JP2005046736A - Wastewater treating system and wastewater treating method - Google Patents

Wastewater treating system and wastewater treating method Download PDF

Info

Publication number
JP2005046736A
JP2005046736A JP2003281697A JP2003281697A JP2005046736A JP 2005046736 A JP2005046736 A JP 2005046736A JP 2003281697 A JP2003281697 A JP 2003281697A JP 2003281697 A JP2003281697 A JP 2003281697A JP 2005046736 A JP2005046736 A JP 2005046736A
Authority
JP
Japan
Prior art keywords
wastewater
aerobic
water
waste water
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003281697A
Other languages
Japanese (ja)
Inventor
Wataru Takatsuji
渉 高辻
Yukihiro Sakai
幸宏 阪井
Hidemasa Yamagiwa
秀誠 山際
Motonobu Nakaoka
元信 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2003281697A priority Critical patent/JP2005046736A/en
Publication of JP2005046736A publication Critical patent/JP2005046736A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treating technique, which makes it possible to carry out treatments of organic matter removal, nitrification, and denitrification certainly on wastewater containing a large quantity of oil, paste, a surfactant, or the like, and to reduce waste sludge produced at a wastewater processing facility. <P>SOLUTION: The wastewater treating system 1A comprises a first aerobic treating tank 30 in which original wastewater 4 is treated aerobically, a water supply means 26 which supplies wastewater 35 treated aerobically in the primary aerobic treating tank 30 and containing at least a nitrogen compound and a hydrogen donor, wastewater treating units 2(a), 2(b), 2(c), 2(d), etc., each provided with a container into which the wastewater 35 is directly fed by the water supply means 26 and which is partially or entirely water permeable, and is made of an immobilizing bed material capable of immobilizing aerobic bacteria and anaerobic bacteria, and a secondary aerobic treating tank 1 holding wastewater 7 in which wastewater treating units 2(a), 2(b), 2(c), 2(d), etc., are dipped. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生物学的な排水処理に用いられ、特に多量の油分、界面活性剤、糊分などを含有する排水から有機物および窒素を除去する排水処理装置および当該排水処理装置を用いた排水処理方法に関する。   The present invention is used in biological wastewater treatment, and in particular, wastewater treatment equipment for removing organic matter and nitrogen from wastewater containing a large amount of oil, surfactant, glue, etc., and wastewater treatment using the wastewater treatment equipment Regarding the method.

染色工場などは尿素を大量に使用するため、その排水には有機態窒素(尿素など)が大量に含まれていることが多い。従来、これらの有機態窒素はアンモニアに変換された後、塩素注入法により物理化学的に除去されていた。しかし、有害物質である塩素の使用が問題視されている中、塩素注入法に替わって生物処理法が見直されて来た。前記の生物処理法において、尿素由来の有機態窒素は、排水中に酸素含有ガス(空気など)を噴き出して被酸化物を酸化分解する、いわゆる好気処理によりアンモニア態窒素さらには酸化態窒素(硝酸または亜硝酸)へと変換され、酸素を遮断した雰囲気に排水を曝す、いわゆる嫌気処理により酸化態窒素から窒素ガスへと変換される。このように、通常は2工程以上の処理が必要となる。そのため、専ら好気方式による生物処理を行っている大半の工場では、窒素除去のために新たな嫌気式設備の増設が必要となる。また、染色排水には、ターペン類などの油分、ポリビニルアルコール、アルギン酸ナトリウム、カルボキシメチルセルロース(CMC)などの糊分、および界面活性剤といった染色特有成分が多量に存在しており、これらが生物処理に大きな負担となっている。そのため、凝集沈殿法や加圧浮上法によって前記の染色特有成分を除去しているが、その際に多量の余剰汚泥が発生する。   Since dyeing factories use a large amount of urea, the waste water often contains a large amount of organic nitrogen (such as urea). Conventionally, these organic nitrogens were converted into ammonia and then removed physicochemically by a chlorine injection method. However, while the use of chlorine, which is a harmful substance, is regarded as a problem, the biological treatment method has been reviewed in place of the chlorine injection method. In the above-described biological treatment method, urea-derived organic nitrogen is produced by injecting oxygen-containing gas (such as air) into the waste water to oxidatively decompose the oxide. Nitric acid or nitrous acid) is converted from oxidized nitrogen to nitrogen gas by so-called anaerobic treatment in which wastewater is exposed to an atmosphere in which oxygen is blocked. As described above, processing of two or more steps is usually required. For this reason, most factories that exclusively perform aerobic biological treatment require additional anaerobic equipment to remove nitrogen. In addition, dyeing wastewater contains a large amount of oily components such as turpens, paste components such as polyvinyl alcohol, sodium alginate, carboxymethylcellulose (CMC), and surfactants, and these are used for biological treatment. It is a big burden. Therefore, although the dyeing specific components are removed by the coagulation sedimentation method or the pressure flotation method, a large amount of excess sludge is generated at that time.

上記したように、油分、糊分、および界面活性剤などを多量に含有する排水から有機物および窒素を除去するためには、凝集沈殿法や加圧浮上法による油分、糊分、および界面活性剤などの低減・除去と、好気処理および嫌気処理を組み合わせた生物処理とを実施しなければならない。そのためには、排水処理施設の設置スペースの増大と経済的な負担が課せられる。また、前記した処理方式では多量の余剰汚泥も発生するため、産業廃棄物処理も大きな問題となる。   As described above, in order to remove organic matter and nitrogen from wastewater containing a large amount of oil, glue, and surfactant, oil, glue, and surfactant by the coagulation sedimentation method and pressure flotation method are used. Etc. and biological treatment that combines aerobic treatment and anaerobic treatment must be carried out. For this purpose, an increase in the installation space of the wastewater treatment facility and an economic burden are imposed. Moreover, since a large amount of excess sludge is generated in the above-described treatment method, industrial waste treatment becomes a big problem.

ところで、本発明者等は排水中に含まれる窒素化合物を硝化、脱窒処理して除去する技術を開発し、下記の特許文献1に開示している。かかる排水処理装置を図10に示す。図示の排水処理装置は、排水処理ユニット2(2(a),2(b),2(c))と、排水処理ユニット2を排水7中に浸漬配備した好気処理槽3Aとを備えている。排水処理ユニット2は、透水自由で、かつ、好気性菌および嫌気性菌を固定化可能な固定床材料を有する容器体で構成されている。容器体内の容器内空間23には、送水ポンプ6から送水管路5を経て送り出された原排水4が供給される。好気処理槽3Aの底部には圧縮機9からの酸素含有ガス8を曝気する散気管10が配備されている。この排水処理装置によれば、排水を排水処理ユニット2で硝化・脱窒処理することにより、有機物や窒素を除去した排水11が得られるようになっている。余剰汚泥はほとんど発生しない。
特開2002−331298号公報 しかしながら、前記した染色排水のように油分、糊分、界面活性剤などを多く含んでいると、排水処理ユニット2の容器体の固定床材料に油分などが付着して目詰まりし、硝化菌が生息できなくなる。そのため、折角の硝化、脱窒処理機能を発揮できないことがあった。
By the way, the present inventors have developed a technique for removing nitrogen compounds contained in waste water by nitrification and denitrification treatment, and disclosed in Patent Document 1 below. Such a waste water treatment apparatus is shown in FIG. The illustrated waste water treatment apparatus includes a waste water treatment unit 2 (2 (a), 2 (b), 2 (c)) and an aerobic treatment tank 3A in which the waste water treatment unit 2 is immersed and disposed in the waste water 7. Yes. The waste water treatment unit 2 is composed of a container body that has a fixed bed material that is water-permeable and can fix aerobic bacteria and anaerobic bacteria. The raw waste water 4 sent from the water pump 6 through the water supply line 5 is supplied to the container internal space 23. At the bottom of the aerobic treatment tank 3A, an air diffuser 10 for aeration of the oxygen-containing gas 8 from the compressor 9 is provided. According to this waste water treatment apparatus, waste water 11 from which organic substances and nitrogen have been removed can be obtained by nitrifying and denitrifying the waste water with the waste water treatment unit 2. Almost no excess sludge is generated.
JP, 2002-331298, A However, if oil content, paste content, surfactant, etc. are contained much like the above-mentioned dyeing drainage, oil content etc. will adhere to the fixed floor material of the container of drainage processing unit 2. It becomes clogged and nitrifying bacteria cannot live. For this reason, the function of turning nitrification and denitrification may not be exhibited.

本発明は、上記の課題を鑑みてなされたものであって、既存の好気処理槽だけでは処理できない多量の油分、糊分、界面活性剤などを含む排水に対しても、有機物除去と、硝化、脱窒処理を確実に行うことができ、排水処理施設から発生する余剰汚泥も減らすことのできる排水処理技術の提供を目的とする。   The present invention has been made in view of the above problems, and even for wastewater containing a large amount of oil, paste, surfactant, etc. that cannot be treated only with an existing aerobic treatment tank, organic matter removal, The purpose is to provide wastewater treatment technology that can reliably perform nitrification and denitrification treatment, and reduce excess sludge generated from wastewater treatment facilities.

上記目的を達成するために、本発明に係る排水処理装置は、原排水を好気処理する1次好気処理槽と、1次好気処理槽で好気処理されて少なくとも窒素化合物および水素供与体を含有する排水を送水する送水手段と、送水手段により送水された排水が直接供給される容器体を有するとともに該容器体の一部または全体が透水自由で、かつ、好気性菌および嫌気性菌を固定化可能な固定床材料で構成されている排水処理ユニットと、排水処理ユニットを槽内の排水中に浸漬配備した2次好気処理槽と、を備えて成る構成にしてある。   In order to achieve the above object, a wastewater treatment apparatus according to the present invention includes a primary aerobic treatment tank for aerobic treatment of raw wastewater, and aerobic treatment in the primary aerobic treatment tank to provide at least a nitrogen compound and hydrogen. A water supply means for supplying wastewater containing the body, and a container body to which the wastewater supplied by the water supply means is directly supplied, and a part or the whole of the container body is water-permeable, and aerobic bacteria and anaerobic A waste water treatment unit composed of a fixed bed material capable of immobilizing bacteria and a secondary aerobic treatment tank in which the waste water treatment unit is immersed in the waste water in the tank are provided.

また、本発明に係る排水処理方法は、原排水を1次好気処理槽で好気処理する工程と、一部または全体が透水自由で、かつ、好気性菌および嫌気性菌を固定化可能な固定床材料で構成された容器体を有するとともに2次好気処理槽内の排水中に浸漬配備された排水処理ユニットの、前記容器体内に、1次好気処理槽で好気処理されて少なくとも窒素化合物および水素供与体を含有する排水を直接供給する工程とを備えることにより、排水処理ユニットの固定床材料の外面側に好気性菌が固定化され、好気性菌によって2次好気処理槽内の排水が硝化処理され、硝化処理された排水が固定床材料を透過して容器体内に流入するとき、前記好気性菌の固定化に伴って固定床材料の内面側に固定化されている嫌気性菌により、前記容器体内に流入する排水が脱窒処理される方法である。   Moreover, the wastewater treatment method according to the present invention includes a step of aerobic treatment of raw wastewater in a primary aerobic treatment tank, a part or the whole of which is freely permeable, and can fix aerobic bacteria and anaerobic bacteria. Of a wastewater treatment unit that has a container body made of a fixed bed material and is immersed in the wastewater in the secondary aerobic treatment tank, and is aerobically treated in the primary aerobic treatment tank in the container body. An aerobic bacterium is immobilized on the outer surface side of the fixed bed material of the waste water treatment unit, and a secondary aerobic treatment is performed by the aerobic bacterium. When the wastewater in the tank is nitrified and the nitrified wastewater passes through the fixed bed material and flows into the container body, it is immobilized on the inner surface side of the fixed bed material along with the fixation of the aerobic bacteria. Flows into the container due to anaerobic bacteria Drainage is a method to be denitrified.

本発明によれば、油分、糊分、界面活性剤などを多量に含有する原排水が1次好気処理槽で酸素含有ガスの曝気による好気処理工程を施されることにより、油分、糊分、界面活性剤などが分解により低分子化して排水中に可溶化または溶解したり、あるいは浮上分離して除去される。従って、1次好気処理槽で好気処理した排水を送水手段により排水処理ユニットに送水しても排水処理ユニットの固定床材料に悪影響を及ぼさない。そのうえ、1次好気処理槽で好気処理した排水には窒素化合物および水素供与体が残存しており、この排水が排水処理ユニットの容器体内に直接供給されるために、排水に対し硝化処理と脱窒処理を効率よく施すことができる。また、1次好気処理槽および2次好気処理槽の全体で、有機物も効率よく除去される。そして、既存の好気処理槽(2次好気処理槽)および排水処理ユニットの組合せ構成に対し、簡素な1次好気処理槽と送水手段を設けるだけなので、設置費用や設置スペースが少なくて済む。更には、好気処理槽中の活性汚泥が固定床材料に固定化されるため、余剰汚泥の発生が極端に少なくなり産業廃棄物の減量を図ることができる。   According to the present invention, the raw waste water containing a large amount of oil, glue, surfactant and the like is subjected to an aerobic treatment step by aeration of oxygen-containing gas in the primary aerobic treatment tank, whereby oil, glue, Minerals, surfactants, etc. are reduced in molecular weight by decomposition and solubilized or dissolved in wastewater, or floated and removed. Therefore, even if the wastewater aerobically treated in the primary aerobic treatment tank is fed to the wastewater treatment unit by the water feeding means, the fixed floor material of the wastewater treatment unit is not adversely affected. In addition, nitrogen compounds and hydrogen donors remain in the wastewater that has been aerobically treated in the primary aerobic treatment tank, and since this wastewater is supplied directly into the container of the wastewater treatment unit, the wastewater is nitrified. And denitrification treatment can be performed efficiently. Moreover, organic substances are also efficiently removed in the entire primary aerobic treatment tank and the secondary aerobic treatment tank. And since only a simple primary aerobic treatment tank and water supply means are provided for the combined configuration of the existing aerobic treatment tank (secondary aerobic treatment tank) and the wastewater treatment unit, installation cost and installation space are small. That's it. Furthermore, since the activated sludge in the aerobic treatment tank is fixed to the fixed bed material, the generation of excess sludge is extremely reduced, and the amount of industrial waste can be reduced.

本発明の最良の実施形態を図面に基づいて説明する。尚、以下に述べる実施形態は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。ここに、図1は本発明の一実施形態に係る排水処理装置を示す概略構成図である。
図において、本実施形態の排水処理装置1Aは、原排水4を送水する送水ポンプ33と、送水ポンプ33により送水管路34を介して供給された原排水4を好気処理する1次好気処理槽30と、1次好気処理槽30で好気処理された排水35を送水する送水手段26と、送水手段26により送水された排水35が直接供給される複数基の排水処理ユニット2(2(a),2(b),2(c),2(d),・・・)と、これらの排水処理ユニット2を槽内の排水7中に浸漬配備した2次好気処理槽1とを備えている。前記の1次好気処理槽30と2次好気処理槽1は、上面が開口した一体槽3内を仕切壁38で区画することによりそれぞれ形成されている。
The best embodiment of the present invention will be described with reference to the drawings. The embodiment described below is merely an example embodying the present invention, and does not limit the technical scope of the present invention. FIG. 1 is a schematic configuration diagram showing a waste water treatment apparatus according to an embodiment of the present invention.
In the figure, the wastewater treatment apparatus 1A of the present embodiment is a primary aerobic that aerobically treats a water pump 33 that feeds the raw waste water 4 and the raw waste water 4 that is supplied by the water pump 33 via the water feed pipe 34. A treatment tank 30, a water feeding means 26 for feeding the waste water 35 aerobically treated in the primary aerobic treatment tank 30, and a plurality of waste water treatment units 2 (directly supplied with the waste water 35 fed by the water feeding means 26 ( 2 (a), 2 (b), 2 (c), 2 (d),...), And a secondary aerobic treatment tank 1 in which these waste water treatment units 2 are immersed in the waste water 7 in the tank. And. The primary aerobic treatment tank 30 and the secondary aerobic treatment tank 1 are formed by dividing the interior of the integrated tank 3 whose upper surface is opened by a partition wall 38, respectively.

そして、一体槽3の1次好気処理槽30側の槽壁31には、水から分離して水面に浮いた浮遊物39を取り出すための取出管路40が接続されている。一体槽3の2次好気処理槽1側の槽壁37に処理水11を排出するための取出管路41が接続されている。また、1次好気処理槽30内の底部に散気管32が配備され、2次好気処理槽1内の底部に散気管10が配備されている。これらの散気管32と散気管10には圧縮機9が配管接続されており、圧縮機9の駆動により酸素含有ガス8が散気管32と散気管10から放出される。酸素含有ガス8としては、酸素を含むガスであれば特に限定されないが、例えば安全で入手自由な空気そのもの、あるいは酸素濃度を高めた窒素混合ガスその他が挙げられる。前記の送水手段26は、排水35を送る送水ポンプ6と、一端が1次好気処理槽30内の下部位置に開口し他端が送水ポンプ6の吸込口に接続された吸込管路36と、一端が送水ポンプ6の吐出口に接続され他端が複数に分岐して各排水処理ユニット2内に直に開口している送水管路5とから構成される。   The tank wall 31 on the side of the primary aerobic treatment tank 30 of the integrated tank 3 is connected with a take-out conduit 40 for taking out the suspended matter 39 separated from the water and floating on the water surface. An extraction conduit 41 for discharging the treated water 11 is connected to the tank wall 37 on the secondary aerobic treatment tank 1 side of the integrated tank 3. In addition, an air diffuser 32 is provided at the bottom of the primary aerobic treatment tank 30, and an air diffuser 10 is provided at the bottom of the secondary aerobic treatment tank 1. A compressor 9 is connected to the air diffuser 32 and the air diffuser 10, and the oxygen-containing gas 8 is released from the air diffuser 32 and the air diffuser 10 by driving the compressor 9. The oxygen-containing gas 8 is not particularly limited as long as it contains oxygen. For example, safe and freely available air itself, or a nitrogen mixed gas with an increased oxygen concentration, or the like can be used. The water supply means 26 includes a water supply pump 6 for sending the drainage 35, a suction pipe 36 having one end opened at a lower position in the primary aerobic treatment tank 30 and the other end connected to a suction port of the water supply pump 6. , One end is connected to the discharge port of the water supply pump 6, and the other end is branched into a plurality of water supply pipes 5 that open directly into each waste water treatment unit 2.

前記の排水処理ユニット2は、図2および図3に示すように、上面が開口した正面視凹字形状で適当な前後幅を有する容器フレーム15を基に構成される。容器フレーム15の前後両面には、容器フレーム15に近い側から順に、通水開口16を有するシートパッキン17と、通水開口18を有する保持枠19と、透水自由な固定床材料20と、通水開口21を有する保持枠22とがそれぞれ重ねられボルト27などで固定される。これにより、上面が開口し容器内空間23を有する容器体14が完成する。すなわち、この排水処理ユニット2では、容器体14の一部に固定床材料20が使用されている。   As shown in FIGS. 2 and 3, the waste water treatment unit 2 is configured based on a container frame 15 having a concave shape in front view and having an appropriate front-rear width. On both the front and rear surfaces of the container frame 15, in order from the side close to the container frame 15, a sheet packing 17 having a water passage opening 16, a holding frame 19 having a water passage opening 18, a water-permeable fixed floor material 20, and a passage. The holding frames 22 having the water openings 21 are overlapped and fixed with bolts 27 or the like. As a result, the container body 14 having the upper surface opened and having the container inner space 23 is completed. That is, in the waste water treatment unit 2, the fixed floor material 20 is used for a part of the container body 14.

尚、本発明で用いる排水処理ユニット2は、固定床材料20で囲まれた空間部分を物理的に作り出せるものであり、かつ、2次好気処理槽1内の排水7が固定床材料20を透過しなければユニット内外を移動することができないという形式のものであればよい。排水処理ユニット2の容器体14はこの実施形態のような開放型でも、あるいは密閉型でも構わない。
排水処理ユニット2を構成する固定床材料20としては、例えば不織布、編成された布、あるいはシート状に加工されたものなどが挙げられるが、水が自由に透過でき、好気性菌および嫌気性菌を固定化可能な素材であれば特に限定されない。かかる固定床材料20は空気も透過自由であるが、該空気中の酸素は固定床材料外面側の好気性菌により消費されるため、容器体14内にはほとんど入らない。
In addition, the waste water treatment unit 2 used in the present invention can physically create a space portion surrounded by the fixed floor material 20, and the waste water 7 in the secondary aerobic treatment tank 1 converts the fixed floor material 20. It may be of a type that cannot move inside and outside the unit unless it passes through. The container body 14 of the waste water treatment unit 2 may be an open type as in this embodiment or a sealed type.
Examples of the fixed floor material 20 constituting the waste water treatment unit 2 include non-woven fabrics, knitted fabrics, or those processed into a sheet shape, but water can freely pass through, and aerobic bacteria and anaerobic bacteria. If it is the material which can fix | immobilize, it will not specifically limit. Although the fixed bed material 20 is also permeable to air, oxygen in the air is consumed by aerobic bacteria on the outer surface side of the fixed bed material, and therefore hardly enters the container body 14.

続いて、上述構成の排水処理装置1Aによる水処理作用を説明する。
この排水処理装置1Aで処理される原排水4は、例えば染色工場から排出されたものであり、油分、糊分、界面活性剤といった染色特有成分を多量に含んでいる。そこで、送水ポンプ33の駆動により第1好気処理槽30に供給された原排水4は、散気管32からの酸素含有ガス8により好気処理されて排水35となる。このとき、原排水4中の油分、糊分、界面活性剤などが曝気により分解される。尚、油分の含有量が多すぎて分解しきれない場合、油分は排水35から分離して水面に浮遊する。これら油分などの浮遊物39は取出管路40を設けて第1好気処理槽30外に取り出すことも可能である。このように処理された排水35中の染色特有成分はかなり少なくなっているが、これらの一部は有機物(水素供与体)および窒素化合物として残っている。
Then, the water treatment effect | action by the waste water treatment apparatus 1A of the above-mentioned structure is demonstrated.
The raw wastewater 4 to be treated by the wastewater treatment apparatus 1A is discharged from, for example, a dyeing factory and contains a large amount of dyeing-specific components such as oil, glue, and surfactant. Therefore, the raw wastewater 4 supplied to the first aerobic treatment tank 30 by driving the water pump 33 is aerobically treated with the oxygen-containing gas 8 from the diffuser pipe 32 to become the wastewater 35. At this time, oil, paste, surfactant, etc. in the raw waste water 4 are decomposed by aeration. If the oil content is too high to be decomposed, the oil component is separated from the drainage 35 and floats on the water surface. These floating substances 39 such as oil can be taken out of the first aerobic treatment tank 30 by providing a take-out conduit 40. Dyeing-specific components in the waste water 35 treated in this way are considerably reduced, but some of these remain as organic substances (hydrogen donors) and nitrogen compounds.

そして、送水ポンプ6により送水管路5から、排水処理ユニット2(a),2(b),2(c),2(d),・・・の各容器体14の上面開口から容器内空間23内へ排水35が供給される。こうして、各排水処理ユニット2における容器体14の容器内空間23に直に排水35が供給されると、排水35はいったん固定床材料20を透過して第2好気処理槽1内に流出する。このとき、排水35中の油分などは少ないので固定床材料20を目詰まりさせない。反面、含まれている油分など(水素供与体)は容器内空間23内に直に供給されて後述の脱窒処理に寄与する。固定床材料20は散気管10からの曝気により溶存酸素量が多くなった2次好気処理槽1内の排水7に囲まれている。そのため、固定床材料20の外面側は好気性菌固定化域24となり、好気性菌固定化域24に固定化された好気性菌によって周囲の排水7中の有機態窒素がアンモニア態窒素(図4中のNH3)、更には酸化態窒素(図4中のNOX)へと変化(硝化)する。このとき、好気性菌固定化域24またはその外方周囲に位置する排水7中の溶存酸素は、好気性菌による硝化処理によってほとんどが消費される。そのため、固定床材料20を透過して容器内空間23に流入する水は溶存酸素をほとんど含んでいない。すなわち、好気性菌の固定化に伴って、必然的に固定床材料20の内面側が嫌気性菌固定化域25となり、この領域に嫌気性菌が固定化される。 Then, the internal space of the container from the upper surface opening of each container body 14 of the wastewater treatment units 2 (a), 2 (b), 2 (c), 2 (d),. The drainage 35 is supplied into 23. Thus, when the drainage 35 is supplied directly into the container space 23 of the container body 14 in each wastewater treatment unit 2, the drainage 35 once permeates the fixed floor material 20 and flows out into the second aerobic treatment tank 1. . At this time, since the oil content in the waste water 35 is small, the fixed floor material 20 is not clogged. On the other hand, the contained oil or the like (hydrogen donor) is supplied directly into the container space 23 and contributes to the denitrification process described later. The fixed bed material 20 is surrounded by the waste water 7 in the secondary aerobic treatment tank 1 in which the amount of dissolved oxygen is increased by aeration from the air diffuser 10. Therefore, the outer surface side of the fixed bed material 20 becomes an aerobic bacteria immobilization area 24, and the organic nitrogen in the surrounding waste water 7 is ammonia nitrogen (see FIG. 5) by the aerobic bacteria immobilized on the aerobic bacteria immobilization area 24. 4 (NH 3 in FIG. 4), and further changes to oxidized nitrogen (NO x in FIG. 4) (nitrification). At this time, most of the dissolved oxygen in the waste water 7 located around the aerobic bacteria immobilization area 24 or the outside thereof is consumed by the nitrification treatment by the aerobic bacteria. Therefore, the water that permeates through the fixed bed material 20 and flows into the container space 23 contains almost no dissolved oxygen. That is, as the aerobic bacteria are immobilized, the inner surface side of the fixed bed material 20 inevitably becomes the anaerobic bacteria immobilization area 25, and the anaerobic bacteria are immobilized in this area.

そして、硝化処理後の排水7が容器内空間23に流入する際に、排水中の酸化態窒素は嫌気性菌固定化域25の嫌気性菌により分解されて窒素ガス(図4中のN2)に変わり槽外に放出される(脱窒)。脱窒処理された水は容器内空間23から固定床材料20を透過して第2好気処理槽1に再び流出する。このようにして硝化処理および脱窒処理を終え有機物と窒素化合物が除去された水は、処理水11として取出管路41から第2好気処理槽1外に排出されるのである。 Then, when the waste water 7 after nitrification flows into the container space 23, the oxidized nitrogen in the waste water is decomposed by anaerobic bacteria in the anaerobic bacteria immobilization area 25 and nitrogen gas (N 2 in FIG. 4). ) And discharged outside the tank (denitrification). The denitrified water passes through the fixed bed material 20 from the inner space 23 of the container and flows out again to the second aerobic treatment tank 1. Thus, the water from which the organic matter and the nitrogen compound have been removed after finishing the nitrification treatment and the denitrification treatment is discharged out of the second aerobic treatment tank 1 from the extraction pipe 41 as the treated water 11.

続いて、本発明の実施例を説明する。これに先だって、実施例に対する比較例として一般的な曝気システムを図5中の実線で示す。この曝気システムは、送水管路62から供給された原排水4が好気処理槽61内で空気曝気により好気処理されたのち、沈降槽63を経て処理水11aとして排出されるようになっている。好気処理槽61からの処理水には好気性菌が生息する汚泥も同伴して流出するため、汚泥を沈降槽63で分離し戻し管路64を介して好気処理槽61へ戻すようになっている。好気処理槽61の寸法は縦1.24m、横0.66m、高さ1.26mとした。
次に、別の比較例である固定床システムを図6中の実線で示す。この固定床システムは、実際には図5における沈降槽63と戻し配管64を省略し、好気処理槽61内に排水処理ユニット2を取り付けて構成されており処理水11bを排出する。すなわち、この固定床システムは図10の排水処理装置において原排水4を送水管路5ではなく送水管路12で好気処理槽3A側に供給する構成に相当する。
Next, examples of the present invention will be described. Prior to this, a general aeration system is shown by a solid line in FIG. 5 as a comparative example for the embodiment. In the aeration system, the raw waste water 4 supplied from the water supply pipe 62 is subjected to aerobic treatment by air aeration in the aerobic treatment tank 61, and then discharged as treated water 11a through the settling tank 63. Yes. Since the treated water from the aerobic treatment tank 61 also flows out with sludge inhabited by aerobic bacteria, the sludge is separated by the settling tank 63 and returned to the aerobic treatment tank 61 via the return pipe 64. It has become. The size of the aerobic treatment tank 61 was 1.24 m in length, 0.66 m in width, and 1.26 m in height.
Next, a fixed bed system as another comparative example is shown by a solid line in FIG. This fixed bed system is actually configured by omitting the settling tank 63 and the return pipe 64 in FIG. 5 and mounting the waste water treatment unit 2 in the aerobic treatment tank 61, and discharges the treated water 11b. That is, this fixed bed system corresponds to a configuration in which the raw waste water 4 is supplied to the aerobic treatment tank 3A side through the water supply pipe 12 instead of the water supply pipe 5 in the waste water treatment apparatus of FIG.

前記した曝気システムと固定床システムの好気処理槽61を満水にし、これらの好気処理槽61に染色工場の返送汚泥(菌体濃度(MLSS)=約8000〜10000ppm)をMLSS=5000ppmとなるように投入した。そして、1日間空気曝気を行って溶存酸素濃度(DO)で2〜3mg/Lに保持した。その後、滞留時間2日の量で原排水4を供給し、連続運転を行った。原排水4としては、染色工場から排出された排水を用いた。
運転中に原排水4と処理水11a,11bをサンプリングし、それぞれの全窒素を全窒素有機態炭素形態別窒素分析装置(触媒酸化還元方式、島津製作所製)で測定し、酸化態窒素はJIS−K−0102規定の銅・カドミウム還元N−(1−ナフチル)エチレンジアミン吸光光度法で測定した。
The aerobic treatment tank 61 of the aeration system and the fixed bed system described above is filled with water, and the returned sludge (bacterial cell concentration (MLSS) = about 8000 to 10,000 ppm) of the dyeing factory is MLSS = 5000 ppm in these aerobic treatment tank 61 I put it in. Then, air aeration was performed for one day, and the dissolved oxygen concentration (DO) was maintained at 2 to 3 mg / L. Thereafter, the raw waste water 4 was supplied in an amount of residence time of 2 days, and continuous operation was performed. As the raw waste water 4, waste water discharged from the dyeing factory was used.
During operation, raw wastewater 4 and treated waters 11a and 11b are sampled, and the total nitrogen of each is measured with a nitrogen analyzer according to total nitrogen organic carbon form (catalytic oxidation-reduction method, manufactured by Shimadzu Corporation). It was measured by a copper / cadmium reduced N- (1-naphthyl) ethylenediamine spectrophotometric method specified in -K-0102.

このようにして得られた試験結果を図7に示す。図7において、短破線Aは原排水4の全窒素(TN)濃度、長破線Bは曝気システムで得た処理水11aの全窒素(TN)濃度、実線Cは固定床システムで得た処理水11bの全窒素(TN)濃度、黒丸をつないだ実線Dは曝気システムで得た処理水11aの酸化態窒素(NOX)濃度、黒四角をつないだ実線Eは固定床システムで得た処理水11bの酸化態窒素(NOX)濃度である。
図7のグラフから明らかなように、比較例である曝気システムおよび固定床システムのいずれによっても、酸化態窒素(硝酸態窒素:NOX)がほとんど発生していないことがわかる。これは、原排水4中に多量に含まれる油分などにより槽内や排水処理ユニット2での硝化菌の生息が阻害され、最悪の場合は死滅したためである。因みに、この実験期間の全般にわたり、処理水中のアンモニア態窒素として50〜200mg/L程度が検出されている。
The test results obtained in this manner are shown in FIG. In FIG. 7, the short broken line A is the total nitrogen (TN) concentration of the raw waste water 4, the long broken line B is the total nitrogen (TN) concentration of the treated water 11a obtained by the aeration system, and the solid line C is the treated water obtained by the fixed bed system. 11b Total nitrogen (TN) concentration, solid line D connected with black circles is oxidized nitrogen (NO x ) concentration of treated water 11a obtained by the aeration system, solid line E connected with black squares is treated water obtained with the fixed bed system 11b is an oxide nitrogen (NO X) concentration.
As is apparent from the graph of FIG. 7, it can be seen that almost no oxidized nitrogen (nitrate nitrogen: NO x ) is generated by either the aeration system or the fixed bed system as the comparative example. This is because the nitrifying bacteria in the tank and the wastewater treatment unit 2 are inhibited by the oil contained in the raw wastewater 4 in a large amount, and in the worst case, the raw wastewater 4 is killed. By the way, throughout this experiment period, about 50 to 200 mg / L of ammonia nitrogen in the treated water has been detected.

その後、図5の曝気システムにおいて、好気処理槽61の前に1次好気処理槽30(図中に1点鎖線で示す。槽寸法は縦1.24m、横0.66m、高さ1.26m)を配備したシステムで原排水4を処理する。まず、送水管路34により原排水4を1次好気処理槽30に供給し、8時間、1次曝気(空気曝気量は50L/分)して得た排水35を管路36により好気処理槽61に供給し2次曝気した。好気処理槽61における排水の滞留時間は2日に設定してある。
その結果を図8に示す。図8中の記号で、白抜き丸は原排水4の全窒素濃度、黒丸(破線Lでつないである)は得られた処理水の全窒素濃度、黒三角は得られた処理水のアンモニア濃度、黒四角(実線Mでつないである)は得られた処理水の酸化態窒素濃度を示している。
Thereafter, in the aeration system of FIG. 5, the primary aerobic treatment tank 30 (shown by a one-dot chain line in the figure. The tank dimensions are 1.24 m long, 0.66 m wide, and height 1 in front of the aerobic treatment tank 61. The raw wastewater 4 is treated by the system equipped with .26m). First, the raw waste water 4 is supplied to the primary aerobic treatment tank 30 through the water supply pipe 34, and the waste water 35 obtained by the primary aeration (the air aeration amount is 50 L / min) for 8 hours is aerobic through the pipe 36. It supplied to the processing tank 61 and the secondary aeration was carried out. The residence time of the waste water in the aerobic treatment tank 61 is set to 2 days.
The result is shown in FIG. In FIG. 8, the white circle is the total nitrogen concentration of the raw waste water 4, the black circle (connected by the broken line L) is the total nitrogen concentration of the obtained treated water, and the black triangle is the ammonia concentration of the obtained treated water. , Black squares (connected by solid line M) indicate the oxidized nitrogen concentration of the treated water obtained.

図8では、実験期間を、排水処理ユニット2を用いない期間F(初日〜46日目)と、排水処理ユニット2を用いた期間I(47日目以降)とに区分している。尚、原排水4中の全窒素(白抜き丸)は日によって変動する。
まず、排水処理ユニット2を用いない期間Fにおいて、運転開始から10日目(期間G)頃までは硝化菌の定着が少ないことから、硝化反応がほとんど起こらず(酸化態窒素(黒四角)が0近傍)、アンモニア(黒三角)が多量に生じている。そして、10日程度で硝化菌が一定以上まで増殖し、10日目以降(期間H)においては、好気処理槽61中での硝化反応の促進により、排水中の窒素化合物がアンモニアを通り越して(黒三角が0mg/L近傍)酸化態窒素(黒四角)になっている。かかる酸化態窒素は150mg/L程度で安定に生成している。また、1次好気処理槽30で予め曝気したことにより、処理水中のヘキサン抽出物濃度も原排水4の150mg/Lから30mg/Lに下がっており、油分が除去されていることが確認されている。
In FIG. 8, the experiment period is divided into a period F (first day to 46th day) in which the wastewater treatment unit 2 is not used and a period I (from the 47th day) in which the wastewater treatment unit 2 is used. In addition, the total nitrogen (open circle) in the raw waste water 4 varies depending on the day.
First, in the period F in which the waste water treatment unit 2 is not used, since nitrifying bacteria are rarely settled from the start of operation until around the 10th day (period G), the nitrification reaction hardly occurs (oxidized nitrogen (black square)). A large amount of ammonia (black triangle). In about 10 days, the nitrifying bacteria grow to a certain level or more, and from the 10th day (period H), the nitrification reaction in the aerobic treatment tank 61 is accelerated so that the nitrogen compounds in the wastewater pass through the ammonia. (Black triangle is near 0 mg / L) It is oxidized nitrogen (black square). Such oxidized nitrogen is stably produced at about 150 mg / L. In addition, as a result of aeration in the primary aerobic treatment tank 30 in advance, the concentration of hexane extract in the treated water also decreased from 150 mg / L of the raw waste water 4 to 30 mg / L, and it was confirmed that the oil was removed. ing.

次に、排水処理ユニット2を用いた期間I(運転開始後47日目以降)を説明する。用いた排水処理ユニット2の固定床材料20は、例えばポリエステル繊維から成る不織布(日本バイリーン株式会社製、商品名:MBT9、粗さ目付=約250g/m2)で構成されている。固定床材料20の縦横寸法は、例えば75cm×51cmである。 Next, the period I using the wastewater treatment unit 2 (from the 47th day after the start of operation) will be described. The fixed floor material 20 of the used wastewater treatment unit 2 is composed of, for example, a nonwoven fabric made of polyester fiber (manufactured by Japan Vilene Co., Ltd., trade name: MBT9, roughness basis weight = about 250 g / m 2 ). The vertical and horizontal dimensions of the fixed floor material 20 are, for example, 75 cm × 51 cm.

上記で用いた好気処理槽61中に排水処理ユニット2を浸漬配備することと、沈降槽63および戻し配管64を省略することにより、図6に示したような1次好気処理槽30を用いる固定床システムが構成される。この固定床システムの1次好気処理槽30に原排水4を供給した(期間J)。かかる構成は図1の排水処理装置1Aにおいて1次好気処理槽30の排水35を送水管路5から送水管路12に切り替えて2次好気処理槽1内へ供給する構成に相当する。
図8に示したように、期間Jの初期は硝化菌が排水処理ユニット2の固定床材料20に付着することによる空気供給効率低下によって、硝化反応の低下が見られた。その後、固定床材料20内で硝化菌が増殖して硝化反応が回復し、ほぼ140mg/Lの酸化態窒素(黒四角)が生じた。しかし、原排水4の全窒素濃度(白抜き丸)と処理水11bの全窒素濃度(黒丸)との差は小さくなった。すなわち、重要な脱窒反応がほとんど生じていないことがわかる。
The primary aerobic treatment tank 30 as shown in FIG. 6 is obtained by immersing the waste water treatment unit 2 in the aerobic treatment tank 61 used above and omitting the settling tank 63 and the return pipe 64. The fixed floor system to be used is configured. The raw waste water 4 was supplied to the primary aerobic treatment tank 30 of this fixed bed system (period J). Such a configuration corresponds to a configuration in which the wastewater 35 of the primary aerobic treatment tank 30 is switched from the water supply line 5 to the water supply line 12 and supplied into the secondary aerobic treatment tank 1 in the wastewater treatment apparatus 1A of FIG.
As shown in FIG. 8, at the beginning of period J, the nitrification reaction was reduced due to a decrease in air supply efficiency due to nitrifying bacteria adhering to the fixed bed material 20 of the wastewater treatment unit 2. Thereafter, nitrifying bacteria grew in the fixed bed material 20 to recover the nitrifying reaction, and about 140 mg / L of oxidized nitrogen (black squares) was generated. However, the difference between the total nitrogen concentration of the raw waste water 4 (open circles) and the total nitrogen concentration of the treated water 11b (black circles) was reduced. That is, it can be seen that an important denitrification reaction hardly occurs.

そこで、本発明の実施例として、前記のように硝化処理が回復した後である68日目から(期間K)、1次好気処理槽30からの排水を図6の送水管路36から送水管路5に切り替えて排水処理ユニット2内に供給した。これは、図1の排水処理装置1Aにおいて1次好気処理槽30の排水35を送水管路12から送水管路5に切り替えて排水処理ユニット2の容器体14内に直接供給する構成に相当する。それにより、図8に示したように、処理水の全窒素(黒丸)が約130mg/Lまで低下し、原排水4の全窒素(白抜き丸)に対し40%程度の窒素除去率が得られた。   Therefore, as an embodiment of the present invention, from the 68th day (period K) after the nitrification treatment is recovered as described above, the waste water from the primary aerobic treatment tank 30 is sent from the water supply line 36 in FIG. It switched to the water pipeline 5 and supplied in the waste water treatment unit 2. FIG. This corresponds to a configuration in which the wastewater 35 of the primary aerobic treatment tank 30 is switched from the water supply pipe 12 to the water supply pipe 5 and directly supplied into the container body 14 of the wastewater treatment unit 2 in the wastewater treatment apparatus 1A of FIG. To do. As a result, as shown in FIG. 8, the total nitrogen (black circle) of the treated water is reduced to about 130 mg / L, and a nitrogen removal rate of about 40% is obtained with respect to the total nitrogen (open circle) of the raw waste water 4. It was.

図8で示した一連の実験に関しては、同じ実験期間中に前記した全窒素有機態炭素形態別窒素分析装置を用いて、有機態炭素も測定している。これらの測定結果を図9に示す。図9中の記号で、白抜き丸は原排水4の有機態炭素濃度、黒丸は得られた処理水の有機態炭素濃度を示している。図9に示したように、処理水の有機態炭素濃度(黒丸)は原排水の有機態炭素濃度(白抜き丸)の変動にかかわらず50mg/L程度まで低下しており、全運転を通じて順調に、有機物が1次好気処理槽30および2次好気処理槽1における曝気により除去されていることがわかる。   With respect to the series of experiments shown in FIG. 8, organic carbon was also measured using the above-described nitrogen analyzer for all nitrogen organic carbon forms during the same experimental period. The measurement results are shown in FIG. In FIG. 9, the white circles indicate the organic carbon concentration of the raw waste water 4, and the black circles indicate the organic carbon concentration of the obtained treated water. As shown in Fig. 9, the organic carbon concentration of the treated water (black circle) has decreased to about 50 mg / L regardless of fluctuations in the organic carbon concentration of the raw wastewater (open circle), and it has been steady throughout the entire operation. Further, it can be seen that the organic substances are removed by aeration in the primary aerobic treatment tank 30 and the secondary aerobic treatment tank 1.

尚、上記の実施形態および実施例では容器体の一部を固定床材料で構成したが、本発明はそれに限定されるものでなく、例えば周面および底部も含む容器全体が、透水自由で、かつ、好気性菌および嫌気性菌を固定化可能な固定床材料で構成された容器体から成る排水処理ユニットなどであってもよい。容器体の形状も有底角筒状に限らず、有底丸筒状、あるいは中空球状でも構わない。   In the above embodiments and examples, a part of the container body is composed of a fixed floor material, but the present invention is not limited thereto, for example, the entire container including the peripheral surface and the bottom part is freely permeable, And the waste water treatment unit etc. which consist of the container body comprised with the fixed bed material which can fix | similate an aerobic microbe and an anaerobic microbe may be sufficient. The shape of the container body is not limited to the bottomed square tube shape, and may be a bottomed round tube shape or a hollow sphere shape.

また、本発明の送水手段としては、上記した吸込管路36、送水ポンプ6、および送水管路5の組合せ構成に限られない。例えば、一体槽3の仕切壁38に堰(図示省略)を設けて1次好気処理槽30の排水35を溢出させ、この堰と排水処理ユニット2の容器体14内とを連通する水路を設けることにより、排水35を容器体14内に直接流下させるように構成したものでもよい。
更に、上記では1次好気処理槽30と2次好気処理槽1を一体槽3内に併存させたが、それぞれを別個の槽で構成することも可能である。
In addition, the water supply means of the present invention is not limited to the combined configuration of the suction pipe 36, the water supply pump 6, and the water supply pipe 5. For example, a weir (not shown) is provided on the partition wall 38 of the integrated tank 3 to overflow the drainage 35 of the primary aerobic treatment tank 30, and a water channel is provided that communicates the weir with the inside of the container body 14 of the wastewater treatment unit 2. By providing, the drainage 35 may be configured to flow directly into the container body 14.
Furthermore, in the above description, the primary aerobic treatment tank 30 and the secondary aerobic treatment tank 1 coexist in the integrated tank 3, but it is also possible to configure each of them as separate tanks.

本発明の一実施形態に係る排水処理装置を示す概略構成図である。It is a schematic block diagram which shows the waste water treatment equipment which concerns on one Embodiment of this invention. 前記排水処理装置に用いられる排水処理ユニットの組立分解図である。It is an assembly exploded view of the waste water treatment unit used for the waste water treatment apparatus. 前記排水処理ユニットを示すもので、(a)は正面図、(b)は(a)におけるA−A線断面図、(c)は平面図である。The said waste water treatment unit is shown, (a) is a front view, (b) is the sectional view on the AA line in (a), (c) is a top view. 前記排水処理ユニットに流入する排水中の窒素化合物の変化状態を示す説明図である。It is explanatory drawing which shows the change state of the nitrogen compound in the waste_water | drain which flows into the said waste_water | drain processing unit. 比較例に係る曝気システムを示すブロック構成図である。It is a block block diagram which shows the aeration system which concerns on a comparative example. 別の比較例に係る固定床システムを示すブロック構成図である。It is a block block diagram which shows the fixed floor system which concerns on another comparative example. 前記各比較例システムに供給される原排水および処理水の窒素濃度の挙動を示すグラフである。It is a graph which shows the behavior of the nitrogen concentration of the raw wastewater supplied to each said comparative example system, and treated water. 前記各比較例システムおよび本実施例装置に供給される原排水および処理水の窒素濃度の挙動を示すグラフである。It is a graph which shows the behavior of the nitrogen concentration of the raw wastewater supplied to each said comparative example system and a present Example apparatus, and treated water. 前記各比較例システムおよび本実施例装置に供給される原排水および処理水の有機態炭素濃度の挙動を示すグラフである。It is a graph which shows the behavior of the organic carbon density | concentration of the raw waste water supplied to each said comparative example system and a present Example apparatus, and a treated water. 従来の排水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional waste water treatment equipment.

符号の説明Explanation of symbols

1A 排水処理装置
1 2次好気処理槽
2 排水処理ユニット
4 原排水
5 送水管路
6 送水ポンプ
7 排水
8 酸素含有ガス
9 圧縮機
10 散気管
11 処理水
14 容器体
23 容器内空間
24 好気性菌固定化域
25 嫌気性菌固定化域
26 送水手段
30 1次好気処理槽
32 散気管
35 排水
36 吸込管路
1A Wastewater treatment device 1 Secondary aerobic treatment tank 2 Wastewater treatment unit 4 Raw wastewater 5 Water supply pipe 6 Water supply pump 7 Drainage 8 Oxygen-containing gas 9 Compressor 10 Aeration pipe 11 Treated water 14 Container body 23 Inner space 24 Aerobic Bacteria immobilization area 25 Anaerobic bacteria immobilization area 26 Water supply means 30 Primary aerobic treatment tank 32 Aeration pipe 35 Drainage 36 Suction pipe

Claims (2)

原排水を好気処理する1次好気処理槽と、1次好気処理槽で好気処理されて少なくとも窒素化合物および水素供与体を含有する排水を送水する送水手段と、送水手段により送水された排水が直接供給される容器体を有するとともに該容器体の一部または全体が透水自由で、かつ、好気性菌および嫌気性菌を固定化可能な固定床材料で構成されている排水処理ユニットと、排水処理ユニットを槽内の排水中に浸漬配備した2次好気処理槽と、を備えて成ることを特徴とする排水処理装置。 A primary aerobic treatment tank for aerobic treatment of the raw waste water, a water supply means for aerobic treatment in the primary aerobic treatment tank to supply waste water containing at least a nitrogen compound and a hydrogen donor, and water supplied by the water supply means A wastewater treatment unit having a container body to which wastewater is directly supplied, a part or the whole of the container body being water-permeable, and made of a fixed floor material capable of immobilizing aerobic bacteria and anaerobic bacteria And a secondary aerobic treatment tank in which the wastewater treatment unit is immersed in the wastewater in the tank. 原排水を1次好気処理槽で好気処理する工程と、一部または全体が透水自由で、かつ、好気性菌および嫌気性菌を固定化可能な固定床材料で構成された容器体を有するとともに2次好気処理槽内の排水中に浸漬配備された排水処理ユニットの、前記容器体内に、1次好気処理槽で好気処理されて少なくとも窒素化合物および水素供与体を含有する排水を直接供給する工程とを備えることにより、排水処理ユニットの固定床材料の外面側に好気性菌が固定化され、好気性菌によって2次好気処理槽内の排水が硝化処理され、硝化処理された排水が固定床材料を透過して容器体内に流入するとき、前記好気性菌の固定化に伴って固定床材料の内面側に固定化されている嫌気性菌により、前記容器体内に流入する排水が脱窒処理される排水処理方法。
A process of aerobic treatment of raw wastewater in a primary aerobic treatment tank, and a container body composed of a fixed bed material that is partially or entirely water-permeable and can immobilize aerobic bacteria and anaerobic bacteria. A wastewater treatment unit that is immersed in the wastewater in the secondary aerobic treatment tank and is aerobically treated in the primary aerobic treatment tank and contains at least a nitrogen compound and a hydrogen donor. The aerobic bacteria are immobilized on the outer surface side of the fixed floor material of the wastewater treatment unit, and the wastewater in the secondary aerobic treatment tank is nitrified by the aerobic bacteria. When the drained wastewater permeates the fixed bed material and flows into the container body, it flows into the container body due to the anaerobic bacteria immobilized on the inner surface side of the fixed bed material as the aerobic bacteria are immobilized. Wastewater treatment method in which wastewater to be denitrified
JP2003281697A 2003-07-29 2003-07-29 Wastewater treating system and wastewater treating method Pending JP2005046736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281697A JP2005046736A (en) 2003-07-29 2003-07-29 Wastewater treating system and wastewater treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281697A JP2005046736A (en) 2003-07-29 2003-07-29 Wastewater treating system and wastewater treating method

Publications (1)

Publication Number Publication Date
JP2005046736A true JP2005046736A (en) 2005-02-24

Family

ID=34267124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281697A Pending JP2005046736A (en) 2003-07-29 2003-07-29 Wastewater treating system and wastewater treating method

Country Status (1)

Country Link
JP (1) JP2005046736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated
CN105800775A (en) * 2016-05-20 2016-07-27 青岛辰达生物科技有限公司 Method for decoloring spinning, printing and dyeing industrial waste water
CN110054349A (en) * 2019-04-16 2019-07-26 杭州恒美环保设备有限公司 A kind of economical dyeing waste water denitrogenation processing system
CN110734878A (en) * 2019-11-13 2020-01-31 重庆理工大学 bacterial strain separation method for high ammonia nitrogen resistant HN-AD

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated
CN105800775A (en) * 2016-05-20 2016-07-27 青岛辰达生物科技有限公司 Method for decoloring spinning, printing and dyeing industrial waste water
CN105800775B (en) * 2016-05-20 2019-02-15 浙江新三印印染有限公司 A kind of discoloration method of wastewater in textile printing and dyeing industry
CN110054349A (en) * 2019-04-16 2019-07-26 杭州恒美环保设备有限公司 A kind of economical dyeing waste water denitrogenation processing system
CN110734878A (en) * 2019-11-13 2020-01-31 重庆理工大学 bacterial strain separation method for high ammonia nitrogen resistant HN-AD

Similar Documents

Publication Publication Date Title
CN101132994B (en) Waste gas/waste water treatment equipment and method of treating waste gas/waste water
KR101691791B1 (en) Soil covered waste water treatment device with dissolved air floating
JP3399443B2 (en) High-load biological treatment method
JP2009186437A (en) Radioactive nitrate waste liquid treating apparatus
US6159372A (en) Method for treating waste water with a high concentration of organic matter by using ball shaped circulating and elongated stationary ciliary filter cakes
JP2005046736A (en) Wastewater treating system and wastewater treating method
JP4368857B2 (en) Wastewater treatment system and toilet device
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
KR100583904B1 (en) High intergated Biological Nutrient Removal System
KR100775608B1 (en) Processing methode and apparatus for waste water using of sludge drawing and rotating disc
US7713410B2 (en) Wastewater treatment apparatus
JP3629727B2 (en) Organic wastewater treatment method and apparatus
KR20040020325A (en) A method for treating the graywater by membrane
JP2006038871A (en) Treatment apparatus of washing waste water
JPH09262429A (en) Desulfurizer for sulfide containing gas
KR200171727Y1 (en) Processing system for excretions of animals
JP3906344B2 (en) Waste water treatment apparatus and waste water treatment method
KR200337564Y1 (en) High intergated Biological Nutrient Removal System
JP2000229297A (en) Biological water treating device
KR100542676B1 (en) Apparatus and method for treating wastewater using membrane
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR20190033317A (en) Membrane water treatment apparatus using micro-bubble
JP3735281B2 (en) Organic wastewater treatment apparatus and treatment method
JPH0630784B2 (en) Treatment method for human waste
JP2006158996A (en) Nitrogen-containing wastewater treatment method and apparatus