JP2005052716A - Hollow fiber membrane module - Google Patents

Hollow fiber membrane module Download PDF

Info

Publication number
JP2005052716A
JP2005052716A JP2003284955A JP2003284955A JP2005052716A JP 2005052716 A JP2005052716 A JP 2005052716A JP 2003284955 A JP2003284955 A JP 2003284955A JP 2003284955 A JP2003284955 A JP 2003284955A JP 2005052716 A JP2005052716 A JP 2005052716A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
length
casing
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003284955A
Other languages
Japanese (ja)
Other versions
JP5051964B2 (en
Inventor
Satoru Inoue
覚 井上
Susumu Kojima
進 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2003284955A priority Critical patent/JP5051964B2/en
Publication of JP2005052716A publication Critical patent/JP2005052716A/en
Application granted granted Critical
Publication of JP5051964B2 publication Critical patent/JP5051964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane module the unnecessary substance removing performance of which is not deteriorated when blood is dialyzed and in which the leakage caused by an impact of a water current or a dropping impact is not caused during water purification/circulation. <P>SOLUTION: In a hollow fiber membrane module 1, a coating layer 13 continuing from the inner surface 9a of a sealed resin layer part 9 is arranged on the outer surface of hollow fiber membranes 10 in both end parts of the membranes 10 constituting a hollow fiber membrane bundle 4. The shortest length L<SB>min</SB>of the layer 13 from the inner surface 9a on the outer peripheral surface of the bundle 4 is made to be ≥1 mm, preferably ≥2 mm, the longest length L<SB>max</SB>is made to be <6 mm, preferably ≤4 mm, and the ratio (L<SB>min</SB>)/(L<SB>max</SB>) of the shortest length to the longest length is made to be larger than 0.85. It is preferable that the packing ratio of the bundle 4 in the resin layer part 9 is made to be ≥46% and ≤65%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は中空糸膜型モジュールに関し、特に、中空糸膜型の人工透析器、血液濾過器、血漿分離器などに好適に用いられる中空糸膜型モジュールに関する。   The present invention relates to a hollow fiber membrane type module, and more particularly to a hollow fiber membrane type module suitably used for a hollow fiber membrane type artificial dialyzer, blood filter, plasma separator and the like.

従来、中空糸膜型モジュールとして、中空糸膜型の人工透析器、血液濾過器、血漿分離器などが知られている。例えば、中空糸膜型人工透析器においては、中空糸膜内孔に血液(被処理液)を流通させ、中空糸膜外側に透析液(浄化処理液等)を流通させて中空糸膜を介した透析を行うことによって、血液中の不要物を除去している。   Conventionally, hollow fiber membrane type artificial dialyzer, blood filter, plasma separator and the like are known as hollow fiber membrane type modules. For example, in a hollow fiber membrane type artificial dialyzer, blood (a liquid to be treated) is circulated through the inner hole of the hollow fiber membrane, and a dialysis fluid (a purification treatment liquid, etc.) is circulated outside the hollow fiber membrane through the hollow fiber membrane. Unnecessary substances in the blood are removed by performing dialysis.

中空糸膜型モジュールの一般的な構造としては、両端をウレタン等の樹脂組成物(ポッティング剤)で固定した樹脂層部を持つ中空糸膜束を収容した筒型ケーシングと、筒型ケーシングの両端に取り付けられた被処理液(血液等)の供給ポート及び排出ポートとなる接続ポートを備える閉塞蓋と、筒型ケーシングの両端部付近の外周面に形成した浄化処理液(透析液等)の供給ポート及び排出ポートとなる接続ポートを備える構造となっている。このような構造をもった中空糸膜型モジュールにおいて、中空糸膜の破損はリークを招き、被処理液(例えば血液)と浄化処理液(例えば透析液)の混合を引き起こすので、回避しなくてはならない。   The general structure of the hollow fiber membrane module includes a cylindrical casing containing a hollow fiber membrane bundle having a resin layer portion fixed at both ends with a resin composition (potting agent) such as urethane, and both ends of the cylindrical casing. Supply of treatment liquid (blood, etc.) attached to the lid with a closure lid provided with a connection port serving as a supply port and a discharge port, and purification treatment liquid (dialysis solution, etc.) formed on the outer peripheral surface near both ends of the cylindrical casing It has a structure provided with a connection port as a port and a discharge port. In the hollow fiber membrane type module having such a structure, the breakage of the hollow fiber membrane causes a leak and causes mixing of the liquid to be treated (for example, blood) and the purification liquid (for example, dialysate). Must not.

そのため、従来から種々の技術手段が検討されている(例えば、特許文献1および特許文献2を参照)。これらの技術においては、筒型ケーシング両端部付近の外周面に形成した浄化処理液供給ポート及び排出ポートに対応した位置に舌片状のバッフル板を配置する技術が開示されており、浄化処理液の出入の際に水流が中空糸膜に与える衝撃を緩和するために、バッフル板の配置位置や形状、大きさ等について検討がなされている。   Therefore, various technical means have been studied conventionally (see, for example, Patent Document 1 and Patent Document 2). In these technologies, a technology is disclosed in which a tongue-shaped baffle plate is disposed at a position corresponding to the purification treatment liquid supply port and the discharge port formed on the outer peripheral surface near both ends of the cylindrical casing. In order to mitigate the impact of the water flow on the hollow fiber membrane during the entry and exit of the baffle, the arrangement position, shape, size, etc. of the baffle plate have been studied.

一方、中空糸膜の損傷によるリークは、前記のように浄化処理液が供給ポートから進入する際、または排出ポートから排出される際に、水流によって中空糸膜に衝撃が加わる場合のみではなく、中空糸膜型モジュールの輸送や取り扱い時に、偶発的に発生する落下等の衝撃によっても発生する。前記のバッフル板は、浄化処理液の出入による衝撃の緩和に対しては優れた効果が認められるが、中空糸膜型モジュールの取り扱いの際、落下等の衝撃に起因するリークを防止する効果までは有していなかった。   On the other hand, the leak due to the damage of the hollow fiber membrane is not only when the impact is applied to the hollow fiber membrane by the water flow when the purification treatment liquid enters from the supply port or is discharged from the discharge port as described above, It also occurs due to an impact such as a drop that occurs accidentally during transportation and handling of the hollow fiber membrane module. The baffle plate described above has an excellent effect on mitigating the impact due to the entry and exit of the purification treatment liquid, but when handling the hollow fiber membrane type module, up to the effect of preventing leakage due to impact such as dropping. Did not have.

そこで、水流による衝撃および落下による衝撃の双方を緩和してリークをなくすことを目的として、中空糸膜型モジュールにおいて、中空糸膜束両端の樹脂層内側より浄化処理液供給ポート及び排出ポートに対応する位置まで中空糸膜束全周にわたって樹脂のコーティング層を付与する技術が開示されている(特許文献3および特許文献4を参照)。特に、特許文献3に記載の技術では、封止部を形成する樹脂形成物と同一の樹脂形成物からなるコーティング層を、封止部の内側表面から浄化処理液供給ポート及び排出ポートの内側開口に対応する領域を含めた範囲にわたって連続させた状態で中空糸膜の端部表面に設けるようにしている。更に、前記コーティング層の封止部内側表面からの長さを中空糸膜束の径方向に漸次変化させ、外周側はポート内側開口に対応する領域を含めた範囲まで設け、中心に向けて次第に短くなるようにして、全体としてお椀状となるようにしている。   Therefore, for the purpose of alleviating both the impact caused by water flow and the impact caused by dropping to eliminate leaks, the hollow fiber membrane module supports the purification treatment supply port and discharge port from the inside of the resin layer at both ends of the hollow fiber membrane bundle. A technique for providing a resin coating layer over the entire circumference of the hollow fiber membrane bundle up to the position where the film is made is disclosed (see Patent Document 3 and Patent Document 4). In particular, in the technique described in Patent Document 3, the coating layer made of the same resin formed product as the resin formed product that forms the sealing portion is opened from the inner surface of the sealing portion to the inner opening of the purification treatment liquid supply port and the discharge port. It is made to provide in the end part surface of a hollow fiber membrane in the state continued over the range including the area | region corresponding to (1). Further, the length from the inner surface of the sealing portion of the coating layer is gradually changed in the radial direction of the hollow fiber membrane bundle, and the outer peripheral side is provided up to a range including the region corresponding to the port inner opening, and gradually toward the center. It is shortened so that it becomes bowl-like as a whole.

しかしながら、特許文献3や特許文献4に開示された技術においては、十分な耐リーク性能を確保するために、非常に長いコーティング層を必要とした。このようにコーティング層の長さが長くなると、物質交換に有効な膜面積が小さくなるばかりか、付与されたコーティング層によって中空糸膜の外部を流れる浄化処理液の流れが影響を受けることがあり、その結果、コーティング層が長くなるほど中空糸膜型モジュールの不要物質の除去性能を低下させるおそれがあった。   However, the techniques disclosed in Patent Document 3 and Patent Document 4 require a very long coating layer in order to ensure sufficient leakage resistance. When the length of the coating layer is increased in this way, not only the membrane area effective for mass exchange is reduced, but also the flow of the purification treatment liquid flowing outside the hollow fiber membrane may be affected by the applied coating layer. As a result, the longer the coating layer, the lower the performance of removing unnecessary substances from the hollow fiber membrane module.

また、前記特許文献3においては、前記のように不要物質の除去性能の低下を防ぐために、中空糸膜束の径方向中心部のコーティング層を外周側に比べて短くし(すなわち、コーティング層をお椀状に形成させて)、コーティング層によって失われる膜面積を最小限に留める検討をしている。しかしながら、本発明者らがコーティング層の長さについて詳細に検討したところ、コーティング層の長さが特許文献3のように浄化処理液供給ポート及び排出ポートに対応する領域まであると、浄化処理液が中空糸膜束内部に侵入できないために有効に活用できる膜面積が大幅に失われることが推定された。   In Patent Document 3, as described above, in order to prevent a reduction in unnecessary substance removal performance, the coating layer at the radial center of the hollow fiber membrane bundle is made shorter than the outer peripheral side (that is, the coating layer is made shorter). We are studying to minimize the film area lost by the coating layer. However, when the present inventors examined the length of the coating layer in detail, if the length of the coating layer is in a region corresponding to the purification treatment liquid supply port and the discharge port as in Patent Document 3, the purification treatment liquid It is estimated that the membrane area that can be effectively utilized is greatly lost because the membrane cannot penetrate into the hollow fiber membrane bundle.

さらに、ケーシングにおける浄化処理液供給ポート及び排出ポートに対応する位置における中空糸膜束の充填率(密度)を高くして、浄化処理液の流動による中空糸膜の振動を抑えることにより、中空糸膜束の破損によるリークを防ぐ方法が従来行われている。しかしながら、特許文献3にも記述されているように、この方法は、ケーシング内への中空糸膜束の装填が非常に困難となり、逆に中空糸膜束をケーシングにセットする際に中空糸膜破損を引き起こすおそれがある。そのため、特許文献3に記載の中空糸膜型モジュールにおいては、前記中空糸膜束の充填率(密度)が34%〜41%の範囲が好適であるとしている。   Furthermore, by increasing the filling rate (density) of the hollow fiber membrane bundle at the position corresponding to the purification treatment liquid supply port and the discharge port in the casing, and suppressing the vibration of the hollow fiber membrane due to the flow of the purification treatment liquid, the hollow fiber A method for preventing leakage due to breakage of a film bundle has been conventionally performed. However, as described in Patent Document 3, this method makes it very difficult to load the hollow fiber membrane bundle into the casing, and conversely, when the hollow fiber membrane bundle is set in the casing, the hollow fiber membrane bundle is set. May cause damage. Therefore, in the hollow fiber membrane type module described in Patent Document 3, the filling rate (density) of the hollow fiber membrane bundle is preferably in the range of 34% to 41%.

特開2000−42100号公報JP 2000-42100 A 特開2000−350781号公報JP 2000-350781 A 特許第3151168号公報Japanese Patent No. 3151168 特開昭59−4403号公報JP 59-4403

本発明は上述したような事情に鑑みてなされたものであり、流体による衝撃や落下等による衝撃に起因する中空糸膜端部の破損を効果的に防止し、しかも、不要物質の除去性能を高く維持できる優れた中空糸膜型モジュールを提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and effectively prevents breakage of the end portion of the hollow fiber membrane caused by impact due to fluid or impact caused by dropping, etc. An object of the present invention is to provide an excellent hollow fiber membrane type module that can be maintained high.

本発明者らは、上記目的を達成するために、特に封止部(樹脂層部)内側表面から中空糸膜外表面に連続するコーティング層の長さについて鋭意検討した。その結果、浄化処理液供給ポート及び排出ポートに対応する領域までコーティング層を付与することなしに、すなわちコーティング層の長さを従来のもの比べて大幅に短くしても、以下のような一定の条件下で均一であれば、流体による衝撃や落下等による衝撃に起因するリーク発生を大幅に低減し、しかも不要物質の除去性能を高く維持できるという効果を見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have intensively studied the length of the coating layer that is continuous from the inner surface of the sealing portion (resin layer portion) to the outer surface of the hollow fiber membrane. As a result, even if the coating layer is not applied to the region corresponding to the purification treatment liquid supply port and the discharge port, that is, even if the length of the coating layer is significantly shorter than the conventional one, the following constants are obtained. If it is uniform under the conditions, it has been found that the occurrence of leaks due to impacts caused by fluids, drops, etc. can be greatly reduced, and the removal performance of unnecessary substances can be maintained high, and the present invention has been completed. .

すなわち、本発明はかかる目的を達成するために、以下の構成を有する。   That is, the present invention has the following configuration in order to achieve this object.

(1)筒型ケーシング内に中空糸膜束を収容し、該中空糸膜束両端を封止部により固定すると共に前記封止部により前記ケーシング両端開口部を封止して、前記ケーシング内に中空糸膜内表面側の第一室と中空糸膜外表面側の第二室とを形成し、前記ケーシング両端部付近の外周面に前記第二室に通じる浄化処理液の供給ポート及び排出ポートを備え、前記筒型ケーシングの両端に前記第一室に通じる被処理液の供給ポート及び排出ポートを備える閉塞蓋を取り付けた中空糸膜型モジュールにおいて、前記中空糸膜束をなす各中空糸膜の端部外表面に前記封止部の内表面から連続したコーティング層を設け、前記コーティング層は、束外周面において前記封止部内表面からの最短長さLminが1mm以上、最長長さLmaxが6mm未満であり、且つ前記最短長さと前記最長長さの比(Lmin)/(Lmax)が0.85より大きいことを特徴とする中空糸膜型モジュール。 (1) A hollow fiber membrane bundle is accommodated in a cylindrical casing, both ends of the hollow fiber membrane bundle are fixed by sealing portions, and the opening portions at both ends of the casing are sealed by the sealing portions. A supply port and a discharge port for the purification treatment liquid that form a first chamber on the inner surface side of the hollow fiber membrane and a second chamber on the outer surface side of the hollow fiber membrane and communicate with the second chamber on the outer peripheral surface in the vicinity of both ends of the casing Each of the hollow fiber membranes constituting the bundle of hollow fiber membranes in a hollow fiber membrane type module having a closed lid provided with a supply port and a discharge port for the liquid to be processed that communicate with the first chamber at both ends of the cylindrical casing A coating layer that is continuous from the inner surface of the sealing portion is provided on the outer surface of the sealing portion, and the coating layer has a minimum length L min of 1 mm or more from the inner surface of the sealing portion on the outer peripheral surface of the bundle, and a maximum length L. max is less than 6mm There, and hollow fiber membrane module the ratio of the shortest length and the maximum length (L min) / (L max ) is equal to or greater than 0.85.

(2)前記コーティング層は、前記封止部内表面からの最短長さLminが2mm以上、最長長さLmaxが4mm以下であることを特徴とする(1)記載の中空糸膜型モジュール。 (2) The hollow fiber membrane module according to (1), wherein the coating layer has a minimum length L min from the inner surface of the sealing portion of 2 mm or more and a maximum length L max of 4 mm or less.

(3)前記ケーシング両端開口部を封止した封止部における中空糸膜束の充填率を46%以上、65%以下としたことを特徴とする(1)または(2)記載の中空糸膜型モジュール。   (3) The hollow fiber membrane according to (1) or (2), wherein a filling rate of the hollow fiber membrane bundle in the sealed portion in which the opening at both ends of the casing is sealed is 46% or more and 65% or less Type module.

(4)前記コーティング層は、前記封止部内表面からの長さLが、前記浄化処理液の供給ポート及び排出ポートまでの長さLよりも短く、且つ前記各ポート下まで至っていないことを特徴とする(1)〜(3)のいずれかに記載の中空糸膜型モジュール。 (4) the coating layer, that the length L from the sealing portion surface, said shorter than the length L p to the supply port and the discharge port of the purification treatment liquid and has not reached to below the ports The hollow fiber membrane module according to any one of (1) to (3).

本発明によれば、中空糸膜型モジュールにおいて、流体による衝撃や落下による衝撃に起因する中空糸膜の破損を防止するために単にコーティング層を封止部と中空糸膜の境界部分に設けるのではなく、その長さや形状を上記のように制御することにより、流体による衝撃や落下等による物理的衝撃に起因する中空糸膜と封止部との境界部における中空糸膜の破損を効果的に防止し、しかも、中空糸膜型モジュールの本来の機能である、不要物質の除去性能を低下させることなく高く維持し、優れた除去性能を有する中空糸膜型モジュールを提供することができる。すなわち、本来相反する効果を両立できる中空糸膜型モジュールが得られる。   According to the present invention, in the hollow fiber membrane type module, the coating layer is simply provided at the boundary between the sealing portion and the hollow fiber membrane in order to prevent the hollow fiber membrane from being damaged due to the impact caused by fluid or the impact caused by dropping. Instead, by controlling the length and shape as described above, it is possible to effectively damage the hollow fiber membrane at the boundary between the hollow fiber membrane and the sealing portion due to a physical impact such as a fluid impact or a drop. In addition, it is possible to provide a hollow fiber membrane type module that has an excellent removal performance while maintaining high without reducing the performance of removing unnecessary substances, which is the original function of the hollow fiber membrane type module. That is, it is possible to obtain a hollow fiber membrane type module that can achieve both inherently contradictory effects.

また、前記コーティング層の長さを、前記封止部内表面からの最短長さLminを2mm以上、最長長さLmaxを4mm以下とすることが好ましく、この構成によれば、上述した流体による衝撃や落下等による衝撃に起因する中空糸膜の破損防止効果、および不要物質の除去性能を更に高めることができる。 Further, the length of the coating layer is preferably set so that the shortest length L min from the inner surface of the sealing portion is 2 mm or more and the longest length L max is 4 mm or less. It is possible to further enhance the effect of preventing the hollow fiber membrane from being damaged due to impact caused by impact or dropping, and the removal performance of unnecessary substances.

また、前記ケーシング両端開口部を封止した封止部における中空糸膜束の充填率を46%以上、65%以下とすることにより、浄化処理液の流動による中空糸膜の振動を抑えることができ、中空糸膜束の破損によるリークを更に低減することができる。   Moreover, the vibration of the hollow fiber membrane due to the flow of the purification treatment liquid can be suppressed by setting the filling rate of the hollow fiber membrane bundle in the sealed portion in which the opening at both ends of the casing is 46% or more and 65% or less. And leakage due to breakage of the hollow fiber membrane bundle can be further reduced.

また、前記コーティング層は、前記封止部内表面からの長さLが、前記浄化処理液の供給ポート及び排出ポートまでの長さLよりも短く、且つ前記各ポート下まで至っていないため、各ポート下において第一室と第二室との間で行われる物質交換が前記コーティング層によって妨げられることがなく、透析液等の流体による衝撃を実際に受ける部分(ポート下)までコーティング層を付与しなくても、コーティング層の形状、中空糸膜の充填率等により耐リーク性に優れ、且つ中空糸膜型モジュールの本来の機能である、不要物質の除去性能を更に高めることができ、優れた除去性能を有する中空糸膜型モジュールを提供することができる。 In addition, the coating layer has a length L from the inner surface of the sealing portion shorter than a length L p to the supply port and the discharge port of the purification treatment liquid and does not reach the bottom of each port. The material exchange performed between the first chamber and the second chamber under the port is not hindered by the coating layer, and the coating layer is applied up to the portion (under the port) that is actually impacted by a fluid such as dialysate. Even without this, it is excellent in leak resistance due to the shape of the coating layer, the filling rate of the hollow fiber membrane, etc., and it can further enhance the removal performance of unnecessary substances, which is the original function of the hollow fiber membrane type module. A hollow fiber membrane type module having excellent removal performance can be provided.

以下、本発明について具体的に説明する。図1は本発明に係る中空糸膜型モジュールの断面模式図、図2は水流による過酷リーク試験方法の説明図、図3は本発明に係る実施例及び比較例1〜5の中空糸膜型モジュールを用い、各々について水流による耐リーク性の評価、落下衝撃に対する耐リーク性の評価、尿素クリアランスの測定を行った結果を表す表図である。   Hereinafter, the present invention will be specifically described. FIG. 1 is a schematic cross-sectional view of a hollow fiber membrane module according to the present invention, FIG. 2 is an explanatory diagram of a severe leak test method using water flow, and FIG. 3 is a hollow fiber membrane mold of Examples and Comparative Examples 1 to 5 according to the present invention. It is a table | surface figure showing the result of having measured the leak resistance by water flow, the evaluation of the leak resistance with respect to a drop impact, and the measurement of urea clearance about each using the module.

中空糸膜型モジュール1は、筒型ケーシング2内に多数本の中空糸膜10からなる中空糸膜束4を収容している。この中空糸膜束4両端を、ポリウレタン等の樹脂組成物を充填して形成する封止部としての樹脂層部9により接着固定すると共に、前記ケーシング2の両端開口部をそれぞれ前記樹脂層部9により封止している。なお、前記各中空糸膜10は、該中空糸膜10の内孔の開口端が封止される事なく樹脂層部9の外側表面9bにて開口している。これにより、中空糸膜型モジュール1は、前記ケーシング2内に中空糸膜10内表面側の第一室と中空糸膜10外表面側の第二室とを形成している。また、中空糸膜型モジュール1は、前記ケーシング2の両端部付近の外周面に前記第二室に通じる浄化処理液の供給ポート11及び排出ポート12を備え、各ポート11,12に対応した位置に舌片状のバッフル板30,31を配置している。さらに、ケーシング2の両端部付近は中央部に比べて径の大きい拡径部14,15となっている。そして、この筒型ケーシング2の両端に前記第一室に通じる被処理液の供給ポート5及び排出ポート7を備える閉塞蓋6,8を取り付けて中空膜型モジュールを構成している。   The hollow fiber membrane type module 1 accommodates a hollow fiber membrane bundle 4 composed of a large number of hollow fiber membranes 10 in a cylindrical casing 2. Both ends of the hollow fiber membrane bundle 4 are bonded and fixed by a resin layer portion 9 as a sealing portion formed by filling a resin composition such as polyurethane, and both opening portions of the casing 2 are respectively connected to the resin layer portion 9. It is sealed by. In addition, each said hollow fiber membrane 10 is opened in the outer surface 9b of the resin layer part 9, without the opening end of the inner hole of this hollow fiber membrane 10 being sealed. Thus, the hollow fiber membrane type module 1 forms a first chamber on the inner surface side of the hollow fiber membrane 10 and a second chamber on the outer surface side of the hollow fiber membrane 10 in the casing 2. Further, the hollow fiber membrane module 1 includes a supply port 11 and a discharge port 12 for the purification treatment liquid communicating with the second chamber on the outer peripheral surface in the vicinity of both ends of the casing 2, and positions corresponding to the ports 11 and 12. Are provided with tongue-shaped baffle plates 30 and 31. Further, the vicinity of both end portions of the casing 2 are enlarged diameter portions 14 and 15 having a larger diameter than the central portion. Then, closed lids 6 and 8 each having a supply port 5 and a discharge port 7 for the liquid to be processed leading to the first chamber are attached to both ends of the cylindrical casing 2 to constitute a hollow membrane type module.

上記中空糸膜10は、セルロースアセテート、銅アンモニアセルロース等のセルロース系中空糸膜や、ポリアクリルニトリル、ポリメチルメタクリレート、ポリエチレン、ポリビニルアルコール、ポリスルホン、ポリアミド、ポリエーテルスルホン等の合成高分子系中空糸膜など、いずれでも用いることが出来るが、膜構造として、膜の外表面に短径0.5μm以上の粗い細孔部を多数有する構造の中空糸膜が好ましい。これは、コーティング層を形成する樹脂が中空糸膜外表面上の細孔に入り込み、膜の固定・保護をより強固に行えるためである。   The hollow fiber membrane 10 includes cellulose-based hollow fiber membranes such as cellulose acetate and copper ammonia cellulose, and synthetic polymer-based hollow fibers such as polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinyl alcohol, polysulfone, polyamide, and polyethersulfone. Any membrane or the like can be used, but a hollow fiber membrane having a structure having a large number of coarse pores having a minor axis of 0.5 μm or more on the outer surface of the membrane is preferable. This is because the resin forming the coating layer enters the pores on the outer surface of the hollow fiber membrane, and the membrane can be more firmly fixed and protected.

本発明の中空糸膜型モジュール1は、筒型ケーシング2の両端部において、前記中空糸膜束4をなす各中空糸膜10の端部外表面に前記樹脂層部9の内側表面9aから連続したコーティング層13を設けている。   The hollow fiber membrane module 1 of the present invention is continuously connected to the outer surface of the end of each hollow fiber membrane 10 forming the hollow fiber membrane bundle 4 from the inner surface 9a of the resin layer portion 9 at both ends of the cylindrical casing 2. The coating layer 13 is provided.

コーティング層13の素材は、樹脂層部9を形成する樹脂組成物との接着性の観点から互いに同一素材・組成であることが望ましい。したがって、モジュールのポッティング剤として一般的に用いられているウレタン系ポリマー、エポキシ系ポリマー、シリコン系ポリマーなどを用いることができるが、特に限定するものではない。   The material of the coating layer 13 is desirably the same material and composition from the viewpoint of adhesiveness with the resin composition forming the resin layer portion 9. Therefore, a urethane polymer, an epoxy polymer, a silicon polymer or the like generally used as a potting agent for a module can be used, but is not particularly limited.

コーティング層13の長さは、長くなるほど流体による衝撃や落下等による物理的衝撃を吸収し中空糸膜のリーク抑制効果を高めるが、必要以上に長くなると中空糸膜の有効膜面積が減少し、さらに浄化処理液が中空糸膜束中心部まで流れ込めないために、中空糸膜束内部の膜面積を有効に活用できずに不要物質の除去性能が大幅に低下する。具体的には、特許文献3の実施例のように、中空糸膜のリーク抑制効果を発揮するコーティング層の長さが必要以上に長く、該長さが6mm以上の場合には、不要物質の除去性能が十分に発揮できないことがあった。また、コーティング層の長さが中空糸膜束外周面上において一部分だけ短い場合には、リーク抑制効果が十分ではない場合があった。これは、コーティング層の長さが短い部分に水流が集中し、リークを引き起こすものと推定される。これらの理由から、保護のためのコーティング層13は必要最低限に留めて、均一に設ける必要がある。   As the length of the coating layer 13 increases, it absorbs a physical impact caused by a fluid or a drop due to a fluid and enhances the leak suppression effect of the hollow fiber membrane. However, if the length is longer than necessary, the effective membrane area of the hollow fiber membrane decreases. Further, since the purification treatment liquid cannot flow to the center of the hollow fiber membrane bundle, the membrane area inside the hollow fiber membrane bundle cannot be used effectively, and the performance of removing unnecessary substances is greatly reduced. Specifically, as in the example of Patent Document 3, when the length of the coating layer that exhibits the leakage suppressing effect of the hollow fiber membrane is longer than necessary, and the length is 6 mm or more, In some cases, the removal performance could not be fully exhibited. Moreover, when the length of the coating layer is only a part short on the outer peripheral surface of the hollow fiber membrane bundle, the leakage suppressing effect may not be sufficient. This is presumed that the water flow concentrates on the portion where the length of the coating layer is short, causing leakage. For these reasons, the coating layer 13 for protection needs to be provided uniformly with the minimum necessary.

後述する実施例において裏付けているように、本発明においては、この問題を解決するにあたり、前記中空糸膜束4をなす各中空糸膜10の外表面におけるコーティング層13は、束外周面において前記樹脂層部9の内側表面9aからの最短長さLminを1mm以上、最長長さLmaxを6mm未満にし、且つ前記最短長さと前記最長長さの比(Lmin)/(Lmax)を0.85よりも大きくする必要がある。 As proved in the examples described later, in the present invention, in order to solve this problem, the coating layer 13 on the outer surface of each hollow fiber membrane 10 constituting the hollow fiber membrane bundle 4 is formed on the outer peripheral surface of the bundle. The shortest length L min from the inner surface 9a of the resin layer portion 9 is 1 mm or more, the longest length L max is less than 6 mm, and the ratio of the shortest length to the longest length (L min ) / (L max ) is It needs to be larger than 0.85.

コーティング層13の最短長さLminが1mm以上、より好ましくは2mm以上であれば、中空糸膜型モジュールの使用・洗浄条件から考えられる環境化での耐リーク性能は十分となる。ただし、コーティング層13が長すぎると有効膜面積の低下により不要物質の除去性能に影響を与える可能性があるので、前記コーティング層13の最長長さLmaxを6mm未満にする必要があり、更には4mm以下にすることが好ましい。 If the minimum length L min of the coating layer 13 is 1 mm or more, more preferably 2 mm or more, the leakage resistance performance in an environment considered from the use / cleaning conditions of the hollow fiber membrane module is sufficient. However, if the coating layer 13 is too long, it may affect the removal performance of unnecessary substances due to a decrease in the effective membrane area. Therefore, the maximum length L max of the coating layer 13 needs to be less than 6 mm. Is preferably 4 mm or less.

また、コーティング層13は、中空糸膜束4外周面において均一な長さである必要があり、コーティング層13の前記最短長さと前記最長長さの比(Lmin)/(Lmax)が0.85以上であることが必要である。この(最短長さLmin)/(最長長さLmax)の値が0.85を下回ると、浄化処理液や洗浄液がコーティング層13の最短長さ部分に集中して流れ込み、該中空糸膜10に過大な水圧がかかるために、中空糸膜束外周面において均一にコーティング層13が設けてある場合に比較して、リーク抑制効果が低下する危険性が高くなる。コーティング層13の(最短長さLmin)/(最長長さLmax)の値が0.85より大きければリーク抑制効果を発揮させることが可能であり、その上限は1.0である。 The coating layer 13 needs to have a uniform length on the outer peripheral surface of the hollow fiber membrane bundle 4, and the ratio (L min ) / (L max ) of the shortest length to the longest length of the coating layer 13 is 0. .85 or more is required. When the value of (minimum length L min ) / (maximum length L max ) is less than 0.85, the purification treatment liquid and the cleaning liquid flow into the shortest length portion of the coating layer 13 and flow into the hollow fiber membrane. Since an excessive water pressure is applied to 10, there is a higher risk that the leakage suppressing effect will be lower than when the coating layer 13 is provided uniformly on the outer peripheral surface of the hollow fiber membrane bundle. If the value of (shortest length L min ) / (longest length L max ) of the coating layer 13 is larger than 0.85, it is possible to exert a leak suppressing effect, and the upper limit is 1.0.

流体による衝撃や落下等による衝撃(振動)を抑え、耐リーク性能を向上させるためには、中空糸膜型モジュール1の封止部9(血液接触面9b)における中空糸膜束4の充填率、即ち中空糸膜10の断面積の総和をケーシング2端部断面積で除した数値に100を掛けた値(以下、ケージング端面充填率と称する)を制御することが好ましく、具体的にはケーシング端面充填率を46%以上に設定することが好ましい。これは水流や落下による衝撃を受けた際に中空糸膜の振動幅を小さくし、中空糸膜に掛かる応力自体を緩和するためである。従って、ケーシング端面充填率は高いほど好ましいが、65%を超えるような高いケーシング端面充填率では、ケーシング2内部に中空糸膜束4をセットすることが非常に困難になり、無理にセットすると中空糸膜10の破損をきたすため、ケージング端面充填率は46%以上65%%以下に設定することが望ましい。   In order to suppress impact (vibration) due to fluid impact or drop, etc., and improve leakage resistance, the filling rate of the hollow fiber membrane bundle 4 in the sealing portion 9 (blood contact surface 9b) of the hollow fiber membrane module 1 That is, it is preferable to control a value obtained by dividing the sum of the cross-sectional areas of the hollow fiber membrane 10 by the cross-sectional area at the end of the casing 2 and multiplying by 100 (hereinafter referred to as the caging end face filling rate). It is preferable to set the end face filling rate to 46% or more. This is to reduce the vibration width of the hollow fiber membrane when shocked by a water flow or a drop, and to relieve the stress itself applied to the hollow fiber membrane. Accordingly, a higher casing end face filling rate is preferable, but with a high casing end face filling rate exceeding 65%, it becomes very difficult to set the hollow fiber membrane bundle 4 inside the casing 2, and if it is set forcibly, it is hollow. In order to cause breakage of the thread film 10, it is desirable to set the caging end face filling rate to 46% or more and 65% or less.

また、前記コーティング層13は、図1に示すように、前記樹脂層部内表面9aからの長さLが、前記浄化処理液の供給ポート11及び排出ポート12までの長さLよりも短く、且つ前記各ポート11,12下まで至っていない構成となっている。 Further, as shown in FIG. 1, the coating layer 13 has a length L from the resin layer inner surface 9a shorter than a length L p to the supply port 11 and the discharge port 12 of the purification treatment liquid, In addition, the configuration does not reach the ports 11 and 12 below.

これらの中空糸膜型モジュール1を血液浄化処理器として使用する際には、従来の装置と同様に被処理液供給ポート5より血液を供給し、浄化処理液供給ポート11より透析液を供給する。血液は、中空糸膜10の中空部(第一室)をケーシング2の他端に向かって流動し、被処理液排出ポート7より排出される。浄化処理液供給ポート11より供給された透析液は、拡径部15と中空糸膜束4の端部との間に形成された隙間を通じて中空糸膜10の外表面に接触しながら他端へ向かって流動した後、浄化処理液排出ポート12より排出される。その際、中空糸膜10表面を介する浸透圧差や濃度勾配によって血液中の老廃物が透析液側に移動すると同時に、血液中に不足する成分が透析液側より供給され、血液浄化が行われる。   When using these hollow fiber membrane type modules 1 as a blood purification processor, blood is supplied from the liquid supply port 5 to be processed and dialysate is supplied from the purification liquid supply port 11 as in the conventional apparatus. . The blood flows through the hollow portion (first chamber) of the hollow fiber membrane 10 toward the other end of the casing 2 and is discharged from the liquid discharge port 7 to be processed. The dialysate supplied from the purification treatment liquid supply port 11 is brought into contact with the outer surface of the hollow fiber membrane 10 through the gap formed between the enlarged diameter portion 15 and the end of the hollow fiber membrane bundle 4 and to the other end. Then, the liquid is discharged from the purification treatment liquid discharge port 12. At this time, waste products in the blood move to the dialysate side due to the osmotic pressure difference and concentration gradient through the surface of the hollow fiber membrane 10, and at the same time, the components deficient in the blood are supplied from the dialysate side to perform blood purification.

これらの使用時や、使用前の洗浄時において、浄化処理液や洗浄液が供給され中空糸膜束4の隙間に進入する際、中空糸膜10に応力がかかり、樹脂層部9と中空糸膜10の境界付近(内側表面9a付近)で中空糸膜10が破断するのを、中空糸膜束4に付与したコーティング層13の応力緩和と中空糸膜束4の高い充填率により中空糸膜10の振動を抑えることにより抑制する。   At the time of use or cleaning before use, when the purification treatment liquid or the cleaning liquid is supplied and enters the gap of the hollow fiber membrane bundle 4, stress is applied to the hollow fiber membrane 10, and the resin layer portion 9 and the hollow fiber membrane are applied. The hollow fiber membrane 10 breaks in the vicinity of the boundary 10 (near the inner surface 9a) because of the stress relaxation of the coating layer 13 applied to the hollow fiber membrane bundle 4 and the high filling rate of the hollow fiber membrane bundle 4. Suppresses by suppressing the vibration.

以上述べたように、本発明による中空糸膜型モジュール1は、浄化処理液や洗浄液が進入する際に応力のかかる樹脂層部9と中空糸膜10の境界付近(内側表面9a付近)において、コーティング層13を各中空糸膜10の外表面に略均一な長さになるように設け、具体的には、束外周面においてその最短長さLminを1mm以上、最長長さLmaxを6mm未満にし、且つ前記最短長さと前記最長長さの比(Lmin)/(Lmax)を0.85より大きくすることにより、不要物質の除去性能の低下を招くことなく高く維持し、且つ耐リーク性能を高めたものである。 As described above, the hollow fiber membrane type module 1 according to the present invention is near the boundary between the resin layer portion 9 and the hollow fiber membrane 10 that is stressed when the purification treatment liquid and the cleaning liquid enter (near the inner surface 9a). The coating layer 13 is provided on the outer surface of each hollow fiber membrane 10 so as to have a substantially uniform length. Specifically, on the outer peripheral surface of the bundle, the shortest length L min is 1 mm or more, and the longest length L max is 6 mm. And the ratio of the shortest length to the longest length (L min ) / (L max ) is greater than 0.85, so that the removal performance of unnecessary substances can be maintained high without causing deterioration. The leak performance is improved.

すなわち、本発明によれば、中空糸膜型モジュール1において、流体による衝撃や落下による衝撃に起因する中空糸膜の破損を防止するために単にコーティング層13を樹脂層部9と中空糸膜10の境界部分に設けるのではなく、その長さや形状を上記のように制御することにより、流体による衝撃や落下等による物理的衝撃に起因する中空糸膜10と樹脂層部9との境界部における中空糸膜10の破損を効果的に防止し、しかも、中空糸膜型モジュール1の本来の機能である、不要物質の除去性能を低下させることなく高く維持し、優れた除去性能を有する中空糸膜型モジュール1を提供することができる。   That is, according to the present invention, in the hollow fiber membrane type module 1, the coating layer 13 is simply applied to the resin layer portion 9 and the hollow fiber membrane 10 in order to prevent the hollow fiber membrane from being damaged due to impact caused by fluid or impact caused by dropping. In the boundary portion between the hollow fiber membrane 10 and the resin layer portion 9 due to a physical impact caused by a fluid impact or a drop by controlling the length and shape thereof as described above Hollow fiber that effectively prevents breakage of the hollow fiber membrane 10 and maintains high without reducing the unnecessary substance removal performance, which is the original function of the hollow fiber membrane module 1, and has excellent removal performance The membrane module 1 can be provided.

また、前記コーティング層13の長さLを、前記樹脂層部内表面9aからの最短長さLminを2mm以上、最長長さLmaxを4mm以下とすることが好ましく、これにより、上述した流体による衝撃や落下等による衝撃に起因する中空糸膜の破損防止効果、および不要物質の除去性能を更に高めることができる。 Further, the length L of the coating layer 13, the resin layer portion surface 9a shortest length L min of 2mm or more from the longest is preferably set to 4mm below the length L max, thereby, by the above-described fluid It is possible to further enhance the effect of preventing the hollow fiber membrane from being damaged due to impact caused by impact or dropping, and the removal performance of unnecessary substances.

また、前記ケーシング両端開口部を封止した樹脂層部9における中空糸膜束4の充填率を46%以上、65%以下とすることにより、浄化処理液の流動による中空糸膜10の振動を抑えることができ、中空糸膜束4の破損によるリークを更に低減することができる。   In addition, the hollow fiber membrane 10 is vibrated by the flow of the purification treatment liquid by setting the filling rate of the hollow fiber membrane bundle 4 in the resin layer portion 9 in which the opening at both ends of the casing is sealed to 46% or more and 65% or less. It is possible to suppress the leakage due to breakage of the hollow fiber membrane bundle 4.

また、前記コーティング層13は、前記樹脂層部内表面からの長さLが、前記浄化処理液の供給ポート11及び排出ポート12までの長さLよりも短く、且つ前記各ポート11,12下まで至っていないため、各ポート11,12下において第一室と第二室との間で行われる物質交換が前記コーティング層13によって妨げられることがなく、透析液等の流体による衝撃を実際に受ける部分(ポート11,12下)までコーティング層を付与しなくても、コーティング層の形状、中空糸膜の充填率等により耐リーク性に優れ、且つ中空糸膜型モジュールの本来の機能である、不要物質の除去性能を更に高めることができ、優れた除去性能を有する中空糸膜型モジュールを提供することができる。 Further, the coating layer 13 has a length L from the inner surface of the resin layer portion shorter than a length L p to the supply port 11 and the discharge port 12 of the purification treatment liquid, and below the ports 11 and 12. Therefore, the material exchange performed between the first chamber and the second chamber under the ports 11 and 12 is not hindered by the coating layer 13 and is actually subjected to an impact by a fluid such as dialysate. Even without providing a coating layer up to the part (ports 11 and 12 below), it has excellent leakage resistance due to the shape of the coating layer, the filling rate of the hollow fiber membrane, etc., and is the original function of the hollow fiber membrane type module. The removal performance of unnecessary substances can be further enhanced, and a hollow fiber membrane module having excellent removal performance can be provided.

中空糸膜型モジュール1の製造にあたり、中空糸膜10を7000本〜14000本程度を束ねて中空糸膜束4を調整する。この際に、中空糸膜束4にシリコン等のフィルムを巻きつけておく。フィルムで巻くことにより、中空糸膜10の破損が防げるのと同時に、該中空糸膜束4がケーシング2に挿入し易くなるからである。   In manufacturing the hollow fiber membrane module 1, about 7000 to 14,000 hollow fiber membranes 10 are bundled to adjust the hollow fiber membrane bundle 4. At this time, a film of silicon or the like is wound around the hollow fiber membrane bundle 4. This is because by wrapping with a film, the hollow fiber membrane 10 can be prevented from being damaged, and at the same time, the hollow fiber membrane bundle 4 can be easily inserted into the casing 2.

続いて、フィルムを巻きつけた状態の中空糸膜束4を、ケーシング2内部に挿入し、フィルムのみを抜き取ることにより中空糸膜束4をケーシング2内にセットする。このような方法により、中空糸膜束4をケーシング2内に高い充填率で効率よく挿入できる。   Subsequently, the hollow fiber membrane bundle 4 in a state where the film is wound is inserted into the casing 2, and the hollow fiber membrane bundle 4 is set in the casing 2 by extracting only the film. By such a method, the hollow fiber membrane bundle 4 can be efficiently inserted into the casing 2 at a high filling rate.

中空糸膜束4をセットしたケーシング2を、遠心成型機のターンテーブル上に取り付けられたポッティング治具に浄化処理液供給ポート11及び浄化処理液排出ポート12を上向きにして取り付ける。そして硬化により樹脂層部9を形成する接着剤を供給するための分配タンク(図示せず)からチューブを両ポート11,12に挿入する。   The casing 2 in which the hollow fiber membrane bundle 4 is set is attached to a potting jig attached on the turntable of the centrifugal molding machine with the purification treatment liquid supply port 11 and the purification treatment liquid discharge port 12 facing upward. And a tube is inserted in both ports 11 and 12 from a distribution tank (not shown) for supplying the adhesive which forms resin layer part 9 by hardening.

分配タンクの取り付けが終了したら、ポッティングを行うポッティング工程に移るが、ポッティング工程は、2回の接着剤注入工程と2回の遠心工程からなっている。   When the installation of the distribution tank is completed, the process moves to a potting process in which potting is performed. The potting process includes two adhesive injection processes and two centrifugal processes.

まず、接着剤注入工程では、遠心成型機のターンテーブルを所定の回転数にて回転させながらケーシング2の両端部に遠心力を作用させ、この回転状態において、分配タンクに接着剤を注入する。ここで、接着剤は、中空糸膜型モジュールのポッティング剤として一般的に用いられるウレタン系接着剤やエポキシ系接着剤等、初期において流動性を有し時間の経過により硬化するものであれば特に限定はしない。   First, in the adhesive injection step, centrifugal force is applied to both ends of the casing 2 while rotating the turntable of the centrifugal molding machine at a predetermined rotation speed, and the adhesive is injected into the distribution tank in this rotational state. Here, the adhesive is particularly a urethane-based adhesive or an epoxy-based adhesive that is generally used as a potting agent for a hollow fiber membrane type module, as long as it has fluidity at an initial stage and is cured over time. There is no limitation.

分配タンクに注入された接着剤は、遠心力により注入チューブに分配され、チューブにより浄化処理液供給ポート11及び浄化処理液排出ポート12内に吐出され、両ポート11,12内を自重で落下してケーシング2内部に流入する。注入された接着剤は、さらに遠心力によってケーシング2の両端に向けて移動すると同時に、ケーシング2の拡径部14及び15と中空糸膜束4との隙間に流れ込み、外周に行き渡る。その後、中空糸膜10同士の隙間に侵入する。   The adhesive injected into the distribution tank is distributed to the injection tube by centrifugal force, discharged into the purification treatment liquid supply port 11 and the purification treatment liquid discharge port 12 by the tube, and falls in the ports 11 and 12 by its own weight. Then flows into the casing 2. The injected adhesive further moves toward both ends of the casing 2 by centrifugal force, and at the same time flows into the gap between the enlarged diameter portions 14 and 15 of the casing 2 and the hollow fiber membrane bundle 4 and reaches the outer periphery. Then, it penetrates into the gap between the hollow fiber membranes 10.

このように注入された接着剤は、中空糸膜10の間隙を自重力と遠心力により流動してケーシング2端面に到達し、ケーシング2端面より中空糸膜10の間隙に充填されるが、接着剤の注入量が増加するにしたがって接着剤のレベルが上昇するので、中空糸膜束4の端部から次第に浸す長さを増加させる。つまり、所定量の接着剤を注入すれば所定の長さの中空糸膜束4が端部から接着剤に浸る。このように、所定の長さにわたって中空糸膜束4が接着剤に浸ったならば、接着剤の注入を中止して遠心工程に移行する。   The adhesive thus injected flows through the gap of the hollow fiber membrane 10 by its own gravity and centrifugal force to reach the end face of the casing 2 and fills the gap of the hollow fiber membrane 10 from the end face of the casing 2. Since the level of the adhesive increases as the injection amount of the agent increases, the length of immersion gradually from the end of the hollow fiber membrane bundle 4 is increased. That is, if a predetermined amount of adhesive is injected, the hollow fiber membrane bundle 4 having a predetermined length is immersed in the adhesive from the end. Thus, if the hollow fiber membrane bundle 4 has been immersed in the adhesive over a predetermined length, the injection of the adhesive is stopped and the process proceeds to the centrifugation step.

遠心工程は、ケーシング2の回転によってケーシング2の端部に接着剤を集めて維持しつつ、接着剤を硬化させる工程である。この後、2回目の接着剤の注入工程に移行する。   The centrifugation step is a step of curing the adhesive while collecting and maintaining the adhesive at the end of the casing 2 by the rotation of the casing 2. Thereafter, the process proceeds to the second adhesive injection step.

2回目の接着剤注入工程においても、1回目と同様に、回転を保った状態で分配タンクに接着剤を注入する。2回目に注入する接着剤は、1回目に注入した接着剤と同一組成のものが好ましいが、その成分を特に限定はしない。   In the second adhesive injection step, as in the first time, the adhesive is injected into the distribution tank while maintaining rotation. The adhesive injected the second time is preferably of the same composition as the adhesive injected the first time, but the components are not particularly limited.

注入された接着剤は、1回目の注入と同様に、ケーシング2の両端に向けて移動する。ところが、1回目に注入した接着剤がすでに硬化して樹脂層部9の一部を形成しているため、接着剤は、ケーシング2の拡径部14,15と中空糸膜束4の間隙に沿って束円周方向に進行しながら中空糸膜10の隙間に進入していく。本発明に係るコーティング層13は、接着剤の拡径部14,15へ供給される速度と中空糸膜10間に進入する速度が異なり、拡径部14,15と中空糸膜束4との間隙に接着剤が滞留するために形成されるものである。接着剤の拡径部14,15への供給速度と接着剤の中空糸膜10間への進入速度へ支配的因子である接着剤の粘度によりコーティング層13の長さ及びその均一性が決まる。   The injected adhesive moves toward both ends of the casing 2 as in the first injection. However, since the adhesive injected at the first time has already hardened to form a part of the resin layer portion 9, the adhesive is in the gap between the enlarged diameter portions 14 and 15 of the casing 2 and the hollow fiber membrane bundle 4. Advancing in the circumferential direction of the bundle along the hollow fiber membrane 10. The coating layer 13 according to the present invention is different in the speed at which the adhesive is supplied to the enlarged diameter portions 14 and 15 and the speed of entering between the hollow fiber membranes 10, and the increased diameter portions 14 and 15 and the hollow fiber membrane bundle 4 are different. It is formed because the adhesive stays in the gap. The length of the coating layer 13 and the uniformity of the coating layer 13 are determined by the supply speed of the adhesive to the enlarged diameter portions 14 and 15 and the viscosity of the adhesive, which is a dominant factor for the speed of penetration of the adhesive into the hollow fiber membrane 10.

所定量の接着剤を供給した後、1回目の遠心工程と同様に筒型ケーシング2の回転を継続し、2回目の遠心工程を行う。この時、接着剤は適度な粘度を有しているために、接着剤に浸った中空糸膜10の外表面には、接着剤が端部方向に流動した後も付着した状態で残り、コーティング層13が形成される。このようにコーティング層13の長さは中空糸膜10の外表面が接着剤に浸った長さに相当するが、接着剤のケーシング2への供給速度、拡径部14,15における接着剤の粘度、遠心の際の回転数、中空糸膜10の充填率等の因子によって、コーティング層13の長さや形状を制御することが可能である。本発明においては、コーティング層13は中空糸膜束4の外周面に樹脂層部9の内側表面9aより全周にわたって且つ均一な長さを持った形状となる。   After supplying a predetermined amount of adhesive, the cylindrical casing 2 continues to rotate as in the first centrifugation step, and the second centrifugation step is performed. At this time, since the adhesive has an appropriate viscosity, it remains on the outer surface of the hollow fiber membrane 10 soaked in the adhesive even after the adhesive flows in the end direction, Layer 13 is formed. Thus, the length of the coating layer 13 corresponds to the length of the outer surface of the hollow fiber membrane 10 immersed in the adhesive, but the supply rate of the adhesive to the casing 2 and the adhesive in the expanded diameter portions 14 and 15 are increased. The length and shape of the coating layer 13 can be controlled by factors such as the viscosity, the number of rotations during centrifugation, and the filling rate of the hollow fiber membrane 10. In the present invention, the coating layer 13 has a shape having a uniform length on the outer circumferential surface of the hollow fiber membrane bundle 4 over the entire circumference from the inner surface 9a of the resin layer portion 9.

2回目注入接着剤が硬化した後に、遠心回転を停止してモジュール化工程に移行する。接着剤を完全に硬化させ、平滑な樹脂層部9の外側表面9bを作製する為に、ケーシング2より突出した樹脂層部9の外側部分を、ケーシング2の端部開口と同一面となるように切断除去して各中空糸膜10の両端を開口させ、この両端に閉塞蓋6及び8を装着して、図1に示すような中空糸膜型モジュール1とする。   After the second injection adhesive is cured, the centrifugal rotation is stopped and the process proceeds to a modularization process. In order to completely cure the adhesive and produce the outer surface 9b of the smooth resin layer portion 9, the outer portion of the resin layer portion 9 protruding from the casing 2 is flush with the end opening of the casing 2. Then, both ends of each hollow fiber membrane 10 are opened, and closure lids 6 and 8 are attached to both ends to form a hollow fiber membrane module 1 as shown in FIG.

以上、説明した製造方法によれば、両端部に遠心力が作用するようにケーシング2を回転させ、この状態で接着剤を2回に分けて、ケーシング2の端部の浄化処理液供給ポート11及び排出ポート12を通して注入することにより、浄化処理液、洗浄液等の衝撃により応力が集中する樹脂層部9と中空糸膜10の境界部に全周に渡って略均一長さのコーティング層13の付与が可能となる。   As described above, according to the manufacturing method described above, the casing 2 is rotated so that the centrifugal force acts on both ends, and in this state, the adhesive is divided into two portions, and the purification treatment liquid supply port 11 at the end of the casing 2 is obtained. In addition, by injecting through the discharge port 12, the coating layer 13 having a substantially uniform length is formed over the entire circumference at the boundary between the resin layer 9 and the hollow fiber membrane 10 where stress is concentrated by the impact of the purification treatment liquid, the cleaning liquid, and the like. Granting is possible.

樹脂組成物としての接着剤(ポッティング剤)の1回目注入量、2回目注入量の比を変化させ、注入速度、ケーシング2に注入した際の接着剤の粘度を調整することにより、コーティング層13の長さを精度良く制御することが可能となる。   By changing the ratio of the first injection amount and the second injection amount of the adhesive (potting agent) as the resin composition, and adjusting the injection speed and the viscosity of the adhesive when injected into the casing 2, the coating layer 13 Can be controlled with high accuracy.

次に、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

先ず、実施例に用いた測定法、評価法について説明する。   First, measurement methods and evaluation methods used in the examples will be described.

〔コーティング層の長さの測定〕
後述のとおり製造した各中空糸膜型モジュール1について、コーティング層13の長さを測定した。すなわち、浄化処理液供給ポート11および浄化処理液排出ポート12に近接する中空糸膜10を起点として、束円周上を左右何れかの方向にほぼ45度ずつ移動した箇所でそれぞれ約5〜10本分の中空糸膜のコーティング層の長さを測定した。これら計8箇所の全平均値をコーティング層の長さとした。
[Measurement of coating layer length]
About each hollow fiber membrane type module 1 manufactured as mentioned later, the length of coating layer 13 was measured. In other words, the hollow fiber membrane 10 adjacent to the purification treatment liquid supply port 11 and the purification treatment liquid discharge port 12 is used as a starting point, and about 5 to 10 respectively at locations moved approximately 45 degrees on either side of the bundle circumference in the left or right direction. The length of the coating layer of this hollow fiber membrane was measured. The total average of these 8 locations was taken as the length of the coating layer.

〔水流による耐リーク性の評価〕
使用時の水流による耐リーク性については、図2に示す回路装置を組み立てて評価した。
[Evaluation of leakage resistance by water flow]
The leakage resistance due to the water flow during use was evaluated by assembling the circuit device shown in FIG.

図2に示すように、加圧タンク20内の圧力を約24.5kPa/cmに調整し、回路にセットした中空糸膜型モジュール1の被処理液供給ポート5と浄化処理液供給ポート11から同時に加圧水を注入した(注入時間2分/回)。そして、注入毎に約14.7kPa/cmの圧力で被処理液側に空気を注入し、気泡発生の有無を指標にリーク発生の確認を繰り返した。 As shown in FIG. 2, the pressure in the pressurized tank 20 is adjusted to about 24.5 kPa / cm 2 , and the treated liquid supply port 5 and the purification treatment liquid supply port 11 of the hollow fiber membrane module 1 set in the circuit. At the same time, pressurized water was injected (injection time 2 minutes / time). Then, for each injection, air was injected into the liquid to be treated at a pressure of about 14.7 kPa / cm 2 , and the occurrence of leak was repeated using the presence or absence of bubbles as an index.

水流による耐リーク性の判定は、例えば、8回目の加圧水注入でリークが確認されたものを「水流耐リーク性8」とした。この操作は、最大を25回まで実施し、25回加圧水注入を繰り返してもリークが確認できない中空糸膜型モジュールについては「耐リーク性>25」とした。   In the determination of the leak resistance due to the water flow, for example, the one in which the leak was confirmed by the 8th pressurized water injection was designated as “water flow leak resistance 8”. This operation was performed up to 25 times, and “leak resistance> 25” was set for a hollow fiber membrane type module in which no leak was confirmed even after repeated injection of pressurized water 25 times.

〔落下衝撃に対する耐リーク性の評価〕
落下衝撃に対する耐リーク性については、梱包箱に詰められている輸送段階よりも、使用の際に中空糸膜型モジュールを直接床面に落下させた際の衝撃が最大と考えられるため、中空糸膜型モジュール1本単位での落下破壊試験を行った。
[Evaluation of leak resistance against drop impact]
As for leak resistance against drop impact, the impact when dropping the hollow fiber membrane module directly onto the floor surface during use is considered to be the greatest compared to the transport stage packed in the packing box. A drop fracture test was performed for each membrane module.

まず、中空糸膜型モジュール1の中空糸膜10の内表面側流路および外表面側流路に、一旦満水になるように純水を充填した後、外表面側流路の充填水を浄化処理液供給ポート11及び浄化処理液排出ポート12より各1.5ml抜き取って中空糸膜型モジュール1内に空間を形成させた。   First, after filling the inner surface side flow channel and the outer surface side flow channel of the hollow fiber membrane module 1 of the hollow fiber membrane module 1 with water so that the water is once full, the filled water in the outer surface flow channel is purified. Each 1.5 ml was extracted from the treatment liquid supply port 11 and the purified treatment liquid discharge port 12 to form a space in the hollow fiber membrane module 1.

この中空糸膜型モジュール1を1.2mの高さから被処理液排出ポート7を突設した閉塞蓋8(あるいは被処理液ポート5を突設した閉塞蓋6)を下方に向けてコンクリート床へ自由落下させ、落下毎に約14.7kPa/cmの圧力で被処理液側に空気を注入し、気泡発生の有無を指標にリーク発生の確認を繰り返した。落下試験の繰り返しにおいては、被処理液供給ポート5、被処理液排出ポート7の特定はしないが、同じポート側を下方ににして繰り返し落下させる。 The hollow fiber membrane type module 1 is placed on a concrete floor with the closing lid 8 (or the closing lid 6 protruding from the liquid port 5 to be processed) projecting downward from the 1.2 m height of the liquid discharge port 7 to be processed. Each time it was dropped, air was injected into the liquid to be treated at a pressure of about 14.7 kPa / cm 2 , and the occurrence of leaks was repeatedly confirmed using the presence or absence of bubbles as an index. In the repetition of the drop test, the treatment liquid supply port 5 and the treatment liquid discharge port 7 are not specified, but are repeatedly dropped with the same port side facing downward.

落下衝撃に対する耐リーク性の判定は、例えば、3回目の落下においてリークが確認されたものについては「落下リーク性3」とした。また、最高10回まで繰り返し、10回目の落下においてもリークが確認できない中空糸膜型モジュールについては「落下リーク性>10」とした。   The determination of the leak resistance against the drop impact was, for example, “fall leak property 3” for the case where the leak was confirmed in the third drop. In addition, the hollow fiber membrane type module in which no leak was confirmed even after the 10th drop was repeated up to 10 times, and “falling leak property> 10” was set.

〔尿素クリアランスの測定〕
尿素の除去性能については、ダイアライザー性能評価基準(日本人工臓器学会、昭和57年9月)に従い、血液側流速200ml/分、透析液側流速500ml/分、膜間差圧(TMP)0Pa(0mmHg)で実施し、血液入口側の尿素濃度(Cin)、血液出口側の尿素濃度(Cout)をそれぞれ測定して下記式(1)により溶質のクリアランスを算出した。この尿素クリアランスの単位はml/分である。測定は、各中空糸膜型モジュールについて、それぞれランダムに5本を取り出して測定した。
[Measurement of urea clearance]
Regarding urea removal performance, blood side flow rate 200 ml / min, dialysate side flow rate 500 ml / min, transmembrane pressure difference (TMP) 0 Pa (0 mmHg) according to dialyzer performance evaluation criteria (Japan Society for Artificial Organs, September 1982) ), The urea concentration (C in ) on the blood inlet side and the urea concentration (C out ) on the blood outlet side were measured, and the clearance of the solute was calculated by the following formula (1). The unit of this urea clearance is ml / min. The measurement was carried out by randomly taking 5 out of each hollow fiber membrane type module.

尿素クリアランス=200×(Cin−Cout)/Cin ……(1) Urea clearance = 200 × (C in −C out ) / C in (1)

なお、尿素クリアランスとは、本測定条件においては、200ml/分で中空糸膜型モジュールに供給される被処理液のうち、尿素が除去されて浄化された被処理液量を示すものである。   The urea clearance indicates the amount of liquid to be treated that has been purified by removing urea from the liquid to be treated that is supplied to the hollow fiber membrane module at 200 ml / min under the present measurement conditions.

<実施例1>
長さ282mmのケーシング2を用いてポリスルホン系樹脂を主たる原材料とした半透性の中空糸膜10(内径200μm、膜圧45μm)からなる中空糸膜束4(中空糸膜9700本)をケーシング端面充填率が46.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を一定速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型モジュール(以下、中空糸膜型血液処理器)を組み立てた。
<Example 1>
A hollow fiber membrane bundle 4 (9700 hollow fiber membranes) made of a semipermeable hollow fiber membrane 10 (inner diameter 200 μm, membrane pressure 45 μm) made of a polysulfone resin as a main raw material using a casing 2 having a length of 282 mm is used as the casing end face. A urethane adhesive adjusted to a viscosity of 400 to 800 mPas is loaded at a constant speed while being loaded into the casing 2 so that the filling rate is 46.0%, and the casing 2 is centrifuged at a rotation speed of 900 rpm (centrifugal temperature 50 ° C.). A predetermined amount was injected in two portions. After the urethane-based adhesive is cured, both end surfaces are cut, the inside of the hollow fiber membrane is opened to the outside, the closure lids 6 and 8 are attached, and a hollow fiber membrane type module (hereinafter referred to as a hollow fiber membrane blood treatment device) is attached. Assembled.

この実施例1に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood processor according to Example 1 are shown in FIG. It was as shown in.

<実施例2>
実施例1と同様のケーシング2及び中空糸膜束4を用いた。中空糸膜束4をケーシング端面充填率46.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Example 2>
The same casing 2 and hollow fiber membrane bundle 4 as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so that the filling ratio of the casing end surface was 46.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotation speed of 900 rpm (centrifugal temperature 50 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この実施例2に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood processor according to Example 2 are shown in FIG. It was as shown in.

<実施例3>
実施例1と同様のケーシング2及び中空糸膜束4を用いた。中空糸膜束4をケーシング端面充填率65.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Example 3>
The same casing 2 and hollow fiber membrane bundle 4 as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so that the filling ratio of the casing end surface was 65.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotational speed of 900 rpm (centrifugal temperature 50 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この実施例3に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood treatment device according to Example 3 are shown in FIG. It was as shown in.

<実施例4>
実施例1と同様のケーシング2及び中空糸膜束4を用いた。中空糸膜束4をケーシング端面充填率65.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度55℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Example 4>
The same casing 2 and hollow fiber membrane bundle 4 as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so that the casing end surface filling ratio was 65.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotation speed of 900 rpm (centrifugal temperature 55 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この実施例4に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood processor according to Example 4 are shown in FIG. It was as shown in.

<比較例1>
実施例1と同様のケーシング2及び中空糸膜束4を用いた。中空糸膜束4をケーシング端面充填率45.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Comparative Example 1>
The same casing 2 and hollow fiber membrane bundle 4 as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so that the casing end surface filling rate was 45.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotation speed of 900 rpm (centrifugal temperature 50 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この比較例1に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood treatment device according to Comparative Example 1 are shown in FIG. It was as shown in.

<比較例2>
実施例1と同様のケーシング及び中空糸膜束を用いた。中空糸膜束4をケーシング端面充填率66.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Comparative example 2>
The same casing and hollow fiber membrane bundle as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so that the casing end face filling ratio was 66.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotation speed of 900 rpm (centrifugal temperature 50 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この比較例2に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood treatment device according to Comparative Example 2 are shown in FIG. It was as shown in.

<比較例3>
実施例1と同様のケーシング及び中空糸膜束を用いた。中空糸膜束4をケーシング端面充填率46.0%となるようにケーシング2内に装填し、ケーシング2を1200rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Comparative Example 3>
The same casing and hollow fiber membrane bundle as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so that the casing end face filling rate was 46.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotation speed of 1200 rpm (centrifugal temperature 50 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この比較例3に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood processing device according to Comparative Example 3 are shown in FIG. It was as shown in.

<比較例4>
実施例1と同様のケーシング及び中空糸膜束を用いた。中空糸膜束4をケーシング端面充填率46.0%となるようにケーシング2内に装填し、ケーシング2を600rpmの回転数で遠心させながら(遠心温度50℃)、粘度400〜800mPasに調整したウレタン系接着剤を実施例1の際の1/4の注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Comparative example 4>
The same casing and hollow fiber membrane bundle as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded into the casing 2 so as to have a casing end face filling rate of 46.0%, and the viscosity was adjusted to 400 to 800 mPas while the casing 2 was centrifuged at a rotation speed of 600 rpm (centrifugal temperature 50 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the 1/4 injection rate in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この比較例4に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood processor according to Comparative Example 4 are shown in FIG. It was as shown in.

<比較例5>
実施例1と同様のケーシング及び中空糸膜束を用いた。中空糸膜束4をケーシング端面充填率46.0%となるようにケーシング2内に装填し、ケーシング2を900rpmの回転数で遠心させながら(遠心温度55℃)、粘度200〜400mPasに調整したウレタン系接着剤を実施例1の際と同じ注入速度にて2回に分けて所定量注入した。ウレタン系接着剤が硬化した後、両端面を切断し、中空糸膜内部を外部に開放し、閉塞蓋6および8を取り付けて中空糸膜型血液処理器を組み立てた。
<Comparative Example 5>
The same casing and hollow fiber membrane bundle as in Example 1 were used. The hollow fiber membrane bundle 4 was loaded in the casing 2 so that the casing end surface filling rate was 46.0%, and the viscosity was adjusted to 200 to 400 mPas while the casing 2 was centrifuged at a rotation speed of 900 rpm (centrifugal temperature 55 ° C.). A predetermined amount of urethane-based adhesive was injected in two at the same injection speed as in Example 1. After the urethane adhesive was cured, both end surfaces were cut, the inside of the hollow fiber membrane was opened to the outside, and the closure lids 6 and 8 were attached to assemble a hollow fiber membrane blood treatment device.

この比較例5に係る中空糸膜型血液処理器のコーティング層の最短長さLmin、最長長さLmax、(最短長さLmin)/(最長長さLmax)の値は、図3に示す通りであった。 The values of the shortest length L min , the longest length L max , (the shortest length L min ) / (the longest length L max ) of the coating layer of the hollow fiber membrane blood treatment device according to Comparative Example 5 are shown in FIG. It was as shown in.

<実験例>
実施例1〜4及び比較例1〜5の中空糸膜型血液処理器を用い、各々について水流による耐リーク性の評価、落下衝撃に対する耐リーク性の評価、尿素クリアランスの測定を行った。
<Experimental example>
Using each of the hollow fiber membrane blood processing devices of Examples 1 to 4 and Comparative Examples 1 to 5, evaluation of leakage resistance by water flow, evaluation of leakage resistance against a drop impact, and measurement of urea clearance were performed.

結果は図3に示す通りであった。図3から明らかなように、本発明に係る実施例1〜4の中空糸膜型モジュール(中空糸膜型血液処理器)においては、コーティング層13の長さは、中空糸膜束4の円周方向全周にわたって設けられており、(最短長さLmin)/(最長長さLmax)の値が0.85より大きく、さらに最長長さLmaxが6mm未満、最短長さLminが1mm以上である形状のコーティング層を有している。その結果、水流による耐リーク性や落下衝撃に対する耐リーク性に優れ、しかも不要物質除去性能も高く維持できる優れた中空糸膜型モジュールを実現できた。 The result was as shown in FIG. As is clear from FIG. 3, in the hollow fiber membrane type modules (hollow fiber membrane blood treatment devices) of Examples 1 to 4 according to the present invention, the length of the coating layer 13 is the circle of the hollow fiber membrane bundle 4. It is provided over the entire circumference, and the value of (shortest length L min ) / (longest length L max ) is greater than 0.85, the longest length L max is less than 6 mm, and the shortest length L min is The coating layer has a shape of 1 mm or more. As a result, it was possible to realize an excellent hollow fiber membrane module that is excellent in leak resistance due to water flow and leak resistance against dropping impact, and that can maintain a high unnecessary substance removal performance.

一方、上記本発明の要件を満足しないコーティング層を有する比較例1〜5においては、優れた耐リーク性と不要物質除去性能とを同時に満足するものは得られなかった。   On the other hand, in Comparative Examples 1 to 5 having a coating layer that does not satisfy the requirements of the present invention, those that simultaneously satisfy excellent leakage resistance and unnecessary substance removal performance were not obtained.

本発明に係る中空糸膜型モジュールの一実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating one Embodiment of the hollow fiber membrane type module which concerns on this invention. 水流による過酷リーク試験方法を説明するための模式説明図である。It is a schematic explanatory drawing for demonstrating the severe leak test method by a water flow. 本発明に係る実施例1〜4、及び比較例1〜5の各々の中空糸膜型モジュールについて、水流による耐リーク性の評価、落下衝撃に対する耐リーク性の評価、尿素クリアランスの測定を行った結果を表す表図である。For each of the hollow fiber membrane modules of Examples 1 to 4 and Comparative Examples 1 to 5 according to the present invention, evaluation of leakage resistance by water flow, evaluation of leakage resistance against a drop impact, and measurement of urea clearance were performed. It is a table | surface figure showing a result.

符号の説明Explanation of symbols

1 …中空糸膜型モジュール
2 …筒型ケーシング
4 …中空糸膜束
5 …被処理液供給ポート
6 …閉塞蓋
7 …被処理液排出ポート
8 …閉塞蓋
9 …樹脂層部(封止部)
9a …樹脂層部の内側表面
9b …樹脂層部の外側表面
10 …中空糸膜
11 …浄化処理液供給ポート
12 …浄化処理液排出ポート
13 …コーティング層
14,15 …拡径部
20 …加圧タンク
30,31 …バッフル板
DESCRIPTION OF SYMBOLS 1 ... Hollow fiber membrane type module 2 ... Cylindrical casing 4 ... Hollow fiber membrane bundle 5 ... Process liquid supply port 6 ... Closure lid 7 ... Process liquid discharge port 8 ... Closure lid 9 ... Resin layer part (sealing part)
9a: Inner surface 9b of resin layer part ... Outer surface 10 of resin layer part ... Hollow fiber membrane 11 ... Purification treatment liquid supply port 12 ... Purification treatment liquid discharge port 13 ... Coating layers 14, 15 ... Expanded diameter part 20 ... Pressure Tank 30, 31 ... baffle plate

Claims (4)

筒型ケーシング内に中空糸膜束を収容し、該中空糸膜束両端を封止部により固定すると共に前記封止部により前記ケーシング両端開口部を封止して、前記ケーシング内に中空糸膜内表面側の第一室と中空糸膜外表面側の第二室とを形成し、前記ケーシング両端部付近の外周面に前記第二室に通じる浄化処理液の供給ポート及び排出ポートを備え、前記筒型ケーシングの両端に前記第一室に通じる被処理液の供給ポート及び排出ポートを備える閉塞蓋を取り付けた中空糸膜型モジュールにおいて、
前記中空糸膜束をなす各中空糸膜の端部外表面に前記封止部の内表面から連続したコーティング層を設け、前記コーティング層は、束外周面において前記封止部内表面からの最短長さLminが1mm以上、最長長さLmaxが6mm未満であり、且つ前記最短長さと前記最長長さの比(Lmin)/(Lmax)が0.85より大きいことを特徴とする中空糸膜型モジュール。
A hollow fiber membrane bundle is accommodated in a cylindrical casing, both ends of the hollow fiber membrane bundle are fixed by sealing portions, and the opening portions at both ends of the casing are sealed by the sealing portions, and the hollow fiber membranes are sealed in the casing. Forming a first chamber on the inner surface side and a second chamber on the outer surface side of the hollow fiber membrane, comprising a supply port and a discharge port for the purification treatment liquid leading to the second chamber on the outer peripheral surface in the vicinity of both ends of the casing; In the hollow fiber membrane type module in which the closure lid provided with the supply port and the discharge port of the liquid to be processed leading to the first chamber is attached to both ends of the cylindrical casing,
A coating layer continuous from the inner surface of the sealing portion is provided on the outer surface of the end portion of each hollow fiber membrane constituting the hollow fiber membrane bundle, and the coating layer has the shortest length from the inner surface of the sealing portion on the outer peripheral surface of the bundle. A hollow having a length L min of 1 mm or more, a maximum length L max of less than 6 mm, and a ratio (L min ) / (L max ) of the shortest length to the longest length of greater than 0.85 Yarn membrane module.
前記コーティング層は、前記封止部内表面からの最短長さLminが2mm以上、最長長さLmaxが4mm以下であることを特徴とする請求項1記載の中空糸膜型モジュール。 The hollow fiber membrane module according to claim 1, wherein the coating layer has a minimum length L min from the inner surface of the sealing portion of 2 mm or more and a maximum length L max of 4 mm or less. 前記ケーシング両端開口部を封止した封止部における中空糸膜束の充填率を46%以上、65%以下としたことを特徴とする請求項1または2記載の中空糸膜型モジュール。 The hollow fiber membrane type module according to claim 1 or 2, wherein a filling rate of the hollow fiber membrane bundle in the sealing portion where the casing opening portions are sealed is 46% or more and 65% or less. 前記コーティング層は、前記封止部内表面からの長さLが、前記浄化処理液の供給ポート及び排出ポートまでの長さLよりも短く、且つ前記各ポート下まで至っていないことを特徴とする請求項1〜3のいずれか1項に記載の中空糸膜型モジュール。 The coating layer has a length L from the sealing portion inner surface is shorter than the length L p to the supply port and the discharge port of the purification process liquid, and wherein the not yet up under each port The hollow fiber membrane type module according to any one of claims 1 to 3.
JP2003284955A 2003-08-01 2003-08-01 Hollow fiber membrane module Expired - Lifetime JP5051964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284955A JP5051964B2 (en) 2003-08-01 2003-08-01 Hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284955A JP5051964B2 (en) 2003-08-01 2003-08-01 Hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2005052716A true JP2005052716A (en) 2005-03-03
JP5051964B2 JP5051964B2 (en) 2012-10-17

Family

ID=34364737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284955A Expired - Lifetime JP5051964B2 (en) 2003-08-01 2003-08-01 Hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP5051964B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506808B2 (en) 2010-09-28 2013-08-13 Dow Global Technologies Llc Tubesheet and method for making and using the same
JP2014226618A (en) * 2013-05-23 2014-12-08 ダイセン・メンブレン・システムズ株式会社 Hollow fiber membrane module and manufacturing method of the same
US10112000B2 (en) 2010-07-08 2018-10-30 Asahi Kasei Medical Co., Ltd. Method for reducing amyloid beta concentration in blood
WO2022138127A1 (en) * 2020-12-21 2022-06-30 東レ株式会社 Fluid separation membrane module, fluid separation membrane plant, and purified fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107318A (en) * 1988-10-14 1990-04-19 Daicel Chem Ind Ltd Membrane module of hollow fiber type
JP2000042100A (en) * 1998-07-31 2000-02-15 Terumo Corp Hollow fiber membrane type liquid treatment apparatus
JP2000350781A (en) * 1999-06-14 2000-12-19 Nikkiso Co Ltd Hollow yarn type module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107318A (en) * 1988-10-14 1990-04-19 Daicel Chem Ind Ltd Membrane module of hollow fiber type
JP2000042100A (en) * 1998-07-31 2000-02-15 Terumo Corp Hollow fiber membrane type liquid treatment apparatus
JP2000350781A (en) * 1999-06-14 2000-12-19 Nikkiso Co Ltd Hollow yarn type module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112000B2 (en) 2010-07-08 2018-10-30 Asahi Kasei Medical Co., Ltd. Method for reducing amyloid beta concentration in blood
US8506808B2 (en) 2010-09-28 2013-08-13 Dow Global Technologies Llc Tubesheet and method for making and using the same
JP2014226618A (en) * 2013-05-23 2014-12-08 ダイセン・メンブレン・システムズ株式会社 Hollow fiber membrane module and manufacturing method of the same
WO2022138127A1 (en) * 2020-12-21 2022-06-30 東レ株式会社 Fluid separation membrane module, fluid separation membrane plant, and purified fluid

Also Published As

Publication number Publication date
JP5051964B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP6276037B2 (en) Hollow fiber membrane module and filtration method
JP5512464B2 (en) Hollow fiber membrane module and filtration method
JP3772909B1 (en) Blood purifier
CA1226231A (en) Method of manufacturing hollow fibre devices
WO2007077833A1 (en) Potting material, hollow-fiber module, and process for producing the same
WO2005089918A1 (en) Polysulfone-base permselective hollow fiber membrane bundle and process for producing the same
US20120043271A1 (en) Filter device comprising heterogeneously distributed hollow fibers and method for the production thereof
JP5051964B2 (en) Hollow fiber membrane module
JP2006288414A (en) Polysulfone-based hollow fiber membrane type blood purifier
WO2013047775A1 (en) Method for hydrophilizing hollow-fiber membrane module
JP3151168B2 (en) Hollow fiber type module and manufacturing method thereof
JP4483651B2 (en) Sterilization method of blood purification module
JP4839631B2 (en) Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
JP4596171B2 (en) Blood purifier
JP2002346312A (en) Filter medium treatment method in liquid feed flow channel
JP2006068689A (en) Drying method for bundle of hollow fiber membrane
JP4685087B2 (en) Centrifugal fluid dispensing jig and centrifugal fluid dispensing method
JP2008200573A (en) Method for manufacturing hollow fiber membrane module
JP4953579B2 (en) Hollow fiber module, manufacturing method thereof, and potting part forming jig
JP2006181522A (en) Method for manufacturing hollow fiber type module and hollow fiber type module
JP4501155B2 (en) Method for producing polysulfone-based permselective hollow fiber membrane bundle
JP4118217B2 (en) Centrifugal fluid dispensing jig and centrifugal fluid dispensing method
JPS61220711A (en) Bonding method for bundled hollow yarn at end part
JP2006288413A (en) Hollow fiber membrane type hemocatharsis apparatus
JP2008279374A (en) Vessel for injecting potting material and manufacturing method of hollow fiber membrane module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101013

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5051964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term