JP2005055067A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005055067A
JP2005055067A JP2003285976A JP2003285976A JP2005055067A JP 2005055067 A JP2005055067 A JP 2005055067A JP 2003285976 A JP2003285976 A JP 2003285976A JP 2003285976 A JP2003285976 A JP 2003285976A JP 2005055067 A JP2005055067 A JP 2005055067A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
heat exchanger
heat
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285976A
Other languages
Japanese (ja)
Inventor
Kenji Okamoto
憲治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003285976A priority Critical patent/JP2005055067A/en
Publication of JP2005055067A publication Critical patent/JP2005055067A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for performing heat exchange by boiling refrigerant and evaporating a part of the refrigerant and capable of realizing excellent heat exchange efficiency. <P>SOLUTION: A refrigerant flow passage 3 in which the refrigerant flows in a perpendicular direction to an input direction of heat transferred from a heat source 4 is provided and at least a part of the refrigerant is evaporated in the refrigerant flow passage 3 by heat exchange. The refrigerant flow passage 3 is equipped with a main passage 13 and a recessed part 14 which is formed at a heat source 4 side of the main passage 13 along its longitudinal direction and is narrower than the main passage 13. The recessed part 14 is formed so that air bubble generated by evaporation can be discharged to the main passage 13 when at least a part of the refrigerant is evaporated in the recessed part 14 by heat exchange. Width w<SB>1</SB>of the recessed part 14 is 0.1 to 3 mm, favorably, 0.1 to 1 mm. When the width w<SB>1</SB>of the recessed part 14 is 0.1 to 1 mm, depth d<SB>1</SB>of the recessed part 14 is 1/5 to 1/2 of the width w<SB>1</SB>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱源から伝達される熱の入力方向に対して垂直方向に冷媒が流れる冷媒流路を備える直交流型熱交換器に関するものである。   The present invention relates to a cross flow type heat exchanger including a refrigerant flow path in which a refrigerant flows in a direction perpendicular to an input direction of heat transmitted from a heat source.

熱源の冷却のために、該熱源から伝達される熱の入力方向に対して垂直方向に冷媒が流れる冷媒流路を備える直交流型熱交換器が用いられている。従来、前記熱交換器では、液状の冷媒が顕熱を奪うことにより前記熱源の冷却を行っており、前記冷媒流路の断面形状を凹凸状として該冷媒流路の表面積を大きくすることにより、熱交換効率を向上したものが知られている(例えば特許文献1,2参照)。   In order to cool a heat source, a cross flow type heat exchanger including a refrigerant flow path in which a refrigerant flows in a direction perpendicular to an input direction of heat transmitted from the heat source is used. Conventionally, in the heat exchanger, the liquid refrigerant cools the heat source by taking sensible heat, and by increasing the surface area of the refrigerant flow path by making the cross-sectional shape of the refrigerant flow path uneven, What improved heat exchange efficiency is known (for example, refer to patent documents 1 and 2).

近年、前記熱交換器では、前記冷媒を沸騰させて該冷媒の一部を気化させたときに奪われる潜熱を利用して、前記熱源の冷却を行うことが検討されている。一般に、冷媒の単位質量当たりの潜熱は顕熱よりも大きいので、前記冷媒の一部を気化させることにより、熱交換効率を大きく向上させることができるものと考えられる。   In recent years, in the heat exchanger, it has been studied to cool the heat source by using latent heat taken when the refrigerant is boiled and a part of the refrigerant is vaporized. In general, since the latent heat per unit mass of the refrigerant is larger than the sensible heat, it is considered that the heat exchange efficiency can be greatly improved by vaporizing a part of the refrigerant.

前記冷媒を沸騰させる熱交換器では、熱流束(単位面積当たりに流れる熱量)を大きくするために、冷媒流路を狭くすることが行われている。   In the heat exchanger for boiling the refrigerant, the refrigerant flow path is narrowed in order to increase the heat flux (amount of heat flowing per unit area).

しかしながら、冷媒流路を狭くすると、熱流束の増大に伴って前記冷媒の沸騰により生じる気泡の容積が大きくなり、該気泡が狭い流路内で移動しにくくなる。この結果、前記冷媒流路の伝熱面が前記気泡で覆われて液体状態の冷媒への熱伝達が阻害され、熱交換効率が低減するという不都合がある。
特開2000−18867号公報 特開2000−74587号公報
However, if the refrigerant flow path is narrowed, the volume of bubbles generated by the boiling of the refrigerant increases as the heat flux increases, and the bubbles are difficult to move in the narrow flow path. As a result, the heat transfer surface of the refrigerant flow path is covered with the bubbles, and heat transfer to the liquid refrigerant is hindered, resulting in a reduction in heat exchange efficiency.
JP 2000-18867 A JP 2000-74587 A

本発明は、かかる不都合を解消して、冷媒を沸騰させて該冷媒の一部を気化させることにより熱交換を行うものであって、優れた熱交換効率を得ることができる熱交換器を提供することを目的とする。   The present invention provides a heat exchanger that eliminates such inconvenience and performs heat exchange by boiling a refrigerant and evaporating a part of the refrigerant, thereby obtaining excellent heat exchange efficiency. The purpose is to do.

かかる目的を達成するために、本発明の熱交換器は、熱源から伝達される熱の入力方向に対して垂直方向に冷媒が流れる冷媒流路を備え、該冷媒流路内で該冷媒の少なくとも一部が熱交換により気化する直交流型熱交換器であって、該冷媒流路は主流路と、該主流路の熱源側に該主流路の長さ方向に沿って形成された該主流路より幅の狭い凹部とを備え、該凹部は熱交換により該冷媒の少なくとも一部が該凹部内で気化したときに該気化により生成した気泡を該主流路に放出可能な形状を備えることを特徴とする。   In order to achieve such an object, the heat exchanger of the present invention includes a refrigerant flow path in which a refrigerant flows in a direction perpendicular to an input direction of heat transmitted from a heat source, and at least the refrigerant in the refrigerant flow path. A cross flow type heat exchanger partially vaporized by heat exchange, wherein the refrigerant flow path is formed along the length direction of the main flow path on the heat source side of the main flow path A recess having a narrower width, and the recess has a shape capable of releasing bubbles generated by the vaporization into the main channel when at least a part of the refrigerant is evaporated in the recess by heat exchange. And

本発明の熱交換器では、前記冷媒流路に流通される前記冷媒が、前記熱源から入力される熱により加熱されて沸騰し、該冷媒の一部が気化するときに奪う潜熱により冷却を行う。
前記気化した冷媒は気泡を形成するが、このとき、前記冷媒流路には、前記主流路の熱源側に該主流路の長さ方向に沿って該主流路より幅の狭い凹部が形成されている。そこで、前記気泡は、まず前記凹部内に形成され、成長するに従って径が大きくなると、該凹部内から前記主流路に放出される。
In the heat exchanger according to the present invention, the refrigerant flowing through the refrigerant flow path is heated by the heat input from the heat source to boil, and is cooled by latent heat taken away when a part of the refrigerant is vaporized. .
The vaporized refrigerant forms bubbles. At this time, the refrigerant flow path is formed with a recess having a narrower width than the main flow path along the length direction of the main flow path on the heat source side of the main flow path. Yes. Therefore, the bubbles are first formed in the recess, and when the diameter increases as they grow, the bubbles are discharged from the recess to the main channel.

この結果、前記熱源に近い前記凹部には前記気泡が滞留しにくく、該凹部に液状の冷媒が流通しやすくなる。従って、本発明の熱交換器によれば、前記凹部に流通する液状の冷媒により熱交換を行うことができ、前記冷媒の気化により生じた気泡により熱伝達が阻害されることがないので、優れた熱交換効率を得ることができる。   As a result, the bubbles are less likely to stay in the recess close to the heat source, and the liquid refrigerant can easily flow through the recess. Therefore, according to the heat exchanger of the present invention, heat exchange can be performed by the liquid refrigerant flowing through the recess, and heat transfer is not hindered by bubbles generated by vaporization of the refrigerant. Heat exchange efficiency can be obtained.

前記凹部は、内部に生成した前記気泡を前記主流路に放出可能とするために、0.1〜3mmの幅を備えていることが好ましく、さらに0.1〜1mmの幅を備えていることが好ましい。前記凹部の幅は、0.1mm未満では製造が難しく、2mmを超えると、前記気泡が前記主流路に放出されにくく、十分な熱交換効率が得られないことがある。   The concave portion preferably has a width of 0.1 to 3 mm, and more preferably has a width of 0.1 to 1 mm, so that the bubbles generated therein can be discharged into the main flow path. Is preferred. If the width of the recess is less than 0.1 mm, it is difficult to produce, and if it exceeds 2 mm, the bubbles are difficult to be discharged into the main flow path, and sufficient heat exchange efficiency may not be obtained.

また、前記凹部は、0.1〜1mmの幅を備えているときに、前記気泡を前記主流路に放出しやすくするために、該幅の1/5〜1/2の深さを備えていることが好ましい。前記凹部の深さが前記幅の1/5未満では凹部としての形状が明確にならず、該凹部の内部に気泡を生成させる効果が十分に得られないことがある。また、前記凹部の深さが前記幅の1/2を超えると、前記気泡が前記主流路に放出されにくく、十分な熱交換効率が得られないことがある。   Moreover, when the said recessed part is equipped with the width | variety of 0.1-1 mm, in order to make it easy to discharge | release the said bubble to the said main flow path, it is equipped with the depth of 1 / 5-1 / 2 of this width | variety. Preferably it is. If the depth of the recess is less than 1/5 of the width, the shape of the recess may not be clear, and the effect of generating bubbles inside the recess may not be sufficiently obtained. In addition, when the depth of the concave portion exceeds 1/2 of the width, the bubbles are difficult to be released into the main flow path, and sufficient heat exchange efficiency may not be obtained.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の熱交換器の構成を示す説明的断面図、図2は図1に示す熱交換器の平面図、図3は図2のIII−III線断面図、図4は図1に示す熱交換器の組立方法を示す説明的断面図である。また、図5は図1に示す熱交換器の性能を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. 1 is an explanatory cross-sectional view showing the configuration of the heat exchanger of the present embodiment, FIG. 2 is a plan view of the heat exchanger shown in FIG. 1, FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2, and FIG. It is explanatory sectional drawing which shows the assembly method of the heat exchanger shown in FIG. FIG. 5 is a graph showing the performance of the heat exchanger shown in FIG.

図1,2に示すように、本実施形態の熱交換器1は、アルミニウム製の熱交換器本体2と、熱交換器本体2内に形成された冷媒流路3とからなる。熱交換器本体2の一方の表面には熱源としてセラミックヒーター4が積層されており、セラミックヒーター4の上にさらに温度測定用の熱電対5が積層されている。   As shown in FIGS. 1 and 2, the heat exchanger 1 of this embodiment includes an aluminum heat exchanger body 2 and a refrigerant flow path 3 formed in the heat exchanger body 2. A ceramic heater 4 is stacked as a heat source on one surface of the heat exchanger body 2, and a thermocouple 5 for temperature measurement is further stacked on the ceramic heater 4.

熱交換器本体2、セラミックヒーター4、熱電対5は、両外側から各2枚のシリコンゴムシート6a,6b、7a,7bで挟まれ、さらにシリコンゴムシート6a,6b、7a,7bの外側からステンレス板8a,8bで挟まれている。熱交換器本体2、セラミックヒーター4、熱電対5は、ステンレス板8a,8bを貫通するボルト9と、ボルト9に螺着されたナット10とによりボルト締めされ、全体が均一に圧着されている。   The heat exchanger body 2, the ceramic heater 4, and the thermocouple 5 are sandwiched between two silicon rubber sheets 6a, 6b, 7a, and 7b from both outsides, and from the outside of the silicon rubber sheets 6a, 6b, 7a, and 7b. It is sandwiched between stainless plates 8a and 8b. The heat exchanger body 2, the ceramic heater 4, and the thermocouple 5 are bolted by a bolt 9 that penetrates through the stainless steel plates 8a and 8b and a nut 10 that is screwed to the bolt 9, and the whole is uniformly crimped. .

熱交換器1では、液状の冷媒は、流路入口3aから供給された後、分配部11で各冷媒流路3に分配され、冷媒流路3内でセラミックヒーター4から入力される熱と熱交換することにより加熱されて沸騰し、該冷媒の一部が気化する。この結果、熱交換器1は、前記液状の冷媒が気化する際の潜熱により、セラミックヒーター4の冷却を行うことができる。沸騰した液状の冷媒と、気化した冷媒の蒸気とは、集合部12を経て流路出口3bから排出される。   In the heat exchanger 1, after the liquid refrigerant is supplied from the flow path inlet 3 a, it is distributed to each refrigerant flow path 3 by the distributor 11, and heat and heat input from the ceramic heater 4 in the refrigerant flow path 3. It is heated and boiled by exchanging, and a part of the refrigerant is vaporized. As a result, the heat exchanger 1 can cool the ceramic heater 4 by latent heat when the liquid refrigerant is vaporized. The boiled liquid refrigerant and the vaporized refrigerant vapor are discharged from the flow path outlet 3b through the collecting portion 12.

前記冷媒流路3は、図3示のように、断面四角形の主流路13と、主流路13のセラミックヒーター4側に主流路13の長さ方向に沿って形成された断面四角形の凹部14とから形成されている。ここで、凹部14の幅w1は主流路13の幅w2よりも狭くなっており、0.1〜3mmの範囲となっている。また、凹部14の深さd1は凹部14の幅w1の1/5〜2倍の範囲となっている。 As shown in FIG. 3, the refrigerant flow path 3 includes a main flow path 13 having a quadrangular cross section, and a concave section 14 having a quadrangular cross section formed along the length direction of the main flow path 13 on the ceramic heater 4 side of the main flow path 13. Formed from. Here, the width w 1 of the recess 14 is narrower than the width w 2 of the main flow path 13 and is in the range of 0.1 to 3 mm. Further, the depth d 1 of the recess 14 is in the range of 1/5 to 2 times the width w 1 of the recess 14.

熱交換器1は、冷媒流路3が主流路13のセラミックヒーター4側に凹部14を備えているので、前記液状の冷媒は凹部14内で沸騰して気化し、気泡を発生する。前記気泡は、凹部14内で成長し次第に径が大きくなるが、凹部14は前記形状を備えているので、大径となった気泡は凹部14内から押し出され、主流路13に放出される。この結果、熱交換器1では、セラミックヒーター4に近い凹部14に液状の冷媒が流通し易くなり、該冷媒により熱交換を行うことができ、気泡により熱伝達が阻害されることがないので、優れた熱交換効率を得ることができる。   In the heat exchanger 1, since the refrigerant flow path 3 is provided with the concave portion 14 on the ceramic heater 4 side of the main flow path 13, the liquid refrigerant boils and vaporizes in the concave portion 14 to generate bubbles. The bubble grows in the recess 14 and gradually increases in diameter. However, since the recess 14 has the shape, the bubble having a large diameter is pushed out from the recess 14 and discharged into the main flow path 13. As a result, in the heat exchanger 1, the liquid refrigerant can easily flow through the concave portion 14 close to the ceramic heater 4, heat exchange can be performed by the refrigerant, and heat transfer is not hindered by the bubbles. Excellent heat exchange efficiency can be obtained.

凹部14の幅w1は、大径となった気泡を押し出しやすくするために、0.1〜3mmの範囲にあることが好ましく、さらに0.1〜1mmの範囲にあることが好ましい。また、凹部14の幅w1が0.1〜1mmの範囲にあるときに、凹部14の深さd1は、大径となった気泡を押し出しやすくするために、凹部14の幅w1の1/5〜1/2倍の範囲にあることが好ましい。 The width w 1 of the recess 14 is preferably in the range of 0.1 to 3 mm, and more preferably in the range of 0.1 to 1 mm, in order to facilitate the extrusion of bubbles having a large diameter. Further, when the width w 1 of the recess 14 is in the range of 0.1 to 1 mm, the depth d 1 of the concave portion 14, in order to facilitate extrusion bubbles became larger diameter, the width w 1 of the concave portion 14 It is preferably in the range of 1/5 to 1/2 times.

次に、本発明の実施例及び比較例を示す。   Next, examples and comparative examples of the present invention are shown.

実施例1〜16及び比較例1〜11では、まず図4に示すように、24mm×20mmのアルミニウム(A5052)板にセラミックヒーター4と反対側に開口する複数の溝部15を切削加工により刻設した熱源側部材16と、24mm×20mmのアルミニウム(A5052)板にセラミックヒーター4側に開口する複数の溝部17を切削加工により刻設した反熱源側部材18とを作成した。熱源側部材16には、長さ12mm、幅w1mm、深さd1mmの溝部15がG1mmの間隔でn本形成されている。一方、反熱源側部材18には長さ12mm、幅w2mm、深さd2mmの溝部17がG2mmの間隔でm本形成されている。 In Examples 1 to 16 and Comparative Examples 1 to 11, first, as shown in FIG. 4, a plurality of grooves 15 opened on the opposite side to the ceramic heater 4 are formed by cutting on a 24 mm × 20 mm aluminum (A5052) plate. The heat source side member 16 and the counter heat source side member 18 in which a plurality of grooves 17 opened to the ceramic heater 4 side were cut by cutting on a 24 mm × 20 mm aluminum (A5052) plate were prepared. The heat source side member 16 is formed with n grooves 15 each having a length of 12 mm, a width w 1 mm, and a depth d 1 mm at an interval of G 1 mm. On the other hand, m grooves 17 having a length of 12 mm, a width w 2 mm, and a depth d 2 mm are formed in the counter heat source side member 18 at intervals of G 2 mm.

実施例1〜16及び比較例1〜11で用いた熱源側部材16(HE−1〜11)を表1に、反熱源側部材18(Co−1〜8)を表2に示す。   Table 1 shows the heat source side members 16 (HE-1 to 11) used in Examples 1 to 16 and Comparative Examples 1 to 11, and Table 2 shows the counter heat source side members 18 (Co-1 to 8).

Figure 2005055067
Figure 2005055067

Figure 2005055067
Figure 2005055067

次に、熱源側部材16、反熱源側部材18を、溝部15,17が開口する面同士が対向するようにして積層することにより、熱交換器本体2を形成した。このとき、表1,2に示す複数種の熱源側部材16と、反熱源側部材18との組み合わせを変えて、溝部15により凹部14が形成され、溝部17により主流路13が形成されるようにすることにより、実施例1〜16の熱交換器1を構成した。また、熱源側部材16と、反熱源側部材18との組み合わせを変えて、溝部15、17の幅が等しく(w1=w2)することにより、凹部14が形成されず、主流路13のみを備える比較例1〜11の熱交換器1を構成した。 Next, the heat exchanger main body 2 was formed by laminating the heat source side member 16 and the counter heat source side member 18 so that the surfaces where the groove portions 15 and 17 are opened face each other. At this time, the combination of the plural types of heat source side members 16 shown in Tables 1 and 2 and the counter heat source side member 18 is changed so that the recesses 14 are formed by the groove portions 15 and the main flow path 13 is formed by the groove portions 17. Thus, the heat exchanger 1 of Examples 1 to 16 was configured. Further, by changing the combination of the heat source side member 16 and the counter heat source side member 18 so that the widths of the grooves 15 and 17 are equal (w 1 = w 2 ), the recess 14 is not formed, and only the main flow path 13 is formed. The heat exchanger 1 of Comparative Examples 1-11 provided with these was comprised.

尚、熱源側部材16と、反熱源側部材18との組み合わせによっては、1つの主流路13に複数の凹部14が形成されている場合がある。また、熱源側部材16、反熱源側部材18は、それぞれ溝部15、17の端部に分配部11、集合部12を形成する2mm×14mmの凹部(図示せず)が切削加工により刻設されている。   Depending on the combination of the heat source side member 16 and the counter heat source side member 18, a plurality of recesses 14 may be formed in one main flow path 13. In addition, the heat source side member 16 and the counter heat source side member 18 have a 2 mm × 14 mm recess (not shown) formed by cutting to form the distribution portion 11 and the gathering portion 12 at the ends of the groove portions 15 and 17, respectively. ing.

次に、セラミックヒーター4に75Wの電力を供給する一方、図1,2の流路入口3aから90℃の水を3g/分の流量で供給したときのセラミックヒーター4の温度を熱電対5で測定することにより、各熱交換器1の性能を比較した。尚、セラミックヒーター4の温度は、図1に示す装置全体をアーマフレックスチューブで覆い、外部と断熱した状態で測定した。結果を表3に示す。   Next, while supplying 75 W of electric power to the ceramic heater 4, the temperature of the ceramic heater 4 when supplying 90 ° C. water at a flow rate of 3 g / min from the flow path inlet 3 a of FIGS. The performance of each heat exchanger 1 was compared by measuring. The temperature of the ceramic heater 4 was measured in a state where the entire apparatus shown in FIG. 1 was covered with an armor flex tube and insulated from the outside. The results are shown in Table 3.

Figure 2005055067
Figure 2005055067

表3から、主流路13に凹部14を設けた実施例1〜16の熱交換器1によればセラミックヒーター4の温度が145.4〜157.8℃であり、凹部14がなく主流路13のみを備える比較例1〜11の167.7〜168.2℃に比較して、格段に優れた熱交換率が得られることが明らかである。   From Table 3, according to the heat exchanger 1 of Examples 1-16 which provided the recessed part 14 in the main flow path 13, the temperature of the ceramic heater 4 is 145.4-157.8 degreeC, there is no recessed part 14, and the main flow path 13 As compared with 167.7 to 168.2 ° C. of Comparative Examples 1 to 11 including only, it is clear that a remarkably excellent heat exchange rate can be obtained.

また、凹部14の幅w1が0.1〜1mmの範囲にあり、且つ深さd1が幅w1の1/5〜1/2倍の範囲にある実施例1,4〜7,14の熱交換器1によればセラミックヒータータ4の温度が145.4〜145.7℃であり、さらに優れた熱交換率が得られることが明らかである。 In addition, Examples 1 , 4 to 7, 14 in which the width w 1 of the recess 14 is in the range of 0.1 to 1 mm and the depth d 1 is in the range of 1/5 to 1/2 times the width w 1. According to the heat exchanger 1, the temperature of the ceramic heater 4 is 145.4 to 145.7 ° C., and it is clear that a further excellent heat exchange rate can be obtained.

熱源側部材16としてHE−1、反熱源側部材18としてCo−3を用いて、熱交換器1を形成した。この熱交換器1では、主流路13の幅w2=0.5mm、深さd2=0.3mmであり、凹部14の幅w1=0.1mm、深さd1=0.05mmとなっている。 The heat exchanger 1 was formed using HE-1 as the heat source side member 16 and Co-3 as the counter heat source side member 18. In this heat exchanger 1, the width w 2 of the main flow path 13 is 0.5 mm and the depth d 2 is 0.3 mm, the width w 1 of the recess 14 is 0.1 mm, and the depth d 1 is 0.05 mm. It has become.

次に、セラミックヒーター4に供給する電力を8〜40Wの範囲で変量する一方、図1,2の流路入口3aから90℃の水を3g/分の流量で供給したときのセラミックヒーター4の温度を熱電対5で測定した。尚、セラミックヒーター4の温度は、図1に示す装置全体をアーマフレックスチューブで覆い、外部と断熱した状態で測定した。結果を表4、図5に示す。   Next, while the electric power supplied to the ceramic heater 4 is varied in the range of 8 to 40 W, the 90 ° C. water is supplied at a flow rate of 3 g / min from the flow path inlet 3a of FIGS. The temperature was measured with a thermocouple 5. The temperature of the ceramic heater 4 was measured in a state where the entire apparatus shown in FIG. 1 was covered with an armor flex tube and insulated from the outside. The results are shown in Table 4 and FIG.

比較例12Comparative Example 12

熱源側部材16としてHE−1、反熱源側部材18としてCo−2を用いて、熱交換器1を形成した。この熱交換器1では、主流路13の幅w2=0.1mm、深さd2=0.15mmであり、凹部14は設けられていない。 The heat exchanger 1 was formed using HE-1 as the heat source side member 16 and Co-2 as the counter heat source side member 18. In this heat exchanger 1, the width w 2 of the main flow path 13 is 0.1 mm, the depth d 2 is 0.15 mm, and no recess 14 is provided.

次に、セラミックヒーター4に供給する電力を8〜40Wの範囲で変量する一方、図1,2の流路入口3aから90℃の水を3g/分の流量で供給したときのセラミックヒーター4の温度を熱電対5で測定した。尚、セラミックヒーター4の温度は、図1に示す装置全体をアーマフレックスチューブで覆い、外部と断熱した状態で測定した。結果を表4、図5に示す。   Next, while the electric power supplied to the ceramic heater 4 is varied in the range of 8 to 40 W, the 90 ° C. water is supplied at a flow rate of 3 g / min from the flow path inlet 3a of FIGS. The temperature was measured with a thermocouple 5. The temperature of the ceramic heater 4 was measured in a state where the entire apparatus shown in FIG. 1 was covered with an armor flex tube and insulated from the outside. The results are shown in Table 4 and FIG.

Figure 2005055067
Figure 2005055067

表4、図5から、主流路13に凹部14を設けた実施例17の熱交換器1によれば、各供給電力の場合にセラミックヒーター4の温度が、凹部14がなく主流路13のみを備える比較例12の熱交換器1よりも低い上、供給電力の増加に対するセラミックヒーター4の温度上昇が少なく、格段に優れた熱交換率が得られることが明らかである。   From Table 4 and FIG. 5, according to the heat exchanger 1 of Example 17 which provided the recessed part 14 in the main flow path 13, in the case of each supply electric power, the temperature of the ceramic heater 4 does not have the recessed part 14, but only the main flow path 13 is used. It is clear that the heat exchanger 1 is lower than the heat exchanger 1 of the comparative example 12 that is provided, and the temperature of the ceramic heater 4 is less increased with respect to the increase in power supply, so that a remarkably excellent heat exchange rate can be obtained.

実施例18〜21及び比較例13〜16では、表1,2に示す複数種の熱源側部材16と、反熱源側部材18との組み合わせを変えて熱交換器1を形成する際に、熱源側部材16と反熱源側部材18との位置を図4とは逆にし、下方に熱源側部材16、上方に反熱源側部材18を配置した。そして、熱源側部材16の下面にセラミックヒーター4と熱電対5とを配設した。   In Examples 18 to 21 and Comparative Examples 13 to 16, when the heat exchanger 1 was formed by changing the combination of the plurality of types of heat source side members 16 and the counter heat source side members 18 shown in Tables 1 and 2, the heat source The positions of the side member 16 and the counter heat source side member 18 are opposite to those in FIG. 4, and the heat source side member 16 is disposed below and the counter heat source side member 18 is disposed above. The ceramic heater 4 and the thermocouple 5 were disposed on the lower surface of the heat source side member 16.

このとき、溝部15により凹部14が形成され、溝部17により主流路13が形成されるようにして、実施例18〜21の熱交換器1を構成した。また、熱源側部材16と、反熱源側部材18とで溝部15、17の幅が等しく(w1=w2)なるようにして、凹部14が形成されず、主流路13のみを備える比較例13〜16の熱交換器1を構成した。 At this time, the recessed part 14 was formed by the groove part 15, and the main flow path 13 was formed by the groove part 17, and the heat exchanger 1 of Examples 18-21 was comprised. Further, a comparative example in which the recesses 14 are not formed and only the main flow path 13 is provided so that the widths of the grooves 15 and 17 are equal (w 1 = w 2 ) between the heat source side member 16 and the counter heat source side member 18. 13 to 16 heat exchangers 1 were configured.

次に、セラミックヒーター4に75Wの電力を供給する一方、図1,2の流路入口3aから90℃の水を3g/分の流量で供給したときのセラミックヒーター4の温度を熱電対5で測定することにより、各熱交換器1の性能を比較した。尚、セラミックヒーター4の温度は、図1に示す装置全体をアーマフレックスチューブで覆い、外部と断熱した状態で測定した。結果を表5に示す。   Next, while supplying 75 W of electric power to the ceramic heater 4, the temperature of the ceramic heater 4 when supplying 90 ° C. water at a flow rate of 3 g / min from the flow path inlet 3 a of FIGS. The performance of each heat exchanger 1 was compared by measuring. The temperature of the ceramic heater 4 was measured in a state where the entire apparatus shown in FIG. 1 was covered with an armor flex tube and insulated from the outside. The results are shown in Table 5.

Figure 2005055067
Figure 2005055067

表5から、主流路13に凹部14を設けた実施例18〜21の熱交換器1によればセラミックヒーター4の温度が144.9〜145.2℃であり、凹部14がなく主流路13のみを備える比較例13〜16の167.9〜168.2℃に比較して、格段に優れた熱交換率が得られることが明らかである。   From Table 5, according to the heat exchanger 1 of Examples 18-21 which provided the recessed part 14 in the main flow path 13, the temperature of the ceramic heater 4 is 144.9-145.2 degreeC, there is no recessed part 14, and the main flow path 13 As compared with 167.9 to 168.2 ° C. of Comparative Examples 13 to 16 including only, it is clear that a remarkably excellent heat exchange rate can be obtained.

また、表5から、セラミックヒーター4が熱交換器1の下側にある場合にも、熱交換器1の上側にある場合と同様に、主流路13のセラミックヒーター4側に凹部14を設けることにより優れた熱交換率が得られることが明らかである。   Further, from Table 5, when the ceramic heater 4 is on the lower side of the heat exchanger 1, the concave portion 14 is provided on the ceramic heater 4 side of the main flow path 13 as in the case of being on the upper side of the heat exchanger 1. It is clear that an excellent heat exchange rate can be obtained.

本発明の熱交換器の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the heat exchanger of this invention. 図1に示す熱交換器の平面図。The top view of the heat exchanger shown in FIG. 図2のIII−III線断面図。III-III sectional view taken on the line of FIG. 図1に示す熱交換器の組立方法を示す説明的断面図。Explanatory sectional drawing which shows the assembly method of the heat exchanger shown in FIG. 図1に示す熱交換器の性能を示すグラフである。It is a graph which shows the performance of the heat exchanger shown in FIG.

符号の説明Explanation of symbols

1…熱交換器、 2…熱交換器本体、 3…冷媒流路、 4…熱源、 13…主流路、 14…凹部。
DESCRIPTION OF SYMBOLS 1 ... Heat exchanger, 2 ... Heat exchanger main body, 3 ... Refrigerant flow path, 4 ... Heat source, 13 ... Main flow path, 14 ... Recessed part.

Claims (4)

熱源から伝達される熱の入力方向に対して垂直方向に冷媒が流れる冷媒流路を備え、該冷媒流路内で該冷媒の少なくとも一部が熱交換により気化する直交流型熱交換器であって、
該冷媒流路は主流路と、該主流路の熱源側に該主流路の長さ方向に沿って形成された該主流路より幅の狭い凹部とを備え、該凹部は熱交換により該冷媒の少なくとも一部が該凹部内で気化したときに該気化により生成した気泡を該主流路に放出可能な形状を備えることを特徴とする熱交換器。
This is a cross-flow type heat exchanger that includes a refrigerant flow path in which a refrigerant flows in a direction perpendicular to an input direction of heat transmitted from a heat source, and at least a part of the refrigerant is vaporized by heat exchange in the refrigerant flow path. And
The refrigerant flow path includes a main flow path, and a concave portion narrower than the main flow path formed along the length direction of the main flow path on the heat source side of the main flow path. A heat exchanger comprising a shape capable of releasing bubbles generated by vaporization into the main flow path when at least a part thereof is vaporized in the recess.
前記凹部は0.1〜3mmの幅を備えることを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the recess has a width of 0.1 to 3 mm. 前記凹部は0.1〜1mmの幅を備えることを特徴とする請求項1または請求項2記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the recess has a width of 0.1 to 1 mm. 前記凹部は幅に対して1/5〜1/2の深さを備えることを特徴とする請求項3記載の熱交換器。
The heat exchanger according to claim 3, wherein the recess has a depth of 1/5 to 1/2 of the width.
JP2003285976A 2003-08-04 2003-08-04 Heat exchanger Pending JP2005055067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285976A JP2005055067A (en) 2003-08-04 2003-08-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285976A JP2005055067A (en) 2003-08-04 2003-08-04 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005055067A true JP2005055067A (en) 2005-03-03

Family

ID=34365443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285976A Pending JP2005055067A (en) 2003-08-04 2003-08-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005055067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170117A (en) * 2007-01-15 2008-07-24 Wakasawan Energ Kenkyu Center Loop-type heat pipe
JP7371796B2 (en) 2017-04-11 2023-10-31 大日本印刷株式会社 Vapor chamber and mobile terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170117A (en) * 2007-01-15 2008-07-24 Wakasawan Energ Kenkyu Center Loop-type heat pipe
JP7371796B2 (en) 2017-04-11 2023-10-31 大日本印刷株式会社 Vapor chamber and mobile terminal

Similar Documents

Publication Publication Date Title
TWI361265B (en)
JP2004108769A (en) Plate fin heat exchanger with textured surface
Lee et al. Comparison of configurations for a compact regenerative evaporative cooler
WO2004083760A2 (en) Multi-level microchannel heat exchangers
WO2018121533A1 (en) Heat sink and communication product
EP1793422A3 (en) System and method of enhanced boiling heat transfer using pin fins
CA2344319A1 (en) Cold plate utilizing fin with evaporating refrigerant
EP1048918B1 (en) Evaporator
GB2532351A (en) Balanced heat exchanger systems and methods
JP2014033063A (en) Core of layered heat sink
JP5809759B2 (en) Method for improving fluid flow characteristics, heat exchanger to which the improvement method is applied, distillation apparatus, deodorizing apparatus, and cut plate used in the improvement method
EP3034978A1 (en) Plate type heat exchanger with cutted plate
GB2131538A (en) Liquid film evaporation type heat exchanger
US20080190594A1 (en) Heat Exchanger Device for Rapid Heating or Cooling of Fluids
WO2007102498A1 (en) Method of ebullient cooling, ebullient cooling apparatus, flow channel structure and application product thereof
US11841195B2 (en) Means for sensing temperature
JP2005055067A (en) Heat exchanger
US20160122205A1 (en) Device, apparatus and method for desalinating seawater
JP2005055066A (en) Heat exchanger
EP2053334B1 (en) Heat transfer enhancing system and method for fabricating heat transfer device
JPH09280692A (en) Plate type evaporating and absorbing device for absorption refrigerating machine
JP2005282914A (en) Evaporator for heat exchanger
JP5848977B2 (en) Absorption refrigerator
WO2013110938A2 (en) A generator for an absorption chiller and an absorption chiller comprising such a generator
CN211352907U (en) Thermosyphon fin plate