JP2005047779A - Organic-inorganic hybrid vitreous material, and method of manufacturing the same - Google Patents

Organic-inorganic hybrid vitreous material, and method of manufacturing the same Download PDF

Info

Publication number
JP2005047779A
JP2005047779A JP2003284030A JP2003284030A JP2005047779A JP 2005047779 A JP2005047779 A JP 2005047779A JP 2003284030 A JP2003284030 A JP 2003284030A JP 2003284030 A JP2003284030 A JP 2003284030A JP 2005047779 A JP2005047779 A JP 2005047779A
Authority
JP
Japan
Prior art keywords
organic
inorganic hybrid
glass
melting
vitreous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003284030A
Other languages
Japanese (ja)
Other versions
JP4516727B2 (en
Inventor
Minoru Kuniyoshi
稔 国吉
Toshinobu Yokoo
俊信 横尾
Masahide Takahashi
雅英 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003284030A priority Critical patent/JP4516727B2/en
Publication of JP2005047779A publication Critical patent/JP2005047779A/en
Application granted granted Critical
Publication of JP4516727B2 publication Critical patent/JP4516727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic-inorganic hybrid vitreous material capable of solving the problem that it is difficult to produce a vitreous material satisfying heat resistance, air tight performance and a low melting point characteristic simultaneously and being made transparent and colorless in a conventional manufacturing method, and to provide a method of manufacturing the organic-inorganic hybrid vitreous material. <P>SOLUTION: The organic-inorganic hybrid vitreous material is manufactured through a heating and reaction process, a melting process and an aging process after raw materials, water, alcohol and hydrochloric acid are mixed together. A metal alkoxide is used as a starting raw material and in a mixing process, water 10 times of the quantity of the raw material by molar ratio, hydrochloric acid and alcohol are used. The organic-inorganic hybrid vitreous material is manufactured in this way, has an irregular network structure in the whole or a part of the vitreous material and is transparent and colorless. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機無機ハイブリッドガラス状物質とその製造方法、特に低融点ガラスの性質を有するバルク状物質とその製造方法に関する。   The present invention relates to an organic-inorganic hybrid glassy material and a method for producing the same, and more particularly to a bulky material having properties of a low-melting glass and a method for producing the same.

600℃以下で軟化する材料としては、高分子材料や低融点ガラスなどが有名であり、古くから封着・封止材料、パッシベーションガラス、釉薬など、多くのところで用いられてきた。高分子材料と低融点ガラスでは、その諸物性が異なるので、その使用できる環境に応じて使い分けられてきた。一般的には、耐熱性や気密性能が優先される場合にはガラスが、耐熱性や気密性能以外の特性が優先される分野では高分子材料に代表される有機材料が使われてきた。しかし、昨今の技術進歩に伴い、これまで要求されなかった特性も着目され、その特性をもった材料の開発が期待されている。   As materials that soften at 600 ° C. or lower, polymer materials and low-melting glass are well known, and have been used in many places such as sealing and sealing materials, passivation glasses, glazes, and the like. Polymer materials and low-melting glass have different physical properties, so they have been used properly according to the environment in which they can be used. In general, glass is used when heat resistance and hermetic performance are prioritized, and organic materials represented by polymer materials are used in fields where properties other than heat resistance and hermetic performance are prioritized. However, along with recent technological progress, attention has been paid to properties that have not been required so far, and development of materials having such properties is expected.

このため、耐熱性や気密性能を増能させた高分子材料や、軟化領域を低温化させたガラスいわゆる低融点ガラスの開発が積極的になされている。特に、耐熱性や気密性能が要求される電子材料市場において、PbO-SiO2-B2O3系あるいはPbO-P2O5-SnF2系ガラスなどに代表される低融点ガラスは、電子部品の封着、被覆などの分野で不可欠の材料となっている。また、低融点ガラスは高温溶融ガラスに比べ、その成形加工に要するエネルギーひいてはコストを抑えられるため、省エネルギーに対する昨今の社会的要請とも合致している。さらに、光機能性能の有機物を破壊しない温度で溶融することが可能ならば、光機能性有機物含有(非線形)光学材料のホストとして光スイッチなどの光情報通信デバイスなどへの応用が期待される。このように、一般的な溶融ガラスの特徴である耐熱性や気密性能を有し、かつ高分子材料のように種々の特性を得やすい材料は多くの分野で要望され、特に低融点ガラスにその期待が集まっている。さらに、有機無機ハイブリッドガラスも低融点ガラスの一つとして着目されている。 For this reason, the development of polymer materials with enhanced heat resistance and airtight performance and so-called low-melting glass, which is a glass with a softened region lowered in temperature, has been actively carried out. Especially in the electronic materials market where heat resistance and airtightness are required, low melting point glass such as PbO-SiO 2 -B 2 O 3 or PbO-P 2 O 5 -SnF 2 It is an indispensable material in fields such as sealing and coating. In addition, the low melting point glass can reduce the energy required for the molding process and the cost compared to the high temperature molten glass, and therefore, it meets the recent social demand for energy saving. Furthermore, if it can be melted at a temperature that does not destroy the organic substance having optical functional performance, it can be expected to be applied to an optical information communication device such as an optical switch as a host of the optical functional organic substance-containing (nonlinear) optical material. As described above, materials having heat resistance and airtightness, which are the characteristics of general molten glass, and easily obtaining various properties such as polymer materials are demanded in many fields. Expectations are gathered. Furthermore, organic-inorganic hybrid glass is also attracting attention as one of low-melting glass.

低融点ガラスでは、例えば、Sn−Pb−P−F−O系ガラス(例えば、非特許文献1参照)に代表されるTickガラスが有名であり、100℃前後にガラス転移点を持ち、しかも優れた耐水性を示すので、一部の市場では使われてきている。しかしながら、この低融点ガラスはその主要構成成分に鉛を含むので、昨今の環境保護の流れから代替材料に置き換える必要性がでてきている。さらには、Tickガラスに対する要求特性も大きく変化していると同時に、その要望も多様化している。   As the low melting point glass, for example, Tick glass represented by Sn—Pb—P—F—O-based glass (for example, see Non-Patent Document 1) is famous, has a glass transition point around 100 ° C., and is excellent. It has been used in some markets due to its water resistance. However, since this low melting point glass contains lead as a main component, it is necessary to replace it with an alternative material from the recent trend of environmental protection. Furthermore, the required characteristics for the Tick glass are changing greatly, and at the same time, the demands are diversified.

一般的なガラスの製造方法としては、溶融法と低温合成法が知られている。溶融法はガラス原料を直接加熱することにより溶融してガラス化させる方法で、多くのガラスがこの方法で製造されており、低融点ガラスもこの方法で製造されている。しかし、低融点ガラスの場合、融点を下げるために、鉛やアルカリ、ビスマスなどの含有を必要とするなど、構成できるガラス組成には多くの制限がある。   As a general glass production method, a melting method and a low-temperature synthesis method are known. The melting method is a method in which a glass raw material is directly heated to be melted and vitrified. Many glasses are produced by this method, and low-melting glass is also produced by this method. However, in the case of a low-melting glass, there are many restrictions on the glass composition that can be constructed, such as the need to contain lead, alkali, bismuth, etc. in order to lower the melting point.

一方、非晶質バルクの低温合成法としては、ゾルゲル法、液相反応法及び無水酸塩基反応法が考えられている。ゾルゲル法は金属アルコキシドなどを加水分解−重縮合し、500℃を超える温度(例えば、非特許文献2参照)、通常は700〜1600℃で熱処理することにより、バルク体を得ることができる。しかし、ゾルゲル法で作製したバルク体を実用材料としてみた場合、原料溶液の調製時に導入するアルコールなど有機物の分解・燃焼、又は有機物の分解ガス若しくは水の加熱過程における蒸発放出などのために多孔質となることが多く、耐熱性や気密性能には問題があった。このように、ゾルゲル法によるバルク製造ではまだ多くの問題が残っており、特に低融点ガラスをゾルゲル法で生産することはなされていない。   On the other hand, as a low-temperature synthesis method of amorphous bulk, a sol-gel method, a liquid phase reaction method, and an acid anhydride base reaction method are considered. In the sol-gel method, a bulk body can be obtained by hydrolysis-polycondensation of metal alkoxide and the like, and heat treatment at a temperature exceeding 500 ° C. (for example, see Non-Patent Document 2), usually 700 to 1600 ° C. However, when the bulk material produced by the sol-gel method is viewed as a practical material, it is porous due to the decomposition and combustion of organic substances such as alcohol introduced during the preparation of the raw material solution, or evaporative emission during the heating process of the decomposition gas or water of organic substances. In many cases, there were problems in heat resistance and airtightness. As described above, many problems still remain in bulk production by the sol-gel method, and in particular, low-melting glass has not been produced by the sol-gel method.

さらに、液相反応法は収率が低いために生産性が低いという問題の他、反応系にフッ酸などを用いることや薄膜合成が限度とされていることなどから、現実的にバルク体を合成する手法としては不可能に近い状態にある。   In addition, the liquid phase reaction method has a low yield, resulting in low productivity, the use of hydrofluoric acid in the reaction system and the limited synthesis of thin films. It is almost impossible to synthesize.

無水酸塩基反応法は、近年開発された手法であり、低融点ガラスの一つである有機無機ハイブリッドガラスの製作も可能(例えば、非特許文献3参照)であるが、まだ開発途上であり、すべての低融点ガラスが製作できているわけではない。   The anhydride-base reaction method is a technique developed in recent years, and it is possible to produce an organic-inorganic hybrid glass that is one of low-melting glasses (for example, see Non-Patent Document 3), but it is still under development. Not all low-melting glasses can be made.

したがって、多くの低融点ガラスの製造は、低温合成法ではなく、溶融法により行われてきた。このため、ガラス原料を溶融する都合上からそのガラス組成は制限され、生産できる低融点ガラスとなると、その種類は極めて限定されていた。   Therefore, many low-melting-point glasses have been manufactured not by a low-temperature synthesis method but by a melting method. For this reason, the glass composition is limited for the convenience of melting the glass raw material, and the kind of the low melting glass that can be produced is extremely limited.

なお、現時点では耐熱性や気密性能から、低融点ガラスが材料として有力であり、低融点ガラスに代表される形で要求物性が出されることが多い。しかし、その材料は低融点ガラスにこだわるものではなく、要求物性が合致すれば、ガラス以外の低融点あるいは低軟化点物質で大きな問題はない。   At present, low-melting glass is a promising material due to heat resistance and airtightness, and required physical properties are often obtained in a form typified by low-melting glass. However, the material is not particular about the low melting point glass, and if the required physical properties match, there is no major problem with a low melting point or low softening point substance other than glass.

公知技術をみれば、ゾルゲル法による石英ガラス繊維の製造方法(例えば、特許文献1参照)が、ゾルゲル法による酸化チタン繊維の製造方法(例えば、特許文献2参照)が、さらにはゾルゲル法による半導体ドープマトリックスの製造方法(例えば、特許文献3参照)が知られている。また、溶融法によるP−TeO−ZnF系低融点ガラスが知られている(例えば、特許文献4参照)。
特開昭62−297236号公報 特開昭62−223323号公報 特開平1−183438号公報 特開平7−126035号公報 P.A.Tick, Physics and Chemistry of Glasses, 14, 1140(1989). 神谷寛一、作花済夫、田代憲子,窯業協会誌,618−618,84(1976). 高橋雅英、新居田治樹、横尾俊信,New Glass, 8-14,17(2002).
From a known technique, a method for producing quartz glass fibers by the sol-gel method (for example, see Patent Document 1), a method for producing titanium oxide fibers by the sol-gel method (for example, see Patent Document 2), and further a semiconductor by the sol-gel method. A method for manufacturing a dope matrix (see, for example, Patent Document 3) is known. In addition, a P 2 O 5 —TeO 2 —ZnF 2 -based low-melting glass by a melting method is known (for example, see Patent Document 4).
JP-A-62-297236 JP-A-62-223323 Japanese Patent Laid-Open No. 1-183438 Japanese Patent Laid-Open No. 7-126035 PATick, Physics and Chemistry of Glasses, 14, 1140 (1989). Kamiya, K., Sakuhana, K., Tashiro, K., Ceramic Society, 618-618, 84 (1976). Masahide Takahashi, Haruki Niida, Toshinobu Yokoo, New Glass, 8-14, 17 (2002).

多くの低軟化点材料、特に低融点ガラスの製造は、溶融法により行われてきた。このため、そのガラス組成には多くの制限があり、ガラス原料を溶融する都合上、生産できる低融点ガラスは極めて限られていた。   Many low softening point materials, particularly low melting glass, have been manufactured by melting methods. For this reason, the glass composition has many restrictions, and the low melting glass which can be produced was very limited on account of melting a glass raw material.

一方、低温合成法のゾルゲル法で製造した場合、緻密化のために500℃以上の処理温度が必要となるが、その温度で処理すると低融点ガラスとはならないので、結果として耐熱性や気密性能の良好な低融点ガラスを得ることはできなかった。特に、電子材料分野では、厳しい耐熱性や気密性能と低融点化に対応する低融点ガラスはなかった。さらに、耐熱性や気密性能を満足するガラス以外の低融点材料もこれまで見出されていない。   On the other hand, when manufactured by the low temperature synthesis sol-gel method, a processing temperature of 500 ° C. or higher is required for densification, but if it is processed at that temperature, it does not become a low melting point glass, resulting in heat resistance and airtight performance. No good low melting point glass could be obtained. In particular, in the field of electronic materials, there has been no low-melting glass corresponding to severe heat resistance, airtight performance and low melting point. Furthermore, no low-melting-point material other than glass that satisfies heat resistance and hermetic performance has been found so far.

特開昭62−297236号公報、特開昭62−223323号公報及び特開平1−183438号公報で開示された方法は、高温溶融でのみ対応可能であった材料生産を低温でも可能としたという功績はあるが、低融点ガラスを製造することはできない。また、ゾルゲル処理後には、500℃以上での処理も必要である。一方、特開平7−126035号公報の方法では、転移点が3百数十℃のガラスを作製できることが開示されている。しかし、それ以下の転移点をもつガラスを鉛やビスマスなどを始めとする低融点化材料なしで製作した例はこれまでなかった。   The methods disclosed in JP-A-62-297236, JP-A-62-223323, and JP-A-1-183438 are said to enable material production that can be handled only by high-temperature melting even at low temperatures. Although there is an achievement, low melting glass cannot be manufactured. Further, after sol-gel treatment, treatment at 500 ° C. or higher is also necessary. On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. 7-126035 discloses that a glass having a transition point of 3 and several tens of degrees Celsius can be produced. However, there has been no example of manufacturing a glass having a transition point lower than that without a low melting point material such as lead or bismuth.

すなわち、これまでの低融点ガラスの製造方法では、厳しい耐熱性や気密性能と低融点特性を同時に満たすガラスを作ることはできなかった。また、ガラス以外の材料でもこのような特性を満たすものはなかった。   In other words, conventional low-melting glass manufacturing methods have not been able to produce a glass that satisfies severe heat resistance, airtightness and low-melting characteristics at the same time. In addition, no material other than glass satisfies such characteristics.

さらに、本発明者らは、上記の問題を解決する有機無機ハイブリッドガラス状物質を開発し、特許出願した(特願2003−69327号)。しかし、ゾルゲル法で使われる材料を出発原料として有機無機ハイブリッドガラス状物質を製造することは同様であるが、出発原料の混合工程後にゲル体を経る工程が必須であり、そのゲル化工程では1〜3日程度を必要とするという問題があった。
また、わずかながら黄色の着色が認められるという問題もあった。
Furthermore, the present inventors have developed an organic-inorganic hybrid glassy material that solves the above-mentioned problems and filed a patent application (Japanese Patent Application No. 2003-69327). However, it is the same to produce an organic-inorganic hybrid glassy material using a material used in the sol-gel method as a starting material, but a process of passing through a gel body after the mixing process of the starting material is indispensable. There was a problem of requiring about 3 days.
There was also a problem that a slight yellow coloration was observed.

本発明は、有機無機ハイブリッドガラス状物質を製造するための混合工程において、原料、水、アルコール及び塩酸を一緒に混合した後、加熱反応工程、溶融工程及び熟成工程を経て製造する有機無機ハイブリッドガラス状物質の製造方法である。   The present invention relates to an organic / inorganic hybrid glass produced by mixing a raw material, water, alcohol and hydrochloric acid together in a mixing step for producing an organic / inorganic hybrid glassy material, followed by a heating reaction step, a melting step and an aging step. It is a manufacturing method of a gaseous substance.

また、出発原料は金属アルコキシドを用いる上記の有機無機ハイブリッドガラス状物質の製造方法である。   The starting material is a method for producing the organic-inorganic hybrid glassy material using a metal alkoxide.

また、混合工程は、モル比で原料の10倍以上の水、塩酸、及びアルコールを用いる上記の有機無機ハイブリッドガラス状物質の製造方法である。   The mixing step is a method for producing the organic-inorganic hybrid glassy material using water, hydrochloric acid, and alcohol at a molar ratio of 10 times or more of the raw material.

また、加熱反応工程は40℃以上100℃以下の温度で行われる上記の有機無機ハイブリッドガラス状物質の製造方法である。   Moreover, a heating reaction process is a manufacturing method of said organic-inorganic hybrid glassy substance performed at the temperature of 40 to 100 degreeC.

また、熟成工程では30℃以上400℃以下の温度でかつ5分以上の時間で処理する上記の有機無機ハイブリッドガラス状物質の製造方法である。   Moreover, it is a manufacturing method of said organic-inorganic hybrid glassy substance processed at the temperature of 30 degreeC or more and 400 degrees C or less and time for 5 minutes or more at a ripening process.

さらに、上記の方法で製造された有機無機ハイブリッドガラス状物質である。   Further, it is an organic-inorganic hybrid glassy material produced by the above method.

さらにまた、ガラス状物質の一部又はすべてに不規則網目構造を有する上記の有機無機ハイブリッドガラス状物質である。   Furthermore, the organic-inorganic hybrid glassy material described above having an irregular network structure in part or all of the glassy material.

さらにまた、無色透明である上記の有機無機ハイブリッドガラス状物質である。   Furthermore, the organic-inorganic hybrid glassy material is colorless and transparent.

本発明によれば、これまで製作することが極めて難しいとされてきた低軟化性を有し、かつ耐熱性と気密性能のある無色透明のガラス状物質を得ることができた。   According to the present invention, it was possible to obtain a colorless and transparent glassy substance having low softening properties, which has been considered extremely difficult to produce, and having heat resistance and airtightness.

本発明は、有機無機ハイブリッドガラス状物質を製造するための混合工程において、原料、水、アルコール及び塩酸を一緒に混合した後、溶融工程及び熟成工程を経て製造する有機無機ハイブリッドガラス状物質の製造方法である。 本発明では、ゾルゲル法の原料から得られた生成物の溶融という新しい概念の他、1〜3日間を要していたゲル化工程をなくすことができる、さらに無色透明の有機無機ハイブリッドガラス状物質を製造できるという特徴も備えている。なお、上述の混合工程、溶融工程及び熟成工程を経ることにより、所望の有機無機ハイブリッドガラス状物質を得ることができる。   The present invention relates to a method for producing an organic-inorganic hybrid glassy material produced by mixing a raw material, water, alcohol and hydrochloric acid together in a mixing step for producing an organic-inorganic hybrid glassy material, followed by a melting step and an aging step. Is the method. In the present invention, in addition to the new concept of melting the product obtained from the sol-gel process raw material, the gelation process which required 1 to 3 days can be eliminated. It also has the feature that can be manufactured. In addition, a desired organic-inorganic hybrid glassy substance can be obtained through the above-described mixing step, melting step, and aging step.

出発原料としては金属アルコキシドであるが、金属アセチルアセトナート、金属カルボン酸、金属硝酸塩、金属水酸化物、及び金属ハロゲン化物を始めとしてゾルゲル法で使われる原料であれば製造は可能であるが、品質や生産性などから上記の出発原料が望ましい。   Although it is a metal alkoxide as a starting material, it can be produced if it is a raw material used in the sol-gel method including metal acetylacetonate, metal carboxylic acid, metal nitrate, metal hydroxide, and metal halide, The above starting materials are desirable from the standpoint of quality and productivity.

また、混合工程は、モル比で原料の10倍以上の水、塩酸、及びアルコールを用いる有機無機ハイブリッドガラス状物質の製造方法である。従来のゾルゲル法では、水は加水分解に必要な最小限とされ、多くともモル比で原料の3〜4倍程度とされていた。これは、急速な加水分解及び不安定ゾルの生成を抑制するという基本的な問題に対処するためであり、ゾルゲル法における加水分解の制御は極めて重要であった。すなわち、ゾル中に水分濃度が高い部分が生ずると、粒子の沈殿が起こり、不均質なゲルとなることがある。このため、一部の薄膜状ゾルゲル膜を形成させるときに水を多量に使うことはあるが、一般的な材料、特にバルク状の物質を製作するときには水を多量に使うことはこれまでなかった。さらに、ゲルの乾燥工程を短くするという生産上の理由もあった。   The mixing step is a method for producing an organic-inorganic hybrid glassy material using water, hydrochloric acid, and alcohol at a molar ratio of 10 times or more of the raw material. In the conventional sol-gel method, water is the minimum necessary for hydrolysis, and at most it is about 3 to 4 times the raw material in molar ratio. This is to address the basic problem of suppressing rapid hydrolysis and the formation of unstable sols, and the control of hydrolysis in the sol-gel process was extremely important. That is, if a portion having a high water concentration is generated in the sol, precipitation of particles may occur, resulting in a heterogeneous gel. For this reason, a large amount of water is sometimes used when forming a part of a thin sol-gel film, but a large amount of water has not been used so far when manufacturing a general material, particularly a bulk material. . There was also a production reason for shortening the drying process of the gel.

しかし、この水の量は無色透明化に対して極めて重要であり、モル比で原料の10倍以上の水とする必要がある。好ましくはモル比で原料30倍以上、さらに好ましくは50倍以上である。なお、水分を多く含むことは無色透明化のために重要であり、この点からの上限はない。しかし、水分が多ければ生産時には時間を要するので、生産性からは500倍以下が望ましいが、これに限定されるものではない。   However, the amount of this water is extremely important for making colorless and transparent, and it is necessary to use water at a molar ratio of 10 times or more of the raw material. Preferably it is 30 times or more of raw materials by molar ratio, More preferably, it is 50 times or more. In addition, containing a lot of moisture is important for making colorless and transparent, and there is no upper limit from this point. However, since it takes time at the time of production if there is much moisture, 500 times or less is desirable from the viewpoint of productivity, but it is not limited to this.

混合工程ではモル比で原料の10−4〜1倍の塩酸と1〜10倍のアルコールを用いることが多い。塩酸は触媒として、アルコールは溶媒として重要である。一般的には、10−4〜1倍の塩酸と1〜10倍のアルコールが用いられる。なお、アルコールとしては、メタノール、エタノール、1−プロパノ-ル、2−プロパノール、1−ブタノール、2−メチル−1−プロパノ-ル、2−ブタノール、1.1−ジメチル−1−エタノール等が代表的であるが、これらに限定される訳ではない。 In the mixing step, hydrochloric acid 10 −4 to 1 times that of the raw material and 1 to 10 3 times alcohol are often used in a molar ratio. Hydrochloric acid is important as a catalyst and alcohol is important as a solvent. In general, 10 -4 to 1 times of hydrochloric acid and 1 to 10 3 times the alcohol. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 1.1-dimethyl-1-ethanol and the like. However, it is not limited to these.

溶融工程に入る前、すなわち、出発原料の混合工程と加熱による溶融工程との間に、加熱反応工程を有することが本発明の特徴である。この加熱反応工程は40℃以上100℃以下の温度で行われる。この温度域以外では、その構造中に有機官能基Rを持つ金属ユニット、例えば(RSiO(4−n)/2)(n=1、2、3から選択)で表されるケイ素ユニット、さらに、詳細には、フェニル基の金属ユニット(PhSiO(4−n)/2)、メチル基の金属ユニット(MeSiO(4−n)/2)、エチル基の金属ユニット(EtSiO(4−n)/2)、ブチル基の金属ユニット(BtSiO(4−n)/2)(n=1〜3)などを適切に含有させることができないため、ガラス溶融のできる有機無機ハイブリッドガラス状物質を得ることは極めて難しくなる。なお、この有機官能基Rは、アルキル基やアリール基が代表的である。アルキル基としては、直鎖型でも分岐型でもさらには環状型でも良い。アルキル基としては、メチル基、エチル基、プロピル基(n−、i−)、ブチル基(n−、i−、s−、t−)、ペンチル基、ヘキシル基(炭素数:1〜20)などが挙げられ、特に好ましいのはメチル基とエチル基である。さらに、アリール基としては、フェニル基、ピリジル基、トリル基、キシリル基などがあり、特に好ましいのはフェニル基である。当然ながら、有機官能基は上述のアルキル基やアリール基に限定されるものではない。 It is a feature of the present invention to have a heating reaction step before entering the melting step, that is, between the mixing step of the starting materials and the melting step by heating. This heating reaction step is performed at a temperature of 40 ° C. or higher and 100 ° C. or lower. Outside this temperature range, a metal unit having an organic functional group R in its structure, for example, a silicon unit represented by (R n SiO (4-n) / 2 ) (selected from n = 1, 2, 3), Further, in detail, a phenyl group metal unit (Ph n SiO (4-n) / 2 ), a methyl group metal unit (Me n SiO (4-n) / 2 ), an ethyl group metal unit (Et n SiO (4-n) / 2 ), butyl group metal units (Bt n SiO (4-n) / 2 ) (n = 1 to 3) and the like cannot be appropriately contained, so that the glass can be melted organic Obtaining an inorganic hybrid glassy material becomes extremely difficult. The organic functional group R is typically an alkyl group or an aryl group. The alkyl group may be linear, branched or cyclic. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group (n-, i-), a butyl group (n-, i-, s-, t-), a pentyl group, and a hexyl group (carbon number: 1 to 20). Particularly preferred are a methyl group and an ethyl group. Furthermore, examples of the aryl group include a phenyl group, a pyridyl group, a tolyl group, and a xylyl group, and a phenyl group is particularly preferable. Of course, the organic functional group is not limited to the above-described alkyl group or aryl group.

なお、加熱反応工程の上限温度は沸点が100℃を越すアルコール、例えば118℃の1−ブタノールを用いる場合では100℃以下であるが、沸点が100℃以下のアルコールでは沸点も考慮する方が望ましい。例えば、エタノールを用いる場合は、その沸点の80℃以下とした方が良い結果となる傾向にある。これは、沸点を越えると、アルコールが急激に蒸発するので、アルコール量や状態変化から均一反応が達成されにくくなるためであると考えられる。   The upper limit temperature of the heating reaction step is 100 ° C. or lower when an alcohol having a boiling point exceeding 100 ° C., for example, 1-butanol having a boiling point of 118 ° C. is used. . For example, when ethanol is used, the boiling point tends to be better at 80 ° C. or lower. This is presumably because when the boiling point is exceeded, the alcohol rapidly evaporates, so that it is difficult to achieve a uniform reaction from the amount of alcohol and changes in state.

この熱処理に要する時間は、30分〜5時間程度であるので、ゲル化に1〜3日を要していた従来のゾルゲル法による処理時間とは大きく異なる。なお、この加熱反応工程後、すぐに溶融工程に入っても良いし、一度冷却してから溶融工程に入っても良い。   Since the time required for this heat treatment is about 30 minutes to 5 hours, it is greatly different from the treatment time by the conventional sol-gel method, which takes 1 to 3 days for gelation. In addition, after this heating reaction process, you may enter into a melting process immediately, and may enter into a melting process after cooling once.

加熱による溶融工程は40℃以上500℃以下の温度で処理される。40℃よりも低い温度では、実質上溶融できない。また、500℃を超えると、網目を形成する金属元素と結合する有機基が燃焼するために所望の有機無機ハイブリッドガラス状物質を得られないばかりか、破砕したり、気泡を生じて不透明になったりする。望ましくは、100℃以上300℃以下である。   The melting step by heating is performed at a temperature of 40 ° C. or more and 500 ° C. or less. At temperatures lower than 40 ° C., it cannot be melted substantially. Further, when the temperature exceeds 500 ° C., the organic group bonded to the metal element forming the network burns, so that a desired organic-inorganic hybrid glassy material cannot be obtained, and it becomes opaque due to crushing or generation of bubbles. Or Desirably, it is 100 degreeC or more and 300 degrees C or less.

溶融工程及び熟成工程を経ることにより、安定化した有機無機ハイブリッドガラス状物質を得ることができる。従来から行われてきたゾルゲル法では、前記の溶融工程がないため、当然ながらその後の熟成工程もない。また、ゲル体を経ない本発明において、溶融工程により、有機無機ハイブリッドガラス状物質を得ることはできる。しかし、その後の熟成工程を経ることにより、より安定した有機無機ハイブリッドガラス状物質を得ることができる。   A stable organic-inorganic hybrid glassy material can be obtained through the melting step and the aging step. In the conventional sol-gel method, since there is no melting step, there is naturally no subsequent aging step. Moreover, in this invention which does not go through a gel body, an organic-inorganic hybrid glassy substance can be obtained by a melting process. However, a more stable organic-inorganic hybrid glassy material can be obtained through a subsequent aging step.

なお、熟成工程では30℃以上400℃以下の温度で処理する。30℃よりも低い温度では、実質上熟成できない。400℃を超えると、熱分解することがあり、安定したガラス状物質を得ることは難しくなる。望ましくは、100℃以上300℃以下である。さらに、この熟成温度は、溶融下限温度よりも低い温度ではその効果が極めて小さくなる。一般的には、溶融下限温度〜(溶融下限温度+150℃)程度が望ましい。さらに、熟成に要する時間は5分以上必要である。熟成時間は、その処理量、処理温度及び反応活性な水酸基(−OH)の許容残留量により異なるが、一般的には5分未満では満足できるレベルに到達することは極めて難しい。また、長時間では生産性が下がってくるので、望ましくは10分以上1週間以内である。   In the aging process, the treatment is performed at a temperature of 30 ° C. to 400 ° C. At a temperature lower than 30 ° C., it cannot be aged substantially. When it exceeds 400 ° C., it may be thermally decomposed, and it becomes difficult to obtain a stable glassy substance. Desirably, it is 100 degreeC or more and 300 degrees C or less. Further, the effect of the aging temperature becomes extremely small at a temperature lower than the lower limit melting temperature. Generally, the lower limit of melting temperature to the lower limit of melting temperature (+ 150 ° C.) is desirable. Furthermore, the time required for aging is 5 minutes or more. The aging time varies depending on the processing amount, processing temperature, and allowable residual amount of reactive hydroxyl group (—OH), but generally it is extremely difficult to reach a satisfactory level in less than 5 minutes. Moreover, since productivity falls in a long time, it is 10 minutes or more and less than 1 week desirably.

なお、加熱による溶融工程若しくは熟成工程において、不活性雰囲気下で行ったり、加圧下又は減圧下で行なうことにより時間を短縮できる傾向にある。また、マイクロ波加熱も有効である。   In addition, in the melting step or the aging step by heating, the time tends to be shortened by performing it under an inert atmosphere or under pressure or reduced pressure. Microwave heating is also effective.

また、上記の方法で製造された有機無機ハイブリッドガラス状物質は当然ながら全て対象となるが、その一部又はすべてに不規則網目構造をもつ有機無機ハイブリッドガラス状物質である。   Of course, all the organic-inorganic hybrid glassy materials produced by the above-mentioned method are targets, but some or all of them are organic-inorganic hybrid glassy materials having an irregular network structure.

さらに、有機無機ハイブリッドガラス状物質は、無色透明であるという特徴を有する。一般的に、有機無機ハイブリッドガラス状物質は薄い黄色の着色となる場合が多いが、無色透明の有機無機ハイブリッドガラス状物質を得ることができる。   Furthermore, the organic-inorganic hybrid glassy material is characterized by being colorless and transparent. In general, an organic-inorganic hybrid glassy substance often has a pale yellow coloration, but a colorless and transparent organic-inorganic hybrid glassy substance can be obtained.

以下、実施例に基づき、述べる。
出発原料には金属アルコキシドのフェニルトリエトキシシラン(PhSi(OEt))とエタノールを用いた。混合工程として室温で約10mlのフェニルトリエトキシシランに約45mlの水(フェニルトリエトキシシランに対するモル比は約50)、約30mlのエタノール、触媒である塩酸を約0.01ml加え、加熱反応工程として60℃で3時間撹拌後、150℃に上げ1時間30分溶融した。この状態で、透明なガラス融液層と乳濁した水層に相分離した。ここで、室温まで冷却してガラス融液層を固化し、水層のみを取り除いた後、ガラス状物質を精製水で洗浄することにより、無色透明なガラス状物質を得た。さらに、200℃で5時間熟成した後、室温まで冷却し、透明状物質を得た。
Hereinafter, description will be made based on examples.
The starting materials used were metal alkoxides phenyltriethoxysilane (PhSi (OEt) 3 ) and ethanol. As a mixing step, about 45 ml of water (molar ratio to phenyltriethoxysilane is about 50), about 30 ml of ethanol, and about 0.01 ml of hydrochloric acid as a catalyst are added to about 10 ml of phenyltriethoxysilane at room temperature as a heating reaction step. After stirring at 60 ° C. for 3 hours, the mixture was heated to 150 ° C. and melted for 1 hour 30 minutes. In this state, the phases were separated into a transparent glass melt layer and an emulsion aqueous layer. Here, after cooling to room temperature to solidify the glass melt layer and removing only the aqueous layer, the glassy material was washed with purified water to obtain a colorless and transparent glassy material. Furthermore, after aging at 200 ° C. for 5 hours, the mixture was cooled to room temperature to obtain a transparent substance.

この透明状物質の軟化温度は120℃であり、フェニル基の分解温度の約400℃よりも低い温度であった。また、不規則網目構造を有していたことも考慮すると、今回得た透明状物質は有機無機ハイブリッドガラス構造をとる物質、すなわち有機無機ハイブリッドガラス状物質である。この物質は200℃の雰囲気下で100時間経過後も黄色の着色は認められなかったので、紫外−可視光吸収スペクトルを測定した。図1に示すように、有機無機ハイブリッドガラス状物質の各波長域における吸収率曲線において、大きな着色、特に従来みられた青色領域での吸収はないことが分かる。なお、測定装置としては、日立U−3500形自記分光光度計を用いた。   The softening temperature of this transparent material was 120 ° C., which was lower than the decomposition temperature of the phenyl group of about 400 ° C. Further, considering that it has an irregular network structure, the transparent material obtained this time is a material having an organic-inorganic hybrid glass structure, that is, an organic-inorganic hybrid glassy material. Since this substance was not colored yellow after 100 hours in an atmosphere of 200 ° C., an ultraviolet-visible light absorption spectrum was measured. As shown in FIG. 1, it can be seen that the absorption curve in each wavelength region of the organic-inorganic hybrid glassy material has no significant coloration, particularly absorption in the blue region which has been conventionally observed. In addition, Hitachi U-3500 type self-recording spectrophotometer was used as a measuring apparatus.

この有機無機ハイブリッドガラス状物質の気密性能をみるため、得られた有機無機ハイブリッドガラス状物質の中に有機色素を入れ、1ヶ月後の染み出し状態を観察した。この結果、染み出しは全く認められず、気密性能を満足していることが分かった。また、100℃の雰囲気下に300時間置いたこの有機無機ハイブリッドガラス状物質の転移点を測定したが、その変化は認められず、耐熱性にも問題がないことが確認された。さらに、得られた有機無機ハイブリッドガラス状物質を1ヶ月間、大気中に放置したが、特に変化は認められず、化学的耐久性に優れていることも確認できた。   In order to check the airtight performance of the organic-inorganic hybrid glassy material, an organic dye was put into the obtained organic-inorganic hybrid glassy material, and the bleeding state after one month was observed. As a result, no oozing was observed and it was found that the airtight performance was satisfied. Further, the transition point of this organic-inorganic hybrid glassy substance placed in an atmosphere of 100 ° C. for 300 hours was measured, but no change was observed, and it was confirmed that there was no problem in heat resistance. Furthermore, although the obtained organic-inorganic hybrid glassy substance was left in the atmosphere for one month, no particular change was observed, and it was confirmed that it was excellent in chemical durability.

(比較例1)
出発原料には金属アルコキシドのフェニルトリエトキシシラン(PhSi(OEt))と2−メチル−1−プロパノールを用いた。混合工程として室温で約10mlのフェニルトリエトキシシランに約3mlの水(フェニルトリエトキシシランに対するモル比は約3)、約30mlのエタノール、触媒である塩酸を約0.01ml加え、加熱反応工程として105℃で3時間撹拌後、150℃に上げ1時間30分溶融し、淡黄色のガラス状物質を得た。さらに、160℃で5時間熟成した後、室温まで冷却したところ、ガラス状物質は淡黄色のままであった。
(Comparative Example 1)
The starting materials used were metal alkoxides phenyltriethoxysilane (PhSi (OEt) 3 ) and 2-methyl-1-propanol. As a mixing step, about 3 ml of water (molar ratio to phenyltriethoxysilane is about 3), about 30 ml of ethanol and about 0.01 ml of hydrochloric acid as a catalyst are added to about 10 ml of phenyltriethoxysilane at room temperature, and the heating reaction step is performed. After stirring at 105 ° C. for 3 hours, the temperature was raised to 150 ° C. and melted for 1 hour 30 minutes to obtain a pale yellow glassy substance. Furthermore, after aging at 160 ° C. for 5 hours and cooling to room temperature, the glassy substance remained pale yellow.

この物質の紫外−可視光吸収スペクトルを測定し、破線で示した。図1に示すように、有機無機ハイブリッドガラス状物質の各波長域における吸収率曲線の青色領域において、大きな吸収がみられ、黄色の着色があることが分かる。   The ultraviolet-visible light absorption spectrum of this substance was measured and indicated by a broken line. As shown in FIG. 1, it can be seen that large absorption is observed in the blue region of the absorption curve in each wavelength region of the organic-inorganic hybrid glassy substance, and there is yellow coloring.

本発明の実施例1及び比較例で示した吸収率測定結果。The absorptivity measurement result shown in Example 1 and Comparative Example of the present invention.

Claims (8)

有機無機ハイブリッドガラス状物質を製造するための混合工程において、原料、水、アルコール及び塩酸を一緒に混合した後、加熱反応工程、溶融工程及び熟成工程を経て製造することを特徴とする有機無機ハイブリッドガラス状物質の製造方法。 An organic-inorganic hybrid characterized in that, in a mixing step for manufacturing an organic-inorganic hybrid glassy material, the raw material, water, alcohol and hydrochloric acid are mixed together and then manufactured through a heating reaction step, a melting step and an aging step. A method for producing a glassy substance. 原料は金属アルコキシドを用いることを特徴とする請求項1に記載の有機無機ハイブリッドガラス状物質の製造方法。 The method for producing an organic-inorganic hybrid glassy material according to claim 1, wherein a metal alkoxide is used as a raw material. 混合工程は、モル比で原料の10倍以上の水を用いることを特徴とする請求項1又は請求項2に記載の有機無機ハイブリッドガラス状物質の製造方法。 The method for producing an organic-inorganic hybrid glassy material according to claim 1 or 2, wherein the mixing step uses water at a molar ratio of 10 times or more of the raw material. 加熱反応工程は40℃以上100℃以下の温度で行われることを特徴とする請求項1乃至3のいずれかに記載の有機無機ハイブリッドガラス状物質の製造方法。 The method for producing an organic-inorganic hybrid glassy material according to any one of claims 1 to 3, wherein the heating reaction step is performed at a temperature of 40 ° C to 100 ° C. 熟成工程では30℃以上400℃以下の温度でかつ5分以上の時間で処理することを特徴とする請求項1乃至4のいずれかに記載の有機無機ハイブリッドガラス状物質の製造方法。 The method for producing an organic-inorganic hybrid glassy material according to any one of claims 1 to 4, wherein in the aging step, the treatment is performed at a temperature of 30 ° C or more and 400 ° C or less and for a time of 5 minutes or more. 請求項1乃至5のいずれかに記載の方法で製造された有機無機ハイブリッドガラス状物質。 An organic-inorganic hybrid glassy material produced by the method according to claim 1. ガラス状物質の一部又はすべてに不規則網目構造を有することを特徴とする請求項6に記載の有機無機ハイブリッドガラス状物質。 The organic-inorganic hybrid glassy material according to claim 6, wherein a part or all of the glassy material has an irregular network structure. 無色透明であることを特徴とする請求項6又は請求項7に記載の有機無機ハイブリッドガラス状物質。 The organic-inorganic hybrid glassy material according to claim 6 or 7, which is colorless and transparent.
JP2003284030A 2003-07-31 2003-07-31 Organic-inorganic hybrid glassy material and method for producing the same Expired - Fee Related JP4516727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284030A JP4516727B2 (en) 2003-07-31 2003-07-31 Organic-inorganic hybrid glassy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284030A JP4516727B2 (en) 2003-07-31 2003-07-31 Organic-inorganic hybrid glassy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005047779A true JP2005047779A (en) 2005-02-24
JP4516727B2 JP4516727B2 (en) 2010-08-04

Family

ID=34268754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284030A Expired - Fee Related JP4516727B2 (en) 2003-07-31 2003-07-31 Organic-inorganic hybrid glassy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4516727B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146220A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Organic/inorganic hybrid glassy material and method for producing the same
JP2005146222A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Organic/inorganic hybrid glassy material and method for producing the same
JP2005145795A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Film-like organic and inorganic hybrid glassy material and method for manufacturing the same
JP2005239945A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid vitreous material and method for producing the same
JP2005247614A (en) * 2004-03-03 2005-09-15 Central Glass Co Ltd Organic and inorganic hybrid glassy substance and its manufacturing method
JP2006096833A (en) * 2004-09-29 2006-04-13 Central Glass Co Ltd Organic and inorganic hybrid glass-like substance and method for producing the same
WO2023099017A1 (en) * 2021-12-03 2023-06-08 Wacker Chemie Ag Process for preparing branched organopolysiloxanes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300417A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material
JP2004300416A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material and method for producing the same
JP2005035876A (en) * 2003-06-26 2005-02-10 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300417A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material
JP2004300416A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material and method for producing the same
JP2005035876A (en) * 2003-06-26 2005-02-10 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146220A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Organic/inorganic hybrid glassy material and method for producing the same
JP2005146222A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Organic/inorganic hybrid glassy material and method for producing the same
JP2005145795A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Film-like organic and inorganic hybrid glassy material and method for manufacturing the same
JP4516737B2 (en) * 2003-11-19 2010-08-04 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP4516736B2 (en) * 2003-11-19 2010-08-04 セントラル硝子株式会社 Film-like organic-inorganic hybrid glassy substance and method for producing the same
JP2005239945A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid vitreous material and method for producing the same
JP4516766B2 (en) * 2004-02-27 2010-08-04 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP2005247614A (en) * 2004-03-03 2005-09-15 Central Glass Co Ltd Organic and inorganic hybrid glassy substance and its manufacturing method
JP4516767B2 (en) * 2004-03-03 2010-08-04 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP2006096833A (en) * 2004-09-29 2006-04-13 Central Glass Co Ltd Organic and inorganic hybrid glass-like substance and method for producing the same
WO2023099017A1 (en) * 2021-12-03 2023-06-08 Wacker Chemie Ag Process for preparing branched organopolysiloxanes

Also Published As

Publication number Publication date
JP4516727B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
KR100756398B1 (en) Organic-inorganic hybrid vitreous material and method for producing same
KR100740804B1 (en) Organic-inorganic hybrid vitreous material and method for producing same
US7728095B2 (en) Organic-inorganic hybrid glassy material and its production process
KR100768577B1 (en) Organic-inorganic hybrid vitreous material and method for producing same
JP4079898B2 (en) Organic inorganic hybrid glassy material
JP4516727B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4516736B2 (en) Film-like organic-inorganic hybrid glassy substance and method for producing the same
US7802450B2 (en) Organic-inorganic hybrid glassy materials and their production processes
JP4079897B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP2005097030A (en) Organic inorganic hybrid glass-like material and its manufacturing method
JP2005035876A (en) Organic-inorganic hybrid glassy material and its manufacturing method
JP2005146222A (en) Organic/inorganic hybrid glassy material and method for producing the same
JP4079896B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4516737B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4516766B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4512936B2 (en) Organic inorganic hybrid glassy material
JP4516776B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4375982B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP2005146221A (en) Ultraviolet/visible light transmissive organic-inorganic hybrid glassy material
JP4736388B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP4516728B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
JP2008019395A (en) Organic/inorganic hybrid glassy substance and its manufacturing method
JP2008019396A (en) Organic/inorganic hybrid glassy substance and its manufacturing method
JP4516767B2 (en) Organic-inorganic hybrid glassy material and method for producing the same
KR20090026215A (en) Organic-inorganic hybrid glassy material and its fabrication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees