direction, both ends thereof being connected to the movable body, and the central portion being a base of the third main beam; It consists of a pair of 3rd H-shaped beams consisting of a 3rd sub hinge beam integrally connected to the end,
Each fourth parallel beam is a pair of H-shaped beams made of spring plates whose plate surfaces are parallel to the Z direction, the fourth main beam extending in the Z direction, and both ends of the fourth movable beam extending in the Y direction are second movable. A fourth hinge beam connected to the frame portion and having a central portion integrally connected to a tip portion of the fourth main beam, and extending in the Y direction, both ends thereof being connected to the movable body, and the central portion being a base of the fourth main beam; It is composed of a pair of 4th H-shaped beams consisting of a 4th sub hinge beam integrally connected to the end,
The moving table causes the first and second parallel beams to be displaced relative to the fixed frame in the X direction while elastically deforming the first and second parallel beams by applying a pressing force or tensile force in the X direction to the movable frame by the first moving means. In addition, by applying a pressing force or a tensile force in the Y direction to the movable body by the second moving means, the third and fourth parallel beams are relatively linearly displaced in the X direction with respect to the movable frame while elastically deforming the third and fourth parallel beams. And the first and second parallel beams or the third and fourth parallel beams are elastically returned to the state before deformation by releasing the pressing force or tensile force. Mobile stand device.
JP2003206369A 2003-08-06 2003-08-06 Ultra-precision moving platform equipment Expired - Fee Related JP4362326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206369A JP4362326B2 (en) 2003-08-06 2003-08-06 Ultra-precision moving platform equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206369A JP4362326B2 (en) 2003-08-06 2003-08-06 Ultra-precision moving platform equipment

Publications (2)

Publication Number Publication Date
JP2005055209A true JP2005055209A (en) 2005-03-03
JP4362326B2 JP4362326B2 (en) 2009-11-11

Family

ID=34363257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206369A Expired - Fee Related JP4362326B2 (en) 2003-08-06 2003-08-06 Ultra-precision moving platform equipment

Country Status (1)

Country Link
JP (1) JP4362326B2 (en)

Also Published As

Publication number Publication date
JP4362326B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
US6937911B2 (en) Compensating for cable drag forces in high precision stages
US20090050776A1 (en) Apparatus for manipulation of an optical element
US8416386B2 (en) Conforming seats for clamps used in mounting an optical element, and optical systems comprising same
JPH07119814B2 (en) Adjustment device for small movements
DE102013206531A1 (en) Device for displacing micromirror in optical module of illumination system, has compensating unit compensating linear displacement of micromirror or predetermined pivot axis during pivoting of micromirror
DE19504568A1 (en) Tilting mirror arrangement
KR20160145209A (en) Charged particle beam lithography system and target positioning device
EP0394914B1 (en) Mechanical stage support especially for a tunneling microscope
JP4362326B2 (en) Ultra-precision moving platform equipment
JP3434709B2 (en) Table mechanism
KR100657880B1 (en) Planar stage apparatus
JP5178291B2 (en) Stage equipment
JP4051881B2 (en) Braking mechanism and electron microscope sample stage
JP4240981B2 (en) Ultra-precision moving platform equipment
JP3772005B2 (en) Moving device and scanning probe microscope having the moving device
TW201314382A (en) Guidance for target processing tool
JP2006339263A (en) Z-axis adjustment mechanism and micromotion stage
JP4171694B2 (en) Hardness testing machine
JP2004259448A (en) Sample stage driving mechanism
JP5002513B2 (en) Stage positioning control device
CN104505127A (en) Z-axis positive direction amplifying one-dimensional precise positioning platform
JPH1047931A (en) Two-dimensional measuring device
US20190032759A1 (en) Method and precision nanopositioning apparatus with compact vertical and horizontal linear nanopositioning flexure stages for implementing enhanced nanopositioning performance
CN115954043A (en) Asymmetric differential micro-nano linear motion platform and working method
JP4106477B2 (en) Stage equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees