JP2005047316A - Collision control device for vehicle - Google Patents

Collision control device for vehicle Download PDF

Info

Publication number
JP2005047316A
JP2005047316A JP2003203815A JP2003203815A JP2005047316A JP 2005047316 A JP2005047316 A JP 2005047316A JP 2003203815 A JP2003203815 A JP 2003203815A JP 2003203815 A JP2003203815 A JP 2003203815A JP 2005047316 A JP2005047316 A JP 2005047316A
Authority
JP
Japan
Prior art keywords
vehicle
collision
vehicle body
control
occupant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203815A
Other languages
Japanese (ja)
Inventor
Tsukasa Fujimoto
宰 藤本
Kouichi Tomita
晃市 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003203815A priority Critical patent/JP2005047316A/en
Publication of JP2005047316A publication Critical patent/JP2005047316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/085Taking automatic action to adjust vehicle attitude in preparation for collision, e.g. braking for nose dropping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/144Independent suspensions with lateral arms with two lateral arms forming a parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/44Indexing codes relating to the wheels in the suspensions steerable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/423Rails, tubes, or the like, for guiding the movement of suspension elements
    • B60G2204/4232Sliding mounts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/22Braking, stopping
    • B60G2800/222Braking, stopping during collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/18Roll

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collision control device for a vehicle capable of improving occupant restraining performance in the event of a collision with a collided vehicle. <P>SOLUTION: The collision control device for the vehicle is composed of an object sensing means to sense an object approaching the vehicle concerned in relative positioning, a collisional inevitability determination means to determine whether a collision of the vehicle with the sensed object can be avoided or not, and a vehicle body attitude control means to control the body attitude of the vehicle in the direction of the occupant head approaching a head rest when it is determined that the collision cannot be avoided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、衝突に備えて車両を制御する車両用衝突制御装置に関する。
【0002】
【従来の技術】
従来から、自車両が緊急状態であると判断され、自車両が衝突回避不可能と判断された場合に、設定された車高に自車両の車高を調整する車両用衝突制御装置が知られている(例えば、特許文献1参照)。この従来技術によれば、例えば、衝突相手車両がトラックの場合には、当該トラックのバンパーの高さに自車両のバンパーの高さが一致するように車高調整が行われる。
【0003】
【特許文献1】
特開2000−95130号公報
【0004】
【発明が解決しようとする課題】
ところで、上述の従来技術は、衝突時に受ける衝撃や車体のダメージを低減する観点から、衝突回避不可能と判断された場合に車高を調整するものである。しかしながら、この観点に加えて、衝突時の乗員の拘束性を高める観点から車体姿勢を制御して乗員保護性を高めることが望ましい。
【0005】
そこで、本発明は、衝突相手車両との衝突時の乗員拘束性を高めることができる、車両用衝突制御装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の一局面によれば、自車両に相対的に近づく対象物を検出する対象物検出手段と、
検出した対象物と自車両との衝突を回避できるか否かを判定する衝突不可避判定手段と、
衝突が回避できないと判定した場合に、乗員よりも衝突側にある車両構成部材に乗員が近づく方向に自車両の車体姿勢を制御する車体姿勢制御手段とを含むことを特徴とする、車両用衝突制御装置が提供される。
【0007】
本発明によれば、衝突不可避と判定された際に車両構成部材に乗員を前もって近づけておくことで、衝突時における車両に対する乗員拘束性を高めることができる。
【0008】
本局面において、衝突側が自車両後方である場合、車体姿勢制御手段は、車体後部を車体前部に対して相対的に上げるものであってよい。この際、車体姿勢制御手段は、車体後部を上げ、且つ、車体前部を下げてもよく、或いは、車体後部のみを上げてもよく、或いは、車体後部及び車体前部を上げるが、車体後部の上げ量を車体前部の上げ量に比して高く設定するものであってもよく、更に或いは、車体後部及び車体前部を下げるが、車体後部の下げ量を車体前部の下げ量に比して低く設定するものであってもよい。これにより、車両構成部材として乗員後方のシート背もたれ部(又は、ヘッドレスト部)に乗員を近づけることができ、乗員拘束性を高めることができる。
【0009】
また、衝突側が自車両側方である場合、車体姿勢制御手段は、衝突側の車体側部を反対側の側部に対して相対的に上げるものであってよい。この際、車体姿勢制御手段は、衝突側の車体側部を上げ、且つ、非衝突側の車体側部を下げてもよく、或いは、衝突側の車体側部のみを上げてもよく、或いは、両側の側部を上げるが、衝突側の上げ量を非衝突側の上げ量に比して高く設定するものであってもよく、更に或いは、両側の側部を下げるが、衝突側の下げ量を非衝突側の下げ量に比して低く設定するものであってもよい。これにより、車両構成部材として乗員側方のドア(ドアトリム)に乗員を近づけることができ、乗員拘束性を高めることができる。
【0010】
また、衝突側が自車両側方である場合、車体姿勢制御手段は、更に、前記反対側の前後輪に対して、車輪の上方が前記衝突側に傾く方向にキャンバー角を変化させてもよい。
【0011】
何れの場合であっても、車体姿勢制御手段は、対象物識手段が識別した対象物種別に応じて前記車体姿勢制御を実行してよい。この場合、車体姿勢制御手段は、対象物の高さや大きさに応じて車体姿勢制御を実行することが可能となり、対象物種別に応じた最適な乗員拘束を実現可能となる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施例について図面を参照して説明する。
【0013】
[第1実施例]
図1は、本発明による車両用衝突制御装置の一実施例を示す構成図である。本実施例の車両用衝突制御装置10は、衝突を予知して当該衝突に備えた車両制御を実行するものであり、電子制御装置12(以下、「プリクラッシュ(pre−crash)ECU12」という)を中心に構成される。プリクラッシュECU12には、サスペンション制御ECU20が接続されており、サスペンション制御ECU20は、後述する如く、プリクラッシュECU12からの指令に応じて車高調整サスペンション機構22を制御する。また、プリクラッシュECU12には、各種センサやCCDカメラ等が接続されている。
【0014】
プリクラッシュECU12は、図1に示すように、衝突不可避判定部14及び制御指令生成部16を備える。衝突不可避判定部14は、自車両が何らかの障害物(典型的には他の車両)との衝突が不可避であるか否かを判定する。衝突不可避判定部14は、不可避であると判定した場合、当該判定結果を制御指令生成部16に供給する。
【0015】
衝突不可避判定は、各種センサからの情報、CCDカメラの撮像画像に基づく画像認識情報、若しくは、他車との間の通信により得た情報等に基づいて実現されてよい。例えば、衝突不可避判定部14は、レーダーから得られる情報を用いて、障害物に対する自車の関係(相対速度、距離、方位等)を検出し、この検出結果に基づいて障害物との衝突が不可避であるか否かを判定してもよい。この場合、レーダーは、公知の如く、ミリ波レーダー、レーザーレーダー、超音波レーダー等であってよい。また、衝突不可避判定部14は、車車間通信を介して、他車から当該他車と自車との関係に関する情報を取得してもよい。或いは、衝突不可避判定部14は、CCDカメラによる画像認識情報に基づいて、障害物に対する自車の相対速度、距離、方位等を検出し、この検出結果に基づいて障害物との衝突が不可避であるか否かを判定してもよい。更に或いは、衝突不可避判定部14は、車車間通信を介して、他車の同様の衝突不可避判定部による判定結果情報を取得し、当該他車から受信した判定結果情報に基づいて当該他車との衝突が不可避であるか否かを判定してもよい。
【0016】
但し、本発明は、自車と障害物との衝突が不可避であるか否かを判定するものであれば、その手法や精度に関係なく如何なる衝突不可避判定に対しても適用可能である。また、本発明は、衝突の可能性を段階的に評価する衝突不可避判定に対しても適用可能である。
【0017】
次に、図2のフローチャートを参照して、本実施例に係る車両用衝突制御装置10の動作を説明する。
【0018】
本実施例の衝突不可避判定部14は、自車後方の他車と自車との関係を後方監視レーダーで監視し(図3参照)、自車後方の他車と自車との衝突(即ち、他車の自車に対する追突)が不可避であるか否かを判定する(ステップ100)。但し、衝突不可避判定部14は、上述の如く、他の情報源に基づいて衝突不可避判定を行ってもよい。衝突不可避判定部14により不可避であると判定された場合、制御指令生成部16は、直ちにサスペンション制御ECU20に対して所定の制御信号を送出する。
【0019】
サスペンション制御ECU20は、プリクラッシュECU12からの上記制御信号に応答して、車高調整サスペンション機構22を作動させ、瞬時に(少なくとも、実際の衝突が生ずる前までに)車体姿勢を調整する(ステップ110)。この際、サスペンション制御ECU20は、車両前方の車高を下げ及び/又は車両後方の車高を上げる方向に、車高調整サスペンション機構22を作動させる。図4(A)には、サスペンション制御ECU20による制御前の車体姿勢が示されており、図4(B)には、車両前方の車高が下げられ且つ車両後方の車高が上げられた(図中矢印参照)制御後の車体姿勢が示されている。
【0020】
ここで、図5を参照するに、上述の如く、車両前方の車高を下げ及び/又は車両後方の車高を上げる方向に車体姿勢を変化させると、乗員とシートとの関係が、図5(A)に示す通常状態から図5(B)に示す状態へと変化する。即ち、車体姿勢を前方に傾斜させることにより、乗員の頭部がヘッドレストに近づく方向に移動する(即ち、ヘッドレストが乗員に対して前方へ移動する)(図中矢印参照)。
【0021】
従って、実際の衝突が生じた場合(ステップ120)、乗員の頭部がヘッドレストに当たるまでの移動距離が短くなり、乗員の頭部の拘束を早めることができ、これにより、追突発生時に乗員が受ける衝撃を軽くすることができる。また、乗員の頭部がヘッドレストに接するように車体を傾斜させることとすると、乗員の頭部がヘッドレストに当たるまでの移動距離が実質的にゼロとなり、衝突時の乗員拘束性をより一層高めることができる。このため、車両前方の車高の下げ量、車両後方の車高の上げ量、若しくはそれらの組み合わせによる傾斜量は、乗員の頭部がヘッドレストに接するように設定されることが好ましい。
【0022】
尚、実際の衝突が生じた場合には、車両の停止後に、サスペンション制御ECU20により、上記ステップ110で傾斜された車体姿勢が元の姿勢に戻され(ステップ140)、また、上記ステップ110の制御実行後の所定時間内に実際の衝突が生じなかった場合には、同様に、上記ステップ110で傾斜された車体姿勢が元の姿勢に戻される(ステップ130)。
【0023】
図6は、サスペンション制御ECU20により制御される車高調整サスペンション機構22の一例を示す。図6に示す車高調整サスペンション機構22は、各輪に配設されるショックアブソーバー22a−22dを有し、各ショックアブソーバー22a−22dがそれぞれ独立して制御されるように構成されている。具体的には、サスペンション制御ECU20は、各輪に配設されるハイトコントロール(height control)センサ24a−24dの出力値に基づいて、各ショックアブソーバー22a−22dの液圧室へ高圧流体を供給するためのポンプを制御すると共に、各ショックアブソーバー22a−22dの液圧室への各液圧通路に設けられる各ハイトコントロールバルブ(レベリングバルブ)26a−26dを独立制御して、上述の傾斜された車体姿勢を実現する(上記ステップ110参照)。
【0024】
尚、本発明は、特にこの車高調整サスペンション機構の構成に限定されるものでなく、上述の傾斜された車体姿勢を実現できるものであれば、車高調整サスペンション機構の構成は如何なるものであってもよい。特に、本実施例では、車体前後の車高差を形成するものであり、左右の車高差を形成するものでないため、上述のような各輪独立制御可能な車高調整サスペンション機構である必要はなく、前輪と後輪のショックアブソーバーの組を独立に制御できるものであればよい。従って、前輪のショックアブソーバーの液圧室と、後輪のショックアブソーバーの液圧室とを液圧通路により逆相に接続する構成も可能である。また、当然に、ショックアブソーバー22a−22dは、油圧式若しくエアー式、又は、単筒式若しくは復筒式を問わずあらゆる種類のショックアブソーバーであってもよい。
【0025】
[第2実施例]
次に、図7のフローチャートを参照して、第2実施例に係る車両用衝突制御装置10の動作を説明する。
【0026】
本実施例の衝突不可避判定部14は、自車側方の他車と自車との関係を側方監視レーダーにより監視し(図8参照)、自車側方の他車と自車との衝突(即ち、他車の自車に対する側突)が不可避であるか否かを判定する(ステップ200)。但し、衝突不可避判定部14は、上述の如く、他の情報源に基づいて衝突不可避判定を行ってもよい。衝突不可避判定部14により不可避であると判定された場合、制御指令生成部16は、直ちにサスペンション制御ECU20に対して所定の制御信号を送出する。
【0027】
サスペンション制御ECU20は、プリクラッシュECU12からの上記制御信号に応答して、車高調整サスペンション機構22を作動させ、瞬時に(少なくとも、実際の衝突が生ずる前までに)車体姿勢を調整する(ステップ210)。この際、サスペンション制御ECU20は、衝突を受ける側(即ち、加害車両側)の車高を上げ及び/又は他の側の車高を下げる方向に、車高調整サスペンション機構22を作動させる。図9には、衝突側の車高が上げられ且つ他の側の車高が下げられた(図中矢印参照)制御後の車体姿勢が示されている。
【0028】
ここで、図10を参照するに、上述の如く、衝突側の車高を上げ及び/又は他の側の車高を下げる方向に車体姿勢を変化させると、乗員とその側方のドアとの関係が、図10(A)に示す通常状態から図10(B)に示す状態へと変化する。即ち、車体姿勢を加害車両の存在する側に傾斜させることにより、乗員がドアトリムに近づく方向に移動する(即ち、ドアトリムが乗員に近づく方向に傾斜する)。
【0029】
従って、実際の衝突が生じた場合(ステップ220)、乗員の側部がドアトリムに当たるまでの移動距離が短くなり、乗員の拘束を早めることができ、これにより、側突発生時に乗員が受ける衝撃を軽くすることができる。尚、衝突側の車高の上げ量、その逆側の車高の下げ量、若しくはそれらの組み合わせによる傾斜量は、乗員の側部とドアトリムとの間にサイドエアバックの展開を許容する隙間が形成されるように、設定されてよい。
【0030】
図11を参照するに、側突を受けた際の胸部移動量(S)と胸部荷重(F)の関係が示されている。図11には、比較のため、上述の車体姿勢制御を実行した場合の同関係が実線で、車体姿勢制御を実行しない場合(即ち、水平状態を保つ場合)の同関係が破線でそれぞれ示されている。図11から理解できるように、上述の車体姿勢制御が実行された場合には、実行されない場合と比較して、乗員の側部とドアトリムとの間の距離が小さくなるため、胸部荷重がより早い段階から生ずるが、乗員がより早い段階でドアトリムに拘束される故に胸部荷重のピーク値が小さくなる。この結果、上述の車体姿勢制御を実行した場合には、乗員が受ける傷害値を小さくすることができ、乗員保護性が向上する。
【0031】
尚、実際の衝突が生じた場合には、車両の停止後に、サスペンション制御ECU20により、上記ステップ210で傾斜された車体姿勢が元の姿勢に戻され(ステップ240)、また、上記ステップ210の制御実行後の所定時間内に実際の衝突が生じなかった場合には、同様に、上記ステップ210で傾斜された車体姿勢が元の姿勢に戻される(ステップ230)。
【0032】
本実施例の車高調整サスペンション機構22は、上述の第1実施例に係る車高調整サスペンション機構22(図6参照)と同様のものであってよい。但し、本実施例では、車体左右の車高差を形成するものであり、前後の車高差を形成するものでないため、図6に示すような各輪独立制御可能な車高調整サスペンション機構である必要はなく、左側2輪と右側2輪に対応するショックアブソーバーの組を独立に制御できるものであればよい。従って、左側2輪のショックアブソーバーの液圧室と、右側2輪のショックアブソーバーの液圧室とを液圧通路により逆相に接続する構成も可能である。尚、本実施例は、上述の第1実施例と同時に実現可能であり、この場合、車高調整サスペンション機構22は、図6に示すような各輪独立制御可能な車高調整サスペンション機構が使用される。
【0033】
[第3実施例]
第3実施例に係る車両用衝突制御装置10の動作は、上述の第2実施例に係る車両用衝突制御装置10の動作と上記ステップ210の内容が異なる以外は同一であるため、同一の部分の説明は省略する。
【0034】
本実施例のサスペンション制御ECU20は、衝突不可避との判定結果に基づくプリクラッシュECU12からの制御信号に応答して、キャンバー角調整機構30を作動させ、瞬時に(少なくとも、実際の衝突が生ずる前までに)車体姿勢を調整する。具体的には、サスペンション制御ECU20は、衝突を受ける側とは反対側の前後輪のキャンバーを変化させるように、キャンバー角調整機構30を作動させる。この際、前後輪のキャンバーは、図12に示すように、車輪の下方が車両外方に開くような方向、即ち、車輪の上方が車両内方(即ち、衝突側)に車輪の下方が車両外方に移動する方向に変化させられる。更に他言すると、前後輪のキャンバーは、車両を後方から見て反時計方向に車輪が傾くように変化させられる。キャンバーの変化角は、所定の角度であってよく、若しくは、加害車両及び/又は自車の速度に応じて決定される角度であってもよい。これにより、車両の走行姿勢が安定するので、車両の挙動が安定し、乗員拘束性が向上する。尚、上述のキャンバー角調整機構30の作動は、車両走行時にのみ実行されるものであってもよい。
【0035】
図13は、キャンバー角調整機構30の一例を示す図である。キャンバー角調整機構30は、キャンバー角調整用アクチュエータ32を備える。キャンバー角調整用アクチュエータ32は、車輪のホイール内側上方にボールジョイント等を介して取り付けられたアッパーアーム34を車両内外に往復動させる動力を発生する。アッパーアーム34の車体側の端部は、回転軸36まわりに回転可能に取り付けられている。回転軸36は、車体に取り付けられた軸受部材38に車両内外方向に摺動可能に取り付けられている。また、アッパーアーム34の車体側の端部には、キャンバー角調整用アクチュエータ32により車両内外に往復動させられるアーム部材40に接続されている。かかる構成においては、キャンバー角調整用アクチュエータ32がアーム部材40を車両内側に駆動すると、アッパーアーム34の端部が車両内側に向かって軸受部材38内を摺動し、アッパーアーム34が車両内側に引き寄せられることにより、上述のキャンバー角の変化が実現される。
【0036】
尚、本発明は、特にこのキャンバー角調整機構30の構成に限定されるものでなく、上述のキャンバー角の変化を実現できるものであれば、キャンバー角調整機構30の構成は如何なるものであってもよい。例えば、キャンバー角調整機構30は、アッパーアーム34に代わって、ロアアーム42を車両外側に押し出す構成であってもよい。また、本発明は、図12に示すようなダブルウィッシュボーン式サスペンション以外の方式のサスペンション(例えば、トーションバー式サスペンション、ストラット式サスペンション)に対しても適用可能である。
【0037】
本実施例による車両姿勢制御(キャンバー角の制御)は、上述の第2実施例による車両姿勢制御と組み合わせて実現されてもよい。即ち、図14に示すように、衝突側の車高を上げ及び/又は他の側の車高を下げる方向に車体姿勢を変化させると共に、キャンバー角を上述の如く変化させてもよい。
【0038】
[第4実施例]
本実施例のプリクラッシュECU12は、図1に示すように、衝突不可避判定部14及び制御指令生成部16に加えて、車種識別部18を備える。車種識別部18は、CCDカメラの撮像画像に基づく画像認識情報、若しくは、他車との間の通信により得た情報等に基づいて、衝突不可避判定対象となる他車の車種を識別する。例えば、車種識別部18は、画像処理結果から得られる他車のナンバープレートの車種ナンバー(図15参照)を特定することで、衝突不可避判定対象となる他車の車種を識別してよい。図16には、車種ナンバーと車両種別との対応表が示されている。車種識別部18は、画像処理結果から得られる車種ナンバーを特定し、かかる対応表を参照することで、車種を識別することができる。或いは、ナンバープレートに埋め込まれうるICから得られる情報に基づいて車種を識別してもよい。或いは、他車との車車間通信により得られる情報に基づいて車種を識別してもよい。このようにして車種識別部18が認識した車種情報は、制御指令生成部16に供給される。
【0039】
制御指令生成部16は、衝突不可避判定部14から他車と自車との衝突が不可避であるとの判定結果を得ると、車種識別部18から得られる当該他車の車種情報に基づいて、上述のサスペンション制御ECU20に対して、当該他車の車種に応じた制御信号を送出する。具体的には、制御指令生成部16は、例えば、図17に示すような規則に従って、車高調整量を規定する制御信号をサスペンション制御ECU20に供給する。例えば、他車の車種が乗用自動車の場合、乗用自動車の比較的低い車高に合わせて小さい目標車高値を指示する制御信号が生成され、他車の車種が貨物自動車の場合、貨物自動車の比較的高い車高に合わせて大きい目標車高値を指令する制御信号が生成される。
【0040】
サスペンション制御ECU20は、上述の如く生成される制御信号に応答して、車高調整サスペンション機構22を作動させ、当該制御信号により指示される目標車高値を実現する。この際、衝突形態が後方他車による追突である場合、サスペンション制御ECU20は、自車の後部の車高が上記目標車高値となるように車高調整サスペンション機構22を作動させる。この場合、目標車高値は、後方他車のフロントバンパーの高さに自車のリアバンパーの高さが合致するような値あってよい。この目標車高値は、後方他車のフロントバンパーの画像認識結果から導出される算出値、若しくは、車種に応じた所定値であってよく、或いは、車車間通信により得られる後方他車のフロントバンパーの高さを示す情報(諸元値)に基づいて決定されてよい。
【0041】
一方、衝突形態が側方他車による側突である場合、サスペンション制御ECU20は、自車の衝突側(当該側方他車側)の車高が上記目標車高値となるように車高調整サスペンション機構22を作動させる。この場合も、目標車高値は、後方他車のフロントバンパーの高さに自車のロッカー部の高さが合致するような値あってよい。同様に、この目標車高値は、画像認識結果から得られる算出値、若しくは、車種に応じた所定値であってよく、或いは、車車間通信により得られる後方他車のフロントバンパーの高さを示す情報(諸元値)に基づいて決定されてよい。
【0042】
尚、衝突形態に関する情報は上記制御信号に重畳されてよく、この場合、サスペンション制御ECU20は、当該制御信号に基づいて、目標車高値及び衝突形態を認識してよい。或いは、制御指令生成部16が、衝突形態及び車種に応じた制御信号を生成するものであってもよい。
【0043】
本実施例によれば、上述の如く、衝突形態が後方他車による追突である場合、車体後部の車高が上げられるので、上述の第1実施例と同様の効果を得ることができる。即ち、乗員の頭部をヘッドレストに近づけることで、乗員の頭部の拘束を早めることができ、乗員拘束性が向上する。この際、車体前部の車高は、乗員の頭部がヘッドレストに接するように、車体後部の車高の目標車高値に応じて調整されてよい。
【0044】
更に、本実施例によれば、上述の如く、後方他車のフロントバンパーの高さに自車のリアバンパーの高さが合わせられるので、衝突時に効率的なエネルギ吸収が実現され、乗員保護性が向上する。
【0045】
また、本実施例によれば、上述の如く、衝突形態が側方他車による側突である場合、衝突を受ける側の車体側部の車高が上げられるので、上述の第2実施例と同様の効果を得ることができる。即ち、乗員をドアトリムに近づけることで、乗員の拘束を早めることができ、乗員拘束性が向上する。この際、逆側の車体側部の車高は、乗員がドアトリムに近づくように、衝突を受ける側の車体側部の車高の目標車高値に応じて調整されてよい。
【0046】
更に、本実施例によれば、上述の如く、後方他車のフロントバンパーの高さに自車のローカー部の高さが合わせられるので、衝突時に効率的なエネルギ吸収が実現され、乗員保護性が向上する。
【0047】
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
【0048】
例えば、上述の第1実施例及び第4実施例において、車両の姿勢制御と共に、或いはそれに代わって、ヘッドレストを乗員頭部に向かってモータ等によりアクティブに動かすことも有効である。例えば、ヘッドレストの駆動制御を上述の車両の姿勢制御に代わって実行する場合、ヘッドレストの駆動量は、上述の如く、乗員の頭部がヘッドレストに接するように設定されてよい。また、例えば、ヘッドレストの制御を上述の車両の姿勢制御と共に実行する場合、上述の第4実施例において、車体側部の車高の目標車高値が充分でない場合に、乗員の頭部がヘッドレストに接するように、補助的にヘッドレストをアクティブに駆動してもよい。
【0049】
【発明の効果】
本発明は、以上説明したようなものであるから、衝突時における車両に対する乗員拘束性を高めることができる。
【図面の簡単な説明】
【図1】本発明による車両用衝突制御装置の一実施例を示す構成図である。
【図2】第1実施例に係る車両用衝突制御装置10の動作を示すフローチャートである。
【図3】後方監視レーダーによる自車後方の監視領域を概略的に示す図である。
【図4】図4(A)は、本発明による制御前の車体姿勢を示し、図4(B)は、本発明による制御後の車体姿勢を示す図である。
【図5】図5(A)は、本発明による制御前の乗員とシートとの関係を示し、図5(B)は、本発明による制御後の乗員とシートとの関係を示す図である。
【図6】車高調整サスペンション機構22の一例を概略的に示す図である。
【図7】第2実施例に係る車両用衝突制御装置10の動作を示すフローチャートである。
【図8】側方監視レーダーによる自車後方の監視領域を概略的に示す図である。
【図9】本発明による制御後の車体姿勢を示す図である。
【図10】図10(A)は、本発明による制御前の乗員とドアトリムとの関係を示し、図10(B)は、本発明による制御後の乗員とドアトリムとの関係を示す図である。
【図11】胸部移動量(S)と胸部荷重(F)の関係を示すグラフである。
【図12】本発明によるキャンバー角制御の説明図である。
【図13】キャンバー角調整機構30の一例を示すサスペンションまわりの斜視図である。
【図14】第2実施例と第3実施例の組み合わせ実施例による制御後の車体姿勢を示す図である。
【図15】ナンバープレートの車種ナンバー部を示す図である。
【図16】車種ナンバーと車両種別との対応表を示す表図である。
【図17】車両種別に応じた車高制御例を示す対応表である。
【符号の説明】
10 車両用衝突制御装置
12 プリクラッシュECU
14 衝突不可避判定部
16 制御指令生成部
18 車種識別部
20 サスペンション制御ECU
22 車高調整サスペンション機構
30 キャンバー角調整機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle collision control apparatus that controls a vehicle in preparation for a collision.
[0002]
[Prior art]
Conventionally, there is known a vehicle collision control device that adjusts the vehicle height of a host vehicle to a set vehicle height when the host vehicle is determined to be in an emergency state and the host vehicle is determined to be unable to avoid a collision. (For example, refer to Patent Document 1). According to this prior art, for example, when the collision partner vehicle is a truck, the vehicle height is adjusted so that the bumper height of the own vehicle matches the bumper height of the truck.
[0003]
[Patent Document 1]
JP 2000-95130 A
[0004]
[Problems to be solved by the invention]
By the way, the above-described conventional technology adjusts the vehicle height when it is determined that the collision cannot be avoided from the viewpoint of reducing the impact received during the collision and the damage to the vehicle body. However, in addition to this point of view, it is desirable to improve the occupant protection by controlling the vehicle body posture from the viewpoint of increasing the restraint of the occupant during a collision.
[0005]
In view of the above, an object of the present invention is to provide a vehicle collision control device that can enhance the occupant restraint performance at the time of collision with a collision partner vehicle.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to one aspect of the present invention, an object detection means for detecting an object relatively approaching the host vehicle;
A collision inevitable determination means for determining whether or not a collision between the detected object and the host vehicle can be avoided;
And a vehicle body posture control means for controlling the vehicle body posture of the host vehicle in a direction in which the passenger approaches the vehicle component on the collision side of the passenger when it is determined that the collision cannot be avoided. A control device is provided.
[0007]
According to the present invention, when it is determined that a collision is unavoidable, an occupant is restrained with respect to the vehicle at the time of the collision by bringing the occupant close to the vehicle component in advance.
[0008]
In this aspect, when the collision side is behind the host vehicle, the vehicle body posture control means may raise the rear portion of the vehicle body relative to the front portion of the vehicle body. At this time, the vehicle body attitude control means may raise the vehicle body rear part and lower the vehicle body front part, or may raise only the vehicle body rear part, or raise the vehicle body rear part and the vehicle body front part. The raising amount of the vehicle body may be set higher than the raising amount of the front part of the vehicle body. Alternatively, the rear part of the vehicle body and the front part of the vehicle body are lowered. It may be set lower. Thereby, a passenger | crew can be brought close to the seat back part (or headrest part) behind a passenger | crew as a vehicle structural member, and passenger | crew restraint property can be improved.
[0009]
When the collision side is the side of the host vehicle, the vehicle body posture control means may raise the vehicle body side portion on the collision side relative to the side portion on the opposite side. At this time, the vehicle body posture control means may raise the vehicle body side portion on the collision side and lower the vehicle body side portion on the non-collision side, or may raise only the vehicle body side portion on the collision side, or Although the side portions on both sides are raised, the raising amount on the collision side may be set higher than the raising amount on the non-collision side. May be set lower than the lowering amount on the non-collision side. Thereby, a passenger | crew can be brought close to a passenger | crew side door (door trim) as a vehicle structural member, and passenger | crew restraint property can be improved.
[0010]
When the collision side is the side of the host vehicle, the vehicle body posture control means may further change the camber angle in a direction in which the upper part of the wheel is inclined toward the collision side with respect to the opposite front and rear wheels.
[0011]
In any case, the vehicle body posture control means may execute the vehicle body posture control according to the object type identified by the object knowledge means. In this case, the vehicle body posture control means can execute the vehicle body posture control according to the height and size of the object, and can realize the optimum passenger restraint according to the object type.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0013]
[First embodiment]
FIG. 1 is a block diagram showing an embodiment of a vehicle collision control apparatus according to the present invention. The vehicle collision control device 10 according to the present embodiment predicts a collision and executes vehicle control in preparation for the collision, and is an electronic control device 12 (hereinafter referred to as “pre-crash ECU 12”). It is composed around. A suspension control ECU 20 is connected to the pre-crash ECU 12, and the suspension control ECU 20 controls the vehicle height adjustment suspension mechanism 22 in accordance with a command from the pre-crash ECU 12, as will be described later. The pre-crash ECU 12 is connected to various sensors, a CCD camera, and the like.
[0014]
As shown in FIG. 1, the pre-crash ECU 12 includes a collision unavoidable determination unit 14 and a control command generation unit 16. The collision unavoidable determination unit 14 determines whether or not the own vehicle is inevitable to collide with some obstacle (typically, another vehicle). When the collision unavoidable determination unit 14 determines that it is unavoidable, the collision unavoidable determination unit 14 supplies the determination result to the control command generation unit 16.
[0015]
The collision unavoidable determination may be realized based on information from various sensors, image recognition information based on a captured image of a CCD camera, information obtained through communication with another vehicle, or the like. For example, the collision unavoidable determination unit 14 detects the relationship (relative speed, distance, direction, etc.) of the vehicle with respect to the obstacle using information obtained from the radar, and the collision with the obstacle is detected based on the detection result. You may determine whether it is unavoidable. In this case, the radar may be a millimeter wave radar, a laser radar, an ultrasonic radar or the like as is well known. Moreover, the collision inevitable determination part 14 may acquire the information regarding the relationship between the said other vehicle and the own vehicle from another vehicle via vehicle-to-vehicle communication. Alternatively, the collision unavoidable determination unit 14 detects the relative speed, distance, direction, and the like of the own vehicle with respect to the obstacle based on the image recognition information by the CCD camera, and the collision with the obstacle is unavoidable based on the detection result. It may be determined whether or not there is. In addition, the collision unavoidable determination unit 14 acquires determination result information from a similar collision unavoidable determination unit of another vehicle via inter-vehicle communication, and based on the determination result information received from the other vehicle, It may be determined whether or not a collision is inevitable.
[0016]
However, the present invention can be applied to any collision unavoidable determination as long as it determines whether or not the collision between the host vehicle and the obstacle is inevitable. The present invention is also applicable to a collision unavoidable determination that evaluates the possibility of a collision step by step.
[0017]
Next, the operation of the vehicle collision control apparatus 10 according to this embodiment will be described with reference to the flowchart of FIG.
[0018]
The collision unavoidable determination unit 14 of this embodiment monitors the relationship between the other vehicle behind the own vehicle and the own vehicle with a rear monitoring radar (see FIG. 3), and the collision between the other vehicle behind the own vehicle and the own vehicle (that is, Then, it is determined whether or not a rear-end collision with another vehicle is inevitable (step 100). However, the collision unavoidable determination unit 14 may perform the collision unavoidable determination based on other information sources as described above. When the collision inevitable determination unit 14 determines that the collision is unavoidable, the control command generation unit 16 immediately sends a predetermined control signal to the suspension control ECU 20.
[0019]
The suspension control ECU 20 operates the vehicle height adjusting suspension mechanism 22 in response to the control signal from the pre-crash ECU 12, and instantaneously adjusts the vehicle body posture (at least before an actual collision occurs) (step 110). ). At this time, the suspension control ECU 20 operates the vehicle height adjusting suspension mechanism 22 in the direction of lowering the vehicle height in front of the vehicle and / or raising the vehicle height behind the vehicle. 4A shows the vehicle body posture before the control by the suspension control ECU 20, and FIG. 4B shows that the vehicle height in front of the vehicle is lowered and the vehicle height behind the vehicle is raised ( The vehicle posture after control is shown.
[0020]
Here, referring to FIG. 5, as described above, when the vehicle body posture is changed in the direction of lowering the vehicle height in front of the vehicle and / or raising the vehicle height behind the vehicle, the relationship between the occupant and the seat is as shown in FIG. The state changes from the normal state shown in FIG. 5A to the state shown in FIG. That is, by tilting the vehicle body posture forward, the head of the occupant moves in a direction approaching the headrest (that is, the headrest moves forward with respect to the occupant) (see arrows in the figure).
[0021]
Therefore, when an actual collision occurs (step 120), the movement distance until the occupant's head hits the headrest is shortened, and the occupant's head can be restrained more quickly. Impact can be lightened. Also, if the vehicle body is tilted so that the occupant's head is in contact with the headrest, the travel distance until the occupant's head hits the headrest is substantially zero, which further enhances the occupant restraint during a collision. it can. For this reason, it is preferable to set the amount of lowering of the vehicle height in front of the vehicle, the amount of raising of the vehicle height behind the vehicle, or a combination of these so that the head of the occupant contacts the headrest.
[0022]
If an actual collision occurs, the suspension control ECU 20 returns the vehicle body posture tilted at step 110 to the original posture after the vehicle stops (step 140). If no actual collision occurs within a predetermined time after the execution, the vehicle body posture tilted in step 110 is similarly returned to the original posture (step 130).
[0023]
FIG. 6 shows an example of a vehicle height adjusting suspension mechanism 22 controlled by the suspension control ECU 20. The vehicle height adjusting suspension mechanism 22 shown in FIG. 6 has shock absorbers 22a-22d disposed on each wheel, and is configured such that each shock absorber 22a-22d is independently controlled. Specifically, the suspension control ECU 20 supplies high-pressure fluid to the hydraulic chambers of the shock absorbers 22a-22d based on the output values of height control sensors 24a-24d disposed on the wheels. The above-described tilted vehicle body is controlled by independently controlling each height control valve (leveling valve) 26a-26d provided in each hydraulic pressure passage to the hydraulic pressure chamber of each shock absorber 22a-22d. The posture is realized (see step 110 above).
[0024]
The present invention is not particularly limited to the configuration of the vehicle height adjustment suspension mechanism, and the configuration of the vehicle height adjustment suspension mechanism is not limited as long as the above-described tilted vehicle body posture can be realized. May be. In particular, in this embodiment, the vehicle height difference between the front and rear of the vehicle body is formed, and the vehicle height difference between the left and right is not formed. Therefore, it is necessary to provide a vehicle height adjusting suspension mechanism capable of independently controlling each wheel as described above. There is no limitation as long as the set of shock absorbers for the front and rear wheels can be controlled independently. Therefore, it is also possible to connect the hydraulic chamber of the front wheel shock absorber and the hydraulic chamber of the rear wheel shock absorber in opposite phases by the hydraulic passage. Needless to say, the shock absorbers 22a to 22d may be any type of shock absorbers, regardless of whether they are hydraulic, pneumatic, single cylinder, or reverse cylinder.
[0025]
[Second Embodiment]
Next, the operation of the vehicle collision control apparatus 10 according to the second embodiment will be described with reference to the flowchart of FIG.
[0026]
The collision inevitable determination unit 14 of the present embodiment monitors the relationship between the other vehicle on the side of the own vehicle and the own vehicle by the side monitoring radar (see FIG. 8), and It is determined whether or not a collision (i.e., a side collision of another vehicle with the host vehicle) is inevitable (step 200). However, the collision unavoidable determination unit 14 may perform the collision unavoidable determination based on other information sources as described above. When the collision inevitable determination unit 14 determines that the collision is unavoidable, the control command generation unit 16 immediately sends a predetermined control signal to the suspension control ECU 20.
[0027]
In response to the control signal from the pre-crash ECU 12, the suspension control ECU 20 operates the vehicle height adjusting suspension mechanism 22 to adjust the vehicle body posture instantaneously (at least before an actual collision occurs) (step 210). ). At this time, the suspension control ECU 20 operates the vehicle height adjusting suspension mechanism 22 in the direction of raising the vehicle height on the side that receives the collision (that is, the vehicle on the side of the harming vehicle) and / or lowering the vehicle height on the other side. FIG. 9 shows the posture of the vehicle body after control in which the vehicle height on the collision side is raised and the vehicle height on the other side is lowered (see the arrow in the figure).
[0028]
Here, referring to FIG. 10, as described above, when the vehicle body posture is changed in a direction in which the vehicle height on the collision side is raised and / or the vehicle height on the other side is lowered, the occupant and the side door are The relationship changes from the normal state shown in FIG. 10A to the state shown in FIG. That is, by tilting the vehicle body posture toward the side where the harmful vehicle is present, the occupant moves in a direction approaching the door trim (that is, the door trim tilts in a direction approaching the occupant).
[0029]
Therefore, when an actual collision occurs (step 220), the movement distance until the side of the occupant hits the door trim is shortened, and the occupant can be restrained more quickly. Can be lightened. Note that the amount by which the vehicle height is raised on the collision side, the amount by which the vehicle height is lowered on the opposite side, or a combination of these is the gap between the passenger side and the door trim that allows the side airbag to be deployed. It may be set to be formed.
[0030]
Referring to FIG. 11, the relationship between the chest movement amount (S) and the chest load (F) at the time of a side collision is shown. In FIG. 11, for comparison, the same relationship when the above-described vehicle body posture control is executed is indicated by a solid line, and the same relationship when the vehicle body posture control is not executed (that is, when the horizontal state is maintained) is indicated by a broken line. ing. As can be understood from FIG. 11, when the above-described vehicle body posture control is executed, the distance between the occupant side and the door trim is smaller than when the vehicle body posture control is not executed, so the chest load is faster. Although it occurs from the stage, the peak value of the chest load is reduced because the occupant is restrained by the door trim at an earlier stage. As a result, when the above-described vehicle body posture control is executed, the injury value that the occupant receives can be reduced, and the occupant protection is improved.
[0031]
When an actual collision occurs, after the vehicle stops, the suspension control ECU 20 returns the vehicle body posture tilted at step 210 to the original posture (step 240). If no actual collision occurs within a predetermined time after execution, the vehicle body posture tilted in step 210 is similarly returned to the original posture (step 230).
[0032]
The vehicle height adjusting suspension mechanism 22 of the present embodiment may be the same as the vehicle height adjusting suspension mechanism 22 (see FIG. 6) according to the first embodiment described above. However, in this embodiment, the vehicle height difference between the left and right of the vehicle body is formed, and the vehicle height difference between the front and rear is not formed. Therefore, a vehicle height adjusting suspension mechanism as shown in FIG. There is no need to be, as long as it can independently control the pair of shock absorbers corresponding to the left two wheels and the right two wheels. Therefore, it is possible to connect the hydraulic chambers of the left two-wheel shock absorber and the hydraulic chambers of the right two-wheel shock absorber in opposite phases by the hydraulic passage. The present embodiment can be realized simultaneously with the first embodiment described above. In this case, the vehicle height adjusting suspension mechanism 22 uses a vehicle height adjusting suspension mechanism capable of independently controlling each wheel as shown in FIG. Is done.
[0033]
[Third embodiment]
The operation of the vehicle collision control apparatus 10 according to the third embodiment is the same as the operation of the vehicle collision control apparatus 10 according to the second embodiment described above except that the content of step 210 is different. Description of is omitted.
[0034]
The suspension control ECU 20 according to the present embodiment operates the camber angle adjusting mechanism 30 in response to a control signal from the pre-crash ECU 12 based on the determination result that the collision is inevitable, and instantaneously (at least until an actual collision occurs). To) Adjust the body posture. Specifically, the suspension control ECU 20 operates the camber angle adjusting mechanism 30 so as to change the cambers of the front and rear wheels on the side opposite to the side that receives the collision. At this time, as shown in FIG. 12, the front and rear wheel cambers have a direction in which the lower side of the wheel opens outwardly of the vehicle, that is, the upper side of the wheel is inward of the vehicle (ie, the collision side) and the lower side of the wheel is lower in the vehicle It is changed in the direction of moving outward. In other words, the front and rear wheel cambers are changed so that the wheels are tilted counterclockwise when the vehicle is viewed from the rear. The change angle of the camber may be a predetermined angle, or may be an angle determined according to the speed of the offending vehicle and / or the own vehicle. Thereby, since the running posture of the vehicle is stabilized, the behavior of the vehicle is stabilized and the occupant restraint property is improved. The operation of the camber angle adjusting mechanism 30 described above may be executed only when the vehicle is traveling.
[0035]
FIG. 13 is a diagram illustrating an example of the camber angle adjusting mechanism 30. The camber angle adjusting mechanism 30 includes a camber angle adjusting actuator 32. The camber angle adjusting actuator 32 generates power for reciprocating the upper arm 34 attached to the upper inside of the wheel via a ball joint or the like in and out of the vehicle. The end of the upper arm 34 on the vehicle body side is attached so as to be rotatable around the rotation shaft 36. The rotating shaft 36 is attached to a bearing member 38 attached to the vehicle body so as to be slidable in and out of the vehicle. Further, an end of the upper arm 34 on the vehicle body side is connected to an arm member 40 that is reciprocated into and out of the vehicle by a camber angle adjusting actuator 32. In such a configuration, when the camber angle adjusting actuator 32 drives the arm member 40 to the inside of the vehicle, the end of the upper arm 34 slides in the bearing member 38 toward the inside of the vehicle, and the upper arm 34 moves to the inside of the vehicle. The above-described change in the camber angle is realized by being drawn.
[0036]
The present invention is not particularly limited to the configuration of the camber angle adjusting mechanism 30, and the configuration of the camber angle adjusting mechanism 30 is not limited as long as the above-described change in the camber angle can be realized. Also good. For example, the camber angle adjusting mechanism 30 may be configured to push the lower arm 42 to the outside of the vehicle instead of the upper arm 34. The present invention can also be applied to suspensions of systems other than the double wishbone suspension shown in FIG. 12 (for example, torsion bar suspensions, strut suspensions).
[0037]
The vehicle attitude control (camber angle control) according to the present embodiment may be realized in combination with the vehicle attitude control according to the second embodiment described above. That is, as shown in FIG. 14, the vehicle body posture may be changed in the direction of raising the vehicle height on the collision side and / or lowering the vehicle height on the other side, and the camber angle may be changed as described above.
[0038]
[Fourth embodiment]
As shown in FIG. 1, the pre-crash ECU 12 of this embodiment includes a vehicle type identification unit 18 in addition to the collision inevitable determination unit 14 and the control command generation unit 16. The vehicle type identification unit 18 identifies the vehicle type of another vehicle that is a collision unavoidable determination target based on image recognition information based on a captured image of the CCD camera, information obtained through communication with another vehicle, or the like. For example, the vehicle type identification unit 18 may identify the vehicle type of another vehicle that is a collision inevitable determination target by specifying the vehicle type number (see FIG. 15) of the license plate of the other vehicle obtained from the image processing result. FIG. 16 shows a correspondence table between vehicle type numbers and vehicle types. The vehicle type identification unit 18 can identify the vehicle type by specifying the vehicle type number obtained from the image processing result and referring to the correspondence table. Alternatively, the vehicle type may be identified based on information obtained from an IC that can be embedded in the license plate. Alternatively, the vehicle type may be identified based on information obtained by inter-vehicle communication with another vehicle. The vehicle type information recognized by the vehicle type identification unit 18 in this way is supplied to the control command generation unit 16.
[0039]
When the control command generation unit 16 obtains a determination result that the collision between the other vehicle and the host vehicle is unavoidable from the collision inevitable determination unit 14, based on the vehicle type information of the other vehicle obtained from the vehicle type identification unit 18, A control signal corresponding to the vehicle type of the other vehicle is sent to the suspension control ECU 20 described above. Specifically, the control command generator 16 supplies a control signal that defines the vehicle height adjustment amount to the suspension control ECU 20 in accordance with, for example, a rule as shown in FIG. For example, if the other vehicle model is a passenger car, a control signal that indicates a small target vehicle height value is generated in accordance with the relatively low height of the passenger car. If the other car model is a freight car, a comparison of the freight car A control signal for instructing a large target vehicle height value according to the target vehicle height is generated.
[0040]
The suspension control ECU 20 operates the vehicle height adjustment suspension mechanism 22 in response to the control signal generated as described above, and realizes the target vehicle height value indicated by the control signal. At this time, if the collision mode is rear-end collision by another vehicle behind the suspension, the suspension control ECU 20 operates the vehicle height adjusting suspension mechanism 22 so that the vehicle height at the rear portion of the own vehicle becomes the target vehicle height value. In this case, the target vehicle height value may be a value such that the height of the rear bumper of the own vehicle matches the height of the front bumper of the rear other vehicle. The target vehicle height value may be a calculated value derived from the image recognition result of the front bumper of the rear other vehicle, or a predetermined value according to the vehicle type, or the height of the front bumper of the rear other vehicle obtained by inter-vehicle communication. It may be determined based on the information (specific value) indicating the degree.
[0041]
On the other hand, when the collision mode is a side collision caused by a side other vehicle, the suspension control ECU 20 sets the vehicle height adjustment suspension so that the vehicle height on the collision side of the own vehicle (the side other vehicle side) becomes the target vehicle height value. Actuate mechanism 22. Also in this case, the target vehicle height value may be a value such that the height of the locker portion of the own vehicle matches the height of the front bumper of the other vehicle behind. Similarly, the target vehicle height value may be a calculated value obtained from the image recognition result, or a predetermined value corresponding to the vehicle type, or information indicating the height of the front bumper of the rear other vehicle obtained by inter-vehicle communication. It may be determined based on (specific value).
[0042]
In addition, the information regarding the collision mode may be superimposed on the control signal, and in this case, the suspension control ECU 20 may recognize the target vehicle height value and the collision mode based on the control signal. Or the control command generation part 16 may generate | occur | produce the control signal according to a collision form and a vehicle type.
[0043]
According to the present embodiment, as described above, when the collision mode is rear-end collision by a rear other vehicle, the vehicle height at the rear of the vehicle body is raised, so that the same effect as in the first embodiment can be obtained. That is, by bringing the occupant's head closer to the headrest, the occupant's head can be restrained more quickly, and the occupant restraint performance is improved. At this time, the vehicle height at the front of the vehicle body may be adjusted according to the target vehicle height value of the vehicle height at the rear of the vehicle body so that the head of the occupant contacts the headrest.
[0044]
Furthermore, according to the present embodiment, as described above, the height of the rear bumper of the own vehicle is matched to the height of the front bumper of the other vehicle behind, so that efficient energy absorption is realized at the time of collision, and passenger protection is improved. improves.
[0045]
Further, according to the present embodiment, as described above, when the collision mode is a side collision caused by a side other vehicle, the vehicle height on the side of the vehicle body that is subjected to the collision is raised. Similar effects can be obtained. That is, by bringing the occupant closer to the door trim, the occupant can be restrained earlier, and the occupant restraint performance is improved. At this time, the vehicle height on the opposite side of the vehicle body may be adjusted according to the target vehicle height value of the vehicle height on the side of the vehicle body on the collision side so that the occupant approaches the door trim.
[0046]
Furthermore, according to the present embodiment, as described above, the height of the loker portion of the own vehicle is matched with the height of the front bumper of the other vehicle behind, so that efficient energy absorption is realized at the time of collision and passenger protection is improved. improves.
[0047]
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
[0048]
For example, in the first embodiment and the fourth embodiment described above, it is also effective to actively move the headrest toward the passenger's head with a motor or the like in conjunction with or in place of the vehicle attitude control. For example, when the headrest drive control is executed instead of the above-described vehicle attitude control, the headrest drive amount may be set so that the head of the occupant contacts the headrest as described above. Further, for example, when the headrest control is performed together with the above-described vehicle attitude control, in the above-described fourth embodiment, when the target vehicle height value of the vehicle body side portion is not sufficient, the head of the occupant becomes the headrest. You may drive a headrest actively so that it may touch.
[0049]
【The invention's effect】
Since the present invention is as described above, the occupant restraint on the vehicle at the time of a collision can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a vehicle collision control apparatus according to the present invention.
FIG. 2 is a flowchart showing the operation of the vehicle collision control apparatus 10 according to the first embodiment.
FIG. 3 is a diagram schematically showing a monitoring area behind a host vehicle by a rear monitoring radar.
FIG. 4A shows a vehicle body posture before control according to the present invention, and FIG. 4B shows a vehicle body posture after control according to the present invention.
FIG. 5 (A) shows the relationship between the occupant and the seat before the control according to the present invention, and FIG. 5 (B) shows the relationship between the occupant and the seat after the control according to the present invention. .
6 is a diagram schematically showing an example of a vehicle height adjustment suspension mechanism 22. FIG.
FIG. 7 is a flowchart showing the operation of the vehicle collision control apparatus 10 according to the second embodiment.
FIG. 8 is a diagram schematically showing a monitoring area behind a vehicle by a side monitoring radar.
FIG. 9 is a view showing a vehicle body posture after control according to the present invention.
FIG. 10 (A) shows the relationship between the occupant before the control according to the present invention and the door trim, and FIG. 10 (B) shows the relationship between the occupant after the control according to the present invention and the door trim. .
FIG. 11 is a graph showing the relationship between chest movement (S) and chest load (F).
FIG. 12 is an explanatory diagram of camber angle control according to the present invention.
13 is a perspective view around a suspension showing an example of a camber angle adjusting mechanism 30. FIG.
FIG. 14 is a diagram showing a vehicle body posture after control according to a combination example of the second example and the third example.
FIG. 15 is a diagram showing a vehicle type number portion of a license plate.
FIG. 16 is a table showing a correspondence table between vehicle type numbers and vehicle types.
FIG. 17 is a correspondence table showing a vehicle height control example according to the vehicle type.
[Explanation of symbols]
10 Vehicle collision control device
12 Pre-crash ECU
14 Collision unavoidable judgment part
16 Control command generator
18 Vehicle type identification part
20 Suspension control ECU
22 Vehicle height adjustment suspension mechanism
30 Camber angle adjustment mechanism

Claims (6)

自車両に相対的に近づく対象物を検出する対象物検出手段と、
検出した対象物と自車両との衝突を回避できるか否かを判定する衝突不可避判定手段と、
衝突が回避できないと判定した場合に、乗員よりも衝突側にある車両構成部材に乗員が近づく方向に自車両の車体姿勢を制御する車体姿勢制御手段とを含むことを特徴とする、車両用衝突制御装置。
An object detection means for detecting an object relatively approaching the host vehicle;
A collision inevitable determination means for determining whether or not a collision between the detected object and the host vehicle can be avoided;
Vehicle collision control means for controlling the vehicle body posture of the host vehicle in a direction in which the occupant approaches the vehicle component on the collision side of the occupant when it is determined that the collision cannot be avoided. Control device.
前記衝突側は自車両後方であり、前記車体姿勢制御手段は、車体後部を車体前部に対して相対的に上げる、請求項1記載の車両用衝突制御装置。The vehicle collision control device according to claim 1, wherein the collision side is a rear side of the host vehicle, and the vehicle body attitude control means raises the rear portion of the vehicle body relative to the front portion of the vehicle body. 前記車体姿勢制御手段は、乗員後方のヘッドレストに乗員の頭部が近づくように車体姿勢を制御する、請求項2記載の車両用衝突制御装置。3. The vehicle collision control apparatus according to claim 2, wherein the vehicle body posture control means controls the vehicle body posture so that the head of the passenger approaches the headrest behind the passenger. 前記衝突側は自車両側方であり、前記車体姿勢制御手段は、衝突側の車体側部を反対側の側部に対して相対的に上げる、請求項1記載の車両用衝突制御装置。The vehicle collision control device according to claim 1, wherein the collision side is a side of the host vehicle, and the vehicle body attitude control means raises the vehicle body side portion on the collision side relative to the side portion on the opposite side. 前記車体姿勢制御手段は、更に、前記反対側の前後輪に対して、車輪の上方が前記衝突側に傾く方向にキャンバー角を変化させる、請求項4記載の車両用衝突制御装置。5. The vehicle collision control device according to claim 4, wherein the vehicle body attitude control unit further changes a camber angle in a direction in which an upper portion of the wheel is inclined toward the collision side with respect to the opposite front and rear wheels. 前記検出した対象物の種別を識別する対象物識別手段を更に含み、前記車体姿勢制御手段は、対象物識別手段が識別した対象物種別に応じて前記車体姿勢制御を実行する、請求項1乃至5の何れかに記載の車両用衝突制御装置。The vehicle body posture control unit further includes a target object identification unit that identifies the type of the detected target object, and the vehicle body posture control unit executes the vehicle body posture control according to the target object type identified by the target object identification unit. The vehicle collision control device according to claim 5.
JP2003203815A 2003-07-30 2003-07-30 Collision control device for vehicle Pending JP2005047316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203815A JP2005047316A (en) 2003-07-30 2003-07-30 Collision control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203815A JP2005047316A (en) 2003-07-30 2003-07-30 Collision control device for vehicle

Publications (1)

Publication Number Publication Date
JP2005047316A true JP2005047316A (en) 2005-02-24

Family

ID=34263034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203815A Pending JP2005047316A (en) 2003-07-30 2003-07-30 Collision control device for vehicle

Country Status (1)

Country Link
JP (1) JP2005047316A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236030A (en) * 2005-02-25 2006-09-07 Alpine Electronics Inc Danger information communication system, danger information transmitting device, danger information receiving device and danger information notification method
JP2006303985A (en) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd Predictive course display device and method
JP2009501655A (en) * 2005-07-16 2009-01-22 ダイムラー・アクチェンゲゼルシャフト Vehicle with transponder
EP2095979A1 (en) * 2006-12-22 2009-09-02 Equos Research Co., Ltd. Controller for vehicle
JP2009223797A (en) * 2008-03-18 2009-10-01 Denso Corp Obstacle detector
JP2013097807A (en) * 2011-11-01 2013-05-20 Visteon Global Technologies Inc Vehicle collision avoidance and mitigation system
WO2016058060A1 (en) * 2014-10-14 2016-04-21 Reybrouck Consulting & Innovation Bvba Wheel suspension
EP2819913A4 (en) * 2012-02-27 2017-01-18 Lit Motors Corporation Vehicle control system
CN109895768A (en) * 2017-12-11 2019-06-18 现代自动车株式会社 Vehicle and its control method
WO2022171452A1 (en) * 2021-02-10 2022-08-18 Mercedes-Benz Group AG Method and device for protecting an occupant of a vehicle
CN116022081A (en) * 2023-01-05 2023-04-28 中国第一汽车股份有限公司 Anti-collision control method and device, vehicle and storage medium
CN117657133A (en) * 2023-02-20 2024-03-08 比亚迪股份有限公司 Vehicle safety control method, device and system and vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236030A (en) * 2005-02-25 2006-09-07 Alpine Electronics Inc Danger information communication system, danger information transmitting device, danger information receiving device and danger information notification method
JP4570478B2 (en) * 2005-02-25 2010-10-27 アルパイン株式会社 Danger information communication system, danger information transmission device, danger information reception device, and danger information notification method
JP2006303985A (en) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd Predictive course display device and method
JP4677820B2 (en) * 2005-04-21 2011-04-27 日産自動車株式会社 Predicted course display device and predicted course display method
JP2009501655A (en) * 2005-07-16 2009-01-22 ダイムラー・アクチェンゲゼルシャフト Vehicle with transponder
EP2441605A3 (en) * 2006-12-22 2012-05-02 Equos Research Co., Ltd. Vehicle control device
EP2095979A1 (en) * 2006-12-22 2009-09-02 Equos Research Co., Ltd. Controller for vehicle
EP2095979A4 (en) * 2006-12-22 2010-04-07 Equos Res Co Ltd Controller for vehicle
US8170792B2 (en) 2006-12-22 2012-05-01 Equos Research Co., Ltd. Vehicle control device
US8180561B2 (en) 2008-03-18 2012-05-15 Denso Corporation Vehicle-installation obstacle detection apparatus
JP2009223797A (en) * 2008-03-18 2009-10-01 Denso Corp Obstacle detector
JP2013097807A (en) * 2011-11-01 2013-05-20 Visteon Global Technologies Inc Vehicle collision avoidance and mitigation system
EP2819913A4 (en) * 2012-02-27 2017-01-18 Lit Motors Corporation Vehicle control system
WO2016058060A1 (en) * 2014-10-14 2016-04-21 Reybrouck Consulting & Innovation Bvba Wheel suspension
BE1022561B1 (en) * 2014-10-14 2016-06-02 Reybrouck Consulting & Innovation Bvba Wheel suspension
US10518600B2 (en) 2014-10-14 2019-12-31 Reybrouck Consulting & Innovation Bvba Wheel suspension
KR20190068948A (en) * 2017-12-11 2019-06-19 현대자동차주식회사 Vehicle and method of controlling the same
CN109895768A (en) * 2017-12-11 2019-06-18 现代自动车株式会社 Vehicle and its control method
KR102485394B1 (en) * 2017-12-11 2023-01-05 현대자동차주식회사 Vehicle and method of controlling the same
CN109895768B (en) * 2017-12-11 2023-06-02 现代自动车株式会社 Vehicle and control method thereof
WO2022171452A1 (en) * 2021-02-10 2022-08-18 Mercedes-Benz Group AG Method and device for protecting an occupant of a vehicle
CN116022081A (en) * 2023-01-05 2023-04-28 中国第一汽车股份有限公司 Anti-collision control method and device, vehicle and storage medium
CN117657133A (en) * 2023-02-20 2024-03-08 比亚迪股份有限公司 Vehicle safety control method, device and system and vehicle

Similar Documents

Publication Publication Date Title
US11242022B2 (en) Pedestrian protecting device for vehicle and vehicle including same
US7206678B2 (en) Motor vehicle with a pre-safe-system
EP1718491B1 (en) Running support system for vehicle
JP3738575B2 (en) Vehicle collision control device
US7138938B1 (en) System and method for preemptively sensing an object and selectively operating both a collision countermeasure system and a parking assistance system aboard an automotive vehicle
EP3341247B1 (en) Independent vehicle ride height adjustment
US11040693B2 (en) Vehicular protection device and vehicle
US6477466B1 (en) Device for adjusting the height positioning of the body of a vehicle
JP2005047316A (en) Collision control device for vehicle
JP3912163B2 (en) Vehicle collision prevention system
JP2008518830A (en) A system for detecting the impending collision and adjusting the deployment of the safety device
CN112009412A (en) Collision prediction determination device and traffic weak person protection system
JP2008514496A (en) Drive control method for occupant protection means and drive control device for occupant protection means
JP2007062447A (en) Vehicle attitude control device for side collision
KR20190097705A (en) Vehicle and method for controlling the same
JP2006298105A (en) Operation control device for occupant protection device
JP4862499B2 (en) Movable bumper device for vehicles
JP4501521B2 (en) Vehicle collision impact control device
JP2005335586A (en) Occupant protection device for vehicle
JPH0446814A (en) Height adjustment device
JP4851800B2 (en) Vehicle collision control device
JP4305191B2 (en) Vehicle collision estimation device
JP2010241277A (en) Pedestrian protection device
JP2007296941A (en) Pedestrian protection device
KR102591195B1 (en) Vehicle and method for controlling thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208