JP2005051659A - 動画像符号化方法および動画像符号化装置 - Google Patents

動画像符号化方法および動画像符号化装置 Download PDF

Info

Publication number
JP2005051659A
JP2005051659A JP2003283454A JP2003283454A JP2005051659A JP 2005051659 A JP2005051659 A JP 2005051659A JP 2003283454 A JP2003283454 A JP 2003283454A JP 2003283454 A JP2003283454 A JP 2003283454A JP 2005051659 A JP2005051659 A JP 2005051659A
Authority
JP
Japan
Prior art keywords
target
frame
value
code amount
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003283454A
Other languages
English (en)
Inventor
Takahiro Yamada
高弘 山田
Shinji Kitamura
臣二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003283454A priority Critical patent/JP2005051659A/ja
Publication of JP2005051659A publication Critical patent/JP2005051659A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

【課題】 注目マクロブロック数が増えても全体の割り当て符号量においてオーバーフローを抑制しながら、注目領域の画質を向上させていく。
【解決手段】 入力画像格納部11が入力した動画像データから注目マクロブロックと非注目マクロブロックとを判別する注目マクロブロック判別部12と、注目MB判別部が判別した注目MBでは非注目MBに設定する目標量子化値QP(n,m)よりも小さい目標量子化値を設定する量子化値演算部13aと、入力画像格納部が入力した動画像データをマクロブロック単位で直交変換する直交変換部15と、直交変換部が直交変換したMB単位のデータを量子化値演算部からの目標量子化値QP(n,m)に基づいて量子化する量子化部16とを備えた動画像符号化装置において、前記量子化値演算部13aは、注目マクロブロック数kが多いほど目標量子化値QP(n,m)(k)′を小さく設定するように構成されている。
【選択図】 図1

Description

本発明は、入力した動画像データをブロック単位で直交変換し、直交変換したデータをブロック単位で量子化し符号化するもので、注目ブロックでは非注目ブロックよりも小さい目標量子化値に基づいて量子化することで、注目ブロックでは符号量を多めに割り当てて符号化する動画像符号化方法および動画像符号化装置に関する。
従来の動画像符号化装置を図6に基づいて説明する。符号化対象となる入力画像は、複数に分割した二次元の単位ブロックであるマクロブロック(MB)の単位で符号化処理が行われる。
まず、装置外部より固体撮像装置等から動画像データの輝度/色差信号が入力画像格納部11に入力される。入力画像格納部11に1フレーム分の動画像データが入力され始めると、注目マクロブロック判別部12により、例えば入力画像や過去の入力画像の状態から顔・人物などの注目情報が1フレーム内のどこに存在するかを認識し、量子化対象のマクロブロックが注目領域内であるか否かという判断を行う。また、入力画像格納部11からマクロブロックの輝度データまたは色差データが出力されるたびに、そのマクロブロックが注目マクロブロックであるか否かを量子化値演算部13cに出力する。量子化値演算部13cは、量子化部16が量子化対象としている信号に対する目標量子化値QPの決定を行う。
符号化を行う最初の1フレームの画像に対しては、1フレームに含まれるすべてのマクロブロックに対してフレーム内MB符号化を行うフレーム内フレーム符号化を行う。フレーム内MB符号化時は、入力画像格納部11のマクロブロックの輝度データは、直交変換部15に出力され、直交変換処理を行い、周波数成分に変換される。次に、前記周波数成分に対し、量子化部16において量子化を行う。
1フレームの目標発生符号量CFは、外部より設定される目標ビットレート[bps]とフレームレート[fps]とにより、次式で算出される。
CF=目標ビットレート/フレームレート ……………………………(1)
量子化部16は、量子化値演算部13cにより出力された目標量子化値QPにより量子化を行う。量子化部16が使用する目標量子化値は、可変長符号化部17が出力した符号量や1フレームの目標発生符号量CFなどから決定される。ただし、動画像の最初のフレームの処理時の目標量子化値は演算結果による値ではなく初期値により量子化を行う。
量子化部16以降は、2つの処理過程に分岐する。
まず第一の処理過程は、符号を生成し、記録媒体に生成した符号を記録する処理である。可変長符号化部17において、量子化部16からの出力に対し、冗長情報を取り除き、さらに情報量を削減し、符号を生成する。上記処理後に、出力された符号は記録媒体等に記録されたり、通信装置を介して端末に送信されたりする。
第二の処理過程は、次のフレーム間差分処理のために必要な参照画像を生成する処理である。
量子化部16の出力に対し、逆量子化部18において逆量子化を行うとともに、逆直交変換部19において逆直交変換を行い、量子化部16の結果に基づいた復号化処理を行う。逆直交変換部19の出力画像は、nフレーム参照画像格納部20に格納される。次の入力画像については、差分処理部14において入力画像と参照画像の差分を取ることで符号量を削減する予測符号化を行う。その際、動き検出部22において、画像の動きを考慮し、入力画像と参照画像の差が最小となる位置を求める動きベクトル検出を行う。入力画像格納部11に入力された色差信号のマクロブロックについても、輝度信号について行ったマクロブロック単位の上記同様の処理を行う。
nフレーム参照画像格納部20が1フレーム分の逆量子化信号を格納し終えると、動き検出部22や直交変換部15が入力画像格納部11内の(n+1)フレームの入力画像信号の先頭を読み出す前に、(n−1)フレーム参照画像格納部21に対して1フレーム分の信号の書き写しが行われる。
次に、フレーム間予測フレーム符号化の説明を行う。フレーム間予測フレーム符号化においては、各マクロブロックに対し、フレーム間MB符号化とフレーム内MB符号化とを自由に選択できる。
まず、動き検出部22は、(n−1)フレーム参照画像格納部21から動き検出部22に必要な範囲の輝度データを読み出し、入力画像格納部11の輝度信号領域内のマクロブロックとの差分が最小となる位置を探索し、そのずれを動きベクトルとして検出する。
その後、入力画像格納部11内の入力データの状態や動き検出部22の出力信号の結果に応じてフレーム内/間MB符号化決定部23は、入力画像のフレームの符号化方法(例えばフレーム間MB符号化かフレーム内MB符号化等)を決定する。
フレーム内/間MB符号化決定部23が、フレーム間MB符号化と判断した場合は、符号化対象となっている入力画像格納部11から出力されるマクロブロックと入力画像のマクロブロックより動き検出部22にて検出した動きベクトル分ずれた(n−1)フレーム参照画像格納部21内の画像との差分処理を差分処理部14で行う。
一方、フレーム内/間MB符号化決定部23が、フレーム内MB符号化と判断した場合は、符号化対象となっている入力画像格納部11から出力されるマクロブロックに対する差分処理は行わない。その出力された画像に対しては、フレーム内MB符号化と同様に直交変換部15と量子化部16において、直交変換処理と量子化処理を行う。
量子化部16による処理以降に、可変長符号化部17による処理を行う。
逆量子化部18および逆直交変換部19による復号化処理についても、逆量子化部18まではフレーム内MB符号化と同様の処理を行う。
逆量子化部18の出力が、フレーム内/間MB符号化決定部23でフレーム間MB符号化と判断していた場合、そのマクロブロック画像が予測誤差画像であるため、動き検出部22内にある入力画像マクロブロックとの差分を取った参照画像と加算することで復号を行う。
逆量子化部18の出力が、フレーム内/間MB符号化決定部23でフレーム内MB符号化と判断していた場合、逆量子化部18から出力されたマクロブロック画像自体が復号画像となるので加算処理は行わない。
以降は、フレーム内MB符号化の処理と同様にnフレーム参照画像格納部20に対し、現在処理を行っている入力画像内の処理対象のマクロブロック位置に対応するブロック位置に逆直交変換部19の出力の格納を行う。
nフレーム参照画像格納部20が1フレーム分の逆量子化信号を格納し終えると、動き検出部22や直交変換部15が入力画像格納部11内の(n+1)フレームの入力画像信号の先頭を読み出す前に、(n−1)フレーム参照画像格納部21に対して1フレーム分の信号の書き写しが行われる。
入力画像格納部11に入力された色差信号については、フレーム内/間MB符号化決定部23でフレーム間MB符号化と判断していた場合は、動き検出部22に、nフレーム参照画像格納部20内の色差信号領域内の入力画像内の対象マクロブロック位置より輝度信号処理時の動きベクトルの検出結果の動きベクトル分ずれた位置から色差信号が入力画像に対する差分対象として格納される。
差分処理以降の処理については、輝度信号の場合と同様に、フレーム内/間MB符号化決定部23の出力に応じて処理を行い、符号の生成及び符号の格納、参照画像の生成を行う。
この処理を繰返し行うことにより、入力画像に対し時間的に常に1フレーム前の画像を(n−1)フレーム参照画像格納部21に用意し、入力画像の符号化を行うことができる。
量子化値演算部13cは、次のようにして、目標量子化値を求める。ここで、過去1フレーム分の発生符号量をCF、過去1フレーム分の平均量子化値をQ、目標発生符号量をCF、目標量子化値をQP(n,m)とする。
以下の式の導出は、大雑把に、
1)量子化処理を直交変換画像に対しての除算処理と考える。
2)過去の1フレームのDCT出力画像の発生符号量と目標とするフレームのDCT出力画像の発生符号量は等しい。
という概念に基づいている。
式の要素値は、処理対象から過去1フレーム分の符号量という意味である。図7(a),(b)に示すように、量子化部16が現在処理対象としているマクロブロックより1フレーム前のマクロブロックから1つ前のマクロブロックまでの発生符号量の累積値が、過去1フレーム分の発生符号量CFである。量子化部16が現在処理対象としているマクロブロックより1フレーム前のマクロブロックから1つ前のマクロブロックまでの各マクロブロックに用いた目標量子化値の平均値が平均量子化値Qである。ユーザや外部より設定された1秒間の目標発生符号量である目標ビットレートを1秒間に入力画像格納部11に格納されるフレーム枚数であるフレームレートで除算することにより算出されたものが1フレームの目標発生符号量CFである。これらに基づいて、目標量子化値QP(n,m)を仮に決定する。
n番目の1フレーム内のm番目のマクロブロックの発生符号量をMBn,mとして、過去1フレーム分の発生符号量CFは、図7を参照して、
CF=MBn−1,m+MBn−1,m+1+MBn−1,m+2+……
+MBn,m−2+MBn,m−1 …………………………(2)
n番目の1フレーム内のm番目のマクロブロックに使用した目標量子化値をQPn,mとして、過去1フレーム分の平均量子化値Qは、
=(QPn−1,m+QPn−1,m+1+QPn−1,m+2+……
+QPn,m−2+QPn,m−1)/1VOP内のマクロブロック数
………………(3)
ここで、VOP(VideoObject Plane)は1フレームのことである。
過去1フレーム分の発生符号量CF、過去1フレーム分の平均量子化値Q、目標発生符号量CF、目標量子化値QP(n,m)の関係は、
QP(n,m)×CF=Q×CF …………………………………………(4)
で表わされ、未知数としての目標量子化値QP(n,m)は、
QP(n,m)=Q×CF/CF …………………………………………(5)
となる。
量子化値演算部13cでは、式(5)の演算に基づいて目標量子化値QP(n,m)を求める。ただし、これは非注目マクロブロックについてである。注目マクロブロックについては、次のように補正される。
量子化値演算部13cは、量子化部16の処理対象が注目マクロブロックである場合、注目マクロブロック画質向上差分値Aを、上記の仮決定した目標量子化値QP(n,m)より減算する。すなわち、
QP(n,m)′=QP(n,m)−A …………………………………………(6)
とする。量子化部16の処理対象が非注目マクロブロックであった場合は、前記の減算処理は行わない。
この方法により、注目マクロブロックについては、時間の経過とともに、非注目マクロブロックに比べて、目標量子化値を減少させながら量子化を進めることにより、注目マクロブロックでは符号量を多めに割り当て、画質の向上を図っていく仕組みとなっている。
(例えば、特許文献1参照。)
特開平4−266286号公報
上記の従来技術では、注目ブロックの画質向上のための対策が、注目ブロック画質向上差分値Aの減算となっているが、これは、注目マクロブロック数の増減に関係なく、常に一律に減算するため、次の不都合が発生する。すなわち、ある注目ブロックが突出して符号量が増加する場合があるが、そのような注目ブロックが1フレーム内に多発すると、1フレーム内の発生符号量が急増し、それ以降の可変長符号化の処理や逆量子化部、逆直交変換部での処理での所有時間が増え、結果的に1フレームの目標処理時間に処理が間に合わなくなり、その結果、例えばフレーム落ちが発生するといった不都合を招来する場合がある。
本発明は、上記の課題を解決するために次のような手段を講じる。
本発明による動画像符号化方法は、入力した動画像データから注目ブロックと非注目ブロックとを識別し、前記入力した動画像データをブロック単位で直交変換し、前記直交変換したデータをブロック単位で量子化するに、前記注目ブロックでは前記非注目ブロックよりも小さい目標量子化値に基づいて量子化することで、前記注目ブロックでは符号量を多めに割り当てて符号化することを前提に置く。このような動画像符号化方法において、さらに、注目ブロック数が多くなるにつれて目標量子化値を1注目ブロック当たりの符号量増分が小さくなるような目標量子化値に補正し、この補正後の目標量子化値に基づいて前記注目ブロックを量子化することを特徴とする。
この構成による作用は次のとおりである。注目ブロックの量子化に際して、その目標量子化値を小さめに補正することにより、注目ブロックに割り当てる符号量を多めにし、より詳細な画像情報を得る。ここで、補正後の目標量子化値をどのようにするかが問題となる。
従来技術の場合は、注目ブロック数の大小の如何にかかわらず、常に一律に固定値の注目マクロブロック画質向上差分値Aを減算するという手法を用いていたために、注目ブロック数kが増加するにつれて符号量増分が多くなり、全体の割り当て符号量CFzが大きく増大して、許容限度をオーバーフローするおそれがあった。
これに対して、本発明においては、注目ブロック数kの増減に応じて適応的に1注目ブロック当たりの符号量増分ΔMB(k)を調整する。すなわち、注目ブロック数kが多いほど1注目ブロック当たりの符号量増分ΔMB(k)が小さくなるような目標量子化値に補正する。
注目ブロック数kに応じた補正後の目標量子化値をQP(n,m)(k)′とすると、QP(n,m)(k)′<QP(n,m)の条件で、
QP(n,m)(1)′<QP(n,m)(2)′<QP(n,m)(3)′……
…………………………(7)
となるような関係で目標量子化値を補正する(図2参照)。
換言すると、注目ブロックにおいては目標量子化値を小さくするのであるが、従来技術のように注目ブロック数にかかわらず一律に小さくするのではなく、注目ブロック数に応じて、注目ブロック数が少ないほど減少分を多くし、注目ブロック数が多いほど減少分を小さくする状態で目標量子化値を補正する。
この結果、注目ブロック数が増えても全体の割り当て符号量においてオーバーフローを抑制しながら、時間経過とともに目標量子化値を減少させて、なるべく多くの画像情報を取得し、注目領域の画質を向上させていくことができる。
上記の動画像符号化方法において、前記目標量子化値の補正を次のようにすることが好ましい。すなわち、全体の割り当て符号量CFzに対する注目ブロック全体の符号量上昇率αを注目ブロック数kで除算し、その除算結果の商(α/k)を1から減じて得た値(1−α/k)を過去1フレーム分の発生符号量CFに乗じて補正後の過去1フレーム分の発生符号量CF′とし、この補正後の過去1フレーム分の発生符号量CF′に基づいて補正後の目標量子化値QP(n,m)′を求める。
このように構成すれば、注目ブロック数の如何にかかわらず、1フレーム全体での符号量増分がほぼ一定となり、適応的な目標量子化値調整を実現できる。よって、全体の割り当て符号量におけるオーバーフローを確実に抑制しながら、時間経過とともに注目領域の画質を向上させていくことができる。
上記において、同じ注目ブロックであっても、フレーム内予測符号化のブロックとフレーム間予測符号化のブロックでは、必要とされる符号量に違いがあるので、フレーム内予測符号化とフレーム間予測符号化とで異なる処理を行うのが好ましい。すなわち、前記過去1フレーム分の発生符号量に乗じる値(1−α/k)について、フレーム内予測符号化を行うブロックに対してはフレーム内予測符号化に適した値(1−α/k)を用い、フレーム間予測符号化を行うブロックに対してはフレーム間予測符号化に適した値(1−α/k)を用いるように構成する。予測符号化がフレーム内であるかフレーム間であるかに応じて用いる値を切り替えるのである。
動画像符号化装置については、次のように展開することが可能である。
すなわち、本発明による動画像符号化装置は、外部から動画像データを入力する入力画像格納手段と、前記入力画像格納手段が入力した動画像データから注目ブロックと非注目ブロックとを判別する注目ブロック判別手段と、前記注目ブロック判別手段が判別した前記注目ブロックでは前記非注目ブロックに設定する目標量子化値よりも小さい目標量子化値を設定する量子化値演算手段と、前記入力画像格納手段が入力した動画像データをブロック単位で直交変換する直交変換手段と、前記直交変換手段が直交変換したブロック単位のデータを前記量子化値演算手段からの目標量子化値に基づいて量子化する量子化手段とを備えることを前提としている。このような構成の動画像符号化装置において、前記量子化値演算手段を、前記注目ブロック数が多いほど前記目標量子化値を小さく設定するように構成する。
上記において好ましい構成は、前記量子化値演算手段が、平均量子化値と目標発生符号量と過去1フレーム分の発生符号量から目標量子化値を導く演算において、全体の割り当て符号量に対する注目ブロック全体の符号量上昇率を注目ブロック数で除算し、前記除算結果の商を1から減じて得た値を前記過去1フレーム分の発生符号量に乗じて補正し、この補正後の過去1フレーム分の発生符号量に基づいて前記補正後の目標量子化値を求めるように構成されていることである。
また、上記において別の好ましい態様は、前記量子化値演算手段が、前記過去1フレーム分の発生符号量に乗じる値について、フレーム内予測符号化を行うブロックに対してはフレーム内予測符号化に適した値を用い、フレーム間予測符号化を行うブロックに対してはフレーム間予測符号化に適した値を用いるように構成されていることである。
本発明によれば、注目ブロックにおいては目標量子化値を小さくするのであるが、従来技術のように注目ブロック数にかかわらず一律に小さくするのではなく、注目ブロック数に応じて、注目ブロック数が少ないほど減少分を多くし、注目ブロック数が多いほど減少分を小さくする状態で目標量子化値を補正する。したがって、注目ブロック数が増えても全体の割り当て符号量においてオーバーフローを抑制しながら、時間経過とともに目標量子化値を減少させて、なるべく多くの画像情報を取得し、注目領域の画質を向上させていくことができる。
以下、本発明にかかわる動画像符号化装置・方法の実施の形態を図面に基づいて詳細に説明する。
(実施の形態1)
図1は本発明の実施の形態1における動画像符号化装置の構成を示すブロック図である。本実施の形態においては、符号化対象となる入力画像は複数に分割した二次元の単位ブロックであるマクロブロック(MB)の単位で符号化処理が行われる。
図1において、11は外部の固体撮像装置等から動画像データの輝度/色差信号を入力して格納する入力画像格納部である。12は入力画像や過去の入力画像の状態から顔・人物などの注目情報が1フレーム内のどこに存在するかを認識し、量子化対象のマクロブロックが注目領域内であるか否かという判断を行い、そのマクロブロックが注目マクロブロックであるか否かを量子化値演算部13aに出力する注目マクロブロック判別部である。13aは量子化対象のマクロブロックに対して注目マクロブロック判別部12からの情報に基づいて量子化部16に対する目標量子化値QP(n,m)の決定を行う量子化値演算部である。15は入力画像格納部11からの動画像データに対してマクロブロック単位で直交変換処理を行い、周波数成分に変換する直交変換部である。16は前記周波数成分に対して量子化値演算部13aからの目標量子化値QP(n,m)に基づいて量子化を行う量子化部である。量子化値演算部13aは、可変長符号化部17が出力した符号量や外部より設定された目標ビットレート[bps]やフレームレート[fps]より求めた1フレームの目標発生符号量などから、量子化部16が量子化対象としている信号に対する目標量子化値QP(n,m)の決定を行うように構成されている。17は量子化部16からの出力に対し、冗長情報を取り除き、さらに情報量を削減し、符号を生成する可変長符号化部である。18は量子化部16の出力に対し逆量子化を行う逆量子化部である。19は逆量子化されたデータに対して逆直交変換により復号化処理を行う逆直交変換部である。20は逆量子化および逆直交変換された動画像データを格納するnフレーム参照画像格納部である。21はnフレーム参照画像格納部20から1フレーム分の信号の書き写しが行われる(n−1)フレーム参照画像格納部である。22は(n−1)フレーム参照画像格納部21から必要な範囲の輝度データを読み出し、入力画像格納部11の輝度信号領域内のマクロブロックとの差分が最小となる位置を探索し、そのずれを動きベクトルとして検出する動き検出部である。23は入力画像格納部11内の入力データの状態や動き検出部22の出力信号の結果に応じて、入力画像のフレームの符号化方法として、例えばフレーム間MB符号化かフレーム内MB符号化等を決定するフレーム内/間MB符号化決定部である。14はフレーム間MB符号化の場合に、符号化対象となっているマクロブロックと(n−1)フレーム参照画像格納部21内の画像との動きベクトル分の差分処理を行う差分処理部である。
上記のように構成された動画像符号化装置において、本実施の形態は、量子化値演算部13aを次のように構成した点に特徴を有するものである。
すなわち、注目マクロブロック判別部12から注目マクロブロックであるとの指示があった場合に、注目マクロブロック数kの増減に応じて適応的に目標量子化値QP(n,m)を補正するように構成されている。この目標量子化値QP(n,m)の補正は、結果的に、1注目マクロブロック当たりの符号量増分ΔMB(k)を調整するもので、注目マクロブロック数kが多いほど1注目マクロブロック当たりの符号量増分ΔMB(k)が小さくなるような目標量子化値に補正する。
注目マクロブロック数kに応じた補正後の目標量子化値をQP(n,m)(k)′とすると、QP(n,m)(k)′<QP(n,m)の条件で、式(7)のように、
QP(n,m)(1)′<QP(n,m)(2)′<QP(n,m)(3)′……
…………………………(7)
となるような関係で目標量子化値を補正する(図2参照)。
換言すると、注目マクロブロックにおいては目標量子化値を小さくするのであるが、従来技術のように注目マクロブロック数にかかわらず一律に小さくするのではなく、注目マクロブロック数に応じて、注目マクロブロック数が少ないほど減少分を多くし、注目マクロブロック数が多いほど減少分を小さくする状態で目標量子化値を補正する。
図2を参照して説明すると、注目マクロブロック数k=1の場合の1注目マクロブロック当たりの符号量増分ΔMB(1)に対して、注目マクロブロック数k=2の場合の1注目マクロブロック当たりの符号量増分ΔMB(2)が2分の1になるようにし、注目マクロブロック数k=3の場合の1注目マクロブロック当たりの符号量増分ΔMB(3)が3分の1になるようにする。一般に、注目マクロブロック数kの場合の1注目マクロブロック当たりの符号量増分ΔMB(k)がk分の1になるようにする。
注目マクロブロック数k=1のときの1注目マクロブロック当たりの符号量増分はΔMB(1)であるが、注目マクロブロック数k=1の場合の全体の割り当て符号量CFzの増分はΔCFz(1)は、
ΔCFz(1)=ΔMB(1) ……………………………………………(8)
である。
注目マクロブロック数k=2のときの1注目マクロブロック当たりの符号量増分はΔMB(2)であり、
ΔMB(2)=ΔMB(1)×(1/2) ………………………………(9)
であるので、注目マクロブロック数k=2の場合の全体の割り当て符号量CFzの増分はΔCFz(2)は、
ΔCFz(2)=ΔMB(2)×2
=ΔMB(1)=ΔCFz(1) ……………………(10)
であり、注目マクロブロック数k=1の場合と同様になる。
注目マクロブロック数k=3のときの1注目マクロブロック当たりの符号量増分はΔMB(3)であり、
ΔMB(3)=ΔMB(1)×(1/3) ……………………………(11)
であるので、注目マクロブロック数k=3の場合の全体の割り当て符号量CFzの増分はΔCFz(3)は、
ΔCFz(3)=ΔMB(2)×3
=ΔMB(1)=ΔCFz(1) ……………………(12)
であり、これも注目マクロブロック数k=1の場合と同様になる。
一般に、注目マクロブロック数kのときの1注目マクロブロック当たりの符号量増分ΔMB(k)は、
ΔMB(k)=ΔMB(1)×(1/k) ……………………………(13)
であり、注目マクロブロック数kの場合の全体の割り当て符号量CFzの増分ΔCFz(k)は、
ΔCFz(k)=ΔMB(k)×k
=ΔMB(1)=ΔCFz(1) ……………………(14)
となり、注目マクロブロック数k=1の場合と同様になる。
このように、注目マクロブロック数kの増減の如何にかかわらず、全体の割り当て符号量の増分を一定にし、全体の割り当て符号量が許容限度内に収まるようにする。
このような考え方で目標量子化値QP(n,m)の補正を注目マクロブロック数kに応じてどのように調整するかを以下に説明する。
目標量子化値QP(n,m)の演算は、原則として式(5)、すなわち、
QP(n,m)=Q×CF/CF …………………………………………(5)
に基づいて行うが、上記の注目マクロブロック数kを加味した補正に対しては、全体の割り当て符号量CFzに対する注目マクロブロック全体の符号量上昇率αを用いて、補正係数βを次のように求め、
β=(1−α/k) ………………………………………………………(15)
この補正係数βを用いて、過去の1フレーム分の発生符号量CFを補正する。
CF′=CF・β=CF・(1−α/k) ………………………(16)
この補正後の過去1フレーム分の発生符号量CF′を式(5)に代入して、注目マクロブロックに対する注目マクロブロック数kのときの補正された目標量子化値QP(n,m)(k)′とする。
QP(n,m)(k)′=Q×CF・β/CF
={Q×CF・(1−α/k)}/CF …(17)
以上をまとめると、全体の割り当て符号量CFzに対する注目マクロブロック全体の符号量上昇率αを注目マクロブロック数kで除算し、その除算結果の商(α/k)を1から減じて得た値を補正係数β=(1−α/k)として、この補正係数βを過去1フレーム分の発生符号量CFに乗じて補正後の過去1フレーム分の発生符号量CF′とし、この補正後の過去1フレーム分の発生符号量CF′に基づいて補正後の目標量子化値QP(n,m)′を求める。
この補正は、図2において、特性曲線TをT(1)′,T(2)′,T(3)′のように平行移動することに相当するといってよい。
以上のようにして、注目マクロブロック数k=1のときの補正後の目標量子化値QP(n,m)(1)′、注目マクロブロック数k=2のときの補正後の目標量子化値QP(n,m)(2)′、注目マクロブロック数k=3のときの補正後の目標量子化値QP(n,m)(3)′を求めることができる。量子化値演算部13aは、このようにして求めた補正後の目標量子化値Qt(n,m)(k)′を量子化部16に与え、量子化部16は補正後の目標量子化値Qt(n,m)(k)′に基づいて注目マクロブロックの量子化を行う。
次に、以上のように構成された本実施の形態の動画像符号化装置の動作を説明する。
まず、装置外部より固体撮像装置等から動画像データの輝度/色差信号が入力画像格納部11に入力される。
入力画像格納部11に1フレーム分の動画像データが入力され始めると、注目マクロブロック判別部12により、例えば入力画像や過去の入力画像の状態から顔・人物などの注目情報が1フレーム内のどこに存在するかを認識し、量子化対象のマクロブロックが注目領域内であるか否かという判断を行う。また、入力画像格納部11からマクロブロックの輝度データまたは色差データが出力されるたびに、そのマクロブロックが注目マクロブロックであるか否かを量子化値演算部13aに出力する。
符号化を行う最初の1フレームの画像に対しては、1フレームに含まれるすべてのマクロブロックに対してフレーム内MB符号化を行うフレーム内フレーム符号化を行う。
フレーム内MB符号化時は、入力画像格納部11のマクロブロックの輝度データは、直交変換部15に出力され、直交変換処理を行い、周波数成分に変換される。
次に、前記周波数成分に対し、量子化部16において量子化を行う。
量子化値演算部13aは、可変長符号化部17が出力した符号量や外部より設定された目標ビットレート[bps]やフレームレート[fps]より求めた1フレームの目標発生符号量などから目標量子化値QP(n,m)の決定を行う。量子化部16は、量子化値演算部13aから入力した目標量子化値QP(n,m)に基づいて対象マクロブロックの量子化を行う。ただし、動画像の最初のフレームの処理時の目標量子化値は演算結果による値ではなく初期値により量子化を行う。
量子化部16以降は、2つの処理過程に分岐する。
まず第一の処理過程は、符号を生成し記録媒体に生成した符号を格納する処理である。
可変長符号化部17において、量子化部16からの出力に対し、冗長情報を取り除き、さらに情報量を削減し、符号を生成する。上記処理後に出力された符号は、記録媒体等に格納されたり、通信装置を介して端末に送信されたりする。
第二の処理過程は、次のフレーム間差分処理のために必要な参照画像を生成する処理である。
量子化部16の出力に対し、逆量子化部18において逆量子化するとともに、逆直交変換部19において逆直交変換を行い、量子化部16の結果に基づいた復号化処理を行う。逆量子化部18の出力画像は、nフレーム参照画像格納部20に格納される。
次の入力画像については、差分処理部14において入力画像と参照画像の差分を取ることで符号量を削減する予測符号化を行う。その際、動き検出部22において、画像の動きを考慮し、入力画像と参照画像の差が最小となる位置を求める動きベクトル検出を行う。
入力画像格納部11に入力された色差信号のマクロブロックについても、輝度信号について行ったマクロブロック単位の上記同様の処理を行う。
nフレーム参照画像格納部20が1フレーム分の逆量子化信号を格納し終えると、動き検出部22や直交変換部15が入力画像格納部11内の(n+1)フレームの入力画像信号の先頭を読み出す前に、(n−1)フレーム参照画像格納部21に対して1フレーム分の信号の書き写しが行われる。
次に、フレーム間MB符号化の説明を行う。
次に、フレーム間予測フレーム符号化の説明を行う。フレーム間予測フレーム符号化においては、各マクロブロックに対しフレーム間MB符号化かフレーム内MB符号化かを自由に選択できる。
まず、動き検出部22は、(n−1)フレーム参照画像格納部21から動き検出部22に必要な範囲の輝度データを読み出し、入力画像格納部11の輝度信号領域内のマクロブロックとの差分が最小となる位置を探索し、そのずれを動きベクトルとして検出する。
その後、入力画像格納部11内の入力データの状態や動き検出部22の出力信号の結果に応じて、フレーム内/間MB符号化決定部23は、入力画像のフレームの符号化方法(例えばフレーム間MB符号化かフレーム内MB符号化等)を決定する。
フレーム内/間MB符号化決定部23が、フレーム間MB符号化と判断した場合は、符号化対象となっている入力画像格納部11から出力されるマクロブロックと入力画像のマクロブロックより動き検出部22にて検出した動きベクトル分ずれた(n−1)フレーム参照画像格納部21内の画像との差分処理を差分処理部14で行う。
フレーム内/間MB符号化決定部23が、フレーム内MB符号化と判断した場合は、符号化対象となっている入力画像格納部11から出力されるマクロブロックに対する差分処理は行わない。その出力された画像に対しては、フレーム内MB符号化と同様に直交変換部15および量子化部16において、直交変換処理、量子化を行う。
量子化部16による処理以降に、可変長符号化部17による処理を行う。
逆量子化部18および逆直交変換部19による復号化処理についても逆量子化部18まではフレーム内MB符号化と同様の処理を行う。
逆量子化部18の出力が、フレーム内/間MB符号化決定部23でフレーム間MB符号化と判断していた場合、そのマクロブロック画像が予測誤差画像であるため、動き検出部22内にある入力画像マクロブロックとの差分を取った参照画像と加算することで復号を行う。
逆量子化部18の出力が、フレーム内/間MB符号化決定部23でフレーム内MB符号化と判断していた場合、逆量子化部18から出力されたマクロブロック画像自体が復号画像となるので加算処理は行わない。
以降は、フレーム内MB符号化の処理と同様にnフレーム参照画像格納部20に対し、現在処理を行っている入力画像内の処理対象のマクロブロック位置に対応するブロック位置に逆直交変換部19の出力の格納を行う。
nフレーム参照画像格納部20が1フレーム分の逆量子化信号を格納し終えると、動き検出部22や直交変換部15が入力画像格納部11内の(n+1)フレームの入力画像信号の先頭を読み出す前に、(n−1)フレーム参照画像格納部21に対して1フレーム分の信号の書き写しが行われる。
入力画像格納部11に入力された色差信号については、フレーム内/間MB符号化決定部23でフレーム間MB符号化と判断していた場合は、動き検出部22に、nフレーム参照画像格納部20内の色差信号領域内の入力画像内の対象マクロブロック位置より輝度信号処理時の動きベクトルの検出結果の動きベクトル分ずれた位置から色差信号が入力画像に対する差分対象として格納される。
差分処理以降の処理については、輝度信号の場合と同様にフレーム内/間MB符号化決定部23の出力に応じて処理を行い符号の生成及び符号の格納、参照画像の生成を行う。
この処理を繰返し行うことにより、入力画像に対し時間的に常に1フレーム前の画像を(n−1)フレーム参照画像格納部21に用意し、入力画像の符号化を行うことができる。
量子化値演算部13aは、注目マクロブロック判別部12からの非注目マクロブロックか注目マクロブロックかの情報に従って、目標量子化値QP(n,m)を演算する。非注目マクロブロックの場合は、従来技術と同様に、式(5)
QP(n,m)=Q×CF/CF …………………………………………(5)
に従って、目標量子化値QP(n,m)を求め、量子化部16に与える。
注目マクロブロックの場合は、式(17)
QP(n,m)(k)′=Q×CF・β/CF
={Q×CF・(1−α/k)}/CF …(17)
に従って、補正後の目標量子化値Qt(n,m)(k)を求め、量子化部16に与える。ここで、CF0は過去1フレーム分の発生符号量、Qは過去1フレーム分の平均量子化値、CFは目標発生符号量を、αは全体の割り当て符号量CFzに対する注目マクロブロック全体の符号量上昇率、kは注目マクロブロック数である。
過去1フレーム分のマクロブロックは図3(a),(b)に示すとおりである。符号上昇度数αは、過去1フレーム分の符号量について、1フレーム内の総符号量を1とした場合、その1フレーム内の総符号量に対してどのぐらいの割合で総注目マクロブロックの符号量を上昇させるかを示すものである。
本実施の形態によれば、注目マクロブロック数が増えても全体の割り当て符号量においてオーバーフローを抑制しながら、時間経過とともに目標量子化値を減少させて、なるべく多くの画像情報を取得し、注目領域の画質を向上させていくことができる。
(実施の形態2)
図4は本発明の実施の形態2における動画像符号化装置の構成を示すブロック図である。図4において、実施の形態1の図1におけるのと同じ符号は同一構成要素を指しているので、詳しい説明は省略する。図5(a),(b)は実施の形態2における過去1フレーム分のマクロブロックの説明図である。
フレーム内/間MB符号化決定部23の判定結果が、動き検出部22に対してだけでなく、量子化値演算部13bにも出力されている。
量子化値演算部13bは、フレーム内/間MB符号化決定部23の判定結果がフレーム内MB符号化の場合は、フレーム内MB符号化用の符号量上昇度数β=(1−α/k)を用いて補正した結果の目標量子化値を量子化部16に出力し、判定結果がフレーム間MB符号化の場合は、フレーム間MB符号化用の符号量上昇度数β=(1−α/k)を用いて補正した結果の目標量子化値を量子化部16に対して出力する。ここで、αは、フレーム内MB符号化に適した全体の割り当て符号量CFzに対する注目マクロブロック全体の符号量上昇率値であり、αは、フレーム間MB符号化に適した全体の割り当て符号量CFzに対する注目マクロブロック全体の符号量上昇率値である。
量子化値演算部13bは、注目マクロブロック判別部12から注目マクロブロックの情報を受け、さらに、フレーム内/間MB符号化決定部23からフレーム内MB符号化の情報を受けたときは、
QP(n,m)(k)′=Q×CF・β/CF
={Q×CF・(1−α/k)}/CF …(18)
に従って、注目マクロブロック数kのときの補正後の目標量子化値QP(n,m)(k)′を算出し、量子化部16に与える。
また、量子化値演算部13bは、注目マクロブロック判別部12から注目マクロブロックの情報を受け、さらに、フレーム内/間MB符号化決定部23からフレーム間MB符号化の情報を受けたときは、
QP(n,m)(k)′=Q×CF・β/CF
={Q×CF・(1−α/k)}/CF …(19)
に従って、注目マクロブロック数kのときの補正後の目標量子化値QP(n,m)(k)′を算出し、量子化部16に与える。
このように、同じ注目マクロブロックであっても、予測符号化がフレーム内であるかフレーム間であるかに応じて用いる演算式を切り替えるのである。
本実施の形態によれば、同じ注目マクロブロックであっても、フレーム内MB符号化のマクロブロックとフレーム間MB符号化のマクロブロックとでは、必要とされる符号量に違いがあることに鑑みて、フレーム内MB符号化とフレーム間MB符号化とで異なる処理を行うようにしており、いずれも、注目マクロブロック数が増えても全体の割り当て符号量においてオーバーフローを抑制しながら、注目領域の画質向上を最適化することができる。
本発明の実施の形態1における動画像符号化装置の構成を示すブロック図 本発明の実施の形態1における動画像符号化方法の目標量子化値の補正の説明図 本発明の実施の形態1における過去1フレーム分のマクロブロックの説明図 本発明の実施の形態2における動画像符号化装置の構成を示すブロック図 本発明の実施の形態2における過去1フレーム分のマクロブロックの説明図 従来の技術における動画像符号化装置の構成を示すブロック図 従来の技術における過去1フレーム分のマクロブロックの説明図
符号の説明
11 入力画像格納部(入力画像格納手段)
12 注目マクロブロック判別部(注目ブロック判別手段)
13a,13b 量子化値演算部(量子化値演算手段)
14 差分処理部
15 直交変換部
16 量子化部
17 可変長符号化部
18 逆量子化部
19 逆直交変換部
20 nフレーム参照画像格納部
21 (n−1)フレーム参照画像格納部
22 動き検出部
23 フレーム内/間MB符号化決定部

Claims (6)

  1. 入力した動画像データから注目ブロックと非注目ブロックとを識別し、前記入力した動画像データをブロック単位で直交変換し、前記直交変換したデータをブロック単位で量子化するに、前記注目ブロックでは前記非注目ブロックよりも小さい目標量子化値に基づいて量子化することで、前記注目ブロックでは符号量を多めに割り当てて符号化する動画像符号化方法であって、
    注目ブロック数が多くなるにつれて目標量子化値を1注目ブロック当たりの符号量増分が小さくなるような目標量子化値に補正し、この補正後の目標量子化値に基づいて前記注目ブロックを量子化することを特徴とする動画像符号化方法。
  2. 前記目標量子化値の補正は、全体の割り当て符号量に対する注目ブロック全体の符号量上昇率を注目ブロック数で除算し、過去1フレーム分の発生符号量を、これに前記除算結果の商を1から減じて得た値を乗じて補正し、この補正後の過去1フレーム分の発生符号量に基づいて前記補正後の目標量子化値を求めることを特徴とする請求項1に記載の動画像符号化方法。
  3. 前記過去1フレーム分の発生符号量に乗じる値について、フレーム内予測符号化を行うブロックに対してはフレーム内予測符号化に適した値を用い、フレーム間予測符号化を行うブロックに対してはフレーム間予測符号化に適した値を用いるを特徴とする請求項2に記載の動画像符号化方法。
  4. 外部から動画像データを入力する入力画像格納手段と、前記入力画像格納手段が入力した動画像データから注目ブロックと非注目ブロックとを判別する注目ブロック判別手段と、前記注目ブロック判別手段が判別した前記注目ブロックでは前記非注目ブロックに設定する目標量子化値よりも小さい目標量子化値を設定する量子化値演算手段と、前記入力画像格納手段が入力した動画像データをブロック単位で直交変換する直交変換手段と、前記直交変換手段が直交変換したブロック単位のデータを前記量子化値演算手段からの目標量子化値に基づいて量子化する量子化手段とを備えた動画像符号化装置において、
    前記量子化値演算手段は、前記注目ブロック数が多いほど前記目標量子化値を小さく設定するように構成されていることを特徴とする動画像符号化装置。
  5. 前記量子化値演算手段は、平均量子化値と目標発生符号量と過去1フレーム分の発生符号量から目標量子化値を導く演算において、全体の割り当て符号量に対する注目ブロック全体の符号量上昇率を注目ブロック数で除算し、前記除算結果の商を1から減じて得た値を前記過去1フレーム分の発生符号量に乗じて補正し、この補正後の過去1フレーム分の発生符号量に基づいて前記補正後の目標量子化値を求めるように構成されていることを特徴とする請求項4に記載の動画像符号化装置。
  6. 前記量子化値演算手段は、前記過去1フレーム分の発生符号量に乗じる値について、フレーム内予測符号化を行うブロックに対してはフレーム内予測符号化に適した値を用い、フレーム間予測符号化を行うブロックに対してはフレーム間予測符号化に適した値を用いるように構成されていることを特徴とする請求項5に記載の動画像符号化装置。
JP2003283454A 2003-07-31 2003-07-31 動画像符号化方法および動画像符号化装置 Pending JP2005051659A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283454A JP2005051659A (ja) 2003-07-31 2003-07-31 動画像符号化方法および動画像符号化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283454A JP2005051659A (ja) 2003-07-31 2003-07-31 動画像符号化方法および動画像符号化装置

Publications (1)

Publication Number Publication Date
JP2005051659A true JP2005051659A (ja) 2005-02-24

Family

ID=34268338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283454A Pending JP2005051659A (ja) 2003-07-31 2003-07-31 動画像符号化方法および動画像符号化装置

Country Status (1)

Country Link
JP (1) JP2005051659A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535322A (ja) * 2005-03-22 2008-08-28 クゥアルコム・インコーポレイテッド 動的にスケーリングされるファイル符号化
JP2010529748A (ja) * 2007-05-31 2010-08-26 クゥアルコム・インコーポレイテッド イメージトランスコードのためのビットレート縮小技術
WO2020194507A1 (ja) * 2019-03-26 2020-10-01 日本電気株式会社 動画像符号化装置、動画像圧縮装置、動画像符号化方法、及びプログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535322A (ja) * 2005-03-22 2008-08-28 クゥアルコム・インコーポレイテッド 動的にスケーリングされるファイル符号化
JP2011239425A (ja) * 2005-03-22 2011-11-24 Qualcomm Incorporated 動的にスケーリングされるファイル符号化
JP2010529748A (ja) * 2007-05-31 2010-08-26 クゥアルコム・インコーポレイテッド イメージトランスコードのためのビットレート縮小技術
US8213498B2 (en) 2007-05-31 2012-07-03 Qualcomm Incorporated Bitrate reduction techniques for image transcoding
WO2020194507A1 (ja) * 2019-03-26 2020-10-01 日本電気株式会社 動画像符号化装置、動画像圧縮装置、動画像符号化方法、及びプログラム
JPWO2020194507A1 (ja) * 2019-03-26 2021-11-18 日本電気株式会社 動画像符号化装置、動画像圧縮装置、動画像符号化方法、及びプログラム
JP7222421B2 (ja) 2019-03-26 2023-02-15 日本電気株式会社 動画像符号化装置、動画像圧縮装置、動画像符号化方法、及びプログラム
US11991375B2 (en) 2019-03-26 2024-05-21 Nec Corporation Moving image encoding device, moving image compression device, moving image encoding method, and program

Similar Documents

Publication Publication Date Title
KR100987765B1 (ko) 동영상 부호화기에서의 예측 수행 방법 및 장치
JP5173409B2 (ja) 符号化装置および符号化装置を備えた動画像記録システム
KR101356207B1 (ko) 데이터 인코딩/디코딩 방법 및 장치
KR20070032111A (ko) 동영상의 무손실 부호화, 복호화 방법 및 장치
JPH07184196A (ja) 画像符号化装置
JP4690966B2 (ja) 動画像符号化装置
KR20090095317A (ko) 영상 부호화 및 복호화 방법 및 장치
JP2007281949A (ja) 画像符号化装置、画像符号化復号システム、画像符号化方法、および画像符号化復号方法
KR100961760B1 (ko) 이산코사인변환 계수를 참조하는 움직임 추정 방법 및 장치
JP2004215275A (ja) 動き補償に基づいた改善されたノイズ予測方法及びその装置とそれを使用した動画符号化方法及びその装置
KR100987921B1 (ko) 선택적 움직임 검색영역을 이용한 움직임 보상기법이 적용되는 동영상 압축부호화장치및 복호화 장치와 움직임 보상을 위한 선택적 움직임 검색영역 결정방법.
KR100708182B1 (ko) 동영상 부호화기의 비트율 제어 장치 및 방법
JP4597511B2 (ja) 細粒度スケーラブル・ビデオ用の動き補償
JP2005051659A (ja) 動画像符号化方法および動画像符号化装置
JP2009284058A (ja) 動画像符号化装置
JP4367354B2 (ja) 画像符号化装置
KR100987922B1 (ko) 선택적 참조영상을 이용한 움직임 보상기법을 적용한 동영상 압축부호화장치및 복호화 장치와 움직임 보상을 위한 선택적 참조영상 결정방법
JP5171658B2 (ja) 画像符号化装置
JP2008153802A (ja) 動画像符号化装置及び動画像符号化プログラム
KR19990061002A (ko) 비디오 압축을 위한 블록단위의 변환부호화에서 데이터량 발생제한장치
KR200309401Y1 (ko) 디지털 영상압축 시스템
JP5268666B2 (ja) 画像符号化装置
JPH10145793A (ja) 画像符号化装置とその方法、および、画像復号化装置とその方法
KR100507441B1 (ko) 가변장 부호의 입력 특성을 이용한 영상 신호 압축 방법및 상기 방법을 수행하는 비디오 인코더
JP6016484B2 (ja) 符号化装置