JP2005054578A - Sealed rotary compressor - Google Patents

Sealed rotary compressor Download PDF

Info

Publication number
JP2005054578A
JP2005054578A JP2003205230A JP2003205230A JP2005054578A JP 2005054578 A JP2005054578 A JP 2005054578A JP 2003205230 A JP2003205230 A JP 2003205230A JP 2003205230 A JP2003205230 A JP 2003205230A JP 2005054578 A JP2005054578 A JP 2005054578A
Authority
JP
Japan
Prior art keywords
oil
cylinder
chambers
lubricating oil
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205230A
Other languages
Japanese (ja)
Inventor
Yuugo Mukai
有吾 向井
Akihiko Ishiyama
明彦 石山
Hirokatsu Kosokabe
弘勝 香曽我部
Kazuhiro Endo
和広 遠藤
Takeshi Kono
雄 幸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003205230A priority Critical patent/JP2005054578A/en
Publication of JP2005054578A publication Critical patent/JP2005054578A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed rotary compressor with saved electric power, reduced vibration, low noises and high reliability, preventing the insufficient lubrication of sliding portions due to the shortage of oil quantity by properly distributing lubricating oil to the sliding portions consistently when the level of the lubricating oil is abruptly lowered by operating conditions. <P>SOLUTION: A reciprocating vane portion has oil supply pumping operation. The lubricating oil residing on the bottom of a sealed container is pumped up into an oil supply pump chamber and returned from an oil outlet passage communicating the oil supply pump chamber with the sealed container into the sealed container. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型回転圧縮機および冷凍・空調装置にかかり、特に、圧縮機の給油構造に適用され、省電力、低振動、低騒音、高信頼性の密閉型回転圧縮機および冷凍・空調装置を提供するのに好適なものである。この冷凍・空調は、例えば冷蔵庫、エアコンディショナー、除湿機、給湯機、カーエアコン等である。
【0002】
【従来の技術】
従来、冷蔵庫、エアコンディショナー、除湿機、給湯機、カーエアコン等の冷凍・空調システムに用いられているロータリ圧縮機は、密閉容器内に固定子及び回転子を有する電動要素と、この電動要素によって駆動される圧縮要素が収納され、圧縮要素は駆動軸の偏心部に自転自在に嵌合されたローラが、駆動軸の回転によってシリンダ内を公転運動し、ローラに当接するベーンによってシリンダ内を吸込室と圧縮室に仕切ることにより、吸込パイプより吸込室に吸入された冷媒ガスを圧縮室で圧縮し、圧縮された冷媒ガスは密閉容器内に吐出され、吐出パイプより外部の冷凍サイクルに吐出される。
【0003】
このように構成されたロータリ圧縮機、特に縦形ロータリ圧縮機においては、ローラ部の外周面から半径方向に延びてシリンダ室内を区画し、常に往復運動するベーン部に潤滑油を供給する必要がある。
【0004】
上記に対して、密閉容器底部に貯溜する潤滑油をベーン部に供給する手段を備えたロータリ圧縮機として、特開平6−88584号公報がある。
【0005】
特開平6−88584号公報に開示されたロータリ圧縮機は、複数個のシリンダを有する圧縮機構部に給油できる小形の給油機構を備えたもので、駆動軸の回転により、ベーン部の後方に密閉的に形成された空間部(以後給油ポンプ室と呼ぶ)の中で往復運動し、空間部の容積が変化する。このような容積変化によるポンプ作用(以後ベーン給油ポンプと呼ぶ)で、密閉容器底部に貯溜された潤滑油は給油パイプに設けた油吸入口から吸引され、給油パイプを通って駆動軸まで汲み上げられ、各摺動部に供給され、且つベーン給油ポンプとして用いないベーン部が存在した場合に、密閉容器内における潤滑油の油面レベルが低下してもそのベーン部に十分な潤滑油を常に供給可能として信頼性の向上を図るというものであった。
【0006】
【特許文献1】
特開平6−88584号公報
【0007】
【発明が解決しようとする課題】
上記におけるベーン給油ポンプとして用いない第2のベーン部への油供給経路は、第1のベーン給油ポンプにより押し出された潤滑油が圧縮室と第2の給油ポンプ室との間にある第2のベーン溝部に開口し、その隙間から第2の給油ポンプ室に潤滑油を流出する手段をとっている。このため、代替冷媒、例えばHFC系冷媒、炭化水素、CO2、アンモニア等の自然系冷媒を適用する際に、圧縮機の運転条件、特に高速の条件によってはベーンの往復運動によってベーン給油ポンプ能力が上がり、給油ポンプ室の圧力が上昇し、その影響によりベーン溝部の隙間から流出する潤滑油から溶け込んでいた冷媒が発泡し、ベーン部の潤滑性の低下により信頼性を低下させるといった問題があった。
【0008】
さらに、作動圧力の高いCO2冷媒を適用する際に、ベーン溝部に開口する構造では、圧縮室と給油ポンプ室とのシール距離が少なくなるために、漏れ損失による圧縮機性能および冷凍サイクル性能が低下するといった問題も生じる。
【0009】
また、密閉容器内の潤滑油の油面レベルが低下した場合には、ベーン給油ポンプとして用いないベーンの往復運動により、潤滑油は攪拌されてミスト状なり、吐出管から冷凍サイクルに流出し、圧縮機性能及び冷凍サイクル性能が低下するといった問題も生じる。
【0010】
本発明の目的は、ベーン部の後方にベーンポンプ作用を設け、密閉容器底部に貯溜した潤滑油を密閉的に形成された空間部に汲み上げ、運転条件によって密閉容器内の潤滑油の油面レベルが変化した場合でも潤滑油を供給し、ベーン部の摺動部における油量不足による潤滑不良が防止でき、省電力、低振動、低騒音、高信頼性の密閉型回転圧縮機を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の密閉型回転圧縮機は、底部に潤滑油を貯溜した密閉容器と、前記密閉容器内に収納した圧縮要素および電動要素と、前記電動要素の回転力により前記圧縮要素を駆動し回転軸中心を鉛直方向に配置した駆動軸とを備え、前記圧縮要素は、シリンダ室を有するシリンダと、前記シリンダ室の両端部を閉塞する部材と前記シリンダ室内で公転運動をするローラ部と、前記ローラ部の外周面から半径方向に延びて前記シリンダ室をそれぞれの区画するベーン部とを有し、前記シリンダ室の外周側に密閉的に形成した別の空間部を備えた密閉型回転圧縮機において、前記空間部を給油ポンプ室とし、前記駆動機構の回転に伴って公転運動する前記ローラ部に追従して前記給油ポンプ室を往復運動する前記ベーン部に給油ポンプ作用を設け、前記密閉容器内の底部に貯溜した潤滑油を、前記給油ポンプ室内に汲み上げ、前記給油ポンプ室と前記密閉容器内を連通する油出口路から前記密閉容器内に戻す構造とすることにより達成される。
【0012】
【発明の実施の形態】
以下、本発明の一実施の形態を図1から図4を用いて説明する。
【0013】
まず、本実施形態を図1から図3を参照しながら説明する。
【0014】
図1は本発明の一実施形態に係る密閉容器回転圧縮機の縦断面図、図2は図1における異なる作動状態を示す図、図3は図1のA−A断面図である。
【0015】
本発明の圧縮機42は、図1から図3に示すように、密閉容器6内に電動要素43、圧縮要素44及びこの両者43、44を連結する駆動軸4を配置して構成されている。密閉容器6内の底部には潤滑油16を貯溜する油溜り部18が形成されている。この圧縮機42は、密閉容器6内の空間を吐出圧力より低い圧力(本実施例では中間圧力)とした2段圧縮方式としている。密閉容器内を低い圧力とすることにより、潤滑油16内に溶け込む冷媒量を低減でき、圧力レベルの高い自然系冷媒であるCO2冷媒を用いる場合に特に好適である。電動要素43は、固定子7及び回転子5を有している。圧縮要素44は、圧縮機構と給油機構を有している。
【0016】
圧縮機構は、第1シリンダ50、第2シリンダ51と、各シリンダ50、51内に回転可能に配置された揺動ピストン80、81と、各シリンダ50、51の両端開口を閉塞する主軸受2、副軸受3及び仕切り板26等よりなっており、2つの圧縮部を有している。揺動ピストン80、81は、ローラ部80a、81a及びベーン部80b、81bより構成されている。
【0017】
給油機構は、第1シリンダ50の給油ポンプ室50c、第2シリンダ51の給油ポンプ室51cと、ベーン部80b、81bと、連通部13、連通孔部21及び流体ダイオード17等よりなっており、これらは、ベーン部80b、81bの摺動部への給油路を構成する。また、主軸受2、副軸受3、各圧縮要素等の摺動部への給油は駆動軸4に設けた図示しないスパイラル溝によって駆動軸4の回転運動により潤滑している。なお、スパイラル溝は主軸受2、副軸受3側に設けてあっても良い。
【0018】
給油ポンプ室50cと給油ポンプ室51cとは、連通孔部21を介して連通される。連通孔部21は、給油ポンプ室51c側に狭くなる傾斜内面を有する。これにより、連通孔部21は、流体が給油ポンプ室50cから給油ポンプ室51cに流れ易く、その反対には流れ難くなるという流体ダイオード機能を備えている。また給油ポンプ室51cは連通部13を介して密閉容器6内のほぼ壁面の方向に開口されて油溜り部18と連通される。
【0019】
第1シリンダ50、第2シリンダ51には中央部に第1円筒孔部であるシリンダ室50a、51a、が形成されている。このシリンダ室50a、51aの両端開口は、閉塞部材を兼用する主軸受2、副軸受3及び仕切り板26とで閉塞されている。主軸受2と副軸受3にはそれぞれ軸受部2a、3aが形成されており、これにより駆動軸4が回転可能に支持されている。また、主軸受2と副軸受3には駆動軸4の回転軸心が第1シリンダ50、第2シリンダ51のシリンダ室50a、51aの軸心と一致するように第1シリンダ50、第2シリンダ51に固定されている。主軸受2の外周部は密閉容器6に固定されている。駆動軸4には電動要素43の回転子5が固定されており、電動要素43の固定子7が密閉容器6に固定されている。
【0020】
駆動軸4には第1シリンダ50、第2シリンダ51のシリンダ室50a、51a内に位置する部分に偏心部4a、4bが形成されている。この偏心部4a、4bの円筒状外周面と揺動ピストン80、81のローラ部80a、81aの円筒状内周面とは回転可能に嵌合されている。そして、駆動軸4が回転して揺動ピストン80、81が回転する際に、ローラ部80a、81aの円筒状外周面とシリンダ室50a、51aを形成する円筒状外周面との間の隙間が微小になるように各部寸法が決められている。そして、2つの偏心部4a、4bは互いに180度位相を異にして形成されているので、2つの圧縮部で生じるガス圧縮トルクの変動が平準化されて圧縮機の振動が低減される。
【0021】
シリンダ室50、51において、シリンダ室50a、51aの外周にはシリンダ室50a、51aの中心軸心と平行な中心軸を持つ第2円筒状孔部である滑動室50b、51bが形成されている。滑動室50b、51bの外側には第3円筒状孔部である給油ポンプ室50c、51cが形成されている。そして、滑動室50b、51bは、一側がシリンダ室50a、51aに連通され、他側が給油ポンプ室50c、51cに連通されている。滑動室50b、51b及び給油ポンプ室50c、51cの両端部まで主軸受2、副軸受3及び仕切り板26が延びている。
【0022】
ローラ部80a、81aの円筒状外周面から半径方向に延びるベーン部80b、81bは一体に形成されている。このベーン部80b、ベーン部81bはローラ部80a、81aと別体で形成され、ローラ部80a、81aの外周面に当接される方式のものでもよい。ベーン部80b、81bは、シリンダ室50a、50b内を吸込室11と圧縮室10とに区画すると共に、滑動室50b、51b内を通って給油ポンプ室50c、51cまで延びている。
【0023】
ベーン部80b、81bと滑動室50b、51bの円筒状内周面との間には、滑動部材9が組み込まれている。この滑動部材9は、ベーン部80b、81bの平面部に摺動可能に当接する平面部と、滑動室50b、51bの円筒状内周面に摺動可能に当接する円筒面部とを有している。この滑動部材9はベーン部80b、81bをはさみ込むように配置されている。この結果、ベーン部80b、81bは滑動室50b、51bの中心軸に向かう進退運動と中心軸廻りの揺動運動を行い、ベーン部80b、81bは第1シリンダ50、第2シリンダ51と干渉することはない。
【0024】
次に圧縮要素44の圧縮動作を説明する。
【0025】
電動要素43に通電されて回転子5が回転すると、回転子5と共に駆動軸4が回転することにより、揺動ピストン80、81は偏心部4a、4bと共にシリンダ室50a、51a内で揺動を伴う公転運動を行う。これによって吸込室11内に冷媒ガスを吸込み、圧縮室に移行して容積の増減を繰り返し、冷媒ガスを圧縮する。
【0026】
具体的には、冷媒ガスは、密閉容器6に取り付けられた吸込パイプ30からシリンダ50の吸込室11に吸込まれ、圧縮室10の容積の減少と共に圧縮されて中間圧力となった後、副軸受3に形成された吐出ポート3bを通って副軸受3と吐出カバー14bとで形成される吐出室3cへ吐出され、その後、吐出室3cから密閉容器6内の電動要素側に開口している図示しない孔部と吐出パイプ31から密閉容器6外に吐出され第1段目の圧縮動作を行う。吐出パイプ31から吐出された冷媒ガスは次に吸込パイプ32からシリンダ51の吸込室に吸込まれ、圧縮室の容積の減少と共に圧縮されて吐出圧力となった後、主軸受2に形成された吐出ポート2bを通って副軸受2と吐出カバー14aとで形成される吐出室2cへ吐出され、その後、吐出パイプ33から密閉容器6外に吐出され2段目の圧縮動作を行う。
【0027】
次に給油機構の給油動作について説明する。駆動軸4の回転によって揺動ピストン80、81が動作することにより、圧縮機構による圧縮動作と共に給油機構による給油動作が行われる。
【0028】
まず、図1に示すように第1シリンダ50の揺動ピストン80が上死点に、第2シリンダ51の揺動ピストン81が下死点にそれぞれ動作する場合について説明する。第1シリンダ50側の給油ポンプ室50cの容積変化の増加に伴い、密閉容器6の油溜り部18に貯溜された潤滑油16は流体ダイオード17から吸引され、給油ポンプ室50cに吸引される。一方、第2シリンダ51側の給油ポンプ室51cの容積変化の減少に伴い、給油ポンプ室51c内の潤滑油16が連通路13を通って密閉容器6内の油溜り部18内へ流出する。
【0029】
図1の状態から図2に示すように、第1シリンダ50の揺動ピストン80が下死点に、第2シリンダ51の揺動ピストン81が上死点にそれぞれ動作する場合について説明する。第1シリンダ50側の給油ポンプ室50cの容積変化の減少と第2シリンダ51側の給油ポンプ室51cの容積変化の増加に伴い、給油ポンプ室50c内の潤滑油16が連通孔部21を通って給油ポンプ室51cに押し出される。
【0030】
図1および図2の上記動作において、駆動軸4の回転により、ベーン部80b、81bが給油ポンプ室50c、51cの中で往復運動し、給油ポンプ室50c、51cの容積が変化するベーンポンプ作用により、給油流れ方向を第1シリンダ50の給油ポンプ室50cから第2シリンダ51の給油ポンプ室51cになるよう形成することとなる。このため、給油ポンプ室50c、51c内は密閉容器6の底部に貯溜された潤滑油16で満たされ、常に潤滑油16は循環されることとなる。
【0031】
以上の構成とすることにより、冷凍サイクルにおける運転状態が安定している、つまり密閉容器6内の潤滑油16の油面レベルの変動が少ない場合には、給油ポンプ室50c、51cの容積が変化するベーンポンプ作用により給油ポンプ室50cおよび51c内の潤滑油16は常に循環されるため、ベーン部80b、81b、と滑動部材9の摺動による給油ポンプ室50cおよび51c内の潤滑油16の温度上昇を抑制でき、潤滑油16の粘性低下による摺動部の潤滑不良が防止できる。また、冷凍サイクルにおける運転状態が不安定(例えば、低速運転から高速運転に切り換った場合)である、つまり駆動軸4の回転運動によって主軸受2、副軸受3、各圧縮要素等の摺動部への給油の影響による密閉容器6内の潤滑油16の油面レベルが第1シリンダに設けた流体ダイオード17の上部まで低下した場合でも、給油ポンプ室50c、51cの容積が変化するベーンポンプ作用により、給油ポンプ室50c、51c内は常に潤滑油で満たされており、油量不足による潤滑不良が防止できる。これにより高信頼性の密閉型回転圧縮機を提供することができる。
【0032】
また、給油ポンプ室51c内の潤滑油16がベーン部81bによって攪拌されミスト状態になった場合でも、連通路13は密閉容器6内のほぼ壁面に向かって設けているため、潤滑油16は密閉容器6内の壁面から底部に貯溜している油溜り部18に戻ることとなり、ミスト状の潤滑油16を冷凍サイクルに流出することがなく、圧縮機性能及び冷凍サイクル性能の低下を抑制することができる。さらには、HCFC系冷媒の代替冷媒、例えばHFC系冷媒、炭化水素、CO2、アンモニア等の自然系冷媒を適用すると、一般に潤滑性低下及び荷重増加等により信頼性の低下を招くが、本実施例によればこの信頼性の低下を抑制することができ、代替冷媒を密閉型回転圧縮機に採用することが可能となる。
【0033】
次に、給油ポンプ室の変形例を図4を用いて説明する。図4に示す変形例は、給油ポンプ室50cに潤滑油16を供給する吸入口である流体ダイオード17を副軸受3に設けたものである。この変形例においても、副軸受3の加工が若干面倒になるが、上述したものと同様に潤滑油16を給油ポンプ室50c、51cに供給でき、且つ流体ダイオードの位置が密閉容器6の底部よりとなっているために、運転条件が変化し、油面レベルが急激に低下した場合でも、常に潤滑油を提供でき、この構成においても同様の効果が得られる。
【0034】
ここでは、2段圧縮機を用いて説明したが、単段圧縮機にも搭載できる。また、冷凍・空調システムとして、例えば冷蔵庫、エアコンディショナー、除湿機、給湯機、カーエアコン等に本発明は適用可能である。
【0035】
【発明の効果】
以上詳細に説明したように、本発明によれば、運転条件によって潤滑油の油面レベルが急激に低下した場合でも常に潤滑油を各摺動部に適正に配分し、各摺動部の油量不足による潤滑不良が防止でき、省電力、低振動、低騒音、高信頼性の密閉型回転圧縮機を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る密閉型回転圧縮機の縦断面図。
【図2】図1における異なる作動状態を示す図。
【図3】図2のA−A断面図。
【図4】図1の密閉型回転圧縮機の変形例を示す図。
【符号の説明】
2…主軸受、2a…軸受部、2b…吐出ポート、2c…吐出室、3…副軸受、3a…軸受部、3b…吐出ポート、3c…吐出室、4…駆動軸、4a…偏心部、4b…偏心部、5…回転子、6…密閉容器、7…固定子、9…滑動部材、10…圧縮室、11…吸込室、13…連通部、14a…吐出カバー、14b…吐出カバー、16…潤滑油、17…流体ダイオード、18…油溜り部、21…連通孔部(流体ダイオード)、26…仕切り板、30…吸込パイプ、31…吐出パイプ、32…吸込パイプ、33…吐出パイプ、42…圧縮機、43…電動要素、44…圧縮要素、50…第1シリンダ、50a…シリンダ室、50b…滑動室、50c…給油ポンプ室、51…第2シリンダ、51a…シリンダ室、51b…滑動室、51c…給油ポンプ室、80…揺動ピストン、80a…ローラ部、80b…ベーン部、81…揺動ピストン、81a…ローラ部、81b…ベーン部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hermetic rotary compressor and a refrigeration / air-conditioning apparatus, and is particularly applied to an oil supply structure of a compressor, and is a power-saving, low vibration, low-noise, high-reliability hermetic rotary compressor and refrigeration / air conditioning. It is suitable for providing an apparatus. The refrigeration / air conditioning is, for example, a refrigerator, an air conditioner, a dehumidifier, a water heater, a car air conditioner, or the like.
[0002]
[Prior art]
Conventional rotary compressors used in refrigeration and air conditioning systems such as refrigerators, air conditioners, dehumidifiers, water heaters, car air conditioners, etc., include an electric element having a stator and a rotor in a sealed container, and this electric element. The driven compression element is housed, and the compression element is rotatably fitted in the eccentric part of the drive shaft, revolves in the cylinder by the rotation of the drive shaft, and sucks in the cylinder by the vane that contacts the roller. By dividing the chamber into a compression chamber, the refrigerant gas sucked into the suction chamber from the suction pipe is compressed in the compression chamber, and the compressed refrigerant gas is discharged into the sealed container and discharged from the discharge pipe to the external refrigeration cycle. The
[0003]
In the rotary compressor configured as described above, in particular, the vertical rotary compressor, it is necessary to supply the lubricating oil to the vane portion that extends in the radial direction from the outer peripheral surface of the roller portion and divides the cylinder chamber and always reciprocates. .
[0004]
In contrast to the above, Japanese Patent Laid-Open No. 6-88584 discloses a rotary compressor provided with means for supplying lubricating oil stored in the bottom of a closed container to a vane portion.
[0005]
The rotary compressor disclosed in Japanese Patent Laid-Open No. 6-88584 has a small oil supply mechanism that can supply oil to a compression mechanism portion having a plurality of cylinders, and is sealed behind the vane portion by the rotation of the drive shaft. Reciprocatingly moves in a space portion (hereinafter referred to as an oil supply pump chamber) formed as a result, and the volume of the space portion changes. By such a pumping action due to volume change (hereinafter referred to as a vane oil pump), the lubricating oil stored in the bottom of the hermetic container is sucked from an oil suction port provided in the oil supply pipe and pumped up to the drive shaft through the oil supply pipe. When there is a vane part that is supplied to each sliding part and is not used as a vane oil supply pump, sufficient lubricating oil is always supplied to the vane part even if the oil level in the sealed container decreases. It was to improve reliability as possible.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 6-88584
[Problems to be solved by the invention]
In the oil supply path to the second vane unit not used as the vane oil pump in the above, the lubricating oil pushed out by the first vane oil pump is located between the compression chamber and the second oil pump chamber. A means is provided for opening the vane groove portion and for causing the lubricating oil to flow into the second oil supply pump chamber through the gap. For this reason, when applying alternative refrigerants such as natural refrigerants such as HFC refrigerants, hydrocarbons, CO 2, ammonia, etc., the vane oil pumping capacity can be improved by the reciprocating movement of the vanes depending on the operating conditions of the compressor, particularly high-speed conditions. As a result, the pressure in the oil pump chamber rises, and as a result, the refrigerant that has melted from the lubricating oil flowing out of the gap in the vane groove portion is foamed, and there is a problem that the reliability is lowered due to the decrease in the lubricity of the vane portion. .
[0008]
Furthermore, when a CO2 refrigerant with a high operating pressure is applied, the structure that opens in the vane groove portion reduces the seal distance between the compression chamber and the oil pump chamber, so that the compressor performance and refrigeration cycle performance are reduced due to leakage loss. It also causes problems such as
[0009]
In addition, when the oil level of the lubricating oil in the closed container decreases, the reciprocating motion of the vane that is not used as the vane oil pump causes the lubricating oil to be agitated and mist to flow from the discharge pipe to the refrigeration cycle, There also arises a problem that the compressor performance and the refrigeration cycle performance deteriorate.
[0010]
The object of the present invention is to provide a vane pump action behind the vane section, pumping up the lubricating oil stored in the bottom of the sealed container into a hermetically formed space, and the oil level of the lubricating oil in the sealed container depends on the operating conditions. Providing a hermetic rotary compressor that supplies lubricating oil even when it changes, can prevent lubrication failure due to insufficient oil amount in the sliding part of the vane part, and save power, low vibration, low noise, high reliability is there.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a hermetic rotary compressor according to the present invention includes a hermetic container storing lubricating oil at a bottom, a compression element and an electric element stored in the hermetic container, and a rotational force of the electric element. A drive shaft that drives the compression element and has a rotational axis center arranged in a vertical direction, the compression element having a cylinder chamber, members that close both ends of the cylinder chamber, and revolving motion in the cylinder chamber And a separate vane portion extending radially from the outer peripheral surface of the roller portion to divide the cylinder chamber and hermetically formed on the outer peripheral side of the cylinder chamber. In the hermetic rotary compressor, the space portion serves as a fuel pump chamber, and the vane portion reciprocates in the oil pump chamber following the roller portion that revolves as the drive mechanism rotates. A structure for providing an oil pump action, pumping up lubricating oil stored at the bottom of the sealed container into the oil pump chamber, and returning the lubricating oil to the sealed container from an oil outlet passage communicating with the oil pump chamber and the sealed container; Is achieved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0013]
First, the present embodiment will be described with reference to FIGS.
[0014]
1 is a longitudinal sectional view of a hermetic container rotary compressor according to an embodiment of the present invention, FIG. 2 is a diagram showing different operating states in FIG. 1, and FIG. 3 is a sectional view taken along line AA in FIG.
[0015]
As shown in FIGS. 1 to 3, the compressor 42 of the present invention is configured by disposing an electric element 43, a compression element 44, and a drive shaft 4 that couples both 43, 44 in a sealed container 6. . An oil reservoir 18 for storing lubricating oil 16 is formed at the bottom of the sealed container 6. The compressor 42 employs a two-stage compression method in which the space in the sealed container 6 is set to a pressure lower than the discharge pressure (intermediate pressure in this embodiment). By setting the inside of the sealed container to a low pressure, the amount of the refrigerant dissolved in the lubricating oil 16 can be reduced, which is particularly suitable when using a CO2 refrigerant that is a natural refrigerant having a high pressure level. The electric element 43 has a stator 7 and a rotor 5. The compression element 44 has a compression mechanism and an oil supply mechanism.
[0016]
The compression mechanism includes a first cylinder 50, a second cylinder 51, swinging pistons 80, 81 that are rotatably disposed in the cylinders 50, 51, and the main bearing 2 that closes both end openings of the cylinders 50, 51. The auxiliary bearing 3 and the partition plate 26 have two compression parts. The swinging pistons 80 and 81 are composed of roller portions 80a and 81a and vane portions 80b and 81b.
[0017]
The oil supply mechanism includes an oil supply pump chamber 50c of the first cylinder 50, an oil supply pump chamber 51c of the second cylinder 51, vanes 80b and 81b, a communication part 13, a communication hole part 21, a fluid diode 17, and the like. These constitute the oil supply path to the sliding parts of the vane parts 80b and 81b. Further, the oil supply to the sliding portions such as the main bearing 2, the sub-bearing 3, and the compression elements is lubricated by the rotational movement of the drive shaft 4 by a spiral groove (not shown) provided on the drive shaft 4. The spiral groove may be provided on the main bearing 2 and sub bearing 3 side.
[0018]
The oil supply pump chamber 50 c and the oil supply pump chamber 51 c are communicated with each other through the communication hole portion 21. The communication hole portion 21 has an inclined inner surface that narrows toward the oil pump chamber 51c. As a result, the communication hole portion 21 has a fluid diode function in which the fluid easily flows from the oil supply pump chamber 50c to the oil supply pump chamber 51c, and on the contrary, it is difficult to flow. The oil supply pump chamber 51 c is opened through the communication portion 13 in the direction of the substantially wall surface in the sealed container 6 and communicates with the oil reservoir 18.
[0019]
The first cylinder 50 and the second cylinder 51 are formed with cylinder chambers 50a and 51a, which are first cylindrical holes, in the center. Both end openings of the cylinder chambers 50a and 51a are closed by the main bearing 2, the auxiliary bearing 3 and the partition plate 26 that also serve as closing members. The main bearing 2 and the sub-bearing 3 are formed with bearing portions 2a and 3a, respectively, so that the drive shaft 4 is rotatably supported. Further, the main bearing 2 and the sub-bearing 3 have the first cylinder 50 and the second cylinder so that the rotation axis of the drive shaft 4 coincides with the axis of the cylinder chambers 50a and 51a of the first cylinder 50 and the second cylinder 51. 51 is fixed. The outer periphery of the main bearing 2 is fixed to the sealed container 6. The rotor 5 of the electric element 43 is fixed to the drive shaft 4, and the stator 7 of the electric element 43 is fixed to the sealed container 6.
[0020]
The drive shaft 4 is formed with eccentric portions 4a and 4b at portions of the first cylinder 50 and the second cylinder 51 located in the cylinder chambers 50a and 51a. The cylindrical outer peripheral surfaces of the eccentric portions 4a and 4b and the cylindrical inner peripheral surfaces of the roller portions 80a and 81a of the swing pistons 80 and 81 are rotatably fitted. When the drive shaft 4 rotates and the swinging pistons 80 and 81 rotate, there is a gap between the cylindrical outer peripheral surfaces of the roller portions 80a and 81a and the cylindrical outer peripheral surfaces forming the cylinder chambers 50a and 51a. The dimensions of each part are determined so as to be minute. Since the two eccentric portions 4a and 4b are formed so as to be 180 degrees out of phase with each other, fluctuations in the gas compression torque generated in the two compression portions are leveled and the vibration of the compressor is reduced.
[0021]
In the cylinder chambers 50 and 51, sliding chambers 50b and 51b, which are second cylindrical holes having a central axis parallel to the central axis of the cylinder chambers 50a and 51a, are formed on the outer periphery of the cylinder chambers 50a and 51a. . Oil supply pump chambers 50c and 51c, which are third cylindrical holes, are formed outside the sliding chambers 50b and 51b. The sliding chambers 50b and 51b have one side communicating with the cylinder chambers 50a and 51a and the other side communicating with the oil supply pump chambers 50c and 51c. The main bearing 2, the auxiliary bearing 3, and the partition plate 26 extend to both ends of the sliding chambers 50b and 51b and the oil supply pump chambers 50c and 51c.
[0022]
The vane portions 80b and 81b extending in the radial direction from the cylindrical outer peripheral surfaces of the roller portions 80a and 81a are integrally formed. The vane portion 80b and the vane portion 81b may be formed separately from the roller portions 80a and 81a and may be in contact with the outer peripheral surfaces of the roller portions 80a and 81a. The vane portions 80b and 81b partition the cylinder chambers 50a and 50b into the suction chamber 11 and the compression chamber 10, and extend through the sliding chambers 50b and 51b to the oil pump chambers 50c and 51c.
[0023]
A sliding member 9 is incorporated between the vane portions 80b and 81b and the cylindrical inner peripheral surfaces of the sliding chambers 50b and 51b. The sliding member 9 has a flat surface portion that slidably contacts the flat surface portions of the vane portions 80b and 81b, and a cylindrical surface portion that slidably contacts the cylindrical inner peripheral surfaces of the sliding chambers 50b and 51b. Yes. The sliding member 9 is disposed so as to sandwich the vane portions 80b and 81b. As a result, the vane portions 80b and 81b perform forward / backward movement toward the central axis of the sliding chambers 50b and 51b and swing motion around the central axis, and the vane portions 80b and 81b interfere with the first cylinder 50 and the second cylinder 51. There is nothing.
[0024]
Next, the compression operation of the compression element 44 will be described.
[0025]
When the electric element 43 is energized and the rotor 5 rotates, the drive shaft 4 rotates together with the rotor 5, so that the swing pistons 80 and 81 swing together with the eccentric portions 4a and 4b in the cylinder chambers 50a and 51a. Perform a revolving motion. As a result, the refrigerant gas is sucked into the suction chamber 11, and the refrigerant gas is compressed by moving to the compression chamber and repeatedly increasing and decreasing the volume.
[0026]
Specifically, the refrigerant gas is sucked into the suction chamber 11 of the cylinder 50 from the suction pipe 30 attached to the hermetic container 6 and is compressed along with the reduction of the volume of the compression chamber 10 to become an intermediate pressure. 3 is discharged to the discharge chamber 3c formed by the sub-bearing 3 and the discharge cover 14b through the discharge port 3b formed in FIG. 3, and then opened from the discharge chamber 3c to the electric element side in the sealed container 6. The first stage compression operation is performed by discharging from the closed hole and the discharge pipe 31 to the outside of the sealed container 6. The refrigerant gas discharged from the discharge pipe 31 is then sucked into the suction chamber of the cylinder 51 from the suction pipe 32 and compressed with the decrease in the volume of the compression chamber to become discharge pressure, and then the discharge formed on the main bearing 2. It is discharged to the discharge chamber 2c formed by the auxiliary bearing 2 and the discharge cover 14a through the port 2b, and then discharged from the discharge pipe 33 to the outside of the sealed container 6 to perform the second-stage compression operation.
[0027]
Next, the oil supply operation of the oil supply mechanism will be described. When the oscillating pistons 80 and 81 are operated by the rotation of the drive shaft 4, the oil supply operation by the oil supply mechanism is performed together with the compression operation by the compression mechanism.
[0028]
First, the case where the swing piston 80 of the first cylinder 50 operates at the top dead center and the swing piston 81 of the second cylinder 51 operates at the bottom dead center as shown in FIG. 1 will be described. As the volume change of the oil pump chamber 50c on the first cylinder 50 side increases, the lubricating oil 16 stored in the oil reservoir 18 of the sealed container 6 is sucked from the fluid diode 17 and sucked into the oil pump chamber 50c. On the other hand, as the volume change of the oil pump chamber 51 c on the second cylinder 51 side decreases, the lubricating oil 16 in the oil pump chamber 51 c flows out into the oil reservoir 18 in the sealed container 6 through the communication path 13.
[0029]
As shown in FIG. 2 from the state of FIG. 1, the case where the swing piston 80 of the first cylinder 50 operates at the bottom dead center and the swing piston 81 of the second cylinder 51 operates at the top dead center will be described. As the volume change of the oil pump chamber 50c on the first cylinder 50 side decreases and the volume change of the oil pump chamber 51c on the second cylinder 51 side increases, the lubricating oil 16 in the oil pump chamber 50c passes through the communication hole 21. Then, it is pushed out to the oil supply pump chamber 51c.
[0030]
1 and 2, the vane portions 80b and 81b reciprocate in the oil pump chambers 50c and 51c by the rotation of the drive shaft 4, and the volume of the oil pump chambers 50c and 51c changes. The oil supply flow direction is formed so as to change from the oil supply pump chamber 50c of the first cylinder 50 to the oil supply pump chamber 51c of the second cylinder 51. For this reason, the oil pump chambers 50c and 51c are filled with the lubricating oil 16 stored at the bottom of the sealed container 6, and the lubricating oil 16 is always circulated.
[0031]
With the above configuration, when the operation state in the refrigeration cycle is stable, that is, when the fluctuation of the oil level of the lubricating oil 16 in the sealed container 6 is small, the volumes of the oil supply pump chambers 50c and 51c change. Since the lubricating oil 16 in the oil supply pump chambers 50c and 51c is always circulated by the vane pump action, the temperature of the lubricating oil 16 in the oil supply pump chambers 50c and 51c increases due to the sliding of the vane portions 80b and 81b and the sliding member 9. And the poor lubrication of the sliding portion due to the decrease in the viscosity of the lubricating oil 16 can be prevented. In addition, the operation state in the refrigeration cycle is unstable (for example, when switching from low speed operation to high speed operation), that is, the main shaft 2, the sub-bearings 3, the compression elements and the like are slid by the rotational movement of the drive shaft 4. The vane pump in which the volumes of the oil supply pump chambers 50c and 51c change even when the oil level of the lubricating oil 16 in the sealed container 6 is lowered to the upper part of the fluid diode 17 provided in the first cylinder due to the influence of oil supply to the moving part. Due to the action, the interiors of the oil supply pump chambers 50c and 51c are always filled with the lubricating oil, and it is possible to prevent poor lubrication due to insufficient oil amount. Thereby, a highly reliable hermetic rotary compressor can be provided.
[0032]
Even when the lubricating oil 16 in the oil supply pump chamber 51c is agitated by the vane portion 81b and becomes a mist state, the communication passage 13 is provided almost toward the wall surface in the sealed container 6, so that the lubricating oil 16 is sealed. It will return from the wall surface in the container 6 to the oil reservoir 18 stored at the bottom, so that the mist-like lubricating oil 16 does not flow out to the refrigeration cycle, and the deterioration of the compressor performance and the refrigeration cycle performance is suppressed. Can do. Furthermore, when an alternative refrigerant of an HCFC refrigerant, for example, a natural refrigerant such as an HFC refrigerant, hydrocarbon, CO 2, or ammonia is applied, the reliability is generally lowered due to a decrease in lubricity and an increase in load. According to the present invention, it is possible to suppress this decrease in reliability, and it is possible to employ an alternative refrigerant in a hermetic rotary compressor.
[0033]
Next, a modification of the oil pump chamber will be described with reference to FIG. In the modification shown in FIG. 4, the sub-bearing 3 is provided with a fluid diode 17 that is a suction port for supplying the lubricating oil 16 to the oil supply pump chamber 50 c. Even in this modification, the machining of the sub-bearing 3 is somewhat troublesome, but the lubricating oil 16 can be supplied to the oil supply pump chambers 50c and 51c in the same manner as described above, and the position of the fluid diode is from the bottom of the sealed container 6. Therefore, even when the operating conditions change and the oil level drops sharply, lubricating oil can always be provided, and the same effect can be obtained with this configuration.
[0034]
Here, a two-stage compressor has been described, but it can also be mounted on a single-stage compressor. Further, the present invention can be applied to, for example, a refrigerator, an air conditioner, a dehumidifier, a water heater, a car air conditioner, etc. as a refrigeration / air conditioning system.
[0035]
【The invention's effect】
As described above in detail, according to the present invention, even when the oil level of the lubricating oil suddenly decreases depending on the operating conditions, the lubricating oil is always properly distributed to each sliding part, and the oil in each sliding part is Lubrication failure due to insufficient quantity can be prevented, and a hermetic rotary compressor with low power consumption, low vibration, low noise, and high reliability can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic rotary compressor according to an embodiment of the present invention.
FIG. 2 is a diagram showing different operating states in FIG. 1;
3 is a cross-sectional view taken along line AA in FIG.
4 is a view showing a modification of the hermetic rotary compressor of FIG. 1; FIG.
[Explanation of symbols]
2 ... Main bearing, 2a ... Bearing part, 2b ... Discharge port, 2c ... Discharge chamber, 3 ... Sub bearing, 3a ... Bearing part, 3b ... Discharge port, 3c ... Discharge chamber, 4 ... Drive shaft, 4a ... Eccentric part, 4 ... Eccentric part, 5 ... Rotor, 6 ... Sealed container, 7 ... Stator, 9 ... Sliding member, 10 ... Compression chamber, 11 ... Suction chamber, 13 ... Communication part, 14a ... Discharge cover, 14b ... Discharge cover, 16 ... Lubricating oil, 17 ... Fluid diode, 18 ... Oil reservoir, 21 ... Communication hole (fluid diode), 26 ... Partition plate, 30 ... Suction pipe, 31 ... Discharge pipe, 32 ... Suction pipe, 33 ... Discharge pipe , 42 ... compressor, 43 ... electric element, 44 ... compression element, 50 ... first cylinder, 50a ... cylinder chamber, 50b ... sliding chamber, 50c ... oil supply pump chamber, 51 ... second cylinder, 51a ... cylinder chamber, 51b ... sliding chamber, 51c ... refueling pump chamber, 0 ... swing piston, 80a ... roller part 80b ... vane portion, 81 ... swing piston, 81a ... roller part 81b ... vane section.

Claims (7)

底部に潤滑油を貯溜した密閉容器と、前記密閉容器内に収納した圧縮要素および電動要素と、前記電動要素の回転力により前記圧縮要素を駆動し回転軸中心を鉛直方向に配置した駆動軸とを備え、前記圧縮要素は、シリンダ室を有するシリンダと、前記シリンダ室の両端部を閉塞する部材と前記シリンダ室内で公転運動をするローラ部と、前記ローラ部の外周面から半径方向に延びて前記シリンダ室をそれぞれの区画するベーン部とを有し、前記シリンダ室の外周側に密閉的に形成した別の空間部を備えた密閉型回転圧縮機において、
前記空間部を給油ポンプ室とし、前記駆動機構の回転に伴って公転運動する前記ローラ部に追従して前記給油ポンプ室を往復運動する前記ベーン部に給油ポンプ作用を設け、前記密閉容器内の底部に貯溜した潤滑油を、前記給油ポンプ室内に汲み上げ、前記給油ポンプ室と前記密閉容器内を連通する油出口路から前記密閉容器内に戻す構造を特徴とする密閉型回転圧縮機。
An airtight container storing lubricating oil at the bottom, a compression element and an electric element housed in the airtight container, and a drive shaft that drives the compression element by the rotational force of the electric element and arranges the rotation axis center in the vertical direction The compression element includes: a cylinder having a cylinder chamber; a member that closes both ends of the cylinder chamber; a roller portion that revolves in the cylinder chamber; and a radial direction extending from an outer peripheral surface of the roller portion. In a hermetic rotary compressor having a vane portion that divides each of the cylinder chambers and having another space portion hermetically formed on the outer peripheral side of the cylinder chamber,
The space portion is an oil pump chamber, and an oil pump action is provided in the vane portion that reciprocates the oil pump chamber following the roller portion that revolves as the drive mechanism rotates. A hermetic rotary compressor having a structure in which lubricating oil stored in a bottom is pumped into the oil pump chamber and returned from the oil outlet passage communicating the oil pump chamber and the airtight container to the airtight container.
底部に潤滑油を貯溜した密閉容器と、前記密閉容器内に収納した圧縮要素および電動要素と、前記電動要素の回転力により前記圧縮要素を駆動し回転軸中心を鉛直方向に配置した駆動軸とを備え、前記圧縮要素は、シリンダ室を有する2つのシリンダと、前記2つのシリンダ室の両端部を閉塞する部材と前記2つのシリンダ室内で180度位相が異なる公転運動をする2つのローラ部と、前記2つのローラ部の外周面から半径方向に延びて前記2つのシリンダ室をそれぞれの区画する2つのベーン部とを有し、前記2つシリンダ室の外周側に密閉的に形成した2つの別の空間部を備えた密閉型回転圧縮機において、
前記2つの空間部を給油ポンプ室とし、前記駆動機構の回転に伴って公転運動する前記2つのローラ部に追従して前記2つの給油ポンプ室を往復運動する前記2つのベーン部に給油ポンプ作用を設け、前記密閉容器内の底部に貯溜した潤滑油を、前記密閉容器内の下部側の前記給油ポンプ室内に汲み上げ、前記2つの給油ポンプ室を連通する油連通路と、上部側の前記給油ポンプ室と前記密閉容器内を連通する油出口路から前記密閉容器内に戻す構造を特徴とする密閉型回転圧縮機。
An airtight container storing lubricating oil at the bottom, a compression element and an electric element housed in the airtight container, and a drive shaft that drives the compression element by the rotational force of the electric element and arranges the rotation axis center in the vertical direction The compression element includes two cylinders having cylinder chambers, a member that closes both ends of the two cylinder chambers, and two roller portions that perform revolving motions that are 180 degrees out of phase in the two cylinder chambers. Two vane portions extending in a radial direction from the outer peripheral surfaces of the two roller portions and defining the two cylinder chambers, respectively, and two sealingly formed on the outer peripheral side of the two cylinder chambers In a hermetic rotary compressor with another space,
The two space portions serve as oil pump chambers, and the oil pump acts on the two vane portions that reciprocate between the two oil pump chambers following the two roller portions revolving with the rotation of the drive mechanism. The oil stored in the bottom of the sealed container is pumped into the oil pump chamber on the lower side of the sealed container, and the oil communication passage that communicates the two oil pump chambers with the oil on the upper side. A hermetic rotary compressor having a structure in which a pump chamber and an oil outlet path communicating with the inside of the sealed container are returned to the sealed container.
請求項2に記載された密閉型2段回転圧縮機。A hermetic two-stage rotary compressor according to claim 2. 請求項1において、前記給油ポンプ室における潤滑油の油流入路を流体ダイオードとし、前記流体ダイオードの上部は常に前記密閉容器内に貯溜した潤滑油で満たされていることを特徴とする密閉型回転圧縮機。2. The sealed rotation according to claim 1, wherein an oil inflow path of the lubricating oil in the oil supply pump chamber is a fluid diode, and an upper portion of the fluid diode is always filled with the lubricating oil stored in the sealed container. Compressor. 請求項2または3において、前記2つの給油ポンプ室における潤滑油の油流入路を流体ダイオードと、前記2つの給油ポンプ室を連通する油連通路を流体ダイオードとし、前記油流入路の前記流体ダイオードは常に前記密閉容器内に貯溜した潤滑油で満たされていることを特徴とする密閉型回転圧縮機。4. An oil inflow path for lubricating oil in the two oil pump chambers as a fluid diode, an oil communication path communicating with the two oil pump chambers as a fluid diode, and the fluid diode in the oil inflow path according to claim 2 or 3. Is always filled with lubricating oil stored in the sealed container. 請求項1から5において、圧縮する冷媒をHCFC冷媒の代替冷媒であるHFC系冷媒か炭化水素、CO2、アンモニア等の自然系冷媒かの何れかを用いたことを特徴とする密閉型回転圧縮機。6. The hermetic rotary compressor according to claim 1, wherein the refrigerant to be compressed is any one of an HFC refrigerant that is an alternative refrigerant to the HCFC refrigerant and a natural refrigerant such as hydrocarbon, CO2, and ammonia. . 請求項1から6のいずれかに記載の密閉型回転圧縮機を搭載した冷凍・空調システム。A refrigeration / air conditioning system equipped with the hermetic rotary compressor according to any one of claims 1 to 6.
JP2003205230A 2003-08-01 2003-08-01 Sealed rotary compressor Pending JP2005054578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205230A JP2005054578A (en) 2003-08-01 2003-08-01 Sealed rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205230A JP2005054578A (en) 2003-08-01 2003-08-01 Sealed rotary compressor

Publications (1)

Publication Number Publication Date
JP2005054578A true JP2005054578A (en) 2005-03-03

Family

ID=34362608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205230A Pending JP2005054578A (en) 2003-08-01 2003-08-01 Sealed rotary compressor

Country Status (1)

Country Link
JP (1) JP2005054578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045415A (en) * 2006-08-10 2008-02-28 Daikin Ind Ltd Hermetic compressor
JP2013127243A (en) * 2011-11-17 2013-06-27 Panasonic Corp Refrigerant compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045415A (en) * 2006-08-10 2008-02-28 Daikin Ind Ltd Hermetic compressor
JP2013127243A (en) * 2011-11-17 2013-06-27 Panasonic Corp Refrigerant compressor

Similar Documents

Publication Publication Date Title
JP3851971B2 (en) CO2 compressor
WO2010087179A1 (en) Scroll compressor
WO2004011809A1 (en) Horizontal rotary-type compressor
KR0137249B1 (en) Rotary compressor with oil injection
JP2007315261A (en) Hermetic compressor
KR100612811B1 (en) Horizontal Rotary Compressor
KR0169970B1 (en) Rotary compressor
JP3969840B2 (en) Electric compressor
CN109154296B (en) Hermetic rotary compressor and refrigerating and air-conditioning apparatus
KR100557061B1 (en) Scroll compressor
JP2005054578A (en) Sealed rotary compressor
JP4074760B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JPH11107949A (en) Scroll type compressor
JP2004225578A (en) Rotary compressor
JP2009127517A (en) Enclosed compressor
JP3580365B2 (en) Rotary compressor
JP2003139082A (en) Sealed rotary compressor
JP2015140737A (en) Hermetic compressor and refrigerator using same
KR100629870B1 (en) Lubrication system for horizontal compressor
JP2002250292A (en) Closed type rotary compressor and refrigeration/air- conditioning device
JP2010116836A (en) Rotary type fluid machine
KR101148666B1 (en) Discharging system of vane rotating type compressor
JPS59226294A (en) Oil supplying device for compressor
JPH0615870B2 (en) Horizontal rotary compressor
JP2011111993A (en) Hermetic rotary compressor