JP2005050776A - Electromagnetic field feeder and plasma device - Google Patents

Electromagnetic field feeder and plasma device Download PDF

Info

Publication number
JP2005050776A
JP2005050776A JP2003284393A JP2003284393A JP2005050776A JP 2005050776 A JP2005050776 A JP 2005050776A JP 2003284393 A JP2003284393 A JP 2003284393A JP 2003284393 A JP2003284393 A JP 2003284393A JP 2005050776 A JP2005050776 A JP 2005050776A
Authority
JP
Japan
Prior art keywords
electromagnetic field
rectangular waveguide
rectangular
field supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284393A
Other languages
Japanese (ja)
Inventor
Nobuo Ishii
信雄 石井
Kibatsu Shinohara
己拔 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Nihon Koshuha Co Ltd
Original Assignee
Tokyo Electron Ltd
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Nihon Koshuha Co Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003284393A priority Critical patent/JP2005050776A/en
Publication of JP2005050776A publication Critical patent/JP2005050776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Drying Of Semiconductors (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that an electromagnetic field feeder and a plasma device using it become large in sizes as a whole and expensive in price. <P>SOLUTION: A rectangular/cylindrical circularly polarized wave converter 13 is used that is composed of a first rectangular waveguide part 31 in which one end is connected to the other end of the rectangular waveguide, an opening 14A which is formed on the first side wall of the first rectangular waveguide part 31 and to which one end of the cylindrical waveguide is connected, second and third rectangular waveguide parts 32, 33 in which one-side ends are connected to the second side wall and the third side wall of the first rectangular waveguide part 31 and in which other ends are short-circuited electric-functionally, and a protrusion 34 which is formed in the tube of the first rectangular waveguide part 31, which is protruded from the inner face of a fourth side wall opposed to the first side wall toward the opening 14A, and which has conductivity at least on the surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電磁界供給装置およびプラズマ装置に関し、より詳しくは、高周波電磁界を矩形導波管および円筒導波管を経由して供給する電磁界供給装置およびそれを用いたプラズマ装置に関する。   The present invention relates to an electromagnetic field supply device and a plasma device, and more particularly to an electromagnetic field supply device that supplies a high-frequency electromagnetic field via a rectangular waveguide and a cylindrical waveguide, and a plasma device using the same.

半導体素子やフラットパネルディスプレイの製造において、絶縁膜の形成や半導体層の結晶成長、エッチング、またアッシングなどの処理を行うために、プラズマ装置が多用されている。このプラズマ装置の一つに、スロットアンテナを用いて高周波電磁界を処理容器内に供給することにより、処理容器内のガスを電離、励起、解離させてプラズマを生成する高周波プラズマ装置がある。この高周波プラズマ装置は、低圧力で高密度のプラズマを生成できるので、効率のよいプラズマ処理が可能である。   In the manufacture of semiconductor elements and flat panel displays, plasma devices are frequently used to perform processing such as formation of insulating films, crystal growth of semiconductor layers, etching, and ashing. As one of the plasma apparatuses, there is a high-frequency plasma apparatus that generates plasma by ionizing, exciting, and dissociating a gas in a processing container by supplying a high-frequency electromagnetic field into the processing container using a slot antenna. Since this high-frequency plasma apparatus can generate high-density plasma at low pressure, efficient plasma processing is possible.

図6および図7は、スロットアンテナの一つであるラジアルラインスロットアンテナ(以下、RLSAと略記する)に高周波電磁界を供給する従来の電磁界供給装置の構成例を示す図である。
図6に示す従来の電磁界供給装置110Aは、高周波電磁界を発生させる高周波発振器111と、高周波発振器111に一端が接続された矩形導波管112と、矩形導波管112の他端に一端が接続され、矩形導波管の伝送モードTE10から円筒導波管の伝送モードTE11に変換する矩形/円筒変換器113と、矩形/円筒変換器113の他端に一端が接続され、他端がRLSA120に接続された円筒導波管114と、円筒導波管114に設けられ、直線偏波を円偏波に変換する円偏波変換器115とを有している。
6 and 7 are diagrams showing a configuration example of a conventional electromagnetic field supply device that supplies a high-frequency electromagnetic field to a radial line slot antenna (hereinafter abbreviated as RLSA), which is one of the slot antennas.
A conventional electromagnetic field supply device 110A shown in FIG. 6 includes a high-frequency oscillator 111 that generates a high-frequency electromagnetic field, a rectangular waveguide 112 having one end connected to the high-frequency oscillator 111, and one end at the other end of the rectangular waveguide 112. There is connected a rectangular / cylindrical converter 113 for converting the transmission mode TE 10 of rectangular waveguide to a transmission mode TE 11 of the cylindrical waveguide, one end connected to the other end of the rectangular / cylindrical transducer 113, other A cylindrical waveguide 114 having an end connected to the RLSA 120 and a circular polarization converter 115 provided on the cylindrical waveguide 114 for converting linearly polarized waves into circularly polarized waves are provided.

円偏波変換器115としては、円筒導波管114の内壁に、対向する円柱状突起を、軸線方向にλg/4(λgは管内波長)の間隔で複数組設けたものが用いられる。これらの円柱状突起を、矩形/円筒変換器113から導入されるTE11モードの高周波電磁界の電界ベクトルの主方向に対して45°をなす方向に配置することにより、上記高周波電磁界を電界ベクトルが軸線方向に対して垂直な面上で1周期で1回転する回転電磁界に変換することができる。
このような円偏波変換器115を用いてRLSA120に円偏波給電することにより、RLSA120内の電界強度分布が、時間平均で、軸線に対して対称な分布となるので、均一性のよいプラズマを生成することが可能となる。
As the circularly polarized wave converter 115, a structure in which a plurality of pairs of opposing cylindrical protrusions are provided on the inner wall of the cylindrical waveguide 114 at intervals of λ g / 4 (λ g is the wavelength in the tube) in the axial direction is used. . These columnar protrusions are arranged in a direction that forms 45 ° with respect to the main direction of the electric field vector of the TE 11 mode high-frequency electromagnetic field introduced from the rectangular / cylindrical converter 113, so that the high-frequency electromagnetic field is converted into an electric field. The vector can be converted into a rotating electromagnetic field that rotates once in one cycle on a plane perpendicular to the axial direction.
By feeding circularly polarized waves to the RLSA 120 using such a circular polarization converter 115, the electric field intensity distribution in the RLSA 120 becomes a distribution that is symmetric with respect to the axis on a time average basis. Can be generated.

しかし、高周波電磁界の一部には、処理容器の内部またはRLSA120の内部で反射され、円筒導波管114および矩形/円筒変換器113を逆方向に伝播していくものがある。この反射波は、モードが一致しないために矩形導波管112の他端で再度反射され、その影響で円偏波の軸比が大きくなり、RLSA120内の電界強度分布(時間平均)の軸対称性が低下してしまうので、均一なプラズマ生成を阻害する一因となる。ここで、軸比とは、円偏波の円形断面上の電界強度分布における最大値を最小値で割った値をいう。   However, some of the high-frequency electromagnetic fields are reflected inside the processing vessel or inside the RLSA 120 and propagate in the reverse direction through the cylindrical waveguide 114 and the rectangular / cylindrical converter 113. This reflected wave is reflected again at the other end of the rectangular waveguide 112 because the modes do not match, and as a result, the axial ratio of circularly polarized waves increases, and the electric field strength distribution (time average) in the RLSA 120 is axially symmetric. As a result, it is a cause of hindering uniform plasma generation. Here, the axial ratio means a value obtained by dividing the maximum value in the electric field intensity distribution on the circular cross section of the circularly polarized wave by the minimum value.

そこで、図7に示す電磁界供給装置110Bのように、RLSA120と円偏波変換器115との間に円偏波用の負荷整合器116を設け、円偏波変換器115ないし矩形円筒変換器113を逆方向に伝播する反射波を低減する技術が提案された。円偏波用の負荷整合器116としては、図示はしないが、円筒導波管114の内壁に、対向する円柱状突起を、軸線方向にλg/4の間隔で複数組設け、これらの位置から円筒導波管114の周方向に90°回転した位置に、対向する円柱状突起を更に複数組設けたものが用いられる。これらの円柱状突起の円筒導波管114の内壁から半径方向に突出する長さを変え、円筒導波管114のリアクタンスを調整することにより、円筒導波管114の電源側と負荷側とのインピーダンスの整合をとり、上記反射波を低減することができる(例えば、特許文献1を参照)。 Therefore, as in the electromagnetic field supply device 110B shown in FIG. 7, a load matching unit 116 for circular polarization is provided between the RLSA 120 and the circular polarization converter 115, and the circular polarization converter 115 or the rectangular cylindrical converter is provided. Techniques have been proposed for reducing reflected waves propagating through 113 in the reverse direction. Although not shown, the circularly polarized load matching unit 116 is provided with a plurality of sets of opposing cylindrical protrusions on the inner wall of the cylindrical waveguide 114 at intervals of λ g / 4 in the axial direction. Further, a plurality of opposing cylindrical protrusions provided at a position rotated 90 ° in the circumferential direction of the cylindrical waveguide 114 is used. By changing the length of the cylindrical protrusions protruding from the inner wall of the cylindrical waveguide 114 in the radial direction and adjusting the reactance of the cylindrical waveguide 114, the power supply side and the load side of the cylindrical waveguide 114 are adjusted. The reflected wave can be reduced by matching the impedance (see, for example, Patent Document 1).

しかしながら、図6に示した従来の電磁界供給装置110Aでは、伝送モードおよび偏波の変換に、矩形/円筒変換器113および円偏波変換器115という2つの部品が必要であり、その機能を発揮するにはある程度以上の大きさが必要であるので、電磁界供給装置110Aおよびそれを用いたプラズマ装置が全体的に大型化してしまうという問題があった。
また、図7に示した従来の電磁界供給装置110Bで用いられる円偏波用の負荷整合器116は、汎用品ではなく高価であるため、電磁界供給装置110Aおよびそれを用いたプラズマ装置が高価なものになってしまうという問題があった。
However, the conventional electromagnetic field supply device 110A shown in FIG. 6 requires two parts, a rectangular / cylindrical converter 113 and a circularly polarized wave converter 115, for transmission mode and polarization conversion. Since a certain size or more is necessary to achieve this, there has been a problem that the electromagnetic field supply device 110A and the plasma device using the same increase in size as a whole.
In addition, the circularly polarized load matching unit 116 used in the conventional electromagnetic field supply device 110B shown in FIG. 7 is not a general-purpose product and is expensive. Therefore, the electromagnetic field supply device 110A and a plasma apparatus using the same are used. There was a problem of becoming expensive.

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
特開2003−110312号公報
The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
Japanese Patent Laid-Open No. 2003-110312

よって、本発明が解決しようとする課題は、電磁界供給装置およびそれを用いたプラズマ装置が全体的に大型化し、かつ、価格的にも高価なものになってしまうことである。   Therefore, the problem to be solved by the present invention is that the electromagnetic field supply apparatus and the plasma apparatus using the same are increased in size and are expensive in price.

このような課題を解決するために、本発明の電磁界供給装置は、高周波電磁界を発生させる高周波発振器と、この高周波発振器に一端が接続された矩形導波管と、この矩形導波管の他端に接続され、矩形導波管の伝送モードから円筒導波管の伝送モードへ変換するとともに、直線偏波を円偏波に変換する変換器と、この変換器に一端が接続された円筒導波管とを備え、変換器が、矩形導波管の他端に一端が接続された第1の矩形導波管部と、この第1の矩形導波管部の第1の側壁に形成され、円筒導波管の一端が接続される開口部と、第1の矩形導波管部の第1の側壁を挟む第2の側壁および第3の側壁にそれぞれの一端が接続された第2および第3の矩形導波管部と、第1の矩形導波管部の管内に配置され、第1の側壁に対向する第4の側壁の内面から開口部に向かって突出し、かつ、少なくとも表面に導電性を有する突起とを備えることを特徴とする。   In order to solve such problems, an electromagnetic field supply device of the present invention includes a high-frequency oscillator that generates a high-frequency electromagnetic field, a rectangular waveguide having one end connected to the high-frequency oscillator, A converter connected to the other end for converting the transmission mode of the rectangular waveguide to the transmission mode of the cylindrical waveguide and converting the linearly polarized wave to the circularly polarized wave, and the cylinder having one end connected to the converter And a converter formed on the first side wall of the first rectangular waveguide section, the first rectangular waveguide section having one end connected to the other end of the rectangular waveguide. And an opening to which one end of the cylindrical waveguide is connected, a second side wall sandwiching the first side wall of the first rectangular waveguide section, and a second side wall having a first end connected to the third side wall. And a third rectangular waveguide section and a fourth side disposed in the tube of the first rectangular waveguide section and facing the first side wall Projecting toward the inner surface in the opening, and characterized by comprising a protrusion having an electrically conductive at least on its surface.

変換器において、矩形導波管から第1の矩形導波管部に導入された高周波電磁界は、突起に反射され、円筒導波管と第2および第3の矩形導波管部とに分岐して導入される。第2および第3の矩形導波管部に導入された高周波電磁界は、それぞれ矩形導波管部を伝播し、端面で反射された後、逆方向に伝播し、再び突起に反射されて、円筒導波管に導入される。このとき、第1の矩形導波管部から円筒導波管に直接導入された高周波電磁界と、第1の矩形導波管部から第2または第3の矩形導波管部を経由して円筒導波管に導入された高周波電磁界とは、それぞれの電界の方向が空間的に直交しているので、それぞれの電界の位相をずらすことにより、円筒導波管内で円偏波が生成される。なお、それぞれの電界の大きさを同一にし、位相差を90°にすることにより、軸比1の円偏波が生成される。   In the converter, the high-frequency electromagnetic field introduced from the rectangular waveguide to the first rectangular waveguide portion is reflected by the protrusions and branches into the cylindrical waveguide and the second and third rectangular waveguide portions. Will be introduced. The high-frequency electromagnetic field introduced into the second and third rectangular waveguide parts propagates through the rectangular waveguide part, is reflected at the end face, then propagates in the opposite direction, is again reflected by the protrusions, Introduced into a cylindrical waveguide. At this time, a high-frequency electromagnetic field directly introduced from the first rectangular waveguide portion into the cylindrical waveguide and the second rectangular waveguide portion from the first rectangular waveguide portion via the second or third rectangular waveguide portion. Since the direction of each electric field is spatially orthogonal to the high-frequency electromagnetic field introduced into the cylindrical waveguide, a circularly polarized wave is generated in the cylindrical waveguide by shifting the phase of each electric field. The Note that circular polarization with an axial ratio of 1 is generated by setting the magnitudes of the respective electric fields to the same and setting the phase difference to 90 °.

この電磁界供給装置において、第1の矩形導波管部の他端は、電気機能的にショートされていてもよい。または、第1の矩形導波管部の他端には、所定の長さの矩形導波管が接続され、その矩形導波管の端面に電磁波吸収材が配置されていてもよい。
また、第2および第3の矩形導波管部は、それぞれの他端が電気機能的にショートされていてもよい。
また、第2の矩形導波管部の長さと第3の矩形導波管部の長さとの差を、管内波長の略1/4の奇数倍としてもよい。
また、突起は、第1の矩形導波管部の第4の側壁に平行な断面が円形で、かつ、その断面積が、第4の側壁に取り付けられる底部から頂部に向かって小さくなる立体形状をしていてもよい。
また、上述した電磁界供給装置は、矩形導波管に設けられ、矩形導波管の電源側と負荷側とのインピーダンスの整合をとる負荷整合器を更に備えていてもよい。
In this electromagnetic field supply device, the other end of the first rectangular waveguide portion may be electrically short-circuited. Or the rectangular waveguide of predetermined length may be connected to the other end of the 1st rectangular waveguide part, and the electromagnetic wave absorber may be arrange | positioned at the end surface of the rectangular waveguide.
The second and third rectangular waveguide portions may be short-circuited electrically at the other end.
The difference between the length of the second rectangular waveguide portion and the length of the third rectangular waveguide portion may be an odd multiple of approximately ¼ of the in-tube wavelength.
The protrusion has a three-dimensional shape having a circular cross section parallel to the fourth side wall of the first rectangular waveguide portion and a cross-sectional area that decreases from the bottom attached to the fourth side wall toward the top. You may be doing.
The above-described electromagnetic field supply apparatus may further include a load matching unit that is provided in the rectangular waveguide and that matches impedance between the power supply side and the load side of the rectangular waveguide.

また、本発明のプラズマ装置は、処理容器の内部に収容され、被処理体が配置されるサセプタと、このサセプタに対向配置され、処理容器の内部または外部に高周波電磁界を供給するスロットアンテナとを備え、スロットアンテナに高周波電磁界を供給するために上述した電磁界供給装置を用いたことを特徴とする。   The plasma apparatus of the present invention includes a susceptor that is accommodated in a processing container and in which a target object is disposed, and a slot antenna that is disposed to face the susceptor and supplies a high-frequency electromagnetic field to or from the processing container. The electromagnetic field supply device described above is used to supply a high-frequency electromagnetic field to the slot antenna.

本発明では、第1〜第3の矩形導波管部と突起とからなる変換器を用いて、矩形導波管から円筒導波管への伝送モードの変換と、直線偏波から円偏波への変換を行う。この変換器は、同じ機能を有する矩形/円筒変換器113および円偏波変換器115よりも小型である。よって、電磁界供給装置およびそれを用いたプラズマ装置を全体的に従来より小型化することができる。
また、本発明では、円筒導波管を逆方向に伝播する高周波電磁界が、変換器と矩形導波管との接続部で反射されることなく、矩形導波管に導入されるので、矩形導波管に負荷整合器を設けることができる。矩形導波管用の負荷整合器は、汎用品が市販されており、価格的にも安価である。このような負荷整合器を用いることにより、電磁界供給装置およびそれを用いたプラズマ装置の価格を低減することができる。
In the present invention, using a converter composed of the first to third rectangular waveguide sections and protrusions, the transmission mode is converted from the rectangular waveguide to the cylindrical waveguide, and the linearly polarized wave is converted into the circularly polarized wave. Convert to. This converter is smaller than the rectangular / cylindrical converter 113 and the circular polarization converter 115 having the same function. Therefore, the electromagnetic field supply apparatus and the plasma apparatus using the same can be reduced in size as compared with the conventional one.
In the present invention, the high-frequency electromagnetic field propagating in the reverse direction through the cylindrical waveguide is introduced into the rectangular waveguide without being reflected by the connection portion between the transducer and the rectangular waveguide. A load matcher can be provided in the waveguide. General-purpose products are commercially available as load matching units for rectangular waveguides and are inexpensive. By using such a load matching device, the price of the electromagnetic field supply device and the plasma device using the same can be reduced.

以下、本発明の一実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る高周波プラズマ装置の全体構成を示す図である。
このプラズマ装置は、上部が開口した有底円筒形の処理容器1を有している。処理容器1の内部にはサセプタ2が収容されている。サセプタ2の上面(載置面)には、被処理体として、例えば半導体素子やLCD(liquid crystal desplay)、有機EL(electro luminescent panel)などの基板Wが配置される。サセプタ2にはまた、マッチングボックス3を介して高周波電源4が接続されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an overall configuration of a high-frequency plasma apparatus according to an embodiment of the present invention.
This plasma apparatus has a bottomed cylindrical processing container 1 having an open top. A susceptor 2 is accommodated inside the processing container 1. On the upper surface (mounting surface) of the susceptor 2, for example, a substrate W such as a semiconductor element, an LCD (liquid crystal display), or an organic EL (electro luminescent panel) is disposed as an object to be processed. A high frequency power source 4 is also connected to the susceptor 2 via a matching box 3.

処理容器1の底部には、真空排気用の排気口5が設けられている。処理容器1の側壁には、処理容器1内にガスを導入するガス導入用ノズル6が設けられている。例えばプラズマ装置がエッチング装置として用いられる場合には、ノズル6からArなどのプラズマガスと、CF4 などのエッチングガスとが導入される。
処理容器1の上部開口は、そこから高周波電磁界を導入しつつ、処理容器1の内部で生成されるプラズマPを外部に漏らさないように、誘電体板7で閉塞されている。なお、処理容器1の側壁上面と誘電体板7の周縁部下面との間にOリングなどのシール部材8を介在させ、処理容器1内の気密性を確保している。
An exhaust port 5 for vacuum exhaust is provided at the bottom of the processing container 1. A gas introduction nozzle 6 for introducing a gas into the processing container 1 is provided on the side wall of the processing container 1. For example, when the plasma apparatus is used as an etching apparatus, a plasma gas such as Ar and an etching gas such as CF 4 are introduced from the nozzle 6.
The upper opening of the processing container 1 is closed with a dielectric plate 7 so as not to leak the plasma P generated inside the processing container 1 while introducing a high-frequency electromagnetic field therefrom. A sealing member 8 such as an O-ring is interposed between the upper surface of the side wall of the processing container 1 and the lower surface of the peripheral portion of the dielectric plate 7 to ensure airtightness in the processing container 1.

誘電体板7の上部には、処理容器1内に高周波電磁界を供給するRLSA20が配置されている。RLSA20は、ラジアル導波路21を形成する互いに平行な2枚の円形導体板22,24と、これら2枚の導体板22,24の外周部を接続してシールドする導体リング23とを有している。ラジアル導波路21の上面となる導体板22の中心部には、後述する電磁界供給装置10の円筒導波管14に接続される開口25が形成され、この開口25からラジアル導波路21に高周波電磁界が導入される。ラジアル導波路21の下面となる導体板24の中心部には、導体板22の開口25に向かって突出するバンプ27が設けられている。バンプ27は略円錐状に形成され、その先端は丸められている。導体板24にはまた、ラジアル導波路21を伝播する高周波電磁界を処理容器1内に供給するスロット26が複数形成されている。これらのスロット26によりスロットアンテナが構成される。   An RLSA 20 that supplies a high-frequency electromagnetic field into the processing container 1 is disposed on the top of the dielectric plate 7. The RLSA 20 includes two circular conductor plates 22 and 24 that are parallel to each other to form a radial waveguide 21 and a conductor ring 23 that connects and shields the outer peripheral portions of the two conductor plates 22 and 24. Yes. An opening 25 connected to a cylindrical waveguide 14 of the electromagnetic field supply device 10 to be described later is formed in the central portion of the conductor plate 22 that becomes the upper surface of the radial waveguide 21, and a high frequency is supplied from the opening 25 to the radial waveguide 21. An electromagnetic field is introduced. A bump 27 protruding toward the opening 25 of the conductor plate 22 is provided at the central portion of the conductor plate 24 that is the lower surface of the radial waveguide 21. The bump 27 is formed in a substantially conical shape, and its tip is rounded. The conductor plate 24 is also formed with a plurality of slots 26 for supplying a high-frequency electromagnetic field propagating through the radial waveguide 21 into the processing container 1. These slots 26 constitute a slot antenna.

RLSA20および誘電体板7の外周は、処理容器1の側壁上に環状に配置されたシールド材9によって覆われ、RLSA20から処理容器1の内部に供給される高周波電磁界が外部に漏れない構造になっている。   The outer peripheries of the RLSA 20 and the dielectric plate 7 are covered with a shield material 9 arranged in an annular shape on the side wall of the processing vessel 1 so that the high frequency electromagnetic field supplied from the RLSA 20 to the inside of the processing vessel 1 does not leak to the outside. It has become.

電磁界供給装置10は、例えば0.9GHz〜十数GHzの範囲内の所定周波数の高周波電磁界を発生させる高周波発振器11と、高周波発振器11に一端が接続された矩形導波管12と、矩形導波管12の他端に接続された矩形/円筒・円偏波変換器13と、変換器13に一端が接続されるとともに他端が上記RLSA20に接続された円筒導波管14と、矩形導波管12または円筒導波管14に設けられ、電源側と負荷側とのインピーダンスの整合をとる負荷整合器16とを有している。   The electromagnetic field supply device 10 includes, for example, a high-frequency oscillator 11 that generates a high-frequency electromagnetic field having a predetermined frequency within a range of 0.9 GHz to several tens of GHz, a rectangular waveguide 12 having one end connected to the high-frequency oscillator 11, a rectangular shape A rectangular / cylindrical / circular polarization converter 13 connected to the other end of the waveguide 12, a cylindrical waveguide 14 having one end connected to the converter 13 and the other end connected to the RLSA 20, and a rectangular shape A load matching unit 16 is provided in the waveguide 12 or the cylindrical waveguide 14 and takes impedance matching between the power supply side and the load side.

図2は、矩形/円筒・円偏波変換器13の構成を示す図である。この図において、(a)は平面図、(b)は(a)におけるIIb−IIb′線方向の断面図、(c)は一部の構成の側面図である。この図に示すように、矩形/円筒・円偏波変換器13は、第1〜第3の矩形導波管部31〜33と、突起34とから構成されている。
第1の矩形導波管部31は、矩形導波管12の他端に一端が接続されるとともに、その一端と対向する他端が電気機能的にショートされている。第1の矩形導波管部31の広い方の側壁(第1の側壁)には、円筒導波管14の一端が接続される開口部14Aが形成され、第1の側壁を挟む狭い方の2つの側壁(第2および第3の側壁)には、第2および第3の矩形導波管部32,33のそれぞれの一端が接続される。
FIG. 2 is a diagram illustrating a configuration of the rectangular / cylindrical / circular polarization converter 13. In this figure, (a) is a plan view, (b) is a sectional view taken along the line IIb-IIb 'in (a), and (c) is a side view of a part of the configuration. As shown in this figure, the rectangular / cylindrical / circular polarization converter 13 includes first to third rectangular waveguide portions 31 to 33 and a protrusion 34.
The first rectangular waveguide section 31 has one end connected to the other end of the rectangular waveguide 12 and the other end facing the one end is electrically short-circuited. An opening 14A to which one end of the cylindrical waveguide 14 is connected is formed in the wider side wall (first side wall) of the first rectangular waveguide part 31, and the narrower side sandwiching the first side wall is formed. One end of each of the second and third rectangular waveguide portions 32 and 33 is connected to the two side walls (second and third side walls).

第2および第3の矩形導波管部32,33は、第1の矩形導波管部31に接続されたときに、同一平面上にT字型をなすように配置される。十字型をなすように配置されてもよい。すなわち、第2および第3の矩形導波管部32,33の一方の軸線が他方の軸線の延長線上にあり、両者の軸線が第1の矩形導波管部31の軸線と直交するように配置される。第2および第3の矩形導波管部32,33のそれぞれの他端は、高周波電磁界を反射できるように、電気機能的にショートされている。また、第2および第3の矩形導波管部32,33の一端から他端までの長さは、互いに異なっている。この「長さ」とは、管内波長に対する長さを意味している。例えば、両者の長さの差を、矩形導波管部32,33の管内波長λgの略1/4の奇数倍((2N+1)×1/4×λg(Nは0以上の整数))とする。 The second and third rectangular waveguide sections 32 and 33 are arranged to form a T shape on the same plane when connected to the first rectangular waveguide section 31. You may arrange | position so that a cross may be made. That is, one axial line of the second and third rectangular waveguide portions 32 and 33 is on an extension line of the other axial line, and both axial lines are orthogonal to the axial line of the first rectangular waveguide portion 31. Be placed. The other ends of the second and third rectangular waveguide portions 32 and 33 are electrically short-circuited so as to reflect a high-frequency electromagnetic field. The lengths from one end to the other end of the second and third rectangular waveguide portions 32 and 33 are different from each other. The “length” means the length with respect to the guide wavelength. For example, the difference in length between the two is set to an odd multiple of about 1/4 of the in-tube wavelength λ g of the rectangular waveguide sections 32 and 33 ((2N + 1) × 1/4 × λ g (N is an integer of 0 or more)). ).

第1の矩形導波管部31の管内には、突起34が配置されている。突起34の底部は、第1の矩形導波管部31の第1の側壁に対向する広い方の側壁(第4の側壁)における開口部14Aの対向位置に取り付けられている。その結果、突起34が第1の矩形導波管部31の第4の側壁の内面から開口部14Aに向かって突出するような構造になる。
突起34は、第1の矩形導波管部の前記第4の側壁に平行な断面が円形で、かつ、その断面積が底部から頂部に向かって小さくなる立体形状をしている。例えば、図2(c)に示すように、中心線に垂直な断面積が大きい底部円柱34Aと断面積が小さい頂部円柱34Bとを組み合わせた形状をしたものが用いられる。また、図3に示すように、頂部が丸められた円錐状のものを用いてもよい。突起34はまた、アルミニウムなどの金属で形成されている。突起34は、少なくとも表面に導電性を有していればよいので、本体を軽い材料で形成しその表面をアルミ箔などの金属膜で覆ったものでもよい。
A protrusion 34 is disposed in the tube of the first rectangular waveguide portion 31. The bottom of the protrusion 34 is attached to a position facing the opening 14 </ b> A on the wider side wall (fourth side wall) facing the first side wall of the first rectangular waveguide part 31. As a result, the protrusion 34 protrudes from the inner surface of the fourth side wall of the first rectangular waveguide portion 31 toward the opening portion 14A.
The protrusion 34 has a three-dimensional shape in which the cross section parallel to the fourth side wall of the first rectangular waveguide portion is circular and the cross sectional area decreases from the bottom toward the top. For example, as shown in FIG. 2C, a combination of a bottom cylinder 34A having a large cross-sectional area perpendicular to the center line and a top cylinder 34B having a small cross-sectional area is used. Moreover, as shown in FIG. 3, you may use the cone shape by which the top part was rounded. The protrusion 34 is also formed of a metal such as aluminum. Since the protrusion 34 only needs to have conductivity on at least the surface, the protrusion 34 may be formed of a light material and covered with a metal film such as an aluminum foil.

周波数2.45GHzに対する矩形/円筒・円偏波変換器13の各部の寸法の一例を以下に示す。
第1〜第3の矩形導波管部31〜33の幅:109.2mm、高さ:54.6mm、
第2の矩形導波管部32の長さ:147.4mm、
第3の矩形導波管部33の長さ:110.4mm。
この例では、第2の矩形導波管部32の長さと第3の矩形導波管部33の長さとの差が、37mmであり、管内波長λgの略1/4となっている。
An example of the dimensions of each part of the rectangular / cylindrical / circular polarization converter 13 for a frequency of 2.45 GHz is shown below.
First to third rectangular waveguide sections 31 to 33 have a width of 109.2 mm, a height of 54.6 mm,
Length of the second rectangular waveguide portion 32: 147.4 mm;
The length of the third rectangular waveguide portion 33: 110.4 mm.
In this example, the difference between the length of the length of the second rectangular waveguide portion 32 and a third rectangular waveguide section 33 is a 37 mm, and has a substantially 1/4 of the guide wavelength lambda g.

図4は、矩形/円筒・円偏波変換器13に導入された高周波電磁界の振る舞いを説明するための図である。
矩形導波管12から第1の矩形導波管部31に導入された直線偏波の高周波電磁界40は、突起34に反射され、円筒導波管14と第2および第3の矩形導波管部32,33とに分岐して導入される。第2および第3の矩形導波管部32,33に導入された高周波電磁界42,43は、それぞれ矩形導波管部32,33を伝播し、ショートされた端面で反射された後、逆方向に伝播し、再び突起34に反射されて、円筒導波管14に導入される。
FIG. 4 is a diagram for explaining the behavior of the high-frequency electromagnetic field introduced into the rectangular / cylindrical / circular polarization converter 13.
The linearly polarized high-frequency electromagnetic field 40 introduced from the rectangular waveguide 12 to the first rectangular waveguide portion 31 is reflected by the protrusion 34, and the cylindrical waveguide 14 and the second and third rectangular waveguides. It branches into the pipe parts 32 and 33 and is introduced. The high-frequency electromagnetic fields 42 and 43 introduced into the second and third rectangular waveguide portions 32 and 33 propagate through the rectangular waveguide portions 32 and 33, respectively, are reflected by the shorted end faces, and then reverse Propagating in the direction, reflected again by the protrusion 34, and introduced into the cylindrical waveguide 14.

第2の矩形導波管部32の長さと第3の矩形導波管部33の長さとの差を、管内波長λgの略1/4とすることにより、第2の矩形導波管部32を伝播する高周波電磁界と第3の矩形導波管部33を伝播する高周波電磁界との行路長差が、管内波長λgの略1/2となる。その結果、両高周波電磁界は開口部14A上で同位相となり、互いにキャンセルされることなく、円筒導波管14に導入される。 The difference between the length of the second rectangular waveguide portion 32 and the length of the third rectangular waveguide portion 33 is set to approximately ¼ of the in-tube wavelength λ g , whereby the second rectangular waveguide portion. path length difference between the high-frequency electromagnetic field propagating a high-frequency electromagnetic field and a third rectangular waveguide 33 to propagate 32 becomes substantially 1/2 of the guide wavelength lambda g. As a result, both high-frequency electromagnetic fields have the same phase on the opening 14A and are introduced into the cylindrical waveguide 14 without being canceled out.

また、第1の矩形導波管部31から円筒導波管14に直接導入された高周波電磁界41の電界E1と、第1の矩形導波管部31から第2または第3の矩形導波管部32,33を経由して円筒導波管14に導入された高周波電磁界42,43の合成電界E2とは、方向が空間的に直交する。よって、上述したように矩形/円筒・円偏波変換器13を構成し、第2および第3の矩形導波管部32,33の長さを調整して、電界E1,E2の位相差を90°にし、両電界の大きさを同一にすることにより、円筒導波管14内で軸比1の円偏波が生成される。
このように、矩形/円筒・円偏波変換器13を用いることにより、矩形導波管の伝送モードTE10から円筒導波管の伝送モードTE11へ変換するとともに、直線偏波を円偏波に変換することができる。
Further, the electric field E1 of the high-frequency electromagnetic field 41 introduced directly from the first rectangular waveguide portion 31 to the cylindrical waveguide 14 and the second or third rectangular waveguide from the first rectangular waveguide portion 31. The direction is spatially orthogonal to the combined electric field E2 of the high-frequency electromagnetic fields 42 and 43 introduced into the cylindrical waveguide 14 via the tube portions 32 and 33. Therefore, as described above, the rectangular / cylindrical / circular polarization converter 13 is configured, and the lengths of the second and third rectangular waveguide portions 32 and 33 are adjusted, so that the phase difference between the electric fields E1 and E2 is changed. By making the angle 90 degrees and making the magnitudes of both electric fields the same, a circularly polarized wave having an axial ratio of 1 is generated in the cylindrical waveguide 14.
Thus, by using a rectangular / cylindrical-circular polarization converter 13, converts the transmission mode TE 10 of rectangular waveguide to the transmission mode TE 11 of the cylindrical waveguide, circular polarization and linear polarization Can be converted to

この矩形/円筒・円偏波変換器13を電磁界供給装置10で用いることにより、高周波発振器11で発生した直線偏波の高周波電磁界を、矩形/円筒・円偏波変換器13で円偏波に変換し、RLSA20に円偏波給電することができる。これにより、RLSA20のラジアル導波路21の電界強度分布が、時間平均で、ラジアル導波路21の軸線に対して対称な分布となる。このため、ラジアル導波路21の下面24に複数形成されたスロット26から処理容器1内に、時間平均で、処理容器1の軸線に対して対称な分布の高周波電磁界が供給される。この高周波電磁界により、処理容器1内に導入されたガスが電離、励起または解離してプラズマPが生成されるので、プラズマPは時間平均で軸対称な分布となる。このプラズマPを用いてサセプタ2上の基板Wを処理することにより、基板Wの全域に均一な処理を施すことができる。   By using this rectangular / cylindrical / circular polarization converter 13 in the electromagnetic field supply device 10, the rectangular / cylindrical / circular polarization converter 13 converts the linearly polarized high-frequency electromagnetic field generated by the high-frequency oscillator 11 into a circular polarization. It can be converted into a wave and circularly polarized power can be fed to the RLSA 20. As a result, the electric field strength distribution of the radial waveguide 21 of the RLSA 20 is a time-averaged distribution that is symmetric with respect to the axis of the radial waveguide 21. Therefore, a high-frequency electromagnetic field having a symmetric distribution with respect to the axis of the processing container 1 is supplied into the processing container 1 from the plurality of slots 26 formed on the lower surface 24 of the radial waveguide 21 in the time average. Due to the high frequency electromagnetic field, the gas introduced into the processing container 1 is ionized, excited or dissociated to generate the plasma P, so that the plasma P has a time-averaged axially symmetric distribution. By processing the substrate W on the susceptor 2 using this plasma P, uniform processing can be performed on the entire area of the substrate W.

また、矩形/円筒・円偏波変換器13は、従来から用いられている矩形/円筒変換器113および円偏波変換器115と同じ機能を、これらよりも小さい構成で実現できる。よって、矩形/円筒・円偏波変換器13を用いることにより、電磁界供給装置10およびそれを用いたプラズマ装置を全体的に従来より小型化することができる。   In addition, the rectangular / cylindrical / circular polarization converter 13 can realize the same functions as those of the rectangular / cylindrical converter 113 and the circular polarization converter 115 that have been used conventionally, with a smaller configuration. Therefore, by using the rectangular / cylindrical / circular polarization converter 13, the electromagnetic field supply apparatus 10 and the plasma apparatus using the same can be reduced in size as compared with the conventional one.

また、矩形/円筒・円偏波変換器13を用いた場合、処理容器1の内部またはRLSA20のラジアル導波路21で反射され、円筒導波管14を逆方向に伝播する反射波が、矩形/円筒・円偏波変換器13と矩形導波管12との接続部で反射されることなく、矩形導波管12に導入されるので、図1に示したように矩形導波管12に負荷整合器16を設けることができる。矩形導波管用の負荷整合器は、汎用品が市販されており、価格的にも安価である。したがって、矩形/円筒・円偏波変換器13を用い、安価な矩形導波管用の負荷整合器を用いることにより、電磁界供給装置10およびそれを用いたプラズマ装置の価格を低減することができる。   When the rectangular / cylindrical / circular polarization converter 13 is used, the reflected wave reflected in the processing container 1 or the radial waveguide 21 of the RLSA 20 and propagating in the reverse direction in the cylindrical waveguide 14 is rectangular / Since it is introduced into the rectangular waveguide 12 without being reflected at the connection between the cylindrical / circular polarization converter 13 and the rectangular waveguide 12, a load is applied to the rectangular waveguide 12 as shown in FIG. A matcher 16 can be provided. General-purpose products are commercially available as load matching units for rectangular waveguides and are inexpensive. Therefore, by using the rectangular / cylindrical / circular polarization converter 13 and using an inexpensive rectangular waveguide load matching device, the price of the electromagnetic field supply device 10 and the plasma device using the same can be reduced. .

矩形/円筒・円偏波変換器13において、第2および第3の矩形導波管部32,33は、図5に示すように、第1の矩形導波管部31に接続された一端に対向する他端が、接触型または非接触型ショートプランジャ(可動短絡器)32A,33Aにより矩形導波管部32,33の軸線方向に自在に摺動するようにしてもよい。また、側壁に軸線方向の長さが伸縮自在なジャバラを有するジャバラ矩形導波管(フレキシブル矩形導波管)で、矩形導波管部32,33を形成してもよい。これにより、矩形導波管部32,33の一端から他端までの長さを微調整することができる。   In the rectangular / cylindrical / circular polarization converter 13, the second and third rectangular waveguide portions 32 and 33 are connected to one end connected to the first rectangular waveguide portion 31 as shown in FIG. 5. You may make it the other end which opposes slide freely to the axial direction of the rectangular waveguide parts 32 and 33 by the contact type or non-contact type short plunger (movable short circuit) 32A and 33A. The rectangular waveguide portions 32 and 33 may be formed of bellows rectangular waveguides (flexible rectangular waveguides) having bellows whose length in the axial direction can be expanded and contracted on the side walls. Thereby, the length from one end to the other end of the rectangular waveguide portions 32 and 33 can be finely adjusted.

さらに、円筒導波管14の途中に、周方向に例えば4〜16個程度の検波器を配置し、円偏波の軸比を計測し、その計測結果を基に上記ショートプランジャ32A,33Aの位置を手動で、または制御装置を用いて自動的に調整するようにしてもよい。これにより、円偏波の軸比を改善することができる。円偏波の軸比は1に近い値が望ましい。ただし、円偏波の軸比が1より大きくなってもよい場合もある。   Further, for example, about 4 to 16 detectors are arranged in the circumferential direction in the middle of the cylindrical waveguide 14, the axial ratio of the circularly polarized waves is measured, and the short plungers 32A and 33A are measured based on the measurement result. The position may be adjusted manually or automatically using a control device. Thereby, the axial ratio of circularly polarized waves can be improved. The axial ratio of circular polarization is preferably a value close to 1. However, the axial ratio of circular polarization may be larger than 1.

なお、第2および第3の矩形導波管部32,33の他端は、一端から導入された高周波電磁界がそこで反射される構造を有していればよい。したがって、他端は必ずしも電気機能的にショートされていなくてもよく、例えば高周波的に開放された状態になっていてもよい。すなわち、他端を介して矩形導波管部32,33の内部と外部とが連通していてもよいし、他端が誘電体で閉塞されていてもよい。
また、矩形/円筒・円偏波変換器13を用いた電磁界供給装置10は、図1に示した高周波プラズマ装置だけでなく、ECRプラズマ装置のマイクロ波供給にも利用できる。
The other ends of the second and third rectangular waveguide portions 32 and 33 may have a structure in which the high-frequency electromagnetic field introduced from one end is reflected there. Therefore, the other end does not necessarily have to be short-circuited in terms of electrical function, and may be in an open state, for example, at a high frequency. That is, the inside and the outside of the rectangular waveguide portions 32 and 33 may communicate with each other through the other end, and the other end may be closed with a dielectric.
Further, the electromagnetic field supply apparatus 10 using the rectangular / cylindrical / circular polarization converter 13 can be used not only for the high-frequency plasma apparatus shown in FIG. 1 but also for the microwave supply of the ECR plasma apparatus.

本発明の一実施の形態に係る高周波プラズマ装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a high-frequency plasma apparatus according to an embodiment of the present invention. 矩形/円筒・円偏波変換器の構成を示す図である。It is a figure which shows the structure of a rectangle / cylinder and a circularly polarized wave converter. 矩形/円筒・円偏波変換器の突起の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the protrusion of a rectangular / cylindrical / circular polarization converter. 矩形/円筒・円偏波変換器に導入された高周波電磁界の振る舞いを説明するための図である。It is a figure for demonstrating the behavior of the high frequency electromagnetic field introduced into the rectangular / cylindrical / circular polarization converter. 矩形/円筒・円偏波変換器の変形例を説明するための図である。It is a figure for demonstrating the modification of a rectangle / cylinder and a circularly polarized wave converter. 従来の電磁界供給装置の一構成例を示す図である。It is a figure which shows one structural example of the conventional electromagnetic field supply apparatus. 従来の電磁界供給装置の他の構成例を示す図である。It is a figure which shows the other structural example of the conventional electromagnetic field supply apparatus.

符号の説明Explanation of symbols

1…処理容器、2…サセプタ、3…マッチングボックス、4…高周波電源、5…排気口、6…ガス導入用ノズル、7…誘電体板、8…シール部材、9…シールド材、10…電磁界供給装置、11…高周波発振器、12…矩形導波管、13…矩形/円筒円偏波変換器、14…円筒導波管、14A…開口部、16…負荷整合器、20…RLSA(ラジアルラインスロットアンテナ)、21…ラジアル導波路、22,24…円形導体板、23…導体リング、25…開口、26…スロット、27…バンプ、31…第1の矩形導波管部、32…第2の矩形導波管部、32A…ショートプランジャ(可動短絡器)、33…第3の矩形導波管部、33A…ショートプランジャ(可動短絡器)、34…突起、34A…底部円柱、34B…頂部円柱、40〜43…高周波電磁界、E1,E2…電界、P…プラズマ、W…基板(被処理体)。
DESCRIPTION OF SYMBOLS 1 ... Processing container, 2 ... Susceptor, 3 ... Matching box, 4 ... High frequency power supply, 5 ... Exhaust port, 6 ... Gas introduction nozzle, 7 ... Dielectric plate, 8 ... Sealing member, 9 ... Shielding material, 10 ... Electromagnetic Field supply device, 11 ... high frequency oscillator, 12 ... rectangular waveguide, 13 ... rectangular / cylindrical circular polarization converter, 14 ... cylindrical waveguide, 14A ... opening, 16 ... load matching device, 20 ... RLSA (radial) (Line slot antenna), 21 ... radial waveguide, 22,24 ... circular conductor plate, 23 ... conductor ring, 25 ... opening, 26 ... slot, 27 ... bump, 31 ... first rectangular waveguide section, 32 ... first 2 rectangular waveguide portions, 32A ... short plunger (movable short circuit), 33 ... third rectangular waveguide portion, 33A ... short plunger (movable short circuit), 34 ... projection, 34A ... bottom cylinder, 34B ... Top cylinder, 40-43 High-frequency electromagnetic field, E1, E2 ... electric field, P ... plasma, W ... board (object to be processed).

Claims (7)

高周波電磁界を発生させる高周波発振器と、
この高周波発振器に一端が接続された矩形導波管と、
この矩形導波管の他端に接続され、矩形導波管の伝送モードから円筒導波管の伝送モードへ変換するとともに、直線偏波を円偏波に変換する変換器と、
この変換器に一端が接続された円筒導波管とを備え、
前記変換器は、
前記矩形導波管の前記他端に一端が接続された第1の矩形導波管部と、
この第1の矩形導波管部の第1の側壁に形成され、前記円筒導波管の前記一端が接続される開口部と、
前記第1の矩形導波管部の前記第1の側壁を挟む第2の側壁および第3の側壁にそれぞれの一端が接続された第2および第3の矩形導波管部と、
前記第1の矩形導波管部の管内に配置され、前記第1の側壁に対向する第4の側壁の内面から前記開口部に向かって突出し、かつ、少なくとも表面に導電性を有する突起とを備えることを特徴とする電磁界供給装置。
A high-frequency oscillator that generates a high-frequency electromagnetic field;
A rectangular waveguide having one end connected to the high-frequency oscillator;
A converter that is connected to the other end of the rectangular waveguide, converts the transmission mode of the rectangular waveguide to the transmission mode of the cylindrical waveguide, and converts linearly polarized waves into circularly polarized waves;
A cylindrical waveguide having one end connected to the transducer;
The converter is
A first rectangular waveguide section having one end connected to the other end of the rectangular waveguide;
An opening formed on a first side wall of the first rectangular waveguide portion and connected to the one end of the cylindrical waveguide;
Second and third rectangular waveguide portions each having one end connected to a second sidewall and a third sidewall sandwiching the first sidewall of the first rectangular waveguide portion;
A protrusion disposed in the tube of the first rectangular waveguide section, protruding from the inner surface of the fourth side wall facing the first side wall toward the opening, and having at least a conductive surface. An electromagnetic field supply device comprising the electromagnetic field supply device.
請求項1に記載された電磁界供給装置において、
前記第1の矩形導波管部は、他端が電気機能的にショートされていることを特徴とする電磁界供給装置。
The electromagnetic field supply apparatus according to claim 1,
The electromagnetic field supply apparatus according to claim 1, wherein the other end of the first rectangular waveguide section is electrically short-circuited.
請求項1または2に記載された電磁界供給装置において、
前記第2および第3の矩形導波管部は、それぞれの他端が電気機能的にショートされていることを特徴とする電磁界供給装置。
In the electromagnetic field supply device according to claim 1 or 2,
The electromagnetic field supply device according to claim 2, wherein each of the second and third rectangular waveguide sections is electrically short-circuited at the other end.
請求項1〜3のいずれか1項に記載された電磁界供給装置において、
前記第2の矩形導波管部の長さと前記第3の矩形導波管部の長さとの差は、管内波長の略1/4の奇数倍であることを特徴とする電磁界供給装置。
In the electromagnetic field supply device according to any one of claims 1 to 3,
The electromagnetic field supply apparatus according to claim 1, wherein a difference between the length of the second rectangular waveguide portion and the length of the third rectangular waveguide portion is an odd multiple of approximately ¼ of an in-tube wavelength.
請求項1〜4のいずれか1項に記載された電磁界供給装置において、
前記突起は、前記第1の矩形導波管部の前記第4の側壁に平行な断面が円形で、かつ、その断面積が、前記第4の側壁に取り付けられる底部から頂部に向かって小さくなる立体形状をしていることを特徴とする電磁界供給装置。
In the electromagnetic field supply device according to any one of claims 1 to 4,
The protrusion has a circular cross section parallel to the fourth side wall of the first rectangular waveguide portion, and the cross-sectional area decreases from the bottom attached to the fourth side wall toward the top. An electromagnetic field supply device having a three-dimensional shape.
請求項1〜5のいずれか1項に記載された電磁界供給装置において、
前記矩形導波管に設けられ、前記矩形導波管の電源側と負荷側とのインピーダンスの整合をとる負荷整合器を備えることを特徴とする電磁界供給装置。
In the electromagnetic field supply device according to any one of claims 1 to 5,
An electromagnetic field supply device, comprising: a load matching unit provided in the rectangular waveguide for matching impedance between a power supply side and a load side of the rectangular waveguide.
処理容器の内部に収容され、被処理体が配置されるサセプタと、このサセプタに対向配置され、前記処理容器の内部に高周波電磁界を供給するスロットアンテナと、このスロットアンテナに高周波電磁界を供給する電磁界供給装置とを備えたプラズマ装置において、
前記電磁界供給装置は、請求項1〜6のいずれか1項に記載された電磁界供給装置であることを特徴とするプラズマ装置。
A susceptor housed inside the processing container and in which the object to be processed is disposed, a slot antenna disposed opposite to the susceptor and supplying a high frequency electromagnetic field to the inside of the processing container, and a high frequency electromagnetic field supplied to the slot antenna In a plasma apparatus comprising an electromagnetic field supply device
The said electromagnetic field supply apparatus is an electromagnetic field supply apparatus described in any one of Claims 1-6, The plasma apparatus characterized by the above-mentioned.
JP2003284393A 2003-07-31 2003-07-31 Electromagnetic field feeder and plasma device Pending JP2005050776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284393A JP2005050776A (en) 2003-07-31 2003-07-31 Electromagnetic field feeder and plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284393A JP2005050776A (en) 2003-07-31 2003-07-31 Electromagnetic field feeder and plasma device

Publications (1)

Publication Number Publication Date
JP2005050776A true JP2005050776A (en) 2005-02-24

Family

ID=34269014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284393A Pending JP2005050776A (en) 2003-07-31 2003-07-31 Electromagnetic field feeder and plasma device

Country Status (1)

Country Link
JP (1) JP2005050776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096091A (en) * 2014-11-17 2016-05-26 株式会社日立ハイテクノロジーズ Plasma processing apparatus
WO2022157883A1 (en) * 2021-01-21 2022-07-28 株式会社日立ハイテク Plasma treatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096091A (en) * 2014-11-17 2016-05-26 株式会社日立ハイテクノロジーズ Plasma processing apparatus
WO2022157883A1 (en) * 2021-01-21 2022-07-28 株式会社日立ハイテク Plasma treatment device
JPWO2022157883A1 (en) * 2021-01-21 2022-07-28
KR20220107148A (en) 2021-01-21 2022-08-02 주식회사 히타치하이테크 plasma processing unit
JP7302094B2 (en) 2021-01-21 2023-07-03 株式会社日立ハイテク Plasma processing equipment
TWI808609B (en) * 2021-01-21 2023-07-11 日商日立全球先端科技股份有限公司 Plasma treatment device
US11948776B2 (en) 2021-01-21 2024-04-02 Hitachi High-Tech Corporation Plasma processing apparatus

Similar Documents

Publication Publication Date Title
US7243610B2 (en) Plasma device and plasma generating method
US5146137A (en) Device for the generation of a plasma
TWI430358B (en) Microwave plasma source and plasma processing device
US6657151B2 (en) Plasma processing device
US20070119376A1 (en) Matching device and plasma processing apparatus
JP5698563B2 (en) Surface wave plasma generating antenna and surface wave plasma processing apparatus
US20080017317A1 (en) Substrate processing apparatus
JP4209612B2 (en) Plasma processing equipment
KR100638716B1 (en) Plasma Processor And Plasma Processing Method
JP2018006718A (en) Microwave plasma processing device
JP3957135B2 (en) Plasma processing equipment
JP2000235900A (en) Plasma treatment device
RU2507628C2 (en) Apparatus for plasma treatment of large areas
US20170103874A1 (en) Plasma processing apparatus
JP2012190899A (en) Plasma processing apparatus
WO2021220551A1 (en) Plasma treatment device
JP2005050776A (en) Electromagnetic field feeder and plasma device
JP2007180034A (en) Plasma treatment device
JP3914071B2 (en) Plasma processing equipment
JP6700128B2 (en) Microwave plasma processing equipment
JP4658309B2 (en) Plasma processing equipment
JP3736054B2 (en) Plasma processing equipment
JP2018006256A (en) Microwave plasma processing device
JP4486068B2 (en) Plasma generation method
Jha et al. Wideband frequency reconfigurable plasma antenna launched by surface wave coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090115

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090522