JP2005047769A - Highly cleaned ceramic - Google Patents

Highly cleaned ceramic Download PDF

Info

Publication number
JP2005047769A
JP2005047769A JP2003283533A JP2003283533A JP2005047769A JP 2005047769 A JP2005047769 A JP 2005047769A JP 2003283533 A JP2003283533 A JP 2003283533A JP 2003283533 A JP2003283533 A JP 2003283533A JP 2005047769 A JP2005047769 A JP 2005047769A
Authority
JP
Japan
Prior art keywords
ceramic
transfer
less
silicon wafer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003283533A
Other languages
Japanese (ja)
Inventor
Hiromichi Otaki
浩通 大滝
Yukio Kishi
幸男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2003283533A priority Critical patent/JP2005047769A/en
Publication of JP2005047769A publication Critical patent/JP2005047769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly cleaned ceramic by which the contamination of a wafer is reduced. <P>SOLUTION: The highly cleaned ceramic has ≥98.5% relative density, ≤3% defective area on a mirror polished surface, ≤1.0 pieces/mm<SP>2</SP>particle transfer rate in the transfer to the silicon wafer, and ≤1×10<SP>12</SP>atom/cm<SP>2</SP>in total of transfer rate of each metal of Cr, Fe, Ni, and Cu. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に半導体製造装置の部品として好適に用いられる清浄度の高いセラミックスに関する。   The present invention relates to a ceramic with high cleanliness that is suitably used mainly as a component of a semiconductor manufacturing apparatus.

半導体製造装置において、高温雰囲気や腐食性ガス雰囲気、真空雰囲気にさらされる部品には、石英材料やシリコンウエハと同じシリコン材料、セラミックス材料が広く用いられている。石英材料やシリコン材料は、強度や剛性、熱膨張等の特性、成形や加工等の部品製作上の制約から、使用される部品が限られているが、セラミックス材料は、軽量、高剛性、高強度、低熱膨張等の特性を有し、しかも部品作製上の制約が少ない(例えば、特許文献1参照)。   In semiconductor manufacturing apparatuses, the same silicon materials and ceramic materials as quartz materials and silicon wafers are widely used for parts exposed to high temperature atmospheres, corrosive gas atmospheres, and vacuum atmospheres. Quartz materials and silicon materials are limited in parts used due to properties such as strength and rigidity, thermal expansion, and restrictions on manufacturing parts such as molding and processing, but ceramic materials are lightweight, highly rigid, and high It has characteristics such as strength and low thermal expansion, and there are few restrictions on manufacturing parts (see, for example, Patent Document 1).

しかしながら、セラミックス部材は粉末冶金的な手法によって製造されるために、その組織はマトリックス中に気孔(ポア)を含んでおり、この気孔に製造工程に由来するダストが残存していることがある。また、現実の使用過程でこの気孔にパーティクルが溜まる場合もある。このため、静電チャックや搬送用部材等のシリコンウエハに直接に接する部品の気孔内に溜まったダスト等がシリコンウエハに転写され、シリコンウエハが汚染されるという問題がある。   However, since the ceramic member is manufactured by a powder metallurgy technique, the structure includes pores in the matrix, and dust derived from the manufacturing process may remain in the pores. Further, particles may accumulate in the pores in the actual use process. For this reason, there is a problem that dust or the like accumulated in the pores of components such as an electrostatic chuck and a conveying member that are in direct contact with the silicon wafer is transferred to the silicon wafer and the silicon wafer is contaminated.

近時、半導体装置の製造に関するデザインルールがファイン化し、許容しうるシリコンウエハの汚れ、例えば、微粒子(パーティクル)のサイズや数、金属コンタミの量が極めて厳しく制限されるようになってきている。このため、セラミックス部品からシリコンウエハへの従来は障害となっていなかった程度のパーティクル等の転写が、新しいデザインルールの下では大きな問題となってきており、より清浄度の高いセラミックス部品が求められている。
特開2000−191370号公報
Recently, the design rules regarding the manufacture of semiconductor devices have been refined, and the allowable contamination of silicon wafers, for example, the size and number of fine particles (particles), and the amount of metal contamination have been extremely severely limited. For this reason, the transfer of particles, etc., which has not been a hindrance from ceramic parts to silicon wafers, has become a major problem under new design rules, and there is a need for ceramic parts with higher cleanliness. ing.
JP 2000-191370 A

本発明はこのような事情に鑑みてなされたものであり、シリコンウエハの汚染を低減する高清浄なセラミックスを提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the highly clean ceramics which reduce the contamination of a silicon wafer.

本発明者は、上記課題解決のため検討を重ねた結果、原料純度および製造条件を厳密に制御して、パーティクル転写および特定金属の転写量を特定の値以下とすることにより、半導体装置に悪影響を与えない高清浄セラミックスが得られることを見い出した。   As a result of repeated studies to solve the above problems, the present inventor has an adverse effect on semiconductor devices by strictly controlling the raw material purity and manufacturing conditions so that the amount of particle transfer and the transfer amount of a specific metal is below a specific value. It has been found that highly clean ceramics can be obtained without giving any resistance.

すなわち、本発明によれば、相対密度が98.5%以上で鏡面研磨面の欠陥の面積が3%以下であり、鏡面研磨処理し洗浄処理した後のシリコンウエハ転写によるパーティクル転写量が1.0個/mm以下、かつ、Cr、Fe、Ni、Cuの金属転写量が合計で1×1012atoms/cm以下であることを特徴とする高清浄セラミックス、が提供される。 That is, according to the present invention, the relative density is 98.5% or more, the area of defects on the mirror-polished surface is 3% or less, and the amount of transferred particles by silicon wafer transfer after mirror-polishing and cleaning is 1. There is provided a highly clean ceramic characterized in that the number of metal transfer of Cr / Fe / Ni / Cu is 1 × 10 12 atoms / cm 2 or less in total of 0 pieces / mm 2 or less.

本発明の高清浄セラミックスは気孔等の欠陥が極めて少ないために、このような欠陥に起因するシリコンウエハの汚染が抑制される。これにより、半導体装置の品質、信頼性が高められる。   Since the highly clean ceramic of the present invention has very few defects such as pores, contamination of the silicon wafer due to such defects is suppressed. This improves the quality and reliability of the semiconductor device.

以下、本発明について詳細に説明する。
半導体製造装置に用いられているセラミックス部品とシリコンウエハが接触することによってシリコンウエハが汚染される、所謂、ウエハ転写は、有機質および無機質のパーティクル等の微粒子が付着するパーティクル転写と、金属不純物が付着しまたは金属成分が含浸する金属転写とに大別することができる。
Hereinafter, the present invention will be described in detail.
Silicon wafers are contaminated by contact between ceramic parts used in semiconductor manufacturing equipment and silicon wafers, so-called wafer transfer is the transfer of particles to which fine particles such as organic and inorganic particles adhere, and the adhesion of metal impurities. Or metal transfer impregnated with metal components.

本発明に係る高清浄セラミックスを用いた部品は、高純度かつ高緻密質であり、鏡面研磨処理を行った場合のその鏡面研磨面の欠陥面積は3%以下である。また、そのセラミックス部品は、その製造工程における最終処理である洗浄処理の後にウエハ転写を行った場合に、パーティクル転写量が1.0個/mm以下に抑えられ、かつ、Cr、Fe、Ni、Cuの金属転写量が合計で1×1012atoms/cm以下に抑えられる。セラミックス部品がこのような高い清浄性を有することによって、ウエハ転写によるシリコンウエハへの汚染が極めて低いレベルに抑えられる。 The parts using the highly clean ceramics according to the present invention have high purity and high density, and when the mirror polishing process is performed, the defect area of the mirror polishing surface is 3% or less. In addition, when the wafer transfer is performed after the cleaning process, which is the final process in the manufacturing process, the ceramic component has a particle transfer amount of 1.0 piece / mm 2 or less, and Cr, Fe, Ni , Cu metal transfer amount can be suppressed to 1 × 10 12 atoms / cm 2 or less in total. Since the ceramic parts have such high cleanliness, contamination of the silicon wafer due to wafer transfer can be suppressed to an extremely low level.

パーティクル転写を低く抑えるためには、セラミックス部品におけるシリコンウエハとの接触面の気孔面積および気孔容積を小さくすること、つまりセラミックス部品の組織を緻密化することが特に有効である。このため、本発明に係るセラミックス部品の相対密度は98.5%以上とする。後述する実施例に示すように、相対密度が98.5%未満の場合には、パーティクル転写および金属転写のいずれも好ましいレベルに達しない。   In order to keep particle transfer low, it is particularly effective to reduce the pore area and pore volume of the contact surface of the ceramic part with the silicon wafer, that is, to make the structure of the ceramic part dense. For this reason, the relative density of the ceramic component according to the present invention is set to 98.5% or more. As shown in the examples described later, when the relative density is less than 98.5%, neither particle transfer nor metal transfer reaches a desirable level.

金属転写を低く抑えるためには、セラミックス部品の製造に高純度原料を用いることが好ましく、加えて、セラミックス部品の組織を緻密化することが有効である。具体的には、本発明に係るセラミックス部品の作製には、99.9%(3N)以上の純度を有する高純度粉末が用いられ、成形条件や焼成条件は原料粉末の特性に合わせて適切に定められる。なお、焼成の際に用いる治具等に高純度のものを用いることにより、焼成処理時等における焼成試料への不純物の混入等が防止され、これによって金属転写をさらに低く抑えることができる。   In order to keep the metal transfer low, it is preferable to use a high-purity raw material for the production of ceramic parts. In addition, it is effective to make the structure of the ceramic parts dense. Specifically, a high-purity powder having a purity of 99.9% (3N) or higher is used for the production of ceramic parts according to the present invention, and the molding conditions and firing conditions are appropriately set according to the characteristics of the raw material powder. Determined. In addition, by using a high-purity jig or the like used for firing, mixing of impurities into the fired sample during the firing process or the like can be prevented, and metal transfer can be further reduced.

高い緻密性を有するセラミックス(焼結体)を得るためには、表面活性の高い原料粉末を用いて均一密度の成形体を作製し、粒成長を抑制した焼結処理を行うことが重要である。これは、粒成長が促進されると、その後の鏡面研磨加工において粒子脱落(脱粒)の発生頻度が高まるため、気孔面積/容積が大きくなってしまうからである。したがって、焼成処理による組織の緻密化によって気孔を減らし、また、粒成長を抑制することによって研磨処理時における脱粒欠陥の発生を防止することによって、セラミックス部品を鏡面研磨処理した場合のその鏡面研磨面の欠陥面積を3%以下とすることができる。   In order to obtain ceramics (sintered body) having high density, it is important to produce a compact with a uniform density using raw material powder with high surface activity and to perform a sintering process with suppressed grain growth. . This is because when the grain growth is promoted, the frequency of particle dropout (droplet removal) increases in the subsequent mirror polishing, and the pore area / volume increases. Therefore, by reducing the pores by densification of the structure by firing treatment, and by preventing grain growth defects by suppressing grain growth, the mirror polished surface when the ceramic component is mirror polished The defect area can be 3% or less.

なお、従来、セラミックス部品の表面の気孔を減じるために、CVDやPVD等による表面成膜処理、CVIによる気孔埋め込み処理等が行われているが、これらの方法によって形成した膜等は使用環境で剥がれ易く、しかも処理コストが高いためにセラミック部品の製品コストが著しく高騰してしまうという問題がある。   Conventionally, in order to reduce pores on the surface of ceramic parts, surface film-forming treatment by CVD, PVD, etc., pore-filling treatment by CVI, etc. have been performed. There is a problem that the product cost of the ceramic parts is remarkably increased because it is easily peeled off and the processing cost is high.

セラミックス部品の作製工程の1つである焼結体の加工処理は、通常のダイヤモンド砥石を用いた切削加工や研削加工、そのセラミックス材料に適した研磨材による公知の研磨処理によって行えばよい。また、このような加工処理後の試料の洗浄方法にも特に限定はないが、例えば、加工処理時に用いた試料固定用のワックスを除去し、また研削屑を除去した後に、酸/アルカリを用いて洗浄し、次いで半導体装置の製造工程におけるシリコンウエハの洗浄処理で使用されているRCA薬液または水素水添加超純水やオゾン水添加超純水など機能水で洗浄することが好ましい。このようなRCA薬液や各種機能水による洗浄処理条件は、一般的にシリコンウエハに用いられている条件と同等でよい。   Processing of the sintered body, which is one of the manufacturing steps of the ceramic component, may be performed by a known polishing process using an abrasive suitable for the ceramic material, or a cutting process or a grinding process using a normal diamond grindstone. Also, there is no particular limitation on the method of cleaning the sample after such processing, but for example, after removing the wax for fixing the sample used during the processing and removing grinding waste, acid / alkali is used. Next, it is preferable to wash with functional water such as RCA chemical solution, hydrogen water-added ultrapure water or ozone water-added ultrapure water used in the silicon wafer cleaning process in the semiconductor device manufacturing process. Cleaning conditions with such RCA chemicals and various functional waters may be the same as those generally used for silicon wafers.

近時の高密度化、高集積化がより進展した新しいデザインルールの下では、半導体製造装置に用いられるセラミックス部品には、以前より厳しい転写条件が求められているために、発明者は、このような洗浄処理後にウエハ転写を行った場合に、パーティクル転写量が1.0個/mm以下に抑えられ、かつ、Cr、Fe、Ni、Cuの金属転写量が合計で1×1012atoms/cm以下に抑えられているというウエハ転写特性を有している必要があると考えた。上述した製造プロセスを経ることにより、このような条件をクリアするセラミックス部品を得ることができる。勿論、このようなセラミックス部品は、現行の半導体製造装置にも十分に使用できることはいうまでもない。 Under the new design rules that have recently advanced higher density and higher integration, ceramic parts used in semiconductor manufacturing equipment are required to have stricter transfer conditions than before. When wafer transfer is performed after such a cleaning process, the particle transfer amount is suppressed to 1.0 particles / mm 2 or less, and the total metal transfer amounts of Cr, Fe, Ni, and Cu are 1 × 10 12 atoms. It was considered necessary to have the wafer transfer characteristic of being suppressed to / cm 2 or less. Through the manufacturing process described above, a ceramic part that satisfies such conditions can be obtained. Of course, it is needless to say that such ceramic parts can be sufficiently used in current semiconductor manufacturing apparatuses.

パーティクル転写量の評価は、例えば、鏡面研磨したセラミックス部品をシリコンウエハに真空吸着転写して、そのウエハ転写面のパーティクルをパーティクルカウンターで測定することにより求められる。また、金属転写量は全反射蛍光X線装置(TREX)を用いて行うことが好ましい。   The evaluation of the amount of transferred particles is obtained, for example, by vacuum-transferring a mirror-polished ceramic component onto a silicon wafer and measuring the particles on the wafer transfer surface with a particle counter. The metal transfer amount is preferably performed using a total reflection fluorescent X-ray apparatus (TREX).

次に本発明の実施例について説明する。純度が99.9%以上の表1に示す各種のセラミックス材料の原料粉末を準備する。これら原料粉末をそれぞれ、φ50金型で一軸プレスにより予備成形し、さらにその後、冷間静水圧成形(CIP)し、本成形体を作製した。この本成形体を、酸化物セラミックスの場合には酸化雰囲気で、炭化珪素(SiC)の場合はアルゴン(Ar)雰囲気で、窒化珪素(Si)の場合は窒素(N)雰囲気で、それぞれ所定温度において2時間焼成し、セラミックス焼結体を得た。 Next, examples of the present invention will be described. Raw material powders of various ceramic materials shown in Table 1 having a purity of 99.9% or more are prepared. Each of these raw material powders was preformed by a uniaxial press with a φ50 mold, and thereafter, cold isostatic pressing (CIP) was performed to produce the molded body. The compact is formed in an oxidizing atmosphere in the case of oxide ceramics, in an argon (Ar) atmosphere in the case of silicon carbide (SiC), and in a nitrogen (N 2 ) atmosphere in the case of silicon nitride (Si 3 N 4 ). Each was fired at a predetermined temperature for 2 hours to obtain a ceramic sintered body.

得られたセラミックス焼結体については、アルキメデス法により嵩密度を測定し、相対密度を計算により求めた。次いで、セラミックス焼結体をダイヤモンド砥石を用いて平面研削加工し、さらにダイヤモンド砥粒を用いて研削加工面の1面を表面粗度がRa10nmとなるように鏡面加工した。このような研削研磨加工は、処理後の試験片の大きさがφ33以上となるように行い、研磨加工面を電子顕微鏡観察して、縦横200μm角の視野における欠陥部(表面に露出している空孔等)の面積を求めた。   About the obtained ceramic sintered compact, the bulk density was measured by the Archimedes method, and the relative density was calculated | required by calculation. Next, the ceramic sintered body was subjected to surface grinding using a diamond grindstone, and further, one surface of the ground surface was mirror-finished using diamond abrasive grains so that the surface roughness was Ra 10 nm. Such grinding and polishing processing is performed so that the size of the test piece after processing becomes φ33 or more, and the polished surface is observed with an electron microscope, and a defect portion (exposed to the surface) in a vertical and horizontal 200 μm field of view is observed. The area of vacancies, etc.) was determined.

次に、研磨処理が終了した試料に酸・アルカリ処理、純水リンス処理等の所定の洗浄処理を行い、試験片を得た。クリーンルーム内において、この試験片とシリコンウエハとを真空吸着法により密着させて、パーティクルおよび金属不純物を吸着転写させ、その後に試験片をシリコンウエハから離し、シリコンウエハの吸着面上のパーティクルをパーティクルカウンターで測定し、金属転写量をTREXで測定した。ここで、パーティクル転写量と金属転写量の評価は吸着用穴内部のφ20領域のパーティクル数を測定し、この測定値を吸着面積で規格化して、1.0個/mm以下を合格(つまり、半導体製造装置に用いることができる)とした。金属転写量は、同じ領域について、Cr、Fe、Ni、Cuの金属転写量が合計で1×1012atoms/cm以下を合格とした。 Next, a predetermined cleaning process such as an acid / alkali process or a pure water rinse process was performed on the sample after the polishing process to obtain a test piece. In a clean room, the test piece and the silicon wafer are brought into close contact with each other by a vacuum adsorption method to adsorb and transfer particles and metal impurities. Thereafter, the test piece is separated from the silicon wafer, and particles on the adsorption surface of the silicon wafer are collected by a particle counter. The amount of metal transferred was measured with TREX. Here, the particle transfer amount and the metal transfer amount are evaluated by measuring the number of particles in the φ20 region inside the suction hole, and normalizing this measured value by the suction area, and passing 1.0 piece / mm 2 or less (that is, Can be used in semiconductor manufacturing equipment). For the same region, the total amount of metal transfer of Cr, Fe, Ni, and Cu was 1 × 10 12 atoms / cm 2 or less for the same region.

このような評価結果は表1に示されている。実施例1〜5に示されるように、パーティクル転写量および金属転写量を基準値以下に抑えるためには、相対密度が98.5%以上であり、欠陥面積が3%以下である必要性のあることがわかる。これに対して、相対密度が98.5%未満であり、欠陥面積が3%超の場合には、パーティクル転写量および金属転写量を基準値以下とすることはできなかった。   Such evaluation results are shown in Table 1. As shown in Examples 1 to 5, in order to keep the particle transfer amount and the metal transfer amount below the reference value, the relative density is 98.5% or more and the defect area is 3% or less. I know that there is. On the other hand, when the relative density was less than 98.5% and the defect area was more than 3%, the particle transfer amount and the metal transfer amount could not be made below the reference value.

Figure 2005047769
Figure 2005047769

上述の通り、本発明の高清浄セラミックスは半導体製造装置用の部品として好適に用いることができる。特に、耐熱性、高い機械的強度、耐食性が要求されるプラズマ処理室用の部品として、シリコンウエハを保持する部材として、好適に用いられる。なお、本発明の高清浄セラミックスは、半導体製造装置に限らず、クリーンルームで製造されるような被処理体に清浄性が求められる各種の処理装置用の部品として用いることができる。   As described above, the highly clean ceramic of the present invention can be suitably used as a component for a semiconductor manufacturing apparatus. In particular, it is suitably used as a member for holding a silicon wafer as a part for a plasma processing chamber that requires heat resistance, high mechanical strength, and corrosion resistance. The highly clean ceramics of the present invention can be used not only as a semiconductor manufacturing apparatus but also as a part for various processing apparatuses that require cleanliness for a target object manufactured in a clean room.

Claims (1)

相対密度が98.5%以上で鏡面研磨面の欠陥の面積が3%以下であり、鏡面研磨処理し洗浄処理した後のシリコンウエハ転写によるパーティクル転写量が1.0個/mm以下、かつ、Cr、Fe、Ni、Cuの金属転写量が合計で1×1012atoms/cm以下であることを特徴とする高清浄セラミックス。 The relative density is 98.5% or more, the area of the defect on the mirror-polished surface is 3% or less, and the amount of transferred particles by silicon wafer transfer after the mirror-polishing treatment and the washing treatment is 1.0 piece / mm 2 or less, and , Cr, Fe, Ni, Cu metal transfer amount is 1 × 10 12 atoms / cm 2 or less in total.
JP2003283533A 2003-07-31 2003-07-31 Highly cleaned ceramic Pending JP2005047769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283533A JP2005047769A (en) 2003-07-31 2003-07-31 Highly cleaned ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283533A JP2005047769A (en) 2003-07-31 2003-07-31 Highly cleaned ceramic

Publications (1)

Publication Number Publication Date
JP2005047769A true JP2005047769A (en) 2005-02-24

Family

ID=34268401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283533A Pending JP2005047769A (en) 2003-07-31 2003-07-31 Highly cleaned ceramic

Country Status (1)

Country Link
JP (1) JP2005047769A (en)

Similar Documents

Publication Publication Date Title
CN100545304C (en) The ceramic member that is used for semiconductor processing equipment
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
TW202311202A (en) Y2o3-zro2erosion resistant material for chamber components in plasma environments
JP5730917B2 (en) Method for producing high resistivity silicon carbide
EP1184355B1 (en) METHOD FOR MANUFACTURING Si-SiC MEMBER FOR SEMICONDUCTOR HEAT TREATMENT
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP4903322B2 (en) Yttrium oxide material
JP2005047769A (en) Highly cleaned ceramic
JP3769416B2 (en) Components for plasma processing equipment
JPH09328376A (en) Production of ceramic member for semiconductor production unit
JP4421251B2 (en) DLC film and vacuum chuck provided with the same
JP2008007350A (en) Yttria ceramic sintered compact
JP3784180B2 (en) Corrosion resistant material
JP2007331960A (en) Yttria ceramic member for plasma treating apparatus and its manufacturing method
JP2002293630A (en) Plasma resistant member and method of producing the same
JP4651145B2 (en) Corrosion resistant ceramics
JP2003095744A (en) Silicon carbide sintered compact and member for manufacturing semiconductor using the same, member for manufacturing magnetic head, wear resistant sliding member and method of manufacturing the same
JP2007223828A (en) Yttria ceramic sintered compact and method of manufacturing the same
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP4021325B2 (en) Manufacturing method of parts for plasma processing apparatus
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP3732966B2 (en) Corrosion resistant material
JP6861235B2 (en) A member for a plasma processing device and a plasma processing device including the member.
JP4336055B2 (en) Aluminum nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721