JP2005053710A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP2005053710A
JP2005053710A JP2003205630A JP2003205630A JP2005053710A JP 2005053710 A JP2005053710 A JP 2005053710A JP 2003205630 A JP2003205630 A JP 2003205630A JP 2003205630 A JP2003205630 A JP 2003205630A JP 2005053710 A JP2005053710 A JP 2005053710A
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
carbon
particles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205630A
Other languages
Japanese (ja)
Inventor
Tetsuya Inoue
鉄也 井上
Hiroyuki Daiku
博之 大工
Jirou Ishibe
二朗 石辺
Daisuke Fujita
大祐 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2003205630A priority Critical patent/JP2005053710A/en
Publication of JP2005053710A publication Critical patent/JP2005053710A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon nanotubes for electron emitters, capable of achieving uniform electron emission, low-voltage drive, and a prolonged lifetime and capable of providing a carbon nanotube spacing sufficient to enable field electron emission. <P>SOLUTION: Catalyst metal particles are supported on a substrate 2, and carbon nanotubes 5 are grown by chemical vapor deposition on the substrate 2 by using the catalyst particles as nuclei. The substrate 2 is made of a gas-permeable sheet made of carbon fibers 4. It is desirable that the support of the catalyst metal particles on the substrate is performed by using a liquid containing ultramicroparticles of the catalyst metal. It is desirable that a gas permeation inhibiting film is formed on the back of the substrate 2 after the growth of the carbon nanotubes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【発明の属する技術分野】
本発明は、カーボンナノチューブの製造方法に関する。カーボンナノチューブは、カーボン原子が網目状に結合してできた極微細な単層または多層の筒(チューブ)状の物質である。カーボンナノチューブを用いた電子放出素子は、フィールドエミッション型フラットパネルディスプレイ(FED)や、X線源、電子線リソグラフィー、表示・照明器具、ガス分解装置、殺菌・消毒装置などに応用される。
【従来の技術】
カーボンナノチューブは、シリコンやモリブデンで作られたスピント型エミッターやダイヤモンド薄膜などの従来の電子放出素材に比べて、電流密度、駆動電圧、頑健さ、寿命などの特性において総合的に優れており、FED用電子源として現在最も有望視されている。これは、カーボンナノチューブが大きなアスペクト比(長さと直径の比)と鋭い先端とを持ち、化学的に安定で機械的にも強靱であり、しかも、高温での安定性に優れているなど、電界放出素子の材料として有利な物理化学的性質を備えているからである。
カーボンナノチューブの作製方法として、2本の炭素電極間のギャップを1mm程度に保った状態で、ヘリウム中で安定な直流アーク放電を持続させることにより、陽極の炭素電極の直径とほぼ同じ径をもつ円柱状の堆積物を陰極先端に形成する方法がある。この円柱状の堆積物を構成する内側の芯は、堆積物柱の長さ方向にのびた繊維状の組織である柱状グラファイトを持ち、柱状グラファイトはカーボンナノチューブの集合体である。この柱状グラファイトを含むペーストをスクリーン印刷により基板面に所定のパターンに形成すれば、電子放出部が形成できる(特許文献1参照)。こうして形成したFEDパネルでは、一本一本のカーボンナノチューブの向きおよび高さがバラバラであるため、電界を掛けた際に一本一本のカーボンナノチューブにかかる電界が不均一となり、結果として電界放出が不均一となり、表示画面が粗くかつ輝度が不十分であるという問題があった。
スクリーン印刷法に代えて、シリコンやガラスの基板に触媒金属の薄膜をパターニングしておき、それを種結晶としてCVD法によりブラシ状にカーボンナノチューブを成長させ、これを電子放出素子に適用しようとする試みも行われている。しかし、CVD法により成長したブラシ状カーボンナノチューブは互いに絡まり合いつつ横に曲がりながら成長するため、1本1本のカーボンナノチューブが高さの不揃いなものとなり、そのようなカーボンナノチューブを用いた電子放出素子では、多数のチューブ先端を等しく電気的に利用することができず、電子の均一な放出が不可能である。
また、従来のカーボンナノチューブ製造方法では、基板は一般に原料ガス流れ方向に配置され、金属触媒は基板面に蒸着膜として形成されているため、電界電子放出が可能なような十分なカーボンナノチューブ間隔を得ることができない。
さらに、基板面に成長させたカーボンナノチューブは基板との結合が強固でなく、その結果電気的な接触抵抗が増し、低い電圧での駆動が困難である。
【特許文献1】
特開平11−162383号公報。
【発明が解決しようとする課題】
本発明の目的は、上記のような実状に鑑み、均一な電子放出、低い電圧での駆動および長寿命化を達成することができ、しかも電界電子放出が可能なような十分なカーボンナノチューブ間隔を得ることができる電子放出素子用のカーボンナノチューブの製造方法を提供することにある。
【課題を解決するための手段】
請求項1の発明は、基板に触媒金属粒子を担持させ、該触媒粒子を核として基板上に化学蒸着法によりカーボンナノチューブを成長させるに当たり、基板がカーボン繊維または金属繊維からなる通気性シートで構成されていることを特徴とする、カーボンナノチューブの製造方法である。
請求項2の発明は、基板への触媒金属粒子の担持を、触媒金属の超微粒子を含む液を用いて行う、請求項1記載のカーボンナノチューブの製造方法である。
請求項3の発明は、カーボンナノチューブを成長させた後、基板裏面に通気阻止膜を設ける、請求項1または2記載のカーボンナノチューブの製造方法である。
【発明の実施の形態】
以下に、本発明の実施形態について説明をする。
請求項1の発明において、基板を構成する通気性シートは、カーボン繊維または金属繊維からなる。カーボン繊維は、ポリアクリロニトリル、ピッチ等を原料とした繊維を不活性雰囲気中で1000〜1500℃で焼成、炭化することにより得られる。カーボン繊維からなるシートはこのような繊維を材料として成形したシートであり、市販品を用いることができる。金属繊維は、鋼、ステンレス鋼、チタン、アルミニウム、タングステン、モリブデン等からなる。金属繊維からなるシートはこのような繊維を材料として成形したシートであり、市販品を用いることができる。繊維の直径は数μm〜数十μmであり、通気性シートからなる基板の開口率は好ましくは20〜80%であり、厚さは好ましくは0.1〜1mmである。
触媒金属は、鉄、コバルト、ニッケルなどであり、例えば鉄カルボニル錯体(ペンタカルボニル鉄等)のような錯体の形態、金属アルコキシド(Fe(OEt)等)の形態等で供給されてもよい。金属錯体や金属アルコキシドは溶液で供給されてもよい。溶媒はアセトン、アルコール等であってよい。溶液中の金属錯体や金属アルコキシドの濃度は例えば1〜5重量%であってよい。例えば浸漬法や塗布法により、カーボン繊維または金属繊維に触媒金属粒子からなる薄膜が形成される。薄膜の厚みは、厚過ぎると加熱による金属粒子化が困難になるので、好ましくは1〜100nmである。
次いでこの薄膜を好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃に加熱すると、直径1〜50nm程度の金属触媒粒子が形成される。触媒金属粒子からなる薄膜上に化学蒸着法によりカーボンナノチューブを成長させる工程では、原料ガスは通常はアセチレン(C)ガスであるが、メタンガス、エタンガスのような他の脂肪族炭化水素ガスであってもよい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが基板面にブラシ毛状に形成される。原料ガスはヘリウムやアルゴン、キセノンのような不活性ガスで希釈された状態で原料ガス供給管を経て反応ゾーンに供給してもよい。
ガス供給は連続的に行っても断続的に行ってもよい。化学蒸着法の操作条件は、好ましくは、大気圧下で、温度650〜800℃、好ましくは700〜750℃、時間1〜10分である。
カーボンナノチューブ成長の化学蒸着反応ゾーンにおいて、基板は原料ガスの流れ方向に対し実質的に垂直方向に配向するのが好ましい。基板を通気性シートで構成されているので、原料ガスはこれを通過することができる。基板を原料ガスの流れ方向に対し実質的に垂直方向に配向することにより、原料ガスの反応率を向上させ、未反応量を減らすことができる。また、化学蒸着反応ゾーンにおいて複数枚の基板を原料ガスの流路に所定間隔で配列するのが好ましい。このように基板を原料ガスの流路に複数枚配列することにより、原料ガスの反応率を向上させ、未反応量を減らすことができる。
請求項2の発明において、基板に触媒金属の超微粒子を担持させるには、例えば、触媒金属の超微粒子を含む液を基板にスプレーや刷毛で塗布し、次いで基板を乾燥、必要であれば加熱する方法や、触媒金属の超微粒子を含む液もしくはその希釈液に撹拌下に基板を浸漬し、次いで基板を乾燥、必要であれば加熱する方法が採用できる。超微粒子の粒径は好ましくは1〜10nmである。浸漬時間は例えば10〜30秒であってよく、乾燥温度は例えば100〜150℃であってよい。触媒金属の超微粒子を含む液の代表的な例は磁性流体である。磁性流体は、鉄などの磁性体超微粒子(粒径は通常10nm以下)を界面活性剤を用いて水や炭化水素などの媒体に分散させたもの(濃度は通常1重量%程度)で、例えば、マグネタイト(Fe)の超微粒子にオレイン酸を吸着させ、この疎水基を外側に向けて、超微粒子を炭化水素中に分散させたものである。触媒金属の超微粒子を含む液、例えば磁性流体を希釈するための媒体は、例えば水、アセトン等の有機溶媒であってよい。
請求項3の発明において、カーボンナノチューブを成長させた後、基板裏面、すなわち基板のカーボンナノチューブ非生成面に通気阻止膜を形成するには、例えば、基板裏面に銅等の導電性金属の蒸着処理、テフロン(登録商標)等の合成樹脂膜形成処理、酸化膜形成処理、またはこれらの組み合わせを施すことが好ましい。カーボンナノチューブを成長させた後、基板裏面に通気阻止膜を形成したものは、電界電子放出素子として好適に用いられる。金属蒸着により基板の電気抵抗率を向上することができる。
カーボンナノチューブの長さは好ましくは1〜10μm、直径は好ましくは20〜30nm、カーボンナノチューブ相互間の間隔は好ましくは100〜150nmである。
つぎに、本発明を実施例に基づいて具体的に説明する。
実施例1
開口率60%のカーボン繊維シートで構成された厚さ0.4mmの円板状の基板に、鉄超微粒子を含む磁性流体(シグマハイケミカル社製「M−300」)を溶媒(数%の界面活性剤入りの水:アセトン=50:50)で1重量%に希釈した液をスプレー法により塗布し、次いで乾燥した。こうして、基板のカーボン繊維に粒径10nmの鉄超微粒子を付着させた。
図1に示す、触媒粒子を核として薄膜上に化学蒸着法によりカーボンナノチューブを成長させるカーボンナノチューブ形成装置において、円筒状の反応管(1) 内に、鉄超微粒子を付着したカーボン繊維製の複数枚の円板状基板(2) を、反応管(1) の長さ方向、すなわち原料ガスの流れ方向に対し実質的に垂直方向に配向し、かつ流れ方向に互いに所定間隔で配列した。原料ガスはアセチレンガスで、これをヘリウムガスで希釈した状態で(アセチレンガス:ヘリウムガス=1:9)、反応管(1) に連続的に流量30ml/minで供給し、基板(2) を厚さ方向に通過させた。同時に基板(2) をコイルヒータ(3) によって加熱した。
化学蒸着法の操作条件は、大気圧下で、温度730℃、時間5分とした。
この操作により、図3に示すように、基板(2) を構成するカーボン繊維(4) に付着した鉄超微粒子を核としてブラシ状カーボンナノチューブ(5) が生成し、徐々に成長した。成長したカーボンナノチューブは、太さ約20nmの多層構造であり、長さは約10μmであった。
つぎに、基板(2) の裏面、すなわち基板(2) のカーボンナノチューブ非生成面に銅の蒸着処理を施して厚さ約1μmの銅蒸着膜(6) を形成し、さらにその上にテフロン(登録商標)樹脂膜形成処理を施して厚さ約10μmのテフロン(登録商標)皮膜(7) を形成した。こうして電界電子放出素子を作製した。
カーボンナノチューブを電子放出素子とするFEDの構造を図4に模式的に示す。同図において、(41)(42)は上下一対のガラス板であり、下側のガラス板(42)の上面にカソード電極(43)が設けられ、カソード電極(43)の上面にエミッターとなる多数のカーボンナノチューブからなる放電素子(44)が形成されている。カソード電極(43)の上面には絶縁体層(47)を介して厚さ0.1mmのゲート電極(48)が放電素子(44)を囲うように設けられている。また、上側のガラス板(41)の下面には、透明膜からなるアノード電極(45)が貼り付けられ、アノード電極(45)の下面には蛍光材層(46)が設けられている。この構成全体が密閉容器内に配置され容器は10−6Torrオーダーの真空度に吸引されて封止されている。カソード電極(43)とゲート電極(48)の間にゲート電圧が印加され、カソード電極(43)とアノード電極(45)の間にはアノード電圧が印加される。その結果、多数のカーボンナノチューブからなる放電素子(44)の先端から電子が放出され、ゲート電極(48)の間を通過して上行し、蛍光材層(46)を経てアノード電極(45)に受けられる。こうして構成されたFEDにおいて、5wの電力で500cd/mの輝度が得られた。
実施例2
この実施例では、図2に示す、触媒粒子を核として薄膜上に化学蒸着法によりカーボンナノチューブを成長させるカーボンナノチューブ形成装置において、反応管(11)は角筒状であって、基板(12)は正方形である。この角筒状反応管(11)内に4枚の隣接基板(12)からなる複数の基板群を、反応管(11)の長さ方向、すなわち原料ガスの流れ方向に対し実質的に垂直方向に配向し、かつ流れ方向に互いに所定間隔で配列した。原料ガスはアセチレンガスで、これをヘリウムガスで希釈した状態で(アセチレンガス:ヘリウムガス=1:9)、反応管(11)に連続的に流量30ml/minで供給し、基板(12)を厚さ方向に通過させた。同時に基板(12)をコイルヒータ(13)によって加熱した。反応管(11)を出た混合ガス(アセチレンガス:ヘリウムガス1:9)を水中バブリングし、未反応アセチレンガスを水に捕集した後、ヘリウムガスを乾燥し、このヘリウムガスでアセチレンガスを希釈し、混合バスを反応管(11)に再び供給した(図2中の鎖線参照)。その他の構成は実施例1のものと同じである。
【発明の効果】
本発明によると、基板はカーボン繊維または金属繊維からなる通気性シートで構成されているので、カーボンナノチューブは繊維上のみに成長する。したがって、繊維の粗さを整えることによりカーボンナノチューブの相互間隔を電界電子放出が可能なような十分な大きさにすることができる。
また、原料ガスは基板の内部を通過できるのでカーボンナノチューブにむらがなく、カーボンナノチューブの成長高さを均一に揃えることができ、その結果、構築したFEDにおいて均一な電子放出、低い電圧での駆動および長寿命化を達成することができる。
さらに、カーボン繊維または金属繊維の採用により基板の導電性を向上することができる。
【図面の簡単な説明】
【図1】実施例1のカーボンナノチューブ製造装置を概略的に示す斜視図である。
【図2】実施例2のカーボンナノチューブ製造装置を概略的に示す斜視図である。
【図3】カーボン繊維からなる通気性シートで構成された基板を示す垂直断面図である。
【図4】カーボンナノチューブを電子放出素子とするFEDの構造を模式的に示す垂直断面図である。
【符号の説明】
(1):反応管
(2):円板状基板
(3):コイルヒータ
(4):カーボン繊維
(5):カーボンナノチューブ
(6):銅蒸着膜
(7):テフロン(登録商標)皮膜
(11):反応管
(12):基板
(13):コイルヒータ
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon nanotubes. A carbon nanotube is a very fine single-layer or multi-layered tube (tube) substance formed by bonding carbon atoms in a network. An electron-emitting device using carbon nanotubes is applied to a field emission flat panel display (FED), an X-ray source, electron beam lithography, a display / lighting device, a gas decomposition apparatus, a sterilization / disinfection apparatus, and the like.
[Prior art]
Compared with conventional electron emission materials such as Spindt-type emitters and diamond thin films made of silicon or molybdenum, carbon nanotubes are comprehensively superior in characteristics such as current density, drive voltage, robustness, and lifetime. It is currently the most promising electron source. This is because carbon nanotubes have a large aspect ratio (length-to-diameter ratio) and sharp tip, are chemically stable and mechanically tough, and have excellent stability at high temperatures. This is because it has advantageous physicochemical properties as a material for the emitting element.
As a method for producing carbon nanotubes, by maintaining a stable DC arc discharge in helium with the gap between the two carbon electrodes kept at about 1 mm, the diameter of the carbon electrode is approximately the same as that of the anode carbon electrode. There is a method of forming a cylindrical deposit on the cathode tip. The inner core constituting the columnar deposit has columnar graphite which is a fibrous structure extending in the length direction of the deposit column, and the columnar graphite is an aggregate of carbon nanotubes. If this paste containing columnar graphite is formed in a predetermined pattern on the substrate surface by screen printing, an electron emission portion can be formed (see Patent Document 1). In the FED panel formed in this way, the direction and height of each carbon nanotube varies, so that the electric field applied to each carbon nanotube becomes non-uniform when an electric field is applied, resulting in field emission. Becomes non-uniform, and the display screen is rough and the luminance is insufficient.
Instead of a screen printing method, a catalytic metal thin film is patterned on a silicon or glass substrate, and carbon nanotubes are grown in a brush shape by CVD using this as a seed crystal, and this is applied to an electron-emitting device. Attempts have also been made. However, brush-like carbon nanotubes grown by the CVD method grow while curving sideways while being entangled with each other, so that the individual carbon nanotubes have uneven heights, and electron emission using such carbon nanotubes In the device, a large number of tube tips cannot be used electrically, and electrons cannot be emitted uniformly.
In the conventional carbon nanotube manufacturing method, since the substrate is generally arranged in the flow direction of the source gas, and the metal catalyst is formed as a vapor deposition film on the substrate surface, a sufficient interval between the carbon nanotubes to enable field electron emission is provided. Can't get.
Furthermore, the carbon nanotubes grown on the substrate surface are not strongly bonded to the substrate, resulting in an increase in electrical contact resistance and difficulty in driving at a low voltage.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-162383.
[Problems to be solved by the invention]
In view of the above situation, the object of the present invention is to achieve uniform electron emission, low voltage driving and long life, and sufficient carbon nanotube spacing to enable field electron emission. An object of the present invention is to provide a method for producing a carbon nanotube for an electron-emitting device that can be obtained.
[Means for Solving the Problems]
According to the first aspect of the present invention, when the catalyst metal particles are supported on the substrate and the carbon particles are grown on the substrate by chemical vapor deposition using the catalyst particles as nuclei, the substrate is composed of a breathable sheet made of carbon fiber or metal fiber. It is the manufacturing method of the carbon nanotube characterized by the above-mentioned.
The invention according to claim 2 is the method for producing carbon nanotubes according to claim 1, wherein the catalyst metal particles are supported on the substrate by using a liquid containing ultrafine particles of the catalyst metal.
The invention according to claim 3 is the method for producing carbon nanotubes according to claim 1 or 2, wherein after the carbon nanotubes are grown, a ventilation blocking film is provided on the back surface of the substrate.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
In the invention of claim 1, the breathable sheet constituting the substrate is made of carbon fiber or metal fiber. The carbon fiber is obtained by firing and carbonizing a fiber made of polyacrylonitrile, pitch or the like at 1000 to 1500 ° C. in an inert atmosphere. The sheet | seat which consists of carbon fiber is a sheet | seat which shape | molded such a fiber as a material, and can use a commercial item. The metal fiber is made of steel, stainless steel, titanium, aluminum, tungsten, molybdenum or the like. The sheet | seat which consists of metal fibers is a sheet | seat which shape | molded such a fiber as a material, and can use a commercial item. The diameter of the fiber is several μm to several tens of μm, the aperture ratio of the substrate made of a breathable sheet is preferably 20 to 80%, and the thickness is preferably 0.1 to 1 mm.
The catalyst metal is iron, cobalt, nickel or the like, and may be supplied in the form of a complex such as an iron carbonyl complex (pentacarbonyl iron or the like) or a metal alkoxide (Fe (OEt) 3 or the like), for example. The metal complex or metal alkoxide may be supplied in a solution. The solvent may be acetone, alcohol or the like. The concentration of the metal complex or metal alkoxide in the solution may be, for example, 1 to 5% by weight. For example, a thin film made of catalytic metal particles is formed on carbon fiber or metal fiber by dipping or coating. The thickness of the thin film is preferably 1 to 100 nm because it is difficult to form metal particles by heating if it is too thick.
Next, when this thin film is heated preferably at 650 to 800 ° C., preferably under reduced pressure or in a non-oxidizing atmosphere, metal catalyst particles having a diameter of about 1 to 50 nm are formed. In the process of growing carbon nanotubes on a thin film made of catalytic metal particles by chemical vapor deposition, the source gas is usually acetylene (C 2 H 2 ) gas, but other aliphatic hydrocarbon gas such as methane gas or ethane gas. It may be. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in the shape of brush hairs on the substrate surface. The source gas may be supplied to the reaction zone through a source gas supply pipe in a state diluted with an inert gas such as helium, argon or xenon.
The gas supply may be performed continuously or intermittently. The operating conditions of the chemical vapor deposition method are preferably a temperature of 650 to 800 ° C., preferably 700 to 750 ° C., and a time of 1 to 10 minutes under atmospheric pressure.
In the chemical vapor deposition reaction zone for carbon nanotube growth, the substrate is preferably oriented substantially perpendicular to the flow direction of the source gas. Since the substrate is made of a breathable sheet, the source gas can pass through it. By orienting the substrate in a direction substantially perpendicular to the flow direction of the source gas, the reaction rate of the source gas can be improved and the unreacted amount can be reduced. Further, it is preferable to arrange a plurality of substrates in the chemical vapor deposition reaction zone at predetermined intervals in the flow path of the source gas. By arranging a plurality of substrates in the raw material gas flow path in this way, the reaction rate of the raw material gas can be improved and the unreacted amount can be reduced.
In the invention of claim 2, in order to support the catalyst metal ultrafine particles on the substrate, for example, a liquid containing the catalyst metal ultrafine particles is applied to the substrate by spraying or brushing, and then the substrate is dried and heated if necessary. And a method of immersing the substrate in a solution containing ultrafine particles of the catalytic metal or a diluted solution thereof under stirring, then drying the substrate, and heating if necessary. The particle size of the ultrafine particles is preferably 1 to 10 nm. The immersion time may be, for example, 10 to 30 seconds, and the drying temperature may be, for example, 100 to 150 ° C. A typical example of a liquid containing ultrafine particles of catalytic metal is a magnetic fluid. The magnetic fluid is a dispersion of ultrafine magnetic particles such as iron (particle size is usually 10 nm or less) in a medium such as water or hydrocarbon using a surfactant (concentration is usually about 1% by weight). The oleic acid is adsorbed on the ultrafine particles of magnetite (Fe 3 O 4 ), and the ultrafine particles are dispersed in the hydrocarbon with the hydrophobic group facing outward. The liquid containing the catalyst metal ultrafine particles, for example, a medium for diluting the magnetic fluid may be an organic solvent such as water or acetone.
In the invention of claim 3, in order to form a ventilation blocking film on the back surface of the substrate, that is, on the non-generated carbon nanotube surface of the substrate after the carbon nanotubes are grown, for example, a vapor deposition treatment of a conductive metal such as copper on the back surface of the substrate It is preferable to perform a synthetic resin film forming process such as Teflon (registered trademark), an oxide film forming process, or a combination thereof. A device in which a carbon nanotube is grown and then a ventilation preventing film is formed on the back surface of the substrate is suitably used as a field electron emission device. The electrical resistivity of the substrate can be improved by metal deposition.
The length of the carbon nanotube is preferably 1 to 10 μm, the diameter is preferably 20 to 30 nm, and the distance between the carbon nanotubes is preferably 100 to 150 nm.
Next, the present invention will be specifically described based on examples.
Example 1
A magnetic fluid ("M-300" manufactured by Sigma High Chemical Co.) containing iron ultrafine particles is dissolved in a disc-shaped substrate having a thickness of 0.4 mm made of a carbon fiber sheet having an aperture ratio of 60%. A solution diluted to 1% by weight with a surfactant-containing water: acetone = 50: 50) was applied by a spray method and then dried. Thus, iron ultrafine particles having a particle diameter of 10 nm were adhered to the carbon fibers of the substrate.
In the carbon nanotube formation apparatus shown in FIG. 1 in which carbon nanotubes are grown on a thin film by using catalyst particles as nuclei by chemical vapor deposition, a plurality of carbon fiber made of ultra-fine iron particles adhered in a cylindrical reaction tube (1). A single disk-shaped substrate (2) was oriented in the length direction of the reaction tube (1), that is, in a direction substantially perpendicular to the flow direction of the raw material gas, and arranged at a predetermined interval in the flow direction. The source gas is acetylene gas, which is diluted with helium gas (acetylene gas: helium gas = 1: 9), continuously supplied to the reaction tube (1) at a flow rate of 30 ml / min, and the substrate (2) Passed in the thickness direction. At the same time, the substrate (2) was heated by the coil heater (3).
The operating conditions of the chemical vapor deposition method were a temperature of 730 ° C. and a time of 5 minutes under atmospheric pressure.
As a result of this operation, as shown in FIG. 3, brush-like carbon nanotubes (5) were generated with the iron ultrafine particles adhering to the carbon fibers (4) constituting the substrate (2) as nuclei, and were gradually grown. The grown carbon nanotubes had a multilayer structure with a thickness of about 20 nm and a length of about 10 μm.
Next, a copper vapor deposition process is performed on the back surface of the substrate (2), that is, the carbon nanotube non-generated surface of the substrate (2) to form a copper vapor deposition film (6) having a thickness of about 1 μm, and a Teflon ( (Registered trademark) Resin film forming treatment was performed to form a Teflon (registered trademark) film (7) having a thickness of about 10 μm. Thus, a field electron emission device was produced.
The structure of an FED using carbon nanotubes as electron-emitting devices is schematically shown in FIG. In the figure, (41) and (42) are a pair of upper and lower glass plates, a cathode electrode (43) is provided on the upper surface of the lower glass plate (42), and an emitter is formed on the upper surface of the cathode electrode (43). A discharge element (44) made of a large number of carbon nanotubes is formed. A gate electrode (48) having a thickness of 0.1 mm is provided on the upper surface of the cathode electrode (43) via an insulator layer (47) so as to surround the discharge element (44). An anode electrode (45) made of a transparent film is attached to the lower surface of the upper glass plate (41), and a fluorescent material layer (46) is provided on the lower surface of the anode electrode (45). The entire structure is disposed in a sealed container, and the container is sucked and sealed to a degree of vacuum of the order of 10 −6 Torr. A gate voltage is applied between the cathode electrode (43) and the gate electrode (48), and an anode voltage is applied between the cathode electrode (43) and the anode electrode (45). As a result, electrons are emitted from the tip of the discharge element (44) composed of a large number of carbon nanotubes, pass through between the gate electrodes (48), and go up to the anode electrode (45) through the fluorescent material layer (46). I can receive it. In the FED configured as described above, a luminance of 500 cd / m 2 was obtained with a power of 5 w.
Example 2
In this embodiment, in the carbon nanotube forming apparatus shown in FIG. 2 in which carbon nanotubes are grown on a thin film by using catalyst particles as nuclei by chemical vapor deposition, the reaction tube (11) has a rectangular tube shape, and the substrate (12) Is a square. A plurality of substrate groups consisting of four adjacent substrates (12) in this rectangular tube-shaped reaction tube (11) are arranged in a direction substantially perpendicular to the length direction of the reaction tube (11), that is, the flow direction of the source gas. And arranged at predetermined intervals in the flow direction. The source gas is acetylene gas, which is diluted with helium gas (acetylene gas: helium gas = 1: 9), and continuously supplied to the reaction tube (11) at a flow rate of 30 ml / min. Passed in the thickness direction. At the same time, the substrate (12) was heated by the coil heater (13). The mixed gas (acetylene gas: helium gas 1: 9) exiting the reaction tube (11) is bubbled in water, and the unreacted acetylene gas is collected in water. Then, the helium gas is dried, and the acetylene gas is removed with this helium gas. After dilution, the mixing bath was supplied again to the reaction tube (11) (see the chain line in FIG. 2). Other configurations are the same as those of the first embodiment.
【The invention's effect】
According to the present invention, since the substrate is composed of a breathable sheet made of carbon fiber or metal fiber, carbon nanotubes grow only on the fiber. Therefore, by adjusting the roughness of the fibers, the mutual interval between the carbon nanotubes can be made large enough to allow field electron emission.
Moreover, since the source gas can pass through the inside of the substrate, the carbon nanotubes are not uneven, and the growth height of the carbon nanotubes can be made uniform. As a result, uniform electron emission and low voltage driving are achieved in the constructed FED. And a longer life can be achieved.
Furthermore, the conductivity of the substrate can be improved by employing carbon fibers or metal fibers.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a carbon nanotube production apparatus of Example 1. FIG.
2 is a perspective view schematically showing a carbon nanotube production apparatus of Example 2. FIG.
FIG. 3 is a vertical sectional view showing a substrate composed of a breathable sheet made of carbon fiber.
FIG. 4 is a vertical sectional view schematically showing the structure of an FED using carbon nanotubes as electron-emitting devices.
[Explanation of symbols]
(1): Reaction tube (2): Disc substrate (3): Coil heater (4): Carbon fiber (5): Carbon nanotube (6): Copper vapor deposition film (7): Teflon (registered trademark) film ( 11): Reaction tube (12): Substrate (13): Coil heater

Claims (3)

基板に触媒金属粒子を担持させ、該触媒粒子を核として基板上に化学蒸着法によりカーボンナノチューブを成長させるに当たり、基板がカーボン繊維または金属繊維からなる通気性シートで構成されていることを特徴とする、カーボンナノチューブの製造方法。When the catalyst metal particles are supported on the substrate and the carbon particles are grown on the substrate by chemical vapor deposition using the catalyst particles as nuclei, the substrate is composed of a breathable sheet made of carbon fiber or metal fiber. A method for producing a carbon nanotube. 基板への触媒金属粒子の担持を、触媒金属の超微粒子を含む液を用いて行う、請求項1記載のカーボンナノチューブの製造方法。The method for producing carbon nanotubes according to claim 1, wherein the catalyst metal particles are supported on the substrate using a liquid containing ultrafine particles of the catalyst metal. カーボンナノチューブを成長させた後、基板裏面に通気阻止膜を設ける、請求項1または2記載のカーボンナノチューブの製造方法。The method for producing carbon nanotubes according to claim 1 or 2, wherein after the carbon nanotubes are grown, a gas barrier film is provided on the back surface of the substrate.
JP2003205630A 2003-08-04 2003-08-04 Method for producing carbon nanotube Pending JP2005053710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205630A JP2005053710A (en) 2003-08-04 2003-08-04 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205630A JP2005053710A (en) 2003-08-04 2003-08-04 Method for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2005053710A true JP2005053710A (en) 2005-03-03

Family

ID=34362792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205630A Pending JP2005053710A (en) 2003-08-04 2003-08-04 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2005053710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube
JP2009155181A (en) * 2007-12-27 2009-07-16 Toshiba Corp Apparatus for producing carbon nanotube
JP2012224530A (en) * 2011-04-06 2012-11-15 Panasonic Corp Board complex, carbon nanotube composite, energy device, electronic apparatus and transport device
CN114518453A (en) * 2022-01-26 2022-05-20 东北农业大学 Multi-walled carbon nanotube compound and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube
JP2009155181A (en) * 2007-12-27 2009-07-16 Toshiba Corp Apparatus for producing carbon nanotube
JP2012224530A (en) * 2011-04-06 2012-11-15 Panasonic Corp Board complex, carbon nanotube composite, energy device, electronic apparatus and transport device
CN114518453A (en) * 2022-01-26 2022-05-20 东北农业大学 Multi-walled carbon nanotube compound and preparation method and application thereof
CN114518453B (en) * 2022-01-26 2023-05-16 东北农业大学 Multi-wall carbon nano tube compound and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US11312102B2 (en) Carbon nanotube structure
JP3768908B2 (en) Electron emitting device, electron source, image forming apparatus
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US5872422A (en) Carbon fiber-based field emission devices
KR100615103B1 (en) Nanotubes, field emission cathode and cathode ray tube having nanotubes and method for forming them
US20070259128A1 (en) Method for controlled density growth of carbon nanotubes
US7618300B2 (en) Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
US9017637B2 (en) Method for making carbon nanotube structure
JP2004241295A (en) Electrode material for electron emission element using carbon nanotube and its manufacturing method
Chen et al. Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength
JP2004362960A (en) Electron emitting element and manufacturing method of the same
JP2004327085A (en) Manufacturing method for electron emitter using carbon nanotubes
JP3991156B2 (en) Carbon nanotube production equipment
JP2004362919A (en) Method of manufacturing electron emission element using carbon nanotube
JP3573273B2 (en) Electron emitting device and method of manufacturing the same
US6059627A (en) Method of providing uniform emission current
JP5055655B2 (en) Emitter manufacturing method, field emission cold cathode using the emitter, and flat image display device
JP2005053710A (en) Method for producing carbon nanotube
JP3890471B2 (en) Method for producing electrode material for electron-emitting device using carbon nanotube
JP3897794B2 (en) Method for manufacturing electron-emitting device, electron source, and image forming apparatus
JP2003115255A (en) Field electron emitting electrode and its manufacturing method
US8803410B2 (en) Field emission device having entangled carbon nanotubes between a carbon nanotube layer and carbon nanotube array
JP2005053709A (en) Method and apparatus for manufacturing carbon nanotube
JP4378992B2 (en) Carbon nanotube production equipment
JP2004055157A (en) Electrode material for electron emission element using carbon nanotube and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710