JP2005048372A - Heat insulating material for foundation adiabatic method - Google Patents

Heat insulating material for foundation adiabatic method Download PDF

Info

Publication number
JP2005048372A
JP2005048372A JP2003203538A JP2003203538A JP2005048372A JP 2005048372 A JP2005048372 A JP 2005048372A JP 2003203538 A JP2003203538 A JP 2003203538A JP 2003203538 A JP2003203538 A JP 2003203538A JP 2005048372 A JP2005048372 A JP 2005048372A
Authority
JP
Japan
Prior art keywords
fiber
heat insulating
insulating material
melting point
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003203538A
Other languages
Japanese (ja)
Other versions
JP4330125B2 (en
Inventor
Noboru Watanabe
昇 綿奈部
Hiroshi Onoe
宏 尾上
Makio Nagata
万亀男 永田
Toyotaka Fukuhara
豊高 福原
Kenichi Yoneda
賢一 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Endeavor House Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Endeavor House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Endeavor House Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003203538A priority Critical patent/JP4330125B2/en
Publication of JP2005048372A publication Critical patent/JP2005048372A/en
Application granted granted Critical
Publication of JP4330125B2 publication Critical patent/JP4330125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating material for a foundation adiabatic method excellent in heat insulation property, having high fitness for a concrete foundation and excellent in workability in the case it is used. <P>SOLUTION: The heat insulating material for the foundation adiabatic method is so constituted that it is formed of a short fiber assembled body, the short fiber assembled body is formed of a matrix fiber and a low melting point fiber containing a component having a melting point lower than the melting point of the matrix fiber, and that the matrix fiber contains a variant structure fiber. When specially polyester as an element is only used, the element is excellent in recycling nature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、断熱性能に優れ、コンクリート基礎にフィット性が良く、使用時の作業性に優れる基礎断熱工法用断熱材に関するものである。
【0002】
【従来の技術】
近年、住宅の断熱化、気密化が進むにつれ、床に断熱材を施工する床断熱工法に代え、基礎の内側や外側に断熱材を施工する基礎断熱工法の採用が活発化されている。
【0003】
このような用途に使用される断熱材としては、一般に発泡ポリスチレン、発泡ポリエチレン、発泡ポリウレタンといった発泡樹脂からなるもので、板状の断熱材を接着剤等でコンクリートに張り付けていた。
【0004】
特許文献1には、基礎断熱材として硬質ウレタンフォーム、ポリイソシアヌレートフォーム、ポリスチレンフォーム、ポリエチレンフォーム、ポリフェノールフォームなどのプラスチックフォームやグラスウール、ロックウール、セルロースファイバなどの無機、有機繊維断熱材を挙げているが、外断熱材として使用しているために、防蟻シートで覆うことが必要であった。
【0005】
また、特許文献2には、断熱材は、一般に発泡ポリスチレン、発泡ポリエチレン、発泡ポリウレタンといった発泡樹脂からなるものとしており、繊維体は防蟻剤の吸収体として用いている。しかし、実際には発泡樹脂の断熱材表面は硬いためコンクリート基礎の凹凸とのフィット性が悪く、断熱材とコンクリート基礎の凹凸面に隙間を発生し、この隙間を通って白蟻が侵入することが多かった。
【0006】
【特許文献1】
特開平11−350502号公報
【特許文献2】
特開2002―275911号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題点を解消し、断熱性能に優れ、コンクリート基礎にフィット性が良く、使用時の作業性に優れる基礎断熱工法用断熱材を提供することにある。
【0008】
【課題を解決するための手段】
本発明の繊維集合体からなる断熱材は、前記課題を解決するために以下のような構成を有する。
【0009】
すなわち、請求項1にかかる発明は、短繊維集合体からなる断熱材であって、該短繊維集合体がマトリックス繊維およびマトリックス繊維の融点よりも低い融点を有する成分を含む低融点繊維からなり、該マトリックス繊維が異型構造繊維を含むことを特徴とする基礎断熱工法用断熱材である。
【0010】
また、請求項2にかかる発明は、短繊維集合体が撥水性繊維を含有する基礎断熱工法用断熱材である。
【0011】
また、請求項3にかかる発明は、短繊維集合体を後加工による撥水性処理を施したことを特徴とする基礎断熱工法用断熱材である。
【0012】
また、請求項4にかかる発明は、短繊維集合体が高吸湿性繊維を含有することを特徴とする基礎断熱工法用断熱材である。
【0013】
また、請求項5にかかる発明は、短繊維集合体と高吸湿性繊維を含有する不織布を積層したことを特徴とする基礎断熱工法用断熱材である。
【0014】
また、請求項6にかかる発明は、短繊維集合体が、該低融点繊維を5〜95wt%含有し、密度が5〜300kg/mで、厚さが5〜200mmである基礎断熱工法用断熱材である。
【0015】
特許文献2には、板状の断熱材の片側側面に繊維体を貼り付けて、防蟻薬液の「薬液吸収体」として、繊維体の使用が示されている。が、本発明は、短繊維集合体がマトリックス繊維およびマトリックス繊維の融点よりも低い融点を有する成分を含む低融点繊維で構成され、これを熱処理によって成型した断熱材を使用することにより、コンクリート基礎に貼り付ける際に、断熱材自身が持つ柔軟性によりコンクリート側面の凹凸に良くフィットして、前記問題点を解決した。更には、マトリックス繊維のうち少なくとも1種類が異型構造、特に中空構造の繊維を使用したものは、断熱性も良く、コンクリートへの型そいも良好となる。
【0016】
【発明の実施の形態】
以下に本発明の基礎断熱工法用断熱材について説明する。
本発明の実施の形態に係わる断熱材を構成する繊維について説明する。利用可能な素材としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレンジカルボキシレート(PEN)、ポリ乳酸(PLA)やこれらの共重合体に代表されるポリエステル、ナイロン6、ナイロン66等のポリアミド、その他ポリオレフィン、アクリル、モダクリル等の合成繊維やレーヨン、および絹、綿、麻、羊毛等の天然繊維が挙げられる。
【0017】
本発明に用いる繊維集合体は、上記繊維を2種類以上含むが、マトリックス繊維として少なくとも1種類は異型構造の繊維であることが必要である。異型構造の繊維を使用することにより、繊維集合体を嵩高性にし、軽量であるだけでなく断熱性にも優れた繊維集合体を得ることが可能である。異型構造の例としては、中空(単孔、多孔)、三角形、多角形、Y型、W型等がある。
【0018】
軽量であるだけでなく断熱性にも優れた繊維集合体を得ることが可能であるのは、中空型構造の繊維の場合、繊維の中空部分に空気が保持されるためである。
通常、繊維集合体を断熱材として使用する場合、繊維集合体中に発生する空気対流によって熱が移動するが、中空型構造の繊維を使用することによりこれを抑える効果がある。また、三角形、多角形、Y型、W型等の場合、繊維表面積が多くなることと、構造体の空間をより細かく分割することにより熱の移動を抑制する効果がある。
【0019】
また、マトリックス繊維は、単独ポリマーからなるものだけでなく、複合繊維も好ましく用いられる。例えば、サイドバイサイドの構造を有し自己捲縮発現性を有する繊維等である。また、サイドバイサイド構造と上記中空型構造を組み合わせた繊維も知られており、このタイプの繊維は本発明の繊維構造体のマトリックス繊維として特に好ましく用いられる。
マトリックス繊維は1種類のみでなく、複数の種類を組み合わせてもよい。
【0020】
また、マトリックス繊維の融点よりも低い融点を有する成分を含む低融点繊維を使用することが必要である。このような、低融点成分(あるいは融着成分ともいう)は、通常数十℃から百数十℃の温度で溶融又は軟化する。低融点成分のみが溶融又は軟化し、他の繊維成分には影響のない温度で繊維構造体を熱処理し、低融点成分により繊維相互間の接触部の一部で実質的に接着させる。これにより、繊維集合体の形態が保持される。
【0021】
このような低融点成分を含む繊維の例としては、イソフタル酸を共重合したPETとホモPETからなる複合繊維、ポリオレフィンとPETからなる複合繊維等が挙げられる。
【0022】
低融点繊維の混率は任意であるが、繊維集合体中の耐熱性や形態保持性の観点から5〜95wt%の利用が好ましい。
【0023】
本発明の好ましい態様として、繊維集合体を構成する繊維が全てポリエステル繊維であるものが挙げられる。素材をポリエステルに統一する事は、特にリサイクル面で優位である。例えば、マトリックス繊維としてPET、PEN等のホモポリマーからなる異型構造繊維(例えば中空繊維)と、ホモポリエステルを1成分とするサイドバイサイド繊維と、共重合ポリエステルを低融点成分とする単独又は複合ポリエステルからなる繊維集合体を例示することが出来る。更に、断熱性能と弾性性能の面から、繊維径の大きいものと小さいものを混合して用いる事は好ましい。
【0024】
本発明の断熱材の密度は、コスト・作業性・自立性を考慮すると5〜300kg/mが好ましい。
【0025】
また、厚みについては、自立性・剛性・作業性を考慮すると5〜200mmが好ましい。より好ましくは、20mm〜150mmである。
【0026】
また、撥水繊維を含有するか、後加工による撥水性処理を施すことにより、本発明の基礎断熱工法用断熱材に、仮に水が浸入した際にも、水切りが良くなり乾燥速度が速くなるため、高い断熱性能が保たれる。本発明に使用する撥水性繊維とは、フッ素やテフロン(登録商標)からなる繊維やこれらの樹脂やシリコンを練り込んだり表面加工を施した繊維があげられる。
【0027】
撥水性繊維の混率は任意であるが、短繊維集合体の水切り性や撥水性能の観点から5〜95wt%の利用が好ましい。成形性や形態保持性の観点からより好ましくは10〜60wt%である。
【0028】
また、断熱材に後加工による撥水処理を施しても良い。撥水処理方法としては、フッ素やシリコンのスプレーや浸漬による付与方法がある。
【0029】
また、高吸湿繊維を含有するか、高吸湿性繊維を含有する不織布を積層することにより、水が浸入してこなくても温度の急激な変動による結露の発生を抑制できるので、高い断熱性能が保たれ、黴が発生しにくくなる。
【0030】
本発明に使用する高吸湿性繊維とは、アクリル酸塩架橋体繊維(商品名「ベルオアシス」カネボウ合繊(株)製)、表面加水分解処理カルボキシル基変性アクリル系繊維等がある。特にアクリル酸塩架橋体繊維(商品名「ベルオアシス」)は、吸放湿速度が速く、相対湿度に対して平衡状態となるので調湿機能が良好である。
【0031】
高吸湿性繊維の混率は任意であるが、結露防止および断熱性能の観点から2〜40wt%の利用が好ましい。性能およびコストの観点から、より好ましくは5〜20wt%である。
【0032】
また、短繊維集合体に、高吸湿性繊維を含有する不織布を積層しても良い。この場合高吸湿性繊維の含有率は、上記の断熱材そのものにブレンドする時よりも若干多くしたほうが良い。結露防止および断熱性能の観点から、不織布中の高吸湿性繊維は5〜70wt%が好ましい。性能およびコストの観点から、より好ましくは10〜40wt%である。
【0033】
高吸湿性繊維を含有する不織布の、高吸湿性繊維以外の組成は適宜選択すれば良い。好ましくは、マトリックス繊維の融点よりも低い融点を有する成分を含む低融点繊維を含有するのが良い。加熱処理により厚みを均一に抑制したり成形加工に都合が良い。
【0034】
更に、この高吸湿性繊維を含有する不織布に、ポリエチレンフィルムを積層(ラミネート)して防湿機能を付与したものとしても良い。
【0035】
上記膜状物の積層方法は、バインダー繊維からなる薄い不織布を積層して加熱したり、バインダー樹脂を噴霧したり、粘着剤を使用して圧着して接着することによりできる。
【0036】
例えば、カード機、クロスレイヤー処理を行い、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して厚さを調節した短繊維集合体からなる断熱材を、出口にて断熱材上面からバインダー繊維からなる薄い不織布を供給し、更にその上から、ポリエチレンフィルムをラミネートした高吸湿性繊維を含有する不織布を積層して加熱して一体化したり、バインダー樹脂を塗布したスパンボンドを積層して加熱圧着しても良い。
【0037】
本発明の断熱材の大きさや密度は、使用目的や必要とされる断熱性に応じて適宜変更が可能である。
【0038】
このような本発明の断熱材は、基礎構造体のコンクリートの室内側に、接着剤や粘着材で貼り付ける。また、コンクリートに取りつけた釘やピンに断熱材をさし込んで固定しても良い。また、断熱材の弾力性を利用して治具等でコンクリートに断熱材を押しつけることによって固定しても良い。
【0039】
【発明の効果】
本発明は、ポリスチレンボードに替わる断熱性能を有し、異型構造繊維を含有することにより弾力性にも優れた性能を有し、コンクリートへの型沿いが良好で設置作業性、作業環境を著しく改善し、特に環境条件が過酷な基礎断熱工法用に撥水性能付与による水切り性を向上し、高吸水性繊維を含有することにより、結露防止や調湿機能を有した基礎断熱工法用断熱材である。
【0040】
ここで評価方法について説明する。
コンクリートフィット性:コンクリートの垂直方向の表面に試験体(30cm×30cm)を沿わせて置き、試験体表面から軽くコンクリートに押しつけて目視により、フィット性を確認する。
【0041】
結露発生有無の評価方法:ガラス製デシケーターの壁面に、試験体(30cm×30cm)を貼り付け、デシケーターの蓋を開けたまま30℃、70%RHの恒温恒湿槽中に5時間静置した後、蓋を閉めて密閉し、同条件でさらに1時間静置する。恒温恒湿槽の温度を20℃に変更し6時間静置する。さらに30℃、10℃で6時間ずつ静置する。この間、密閉容器内の温湿度の変化を測定すると同じに、結露の発生の有無を目視にて確認する。
【0042】
浸漬水水切り性:各試験体(30cm×30cm)を水面下10cmまで浸漬し、10分後に引き上げて縦置きし、1時間毎に重量を測定して重量の変化を比較する。
【0043】
【実施例】
実施例1
カネボウ合繊(株)製PET異型構造(中空)短繊維H588(6.6dtex×51mm)を30%、カネボウ合繊(株)製PET短繊維310(2.2dtex×51mm)を50%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)20%を開繊、混綿し、カード機、クロスレイヤー処理を行った。引続き試料の両面側から140〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して厚さを調節して密度が30kg/m、厚さ100mmの不織布構造体を得た。この不織布構造体を600mm巾に分割して基礎断熱工法用断熱材を得た。
【0044】
実施例2
小島産業(株)製PET異型構造(Y断面)短繊維SP8805(5.5dtex×51mm)を30%、ユニチカファイバー(株)製シリコーン表面加工したPET短繊維38Y(3.3dtex×51mm)を60%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)10%を開繊、混綿し、カード機、クロスレイヤー処理を行った。引続き試料の両面側から140〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して厚さを調節して密度が30kg/m、厚さ100mmの不織布構造体を得た。この不織布構造体を500mm巾に分割して基礎断熱工法用断熱材を得た。
【0045】
実施例3
小島産業(株)製PET異型構造(Y断面)短繊維SP8805(5.5dtex×51mm)を30%、カネボウ合繊(株)製ポリエチレンテレフタレート(PET)短繊維310(2.2dtex×51mm)を50%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)20%を開繊、混綿し、カード機、クロスレイヤー処理を行った。
引続き試料の両面側から140〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して厚さを調節して密度が30kg/m3、厚さ100mmの不織布構造体を得た。この不織布構造体の上下面から撥水加工剤(大京化学(株)製「ダイガード」(商品名))を5重量%owf噴霧し、150℃でキュアしたものを500mm巾に分割して基礎断熱工法用断熱材を得た。
【0046】
実施例4
カネボウ合繊(株)製PET異型構造(中空)短繊維H588(6.6dtex×51mm)を30%、カネボウ合繊(株)製PET短繊維310(2.2dtex×51mm)を50%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)20%を開繊、混綿し、カード機、クロスレイヤー処理を行った。引続き試料の両面側から140〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して
厚さを調節して密度が30kg/m、厚さ50mmの不織布構造体を得た。この不織布構造体に、厚さ100μmのポリエチレンフィルムをラミネートした高吸湿性繊維を含有する不織布(カネボウ合繊(株)製高吸湿性繊維「ベルオアシス」10重量%、カネボウ合繊(株)製PET短繊維310(2.2dtex×51mm)を70重量%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)20重量%、目付50g/m)を積層して加熱して一体化して1000mm巾に分割して防湿、調湿機能を有する基礎断熱工法用断熱材を得た。本発明の調湿効果を図3に示す。
【0047】
比較例1
基礎断熱材として硬質ウレタンフォームを使用し、基礎コンクリートの室外側に断熱材を介して基礎被覆材が取り付けられた断熱基礎構造で、断熱材の室外側の表面を防蟻シートで覆った。
【0048】
【表1】

Figure 2005048372

【図面の簡単な説明】
【図1】本発明の実施形態にかかる基礎断熱工法用断熱材の使用例の断面図である。
【図2】本発明の実施形態にかかる結露防止シートを積層した基礎断熱工法用断熱材の使用例である。
【図3】本発明の実施形態にかかる結露防止シートを積層した基礎断熱工法用断熱材の調湿効果の例を示したものである。
【符号の説明】
1 基礎断熱工法用断熱材
2 基礎コンクリート
3 結露防止シート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating material for a basic heat insulating method that has excellent heat insulating performance, good fit to a concrete foundation, and excellent workability during use.
[0002]
[Prior art]
In recent years, as the heat insulation and airtightness of houses have progressed, the use of a basic heat insulation construction method in which a heat insulation material is constructed on the inside and outside of the foundation has been actively used instead of a floor heat insulation method in which a heat insulation material is constructed on the floor.
[0003]
The heat insulating material used for such applications is generally made of a foamed resin such as foamed polystyrene, foamed polyethylene, and foamed polyurethane, and a plate-like heat insulating material is attached to concrete with an adhesive or the like.
[0004]
Patent Document 1 lists, as a basic heat insulating material, plastic foams such as rigid urethane foam, polyisocyanurate foam, polystyrene foam, polyethylene foam, polyphenol foam, and inorganic and organic fiber heat insulating materials such as glass wool, rock wool, and cellulose fiber. However, since it is used as an outer heat insulating material, it was necessary to cover it with an ant-proof sheet.
[0005]
Further, in Patent Document 2, the heat insulating material is generally made of a foamed resin such as foamed polystyrene, foamed polyethylene, and foamed polyurethane, and the fiber body is used as an absorbent for the termite-proofing agent. However, since the surface of the heat insulating material of the foamed resin is actually hard, the fit with the uneven surface of the concrete foundation is poor, and a gap is generated between the insulating material and the uneven surface of the concrete base, and white ants may enter through this space. There were many.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-350502 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-275911
[Problems to be solved by the invention]
An object of the present invention is to provide a heat insulating material for a basic heat insulating method that solves the above-mentioned problems of the prior art, has excellent heat insulating performance, has good fit to a concrete foundation, and has excellent workability during use.
[0008]
[Means for Solving the Problems]
The heat insulating material comprising the fiber assembly of the present invention has the following configuration in order to solve the above problems.
[0009]
That is, the invention according to claim 1 is a heat insulating material composed of short fiber aggregates, the short fiber aggregates comprising matrix fibers and low melting point fibers containing a component having a melting point lower than the melting point of the matrix fibers, A heat insulating material for a basic heat insulating method, characterized in that the matrix fiber includes atypical structural fiber.
[0010]
The invention according to claim 2 is a heat insulating material for a basic heat insulating method in which the short fiber aggregate contains water-repellent fibers.
[0011]
The invention according to claim 3 is a heat insulating material for a basic heat insulating method, characterized in that a short fiber aggregate is subjected to water repellency treatment by post-processing.
[0012]
The invention according to claim 4 is a heat insulating material for a basic heat insulating method, characterized in that the short fiber aggregate contains highly hygroscopic fibers.
[0013]
Moreover, the invention concerning Claim 5 is the heat insulating material for basic heat insulation methods characterized by laminating | stacking the nonwoven fabric containing a short fiber aggregate and a highly hygroscopic fiber.
[0014]
Further, the invention according to claim 6 is for a basic thermal insulation method in which the short fiber aggregate contains 5 to 95 wt% of the low melting point fiber, the density is 5 to 300 kg / m 3 , and the thickness is 5 to 200 mm. It is a heat insulating material.
[0015]
Patent Document 2 discloses the use of a fibrous body as a “chemical solution absorber” for an ant-proofing chemical solution by attaching a fibrous body to one side surface of a plate-like heat insulating material. However, according to the present invention, the short fiber aggregate is composed of a matrix fiber and a low melting point fiber containing a component having a melting point lower than the melting point of the matrix fiber, and by using a heat insulating material formed by heat treatment, a concrete foundation When affixed to the surface, the heat insulating material itself fits well to the irregularities on the side of the concrete due to its flexibility, thereby solving the above problems. Furthermore, at least one of the matrix fibers using a fiber having an atypical structure, particularly a hollow structure, has good heat insulating properties and good mold shaping to concrete.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The heat insulating material for the basic heat insulating method of the present invention will be described below.
The fiber which comprises the heat insulating material concerning embodiment of this invention is demonstrated. Available materials include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalene dicarboxylate (PEN), polylactic acid (PLA) and polyesters typified by these copolymers, nylon 6, nylon Examples thereof include polyamides such as 66, synthetic fibers such as polyolefin, acrylic, modacrylic, and rayon, and natural fibers such as silk, cotton, hemp, and wool.
[0017]
The fiber assembly used in the present invention contains two or more types of the above-mentioned fibers, but at least one type of matrix fiber needs to be a fiber having an atypical structure. By using fibers having an atypical structure, it is possible to make the fiber assembly bulky and to obtain a fiber assembly that is not only lightweight but also excellent in heat insulation. Examples of atypical structures include hollow (single hole, porous), triangular, polygonal, Y-shaped, W-shaped and the like.
[0018]
The reason why it is possible to obtain a fiber assembly that is not only lightweight but also excellent in heat insulation is that, in the case of a fiber having a hollow structure, air is retained in the hollow portion of the fiber.
Usually, when a fiber assembly is used as a heat insulating material, heat is transferred by air convection generated in the fiber assembly, but there is an effect of suppressing this by using a fiber having a hollow structure. In the case of a triangle, polygon, Y-type, W-type, etc., there is an effect of suppressing heat transfer by increasing the fiber surface area and finely dividing the space of the structure.
[0019]
In addition, the matrix fiber is preferably not only a single polymer but also a composite fiber. For example, a fiber having a side-by-side structure and a self-crimping property. Further, a fiber combining a side-by-side structure and the hollow structure is also known, and this type of fiber is particularly preferably used as a matrix fiber of the fiber structure of the present invention.
A matrix fiber may combine not only one type but a plurality of types.
[0020]
In addition, it is necessary to use a low melting point fiber containing a component having a melting point lower than that of the matrix fiber. Such a low melting point component (also referred to as a fusion component) is usually melted or softened at a temperature of several tens of degrees Celsius to several hundreds of degrees Celsius. Only the low melting point component melts or softens, and the fiber structure is heat-treated at a temperature that does not affect the other fiber components, and the low melting point component substantially adheres at a part of the contact portion between the fibers. Thereby, the form of a fiber assembly is maintained.
[0021]
Examples of the fiber containing such a low melting point component include a composite fiber made of PET and homo-PET copolymerized with isophthalic acid, a composite fiber made of polyolefin and PET, and the like.
[0022]
The mixing ratio of the low-melting fibers is arbitrary, but it is preferably 5 to 95 wt% from the viewpoint of heat resistance and shape retention in the fiber assembly.
[0023]
As a preferred embodiment of the present invention, one in which all the fibers constituting the fiber assembly are polyester fibers can be mentioned. Unifying the material into polyester is particularly advantageous in terms of recycling. For example, it consists of atypical structural fibers (for example, hollow fibers) made of homopolymers such as PET and PEN as matrix fibers, side-by-side fibers with homopolyester as one component, and single or composite polyester with copolyester as a low melting point component. A fiber assembly can be illustrated. Furthermore, it is preferable to use a mixture of a fiber having a large fiber diameter and a fiber having a small fiber diameter in terms of heat insulation performance and elastic performance.
[0024]
The density of the heat insulating material of the present invention is preferably 5 to 300 kg / m 3 in consideration of cost, workability, and self-supporting property.
[0025]
Further, the thickness is preferably 5 to 200 mm in consideration of self-supporting property, rigidity, and workability. More preferably, it is 20 mm-150 mm.
[0026]
In addition, by containing water-repellent fibers or by performing water-repellent treatment by post-processing, even when water infiltrates into the heat insulating material for the basic heat insulating method of the present invention, draining is improved and the drying speed is increased. Therefore, high heat insulation performance is maintained. Examples of the water-repellent fibers used in the present invention include fibers made of fluorine and Teflon (registered trademark), and fibers obtained by kneading or surface-treating these resins and silicon.
[0027]
The mixing ratio of the water-repellent fibers is arbitrary, but the use of 5 to 95 wt% is preferable from the viewpoint of drainability and water-repellent performance of the short fiber aggregate. More preferably, it is 10 to 60 wt% from the viewpoint of moldability and form retention.
[0028]
Moreover, you may perform the water-repellent process by post-processing to a heat insulating material. As a water-repellent treatment method, there is an application method by spraying or dipping of fluorine or silicon.
[0029]
In addition, by laminating non-woven fabrics containing high-hygroscopic fibers or containing high-hygroscopic fibers, it is possible to suppress the occurrence of condensation due to rapid temperature fluctuations even without water intrusion, so high heat insulation performance It is kept and it becomes hard to generate wrinkles.
[0030]
Examples of the highly hygroscopic fibers used in the present invention include acrylate crosslinked fibers (trade name “BEL OASIS” manufactured by Kanebo Synthetic Co., Ltd.), surface hydrolysis-treated carboxyl group-modified acrylic fibers, and the like. In particular, a crosslinked acrylate fiber (trade name “BEL OASIS”) has a high moisture conditioning function because it has a high moisture absorption / release rate and is in an equilibrium state with respect to relative humidity.
[0031]
The mixing ratio of the highly hygroscopic fiber is arbitrary, but it is preferably 2 to 40% by weight from the viewpoints of prevention of condensation and heat insulating performance. From the viewpoint of performance and cost, it is more preferably 5 to 20 wt%.
[0032]
Moreover, you may laminate | stack the nonwoven fabric containing a highly hygroscopic fiber on a short fiber aggregate. In this case, the content of the highly hygroscopic fiber is preferably slightly higher than when blended with the heat insulating material itself. From the viewpoint of prevention of condensation and heat insulating performance, the highly hygroscopic fiber in the nonwoven fabric is preferably 5 to 70 wt%. From the viewpoint of performance and cost, it is more preferably 10 to 40 wt%.
[0033]
What is necessary is just to select suitably a composition other than a highly hygroscopic fiber of the nonwoven fabric containing a highly hygroscopic fiber. Preferably, a low melting point fiber containing a component having a melting point lower than that of the matrix fiber is contained. It is convenient for heat treatment to suppress the thickness uniformly or for molding.
[0034]
Furthermore, it is good also as what gave the moisture-proof function by laminating | stacking (laminate) a polyethylene film to the nonwoven fabric containing this highly hygroscopic fiber.
[0035]
The method for laminating the film can be performed by laminating and heating a thin non-woven fabric made of binder fibers, spraying a binder resin, or pressing and bonding using an adhesive.
[0036]
For example, a card machine, a cross layer process, and a heat insulating material composed of a short fiber aggregate whose thickness is adjusted by compressing a nonwoven fabric with a roller at the heat treatment zone outlet, and from the top surface of the heat insulating material from the binder fiber at the outlet A thin non-woven fabric is supplied, and then a non-woven fabric containing highly hygroscopic fibers laminated with polyethylene film is laminated and heated to integrate, or a spunbond coated with a binder resin is laminated and thermocompression bonded. May be.
[0037]
The magnitude | size and density of the heat insulating material of this invention can be suitably changed according to a use purpose and the heat insulation required.
[0038]
Such a heat insulating material of this invention is affixed with the adhesive agent or an adhesive material on the indoor side of the concrete of a foundation structure. Moreover, you may fix by inserting a heat insulating material in the nail and pin attached to concrete. Moreover, you may fix by pressing a heat insulating material against concrete with a jig | tool etc. using the elasticity of a heat insulating material.
[0039]
【The invention's effect】
The present invention has heat insulation performance replacing polystyrene board, and has excellent elasticity due to the inclusion of atypical structural fibers. Good along the mold to concrete, significantly improving installation workability and working environment. In particular, it is a heat insulation material for the basic heat insulation method that has improved water drainage by imparting water repellency to the basic heat insulation method, which has severe environmental conditions, and has high water absorption fibers to prevent condensation and control humidity. is there.
[0040]
Here, the evaluation method will be described.
Concrete fit property: A specimen (30 cm × 30 cm) is placed along the surface of the concrete in the vertical direction, lightly pressed against the concrete from the specimen surface, and the fit is confirmed visually.
[0041]
Method for evaluating the presence or absence of dew condensation: A test specimen (30 cm × 30 cm) was attached to the wall of a glass desiccator, and left in a constant temperature and humidity chamber at 30 ° C. and 70% RH with the lid of the desiccator opened. Then, the lid is closed and sealed, and left to stand for another hour under the same conditions. Change the temperature of the constant temperature and humidity chamber to 20 ° C. and let stand for 6 hours. Furthermore, it leaves still at 30 degreeC and 10 degreeC for 6 hours. In the meantime, when measuring the change in temperature and humidity in the sealed container, the presence or absence of condensation is visually confirmed.
[0042]
Immersion drainage: Each test specimen (30 cm × 30 cm) is immersed to 10 cm below the water surface, pulled up 10 minutes later, placed vertically, and weighed every hour to compare changes in weight.
[0043]
【Example】
Example 1
Kanebo Synthetic Co., Ltd. PET atypical structure (hollow) short fiber H588 (6.6 dtex × 51 mm) 30%, Kanebo Synthetic Co., Ltd. PET short fiber 310 (2.2 dtex × 51 mm) 50%, heat fusion As a fiber, 20% of copolymerized PET short fiber 4080 (2.2 dtex × 51 mm) manufactured by Unitika Fiber Co., Ltd. was opened, blended, and subjected to a card machine and a cross layer treatment. Subsequently, 140 to 200 ° C. heat treatment is performed from both sides of the sample, and the nonwoven fabric is compressed by a roller at the exit of the heat treatment zone to adjust the thickness to obtain a nonwoven fabric structure having a density of 30 kg / m 3 and a thickness of 100 mm. Obtained. The nonwoven fabric structure was divided into 600 mm widths to obtain a heat insulating material for a basic heat insulating method.
[0044]
Example 2
30% PET atypical structure (Y cross section) short fiber SP8805 (5.5 dtex × 51 mm) manufactured by Kojima Sangyo Co., Ltd., 60 of PET short fiber 38Y (3.3 dtex × 51 mm) processed by silicone manufactured by Unitika Fiber Co., Ltd. %, 10% copolymerized PET short fiber 4080 (2.2 dtex × 51 mm) manufactured by Unitika Fiber Co., Ltd. as a heat-sealing fiber was opened and blended, and a card machine and a cross-layer treatment were performed. Subsequently, 140 to 200 ° C. heat treatment is performed from both sides of the sample, and the nonwoven fabric is compressed by a roller at the exit of the heat treatment zone to adjust the thickness to obtain a nonwoven fabric structure having a density of 30 kg / m 3 and a thickness of 100 mm. Obtained. This nonwoven fabric structure was divided into a width of 500 mm to obtain a heat insulating material for a basic heat insulating method.
[0045]
Example 3
Kojima Sangyo Co., Ltd. PET atypical structure (Y cross section) short fiber SP8805 (5.5 dtex × 51 mm) 30%, Kanebo Synthetic Co., Ltd. polyethylene terephthalate (PET) short fiber 310 (2.2 dtex × 51 mm) 50 %, 20% of copolymerized PET short fibers 4080 (2.2 dtex × 51 mm) manufactured by Unitika Fiber Co., Ltd. were spread and mixed as a heat-sealing fiber, followed by carding and cross-layer treatment.
Subsequently, 140-200 ° C. heat treatment is performed from both sides of the sample, and the nonwoven fabric is compressed by a roller at the heat treatment zone outlet to adjust the thickness to obtain a nonwoven fabric structure having a density of 30 kg / m 3 and a thickness of 100 mm. It was. 5% by weight of water repellent finishing agent (Daigard (trade name) manufactured by Daikyo Chemical Co., Ltd.) was sprayed from the upper and lower surfaces of this nonwoven fabric structure, and cured at 150 ° C. and divided into 500 mm widths. A heat insulating material for a heat insulating method was obtained.
[0046]
Example 4
Kanebo Synthetic Co., Ltd. PET atypical structure (hollow) short fiber H588 (6.6 dtex × 51 mm) 30%, Kanebo Synthetic Co., Ltd. PET short fiber 310 (2.2 dtex × 51 mm) 50%, heat fusion As a fiber, 20% of copolymerized PET short fiber 4080 (2.2 dtex × 51 mm) manufactured by Unitika Fiber Co., Ltd. was opened, blended, and subjected to a card machine and a cross layer treatment. Subsequently, 140 to 200 ° C. heat treatment is performed from both sides of the sample, and the nonwoven fabric is compressed with a roller at the exit of the heat treatment zone to adjust the thickness to obtain a nonwoven fabric structure having a density of 30 kg / m 3 and a thickness of 50 mm. Obtained. Nonwoven fabric containing highly hygroscopic fibers obtained by laminating a polyethylene film having a thickness of 100 μm to this nonwoven fabric structure (10% by weight of highly hygroscopic fiber “BEL OASIS” manufactured by Kanebo Synthetic Co., Ltd., PET short manufactured by Kanebo Synthetic Co., Ltd.) 70% by weight of fiber 310 (2.2 dtex × 51 mm), 20% by weight of copolymerized PET short fiber 4080 (2.2 dtex × 51 mm) manufactured by Unitika Fiber Co., Ltd. as heat-bonding fiber, 50 g / m 2 ) Then, they were heated and integrated to obtain a heat insulating material for a basic heat insulating method having a moisture proofing and humidity control function by dividing into 1000 mm widths. The humidity control effect of the present invention is shown in FIG.
[0047]
Comparative Example 1
Hard urethane foam was used as the basic heat insulating material, and the outer surface of the heat insulating material was covered with an ant-proof sheet in the heat insulating basic structure in which the basic covering material was attached to the outdoor side of the basic concrete via the heat insulating material.
[0048]
[Table 1]
Figure 2005048372

[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a usage example of a heat insulating material for a basic heat insulating method according to an embodiment of the present invention.
FIG. 2 is a usage example of a heat insulating material for a basic heat insulating method in which a condensation prevention sheet according to an embodiment of the present invention is laminated.
FIG. 3 shows an example of the humidity control effect of a heat insulating material for a basic heat insulating method in which a condensation prevention sheet according to an embodiment of the present invention is laminated.
[Explanation of symbols]
1 Insulation for foundation insulation method 2 Foundation concrete 3 Condensation prevention sheet

Claims (6)

短繊維集合体からなる断熱材であって、該短繊維集合体がマトリックス繊維およびマトリックス繊維の融点よりも低い融点を有する成分を含む低融点繊維からなり、該マトリックス繊維が異型構造繊維を含むことを特徴とする基礎断熱工法用断熱材。A heat insulating material comprising a short fiber aggregate, wherein the short fiber aggregate is composed of a matrix fiber and a low melting point fiber including a component having a melting point lower than the melting point of the matrix fiber, and the matrix fiber includes atypical structure fiber. Insulating material for basic thermal insulation method. 前記短繊維集合体が撥水性繊維を含有する請求項1記載の基礎断熱工法用断熱材。The heat insulating material for a basic heat insulating method according to claim 1, wherein the short fiber aggregate contains water-repellent fibers. 前記短繊維集合体を後加工による撥水性処理を施したことを特徴とする請求項1記載の基礎断熱工法用断熱材。The heat insulating material for a basic heat insulating method according to claim 1, wherein the short fiber aggregate is subjected to a water repellency treatment by post-processing. 前記短繊維集合体が高吸湿性繊維を含有することを特徴とする請求項1〜3いずれかに記載の基礎断熱工法用断熱材。The said short fiber aggregate contains a highly hygroscopic fiber, The heat insulating material for foundation heat insulation methods in any one of Claims 1-3 characterized by the above-mentioned. 前記短繊維集合体と高吸湿性繊維を含有する不織布を積層したことを特徴とする請求項1〜3いずれかに記載の基礎断熱工法用断熱材。The heat insulating material for a basic heat insulating method according to any one of claims 1 to 3, wherein the nonwoven fabric containing the short fiber aggregate and the highly hygroscopic fiber is laminated. 前記短繊維集合体が、該低融点繊維を5〜95wt%含有し、密度が5〜300kg/mで、厚さが5〜200mmである請求項1〜5いずれかに記載の基礎断熱工法用断熱材。The short fiber assembly, a low melting fiber containing 5 to 95 wt%, a density of 5~300kg / m 3, foundation insulation method according to any of claims 1 to 5 thickness of 5~200mm Insulation.
JP2003203538A 2003-07-30 2003-07-30 Thermal insulation for basic thermal insulation method Expired - Fee Related JP4330125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203538A JP4330125B2 (en) 2003-07-30 2003-07-30 Thermal insulation for basic thermal insulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203538A JP4330125B2 (en) 2003-07-30 2003-07-30 Thermal insulation for basic thermal insulation method

Publications (2)

Publication Number Publication Date
JP2005048372A true JP2005048372A (en) 2005-02-24
JP4330125B2 JP4330125B2 (en) 2009-09-16

Family

ID=34262853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203538A Expired - Fee Related JP4330125B2 (en) 2003-07-30 2003-07-30 Thermal insulation for basic thermal insulation method

Country Status (1)

Country Link
JP (1) JP4330125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161065B2 (en) 2012-12-17 2018-12-25 Teijin Frontier Co., Ltd. Cloth and textile product
CN114010034A (en) * 2021-10-22 2022-02-08 山西景柏服饰股份有限公司 Multi-fiber quilt and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161065B2 (en) 2012-12-17 2018-12-25 Teijin Frontier Co., Ltd. Cloth and textile product
CN114010034A (en) * 2021-10-22 2022-02-08 山西景柏服饰股份有限公司 Multi-fiber quilt and manufacturing method thereof

Also Published As

Publication number Publication date
JP4330125B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
Islam et al. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles
US20210114333A1 (en) Prepregs, cores, composites and articles including repellent materials
EP1706550B1 (en) Breathable waterproof laminate structure
KR102507982B1 (en) Acoustic prepregs, cores and composite articles and methods of use thereof
CN109618554A (en) Molding and the method for manufacturing the molding
JP2002333092A (en) Fiber and fine particle composite heat-insulating material
WO2010056372A1 (en) Fire and sag resistant acoustical panel
US4386676A (en) Sound-damping mat or drape
JP4477248B2 (en) Insulation
JP4330125B2 (en) Thermal insulation for basic thermal insulation method
JP2002339217A (en) Heat insulating material
CN211817598U (en) Composite material aldehyde-free wallboard
JP2021536396A (en) Composite product with variable basis weight and uniform thickness
JP2010138531A (en) Heat insulation material
RU111557U1 (en) INSULATION MATERIAL
JP2002061792A (en) Heat insulating material
JP2004250863A (en) Interior material
JP2002115159A (en) Heat insulating material and method for producing the same
JP3072080B2 (en) Fiber molded article and method for producing the same
KR20210019364A (en) Methods for the manufacture of soundproof wallpaper recycled industrial waste fibers
JP4398787B2 (en) Insulating material and manufacturing method thereof
JP2003193359A (en) Heat insulating material
KR102228816B1 (en) Sound absorption and Sound proof board
CN108885862A (en) Sound-absorbing material
JP2010077571A (en) Heat-insulating material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees