JP2005282914A - Evaporator for heat exchanger - Google Patents

Evaporator for heat exchanger Download PDF

Info

Publication number
JP2005282914A
JP2005282914A JP2004095901A JP2004095901A JP2005282914A JP 2005282914 A JP2005282914 A JP 2005282914A JP 2004095901 A JP2004095901 A JP 2004095901A JP 2004095901 A JP2004095901 A JP 2004095901A JP 2005282914 A JP2005282914 A JP 2005282914A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
heat transfer
uneven
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004095901A
Other languages
Japanese (ja)
Inventor
Kenji Okamoto
憲治 岡本
Yoshi Sukigara
宜 鋤柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004095901A priority Critical patent/JP2005282914A/en
Publication of JP2005282914A publication Critical patent/JP2005282914A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator for a heat exchanger capable of improving cooling performance of the heat exchanger. <P>SOLUTION: This evaporator for the heat exchanger comprises a refrigerant flow channel 3 for circulating the refrigerant, and a heat transfer face 2a kept into contact with the refrigerant in the refrigerant flow channel 3, and the phase of at least a part of the refrigerant kept into contact with the heat transfer face 2a is changed from liquid to gas. The heat transfer face 2a has an uneven surface 13 having specific surface area of 15cm<SP>2</SP>or more per 1cm<SP>2</SP>, and surface roughness Ry of 30μm or more. The heat transfer face 2a has the uneven surfaces 13 linearly formed along the circulating direction of the refrigerant and an even surface 14 linearly formed between the uneven surfaces 13, 13. The total area of the uneven surface 13 is wider than the total area of the even surface 14. The heat transfer face 2a is made out of an aluminum member, and the uneven surface 13 is formed by etching the aluminum member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒の少なくとも一部を液体から気体に相変化させる熱交換器用蒸発器に関するものである。   The present invention relates to an evaporator for a heat exchanger that changes a phase of at least a part of a refrigerant from a liquid to a gas.

従来、冷媒が流通される冷媒流路と、該冷媒流路内で該冷媒に接触する伝熱面とを備える熱交換器用蒸発器が知られている。前記熱交換器用蒸発器では、前記伝熱面に接触した冷媒が液体から気体に相変化することにより、該伝熱面から該冷媒に熱伝達が行われる。   2. Description of the Related Art Conventionally, there is known an evaporator for a heat exchanger that includes a refrigerant flow path through which a refrigerant flows and a heat transfer surface that contacts the refrigerant in the refrigerant flow path. In the heat exchanger evaporator, heat is transferred from the heat transfer surface to the refrigerant by the phase change of the refrigerant in contact with the heat transfer surface from a liquid to a gas.

前記熱伝達では前記冷媒が液体から気体に相変化する際に気泡が生成されるが、一般に該気泡は該冷媒の沸点で生成するのではなく、沸点未満の温度で気泡核が生成し、該気泡核が気泡に成長する。そこで、熱交換器の冷却能を向上させるためには、気泡核が生成される温度を低くすることが有効であり、このために気泡核が生成する核生サイトとして前記伝熱面に凹凸を設けることが行われている(例えば特許文献1参照)。   In the heat transfer, bubbles are generated when the refrigerant undergoes a phase change from a liquid to a gas. Generally, the bubbles are not generated at the boiling point of the refrigerant, but bubble nuclei are generated at a temperature below the boiling point, Bubble nuclei grow into bubbles. Therefore, in order to improve the cooling capacity of the heat exchanger, it is effective to lower the temperature at which bubble nuclei are generated. For this reason, the heat transfer surface is uneven as nucleation sites where bubble nuclei are generated. Provision is made (see, for example, Patent Document 1).

前記凹凸は、機械加工等により、0.1mm以上のものを設けることができる。しかしながら、さらに熱交換器の冷却能を向上させることができる技術の開発が望まれる。
特開2000−18867号公報 特開平7−198290号公報
The unevenness may be 0.1 mm or more by machining or the like. However, development of a technique that can further improve the cooling capacity of the heat exchanger is desired.
JP 2000-18867 A JP-A-7-198290

本発明は、かかる不都合を解消して、熱交換器の冷却能を向上させることができる熱交換器用蒸発器を提供することを目的とする。   An object of this invention is to provide the evaporator for heat exchangers which eliminates this inconvenience and can improve the cooling capacity of a heat exchanger.

かかる目的を達成するために、本発明者らは検討を重ねた結果、熱交換器の冷却能を向上させるためには、伝熱面に形成される凹凸をさらに微少なものにすると共に、該凹凸が特定の範囲の比表面積と、特定の範囲の面粗度とを併せ備えていることが有効であることを見出し、本発明に到達した。   In order to achieve such an object, the present inventors have repeatedly studied, and in order to improve the cooling capacity of the heat exchanger, the unevenness formed on the heat transfer surface is further reduced, and the It has been found that it is effective that the unevenness has a specific surface area in a specific range and a surface roughness in a specific range, and the present invention has been achieved.

そこで、本発明は、冷媒が流通される冷媒流路と、該冷媒流路内で該冷媒に接触する伝熱面とを備え、該伝熱面に接触した該冷媒の少なくとも一部を液体から気体に相変化させる熱交換器用蒸発器において、該伝熱面は、1cm2当たりの比表面積が15cm2以上であり、かつ、該伝熱面の任意の2点間について測定された凹凸の平均値を基準としたときに該平均値に対する最大高さRpと最大深さRvとの和Rp+Rvで示される面粗度Ryが30μm以上である凹凸面を備えることを特徴とする。 Accordingly, the present invention includes a refrigerant flow path through which a refrigerant flows and a heat transfer surface in contact with the refrigerant in the refrigerant flow path, and at least a part of the refrigerant in contact with the heat transfer surface is formed from a liquid. In the evaporator for a heat exchanger for changing the phase to gas, the heat transfer surface has a specific surface area of 15 cm 2 or more per 1 cm 2 , and the average of unevenness measured between any two points on the heat transfer surface The surface roughness Ry shown by the sum Rp + Rv of the maximum height Rp and the maximum depth Rv with respect to the average value when the value is used as a reference is provided.

本発明の熱交換器用蒸発器では、前記凹凸面が核生サイトとして作用することにより、気泡核が生成しやすくなる。従って、本発明の熱交換器用蒸発器によれば、より低い温度で該気泡核を生成させることができ、熱交換器の冷却能を向上させることができる。   In the evaporator for a heat exchanger according to the present invention, the concavo-convex surface acts as a nucleation site, so that bubble nuclei are easily generated. Therefore, according to the evaporator for heat exchangers of the present invention, the bubble nuclei can be generated at a lower temperature, and the cooling ability of the heat exchanger can be improved.

ところで、前述のように気泡核が生成しやすくなると、前記伝熱面における気泡の生成密度が高くなり、前記冷媒の下流側への流通が妨げられることがある。この場合には、前記伝熱面にホットスポットが生じ、熱伝達が不均一になる。   By the way, if bubble nuclei are easily generated as described above, the bubble generation density on the heat transfer surface increases, and the flow of the refrigerant downstream may be hindered. In this case, a hot spot is generated on the heat transfer surface, and heat transfer becomes uneven.

そこで、本発明の熱交換器用蒸発器において、前記伝熱面は、前記冷媒の流通方向に沿って線条をなして形成された前記凹凸面と、該凹凸面の間に線条をなして形成された非凹凸面とを備えることを特徴とする。前記のように、線条をなして形成された前記凹凸面と非凹凸面とを交互に配置することにより、前記伝熱面にホットスポットが生じることを防止して、熱伝達を均一に行うことができる。   Therefore, in the heat exchanger evaporator of the present invention, the heat transfer surface forms a line between the uneven surface formed by forming a line along the flow direction of the refrigerant and the uneven surface. And a non-concave surface formed. As described above, by alternately arranging the uneven surface and the non- uneven surface formed in the form of a line, it is possible to prevent hot spots from being generated on the heat transfer surface and to perform heat transfer uniformly. be able to.

また、前記のように、線条をなして形成された前記凹凸面と非凹凸面とを交互に配置するときには、前記伝熱面にホットスポットが生じることを防止して、熱伝達を均一に行うために、該凹凸面の総面積が該非凹凸面の総面積よりも広いことが好ましい。   In addition, as described above, when the uneven surface and the non- uneven surface formed in a line are alternately arranged, the heat transfer surface is prevented from being generated and the heat transfer is made uniform. In order to carry out, it is preferable that the total area of the uneven surface is larger than the total area of the non- uneven surface.

前記伝熱面は、熱伝導率が大きいことから、アルミニウム合金等のアルミニウム系部材により形成されていることが好ましい。このとき、前記凹凸面は前記アルミニウム系部材をエッチングすることにより形成することができる。   The heat transfer surface is preferably made of an aluminum-based member such as an aluminum alloy because of its high thermal conductivity. At this time, the uneven surface can be formed by etching the aluminum-based member.

熱交換器用アルミニウムフィンにエッチングを施して、該アルミニウムフィンの親水性を向上させる技術は知られている(例えば特許文献2参照)。しかし、この技術は、アルミニウムフィンの親水性を向上させることによって、該アルミニウムフィン上に凝縮した水分が除去されやすくするものであって、エッチングにより生じた凹凸面を核生サイトとすることについては記載も示唆するものも無い。   A technique for improving the hydrophilicity of aluminum fins by etching aluminum fins for heat exchangers is known (see, for example, Patent Document 2). However, this technique improves the hydrophilicity of the aluminum fins, thereby making it easy to remove moisture condensed on the aluminum fins. There is no description or suggestion.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の熱交換器用蒸発器の構成を示す説明的断面図であり、図2は面粗度Ryの定義を説明するグラフである。また、図3は図1に示す熱交換器用蒸発器の一構成例の平面図であり、図4は図1に示す熱交換器用蒸発器の他の構成例の平面図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view showing the configuration of the evaporator for heat exchanger of the present embodiment, and FIG. 2 is a graph for explaining the definition of the surface roughness Ry. 3 is a plan view of a configuration example of the heat exchanger evaporator shown in FIG. 1, and FIG. 4 is a plan view of another configuration example of the heat exchanger evaporator shown in FIG.

図1に示すように、本実施形態の熱交換器用蒸発器1は、アルミニウム合金製の蒸発器本体2と、蒸発器本体2に閉蓋されて冷媒流路3を形成するフッ素樹脂製蓋体4とからなり、蒸発器本体2の内面側が伝熱面2aとなっている。冷媒流路3には冷媒を供給する流路入口3a、冷媒を排出する流路出口3bが接続されている。また、蒸発器本体2の外表面には、銅チップ5を介して、熱源としてセラミックヒーター6が配設されており、セラミックヒーター6は銅チップ5と反対側に温度測定用のシート型アルメル−クロメル熱電対7を備えている。   As shown in FIG. 1, an evaporator 1 for a heat exchanger according to this embodiment includes an aluminum alloy evaporator body 2 and a fluororesin lid body that is closed by the evaporator body 2 to form a refrigerant flow path 3. 4, and the inner surface side of the evaporator body 2 is a heat transfer surface 2 a. The refrigerant flow path 3 is connected to a flow path inlet 3a for supplying the refrigerant and a flow path outlet 3b for discharging the refrigerant. Further, a ceramic heater 6 is disposed on the outer surface of the evaporator body 2 as a heat source via a copper chip 5, and the ceramic heater 6 is a sheet-type alumel for temperature measurement on the side opposite to the copper chip 5. A chromel thermocouple 7 is provided.

蒸発器本体2、蓋体4、銅チップ5、セラミックヒーター6、熱電対7は、両外側から各2枚のシリコンゴムシート8a,8b、9a,9bで挟まれ、さらにシリコンゴムシート8a,8b、9a,9bの外側からステンレス板10a,10bで挟まれている。そして、蒸発器本体2、蓋体4、銅チップ5、セラミックヒーター6、熱電対7は、ステンレス板10a,10bを貫通するボルト11と、ボルト11に螺着されたナット12とによりボルト締めされ、全体が均一に圧着されている。   The evaporator body 2, the lid body 4, the copper chip 5, the ceramic heater 6, and the thermocouple 7 are sandwiched between two silicon rubber sheets 8a, 8b, 9a, and 9b from both outsides, and further, the silicon rubber sheets 8a and 8b. , 9a and 9b are sandwiched between stainless plates 10a and 10b from the outside. The evaporator body 2, the lid 4, the copper chip 5, the ceramic heater 6, and the thermocouple 7 are bolted by bolts 11 that penetrate the stainless steel plates 10 a and 10 b and nuts 12 that are screwed to the bolts 11. The whole is crimped uniformly.

ここで、冷媒流路3に面した伝熱面2aには、凹凸面が形成されている。凹凸面は、アルミニウム合金製の蒸発器本体2の伝熱面2aをエッチングすることにより形成することができ、1cm2当たりの比表面積が15cm2以上であり、かつ、面粗度Ryが30μm以上になっている。 Here, an uneven surface is formed on the heat transfer surface 2 a facing the refrigerant flow path 3. The uneven surface can be formed by etching the heat transfer surface 2a of the evaporator body 2 made of aluminum alloy, the specific surface area per 1 cm 2 is 15 cm 2 or more, and the surface roughness Ry is 30 μm or more. It has become.

前記比表面積は、窒素ガスの吸着量から求めるBET法により測定した値である。また、前記面粗度Ryは、例えば接触式面粗度計により伝熱面2aの任意の2点間について測定された凹凸の値から、次のようにして算出された値である。   The specific surface area is a value measured by the BET method determined from the adsorption amount of nitrogen gas. The surface roughness Ry is a value calculated as follows from, for example, the unevenness value measured between any two points on the heat transfer surface 2a by a contact-type surface roughness meter.

まず、伝熱面2aの任意の2点A,B間について凹凸を測定すると、図2に示すラインLのようなグラフが得られる。そこで次に、ラインLについて、凹凸の平均値mを算出する。そして、平均値mを基準として最大高さRpと最大深さRvとを求め、両者の和Rp+Rvを面粗度Ryとする。   First, when unevenness is measured between two arbitrary points A and B on the heat transfer surface 2a, a graph like a line L shown in FIG. 2 is obtained. Therefore, for the line L, the average value m of the unevenness is calculated. Then, the maximum height Rp and the maximum depth Rv are obtained on the basis of the average value m, and the sum Rp + Rv of both is defined as the surface roughness Ry.

前記エッチングはそれ自体公知の方法により行うことができる。例えば、塩化第二鉄水溶液を用いる場合には、処理液濃度5〜30重量%、処理温度15〜40℃、処理時間1〜5分の範囲で、適宜条件を設定すればよい。   The etching can be performed by a method known per se. For example, in the case of using a ferric chloride aqueous solution, the conditions may be appropriately set within the range of the treatment liquid concentration of 5 to 30% by weight, the treatment temperature of 15 to 40 ° C., and the treatment time of 1 to 5 minutes.

蒸発器1では、流路入口3aから供給され、冷媒流路3に流通せしめられる液状の冷媒が、冷媒流路3内で伝熱面2aに接触することにより、セラミックヒーター6から入力される熱と熱交換することにより加熱されて、該冷媒の一部が気化する。そして、加熱された液状の冷媒と、気化した冷媒の蒸気とは、流路出口3bから排出される。   In the evaporator 1, the liquid refrigerant supplied from the flow path inlet 3 a and circulated through the refrigerant flow path 3 comes into contact with the heat transfer surface 2 a in the refrigerant flow path 3, and heat input from the ceramic heater 6. The refrigerant is heated by exchanging heat with it, and a part of the refrigerant is vaporized. Then, the heated liquid refrigerant and the vaporized refrigerant vapor are discharged from the flow path outlet 3b.

このとき、伝熱面2aには前記凹凸面が形成されているので、前記冷媒は該凹凸面を核生サイトとして、より低い温度で気泡核を生成することができる。この結果、蒸発器1を熱交換器に用いたときに、該熱交換器において優れた冷却能を得ることができる。   At this time, since the uneven surface is formed on the heat transfer surface 2a, the refrigerant can generate bubble nuclei at a lower temperature using the uneven surface as a nucleation site. As a result, when the evaporator 1 is used for a heat exchanger, an excellent cooling ability can be obtained in the heat exchanger.

蒸発器1では、図2に示すように、凹凸面13は、比表面積と面粗度とが前記条件を満たすものであれば、伝熱面2aの全面に形成されていてもよいが、図3に示すように、凹凸面13が伝熱面2aに前記冷媒の流通方向に沿って線条をなして形成されており、凹凸面13,13の間に凹凸の無い非凹凸面14が線条をなして形成されていることが好ましい。図3に示すようにすることにより、前記冷媒の下流側への流通を妨げることがなく、伝熱面2aにホットスポットが生じることを防止して、熱伝達を均一に行うことができる。   In the evaporator 1, as shown in FIG. 2, the uneven surface 13 may be formed on the entire surface of the heat transfer surface 2a as long as the specific surface area and the surface roughness satisfy the above conditions. 3, the uneven surface 13 is formed on the heat transfer surface 2 a as a line along the flow direction of the refrigerant, and the non-concave surface 14 without unevenness is formed between the uneven surfaces 13 and 13. It is preferably formed in a strip. By doing as shown in FIG. 3, it is possible to prevent heat spots from being generated on the heat transfer surface 2a without disturbing the flow of the refrigerant to the downstream side, and to perform heat transfer uniformly.

次に、本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be described.

実施例1〜6の熱交換器用蒸発器1は、図1に示す構成で、24mm×20mm×1mmのアルミニウム合金(A5052)材からなる蒸発器本体2と、24mm×20mm×3.2mmのフッ素樹脂製蓋体4との間に冷媒流路3を形成した。蒸発器本体2とフッ素樹脂製蓋体4との間には、1mmの間隔が設けられている。尚、流路入口3a、流路出口3bは、外径3.18mm、内径1.5mmである。   The evaporator 1 for heat exchangers of Examples 1 to 6 has the configuration shown in FIG. 1 and an evaporator main body 2 made of an aluminum alloy (A5052) material of 24 mm × 20 mm × 1 mm, and fluorine of 24 mm × 20 mm × 3.2 mm. A coolant channel 3 was formed between the resin lid 4 and the resin lid 4. A space of 1 mm is provided between the evaporator main body 2 and the fluororesin lid 4. The channel inlet 3a and the channel outlet 3b have an outer diameter of 3.18 mm and an inner diameter of 1.5 mm.

蒸発器本体2は、内面側を研磨して鏡面仕上げした後、冷媒流路3に面する伝熱面2aとなる領域を塩化第2鉄水溶液でエッチングし、図3に示すように11mm×12mmの凹凸面13を形成した。凹凸面13は、前記エッチングの条件を、処理液濃度5〜30重量%、処理温度15〜40℃、処理時間1〜5分の範囲で調整することにより、1cm2当たりの比表面積が15cm2以上、かつ、面粗度Ryが30μm以上となるようにされており、118μmの深さを備えている。尚、前記深さは、凹凸面13の幅方向中央部において、冷媒の流通方向に沿って10ヶ所の深さを測定した平均値である。 The evaporator main body 2 is polished to a mirror finish by polishing the inner surface side, and then the region that becomes the heat transfer surface 2a facing the refrigerant flow path 3 is etched with a ferric chloride aqueous solution, as shown in FIG. The uneven surface 13 was formed. Uneven surface 13, the conditions of the etching, the treatment liquid concentration from 5 to 30 wt%, treatment temperature 15 to 40 ° C., by adjusting the range of the processing time 1-5 minutes, the specific surface area per 1 cm 2 is 15cm 2 In addition, the surface roughness Ry is set to be 30 μm or more and has a depth of 118 μm. In addition, the said depth is an average value which measured the depth of ten places along the distribution direction of a refrigerant | coolant in the center part of the width direction of the uneven | corrugated surface 13. FIG.

また、蒸発器本体2の外表面には、23mm×14mm×1.5mmの銅チップ5を介して、10mm×20mm×1.75mmのセラミックヒーター6を配設し、セラミックヒーター6の銅チップ5と反対側に19.1mm×9.4mm×0.3mmのシート型アルメル−クロメル熱電対7を配設した。銅チップ5は、蒸発器本体2の外表面に対する接触面の大きさが14mm×14mmとなっており、冷媒の流通方向に沿って中央部と、該中央部から上流側、下流側それぞれ4mmの位置の3ヶ所に、側面から中心部まで直径0.3mmの穴が穿設されており、熱電対を挿入して中心部の温度を測定できるようになっている。   Further, a ceramic heater 6 of 10 mm × 20 mm × 1.75 mm is disposed on the outer surface of the evaporator body 2 via a copper chip 5 of 23 mm × 14 mm × 1.5 mm, and the copper chip 5 of the ceramic heater 6 is disposed. A sheet-type alumel-chromel thermocouple 7 having a size of 19.1 mm × 9.4 mm × 0.3 mm was disposed on the opposite side. The copper chip 5 has a contact surface size of 14 mm × 14 mm with respect to the outer surface of the evaporator body 2, and has a central portion along the refrigerant flow direction, 4 mm upstream and downstream from the central portion, respectively. Holes with a diameter of 0.3 mm are drilled at three positions from the side to the center, and the temperature of the center can be measured by inserting thermocouples.

蒸発器本体2、蓋体4、銅チップ5、セラミックヒーター6、熱電対7は、厚さ2mmのシリコンゴムシート8a,8b、9a,9bで挟まれ、さらにステンレス板10a,10bで挟まれて、ボルト11、ナット12とによりボルト締めされ、全体が均一に圧着されている。   The evaporator body 2, the lid 4, the copper chip 5, the ceramic heater 6, and the thermocouple 7 are sandwiched between 2 mm thick silicon rubber sheets 8a, 8b, 9a, 9b, and further sandwiched between stainless plates 10a, 10b. The bolt 11 and the nut 12 are bolted together, and the whole is uniformly crimped.

次に、冷媒として冷却水を流量2g/分、入口温度95℃で冷媒流路3に流通すると共に、セラミックヒーター6に50Wの電力を供給して、純銅チップ5の温度を測定し、熱交換器用蒸発器1の冷却能力を評価した。結果を表1に示す。   Next, cooling water as a refrigerant flows through the refrigerant flow path 3 at a flow rate of 2 g / min and an inlet temperature of 95 ° C., and power of 50 W is supplied to the ceramic heater 6 to measure the temperature of the pure copper chip 5 and perform heat exchange. The cooling capacity of the evaporator 1 was evaluated. The results are shown in Table 1.

また、BET法により測定した凹凸面13の比表面積と、接触式面粗度計により測定した凹凸面13の面粗度とを表1に併せて示す。
〔比較例1〕
比較例1の熱交換器用蒸発器1は、蒸発器本体2の内面側を研磨して鏡面仕上げした後、エッチングを行わず、伝熱面2aに凹凸面13を全く形成しなかった以外は、実施例1〜6と全く同一の構成を備えている。従って、本比較例では、伝熱面2aは前記鏡面仕上げしたままの状態となっている。
Table 1 also shows the specific surface area of the uneven surface 13 measured by the BET method and the surface roughness of the uneven surface 13 measured by a contact-type surface roughness meter.
[Comparative Example 1]
The evaporator 1 for the heat exchanger of Comparative Example 1 was polished except that the inner surface side of the evaporator body 2 was polished to a mirror finish, and then etching was not performed, and the uneven surface 13 was not formed at all on the heat transfer surface 2a. It has the completely same structure as Examples 1-6. Therefore, in this comparative example, the heat transfer surface 2a is in a state of being mirror-finished.

次に、実施例1〜6と全く同一にして、交換器用蒸発器1の冷却能力を評価した。結果を表1に示す。   Next, the cooling capacity of the exchanger evaporator 1 was evaluated in exactly the same way as in Examples 1-6. The results are shown in Table 1.

また、BET法により測定した伝熱面2aの比表面積と、接触式面粗度計により測定した伝熱面2aの面粗度とを表1に併せて示す。
〔比較例2〜5〕
比較例2〜5の熱交換器用蒸発器1は、前記エッチングの条件を調整することにより、凹凸面13の1cm2当たりの比表面積が15cm2未満、または、面粗度Ryが30μm以上となるようにした以外は、実施例1〜6と全く同一の構成を備えている。
Table 1 also shows the specific surface area of the heat transfer surface 2a measured by the BET method and the surface roughness of the heat transfer surface 2a measured by the contact-type surface roughness meter.
[Comparative Examples 2 to 5]
Heat exchanger evaporator 1 of Comparative Example 2-5, by adjusting the conditions of the etching, a specific surface area of less than 15cm 2 of 1 cm 2 per uneven surface 13, or, the surface roughness Ry is more 30μm Except as described above, the configuration is exactly the same as in the first to sixth embodiments.

次に、実施例1〜6と全く同一にして、交換器用蒸発器1の冷却能力を評価した。結果を表1に示す。   Next, the cooling capacity of the exchanger evaporator 1 was evaluated in exactly the same way as in Examples 1-6. The results are shown in Table 1.

また、BET法により測定した凹凸面13の比表面積と、接触式面粗度計により測定した凹凸面13の面粗度とを表1に併せて示す。   Table 1 also shows the specific surface area of the uneven surface 13 measured by the BET method and the surface roughness of the uneven surface 13 measured by a contact-type surface roughness meter.

Figure 2005282914

表1から、1cm2当たりの比表面積が15cm2以上、かつ、面粗度Ryが30μm以上となっている凹凸面13を備える熱交換器用蒸発器1(実施例1〜6)は、凹凸面13が形成されていない場合(比較例1)に対してはもちろんのこと、凹凸面13の1cm2当たりの比表面積が15cm2以上であるが面粗度Ryが30μm未満の場合(比較例2,3)、面粗度Ryが30μm以上であるが1cm2当たりの比表面積が15cm2未満である場合(比較例4,5)と比較しても、純銅チップ5の各部の温度が低く、優れた冷却能力を備えていることが明らかである。
Figure 2005282914

From Table 1, the heat exchanger evaporator 1 (Examples 1 to 6) including the uneven surface 13 having a specific surface area per 1 cm 2 of 15 cm 2 or more and a surface roughness Ry of 30 μm or more is an uneven surface. As a matter of course, the case where 13 is not formed (Comparative Example 1), the specific surface area per 1 cm 2 of the uneven surface 13 is 15 cm 2 or more, but the surface roughness Ry is less than 30 μm (Comparative Example 2). , 3), even when compared with the case where the specific surface area per but 1 cm 2 surface roughness Ry is 30μm or more is less than 15cm 2 (Comparative examples 4 and 5), lower temperature of each part of the pure copper chip 5, It is clear that it has excellent cooling capacity.

実施例7,8の熱交換器用蒸発器1は、蒸発器本体2の内面側を研磨して鏡面仕上げした後、冷媒流路3に面する伝熱面2aとなる領域に所定形状のマスキングを施して塩化第2鉄水溶液でエッチングし、図4に示すように、前記冷媒の流通方向に沿って線条をなす凹凸面13と、凹凸面13,13間で線条をなしている非凹凸面14とを形成した以外は、実施例1〜6と全く同一の構成を備えている。尚、非凹凸面14は、前記鏡面仕上げしたままの状態であり、実質的に平滑な面となっている。   In the evaporator 1 for heat exchangers of Examples 7 and 8, the inner surface side of the evaporator main body 2 is polished and mirror-finished, and then a mask having a predetermined shape is masked in the region that becomes the heat transfer surface 2a facing the refrigerant flow path 3. 4 and etching with a ferric chloride aqueous solution, as shown in FIG. 4, the uneven surface 13 forming a line along the flow direction of the refrigerant, and the uneven surface forming a line between the uneven surfaces 13, 13 Except that the surface 14 is formed, the configuration is exactly the same as in the first to sixth embodiments. In addition, the non-concave surface 14 is in a state in which the mirror surface is finished, and is a substantially smooth surface.

実施例7,8の熱交換器用蒸発器1における凹凸面13の幅、深さ、線条の本数、非凹凸面14の幅を、表2に示す。尚、前記深さは、凹凸面13の幅方向中央部において、冷媒の流通方向に沿って10ヶ所の深さを測定した平均値である。   Table 2 shows the width and depth of the uneven surface 13, the number of filaments, and the width of the non-concave surface 14 in the evaporator 1 for heat exchangers of Examples 7 and 8. In addition, the said depth is an average value which measured the depth of ten places along the distribution direction of a refrigerant | coolant in the center part of the width direction of the uneven | corrugated surface 13. FIG.

Figure 2005282914

表2から、実施例7,8の熱交換器用蒸発器1では、凹凸面13の総面積が非凹凸面14の総面積よりも狭くなっていることがわかる。
Figure 2005282914

From Table 2, it can be seen that in the heat exchanger evaporator 1 of Examples 7 and 8, the total area of the uneven surface 13 is narrower than the total area of the non-uneven surface 14.

次に、実施例1〜6と全く同一にして、実施例7,8の交換器用蒸発器1の冷却能力を評価した。結果を表3に示す。   Next, in exactly the same way as in Examples 1 to 6, the cooling capacity of the exchanger evaporator 1 in Examples 7 and 8 was evaluated. The results are shown in Table 3.

また、BET法により測定した凹凸面13の比表面積と、接触式面粗度計により測定した凹凸面13の面粗度とを表3に併せて示す。   Table 3 also shows the specific surface area of the uneven surface 13 measured by the BET method and the surface roughness of the uneven surface 13 measured by a contact-type surface roughness meter.

Figure 2005282914

表3から、1cm2当たりの比表面積が15cm2以上、かつ、面粗度Ryが30μm以上となっている凹凸面13を冷媒の流通方向に沿って線条をなして形成し、凹凸面13,13間に線条をなす非凹凸面14を形成した熱交換器用蒸発器1(実施例7,8)は、伝熱面2aとなる領域全てを凹凸面13とした場合(実施例1〜6)よりもさらに優れた冷却能力を備えていることが明らかである。
Figure 2005282914

From Table 3, the irregular surface 13 having a specific surface area per 1 cm 2 of 15 cm 2 or more and a surface roughness Ry of 30 μm or more is formed along the flow direction of the refrigerant to form the irregular surface 13. , 13 is a heat exchanger evaporator 1 (Examples 7 and 8) in which a non-concave surface 14 forming a line is formed, when the entire surface to be the heat transfer surface 2a is an uneven surface 13 (Examples 1 to 8). It is clear that the cooling capacity is even better than 6).

実施例9〜13の熱交換器用蒸発器1は、凹凸面13の総面積が非凹凸面14の総面積よりも広くなっている以外は、実施例7,8全く同一の構成を備えている。   The evaporator 1 for heat exchangers of Examples 9 to 13 has exactly the same configuration as that of Examples 7 and 8, except that the total area of the uneven surface 13 is larger than the total area of the non- uneven surface 14. .

実施例9〜13の熱交換器用蒸発器1における凹凸面13の幅、深さ、線条の本数、非凹凸面14の幅を、表4に示す。尚、前記深さは、凹凸面13の幅方向中央部において、冷媒の流通方向に沿って10ヶ所の深さを測定した平均値である。   Table 4 shows the width and depth of the uneven surface 13 in the evaporator 1 for heat exchangers of Examples 9 to 13, the number of filaments, and the width of the non- uneven surface 14. In addition, the said depth is an average value which measured the depth of ten places along the distribution direction of a refrigerant | coolant in the center part of the width direction of the uneven | corrugated surface 13. FIG.

Figure 2005282914

表4から、実施例9〜13の熱交換器用蒸発器1では、凹凸面13の総面積が非凹凸面14の総面積よりも広くなっていることがわかる。
Figure 2005282914

From Table 4, it can be seen that in the heat exchanger evaporator 1 of Examples 9 to 13, the total area of the uneven surface 13 is larger than the total area of the non-uneven surface 14.

次に、実施例1〜6と全く同一にして、実施例9〜13の交換器用蒸発器1の冷却能力を評価した。結果を表6に示す。   Next, in exactly the same way as in Examples 1 to 6, the cooling capacity of the exchanger evaporator 1 in Examples 9 to 13 was evaluated. The results are shown in Table 6.

また、BET法により測定した凹凸面13の比表面積と、接触式面粗度計により測定した凹凸面13の面粗度とを表6に併せて示す。
〔比較例6〜9〕
比較例6〜9の熱交換器用蒸発器1は、前記エッチングの条件を調整することにより、凹凸面13の1cm2当たりの比表面積が15cm2未満、または、面粗度Ryが30μm以上となるようにした以外は、実施例9〜12と全く同一の構成を備えている。比較例6〜9の熱交換器用蒸発器1における凹凸面13の幅、深さ、線条の本数、非凹凸面14の幅を、表5に示す。尚、前記深さは、凹凸面13の幅方向中央部において、冷媒の流通方向に沿って10ヶ所の深さを測定した平均値である。
Table 6 also shows the specific surface area of the uneven surface 13 measured by the BET method and the surface roughness of the uneven surface 13 measured by a contact-type surface roughness meter.
[Comparative Examples 6-9]
Heat exchanger evaporator 1 of Comparative Example 6-9, by adjusting the conditions of the etching, a specific surface area of less than 15cm 2 of 1 cm 2 per uneven surface 13, or, the surface roughness Ry is more 30μm Except as described above, the configuration is exactly the same as in Examples 9-12. Table 5 shows the width and depth of the uneven surface 13 in the evaporator 1 for heat exchangers of Comparative Examples 6 to 9, the number of filaments, and the width of the non- uneven surface 14. In addition, the said depth is an average value which measured the depth of ten places along the distribution direction of a refrigerant | coolant in the center part of the width direction of the uneven | corrugated surface 13. FIG.

Figure 2005282914

表5から、比較例6〜9の熱交換器用蒸発器1では、凹凸面13の総面積が非凹凸面14の総面積よりも広くなっていることがわかる。
Figure 2005282914

From Table 5, in the evaporator 1 for heat exchangers of Comparative Examples 6 to 9, it can be seen that the total area of the uneven surface 13 is larger than the total area of the non-uneven surface 14.

次に、実施例1〜6と全く同一にして、交換器用蒸発器1の冷却能力を評価した。結果を表6に示す。   Next, the cooling capacity of the exchanger evaporator 1 was evaluated in exactly the same way as in Examples 1-6. The results are shown in Table 6.

また、BET法により測定した凹凸面13の比表面積と、接触式面粗度計により測定した凹凸面13の面粗度とを表6に併せて示す。   Table 6 also shows the specific surface area of the uneven surface 13 measured by the BET method and the surface roughness of the uneven surface 13 measured by a contact-type surface roughness meter.

Figure 2005282914

表6から、1cm2当たりの比表面積が15cm2以上、かつ、面粗度Ryが30μm以上となっている凹凸面13を備える熱交換器用蒸発器1(実施例9〜13)は、凹凸面13の1cm2当たりの比表面積が15cm2以上であるが面粗度Ryが30μm未満の場合(比較例6,7)、面粗度Ryが30μm以上であるが1cm2当たりの比表面積が15cm2未満である場合(比較例8,9)と比較して、純銅チップ5の各部の温度が低く、優れた冷却能力を備えていることが明らかである。
Figure 2005282914

From Table 6, the heat exchanger evaporator 1 (Examples 9 to 13) including the uneven surface 13 having a specific surface area per 1 cm 2 of 15 cm 2 or more and a surface roughness Ry of 30 μm or more is an uneven surface. 13 has a specific surface area per 1 cm 2 of 15 cm 2 or more but the surface roughness Ry is less than 30 μm (Comparative Examples 6 and 7), the surface roughness Ry is 30 μm or more but the specific surface area per 1 cm 2 is 15 cm. As compared with the case of less than 2 (Comparative Examples 8 and 9), it is clear that the temperature of each part of the pure copper chip 5 is low and has an excellent cooling capacity.

また表6から、1cm2当たりの比表面積が15cm2以上、かつ、面粗度Ryが30μm以上となっている凹凸面13を冷媒の流通方向に沿って線条をなして形成し、凹凸面13,13間に線条をなす非凹凸面14を形成し、さらに凹凸面13の総面積が非凹凸面14の総面積よりも広くなっている熱交換器用蒸発器1(実施例9〜13)は、凹凸面13の総面積が非凹凸面14の総面積よりも狭くなっている場合(実施例7,8)よりもさらに優れた冷却能力を備えていることが明らかである。 Further, from Table 6, the uneven surface 13 having a specific surface area per 1 cm 2 of 15 cm 2 or more and a surface roughness Ry of 30 μm or more is formed in a line along the refrigerant flow direction. Heat exchanger evaporator 1 (Examples 9 to 13) in which a non-concave surface 14 forming a line between 13 and 13 is formed and the total area of the uneven surface 13 is larger than the total area of the non-concave surface 14 ) Is clearly provided with a cooling capacity better than that in the case where the total area of the uneven surface 13 is smaller than the total area of the non-uneven surface 14 (Examples 7 and 8).

本発明の熱交換器用蒸発器の構成を示す説明的断面図。Explanatory sectional drawing which shows the structure of the evaporator for heat exchangers of this invention. 面粗度Ryの定義を説明するグラフ。The graph explaining the definition of surface roughness Ry. 図1に示す熱交換器用蒸発器の一構成例の平面図。The top view of one structural example of the evaporator for heat exchangers shown in FIG. 図1に示す熱交換器用蒸発器の他の構成例の平面図。The top view of the other structural example of the evaporator for heat exchangers shown in FIG.

符号の説明Explanation of symbols

1…熱交換器用蒸発器、 2a…伝熱面、 3…冷媒流路、 13…凹凸面、 14…非凹凸面。   DESCRIPTION OF SYMBOLS 1 ... Heat exchanger evaporator, 2a ... Heat-transfer surface, 3 ... Refrigerant flow path, 13 ... Uneven surface, 14 ... Non uneven surface.

Claims (4)

冷媒が流通される冷媒流路と、該冷媒流路内で該冷媒に接触する伝熱面とを備え、該伝熱面に接触した該冷媒の少なくとも一部を液体から気体に相変化させる熱交換器用蒸発器において、
該伝熱面は、1cm2当たりの比表面積が15cm2以上であり、かつ、該伝熱面の任意の2点間について測定された凹凸の平均値を基準としたときに該平均値に対する最大高さRpと最大深さRvとの和Rp+Rvで示される面粗度Ryが30μm以上である凹凸面を備えることを特徴とする熱交換器用蒸発器。
Heat that comprises a refrigerant flow path through which the refrigerant flows and a heat transfer surface in contact with the refrigerant in the refrigerant flow path, and causes a phase change of at least a part of the refrigerant in contact with the heat transfer surface from liquid to gas. In the evaporator for the exchanger,
The heat transfer surface has a specific surface area per cm 2 of 15 cm 2 or more, and a maximum relative to the average value when the average value of the irregularities measured between any two points on the heat transfer surface is used as a reference. An evaporator for a heat exchanger, comprising an uneven surface having a surface roughness Ry of 30 μm or more indicated by a sum Rp + Rv of a height Rp and a maximum depth Rv.
前記伝熱面は、前記冷媒の流通方向に沿って線条をなして形成された前記凹凸面と、該凹凸面の間に線条をなして形成された非凹凸面とを備えることを特徴とする請求項1記載の熱交換器用蒸発器。   The heat transfer surface includes the uneven surface formed in a line along the flow direction of the refrigerant, and a non- uneven surface formed in a line between the uneven surface. The evaporator for a heat exchanger according to claim 1. 前記凹凸面の総面積は前記非凹凸面の総面積よりも広いことを特徴とする請求項2記載の熱交換器用蒸発器。   The evaporator for a heat exchanger according to claim 2, wherein a total area of the uneven surface is larger than a total area of the non-uneven surface. 前記伝熱面はアルミニウム系部材により形成されており、前記凹凸面は該アルミニウム系部材をエッチングすることにより形成されていることを特徴とする請求項1乃至請求項3のいずれか1項記載の熱交換器用蒸発器。   The said heat-transfer surface is formed of the aluminum-type member, The said uneven | corrugated surface is formed by etching this aluminum-type member, The Claim 1 characterized by the above-mentioned. Evaporator for heat exchanger.
JP2004095901A 2004-03-29 2004-03-29 Evaporator for heat exchanger Pending JP2005282914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095901A JP2005282914A (en) 2004-03-29 2004-03-29 Evaporator for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095901A JP2005282914A (en) 2004-03-29 2004-03-29 Evaporator for heat exchanger

Publications (1)

Publication Number Publication Date
JP2005282914A true JP2005282914A (en) 2005-10-13

Family

ID=35181512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095901A Pending JP2005282914A (en) 2004-03-29 2004-03-29 Evaporator for heat exchanger

Country Status (1)

Country Link
JP (1) JP2005282914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022326A (en) * 2009-09-18 2011-04-20 东芝开利株式会社 Refrigeration agent compressor and refrigeration cycling device
CN105222620A (en) * 2015-10-20 2016-01-06 宁波迪源制冷科技有限公司 There is the heat exchanger of pipe in segmented screw thread

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022326A (en) * 2009-09-18 2011-04-20 东芝开利株式会社 Refrigeration agent compressor and refrigeration cycling device
CN105222620A (en) * 2015-10-20 2016-01-06 宁波迪源制冷科技有限公司 There is the heat exchanger of pipe in segmented screw thread
CN105222620B (en) * 2015-10-20 2017-04-05 宁波迪源制冷科技有限公司 Heat exchanger with segmented screw thread inner tube

Similar Documents

Publication Publication Date Title
Kumar et al. A review of flow and heat transfer behaviour of nanofluids in micro channel heat sinks
Zhang et al. 3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement
EP1991824B1 (en) Method for forming a surface layer on a substrate
JP6624119B2 (en) Heat exchanger
TWI361265B (en)
Kondou et al. Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze (Z) and R1234ze (E) with a super-hydrophilic boiling surface
JP2013004562A (en) Ebullient cooling system
Hosseini et al. Concerning the effect of surface material on nucleate boiling heat transfer of R-113
JP5077338B2 (en) Heating and hot water supply equipment
Osman et al. Performance enhancement and comprehensive experimental comparative study of cold plate cooling of electronic servers using different configurations of mini-channels flow
JP2008244495A (en) Evaporation cooling method, evaporation cooling device, flow path structure, and its application product
JP2022519266A (en) Boiling enhancement device
JP2021165628A (en) Ebullition cooling device structure
Vlachou et al. Heat transfer enhancement in boiling over modified surfaces: a critical review
Liu et al. Falling film evaporation heat transfer of water/salt mixtures from roll-worked enhanced tubes and tube bundle
Li et al. Subcooled flow boiling on micro-porous structured copper surface in a vertical mini-gap channel
JP2005282914A (en) Evaporator for heat exchanger
JP6738593B2 (en) Boiling heat transfer tube
JP2011196659A (en) Porous body, boil cooling device, boil cooling system, power generation system, and boil cooling method
Yuan et al. Synergistic effect of mixed wettability of micro-nano porous surface on boiling heat transfer enhancement
Zhang et al. Using bulk micromachined structures to enhance pool boiling heat transfer
Jayakumar et al. Heat Transfer Enhancement and Scale Formation: Experimental Studies in Falling Film Evaporators Using Copper Metal Foam
Tan et al. Achieving ultra-uniform temperature distribution with a heterogeneous wettability surface for two-phase flow in microchannels
WO2014184964A1 (en) Heat exchanger
JP2003240465A (en) Latent heat storage device