JP2005045153A - Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device - Google Patents

Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device Download PDF

Info

Publication number
JP2005045153A
JP2005045153A JP2003279763A JP2003279763A JP2005045153A JP 2005045153 A JP2005045153 A JP 2005045153A JP 2003279763 A JP2003279763 A JP 2003279763A JP 2003279763 A JP2003279763 A JP 2003279763A JP 2005045153 A JP2005045153 A JP 2005045153A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
hour
layer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003279763A
Other languages
Japanese (ja)
Inventor
Tsuneaki Fujikura
序章 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003279763A priority Critical patent/JP2005045153A/en
Publication of JP2005045153A publication Critical patent/JP2005045153A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a nitride semiconductor wherein the dislocation density on the overall surface of a wafer is made uniform by making the film thickness of a low-temperature buffer layer uniform on the overall surface of the wafer, and to provide a nitride semiconductor wafer and a nitride semiconductor device which have the nitride semiconductor obtained by the manufacturing method. <P>SOLUTION: The manufacturing method of a nitride semiconductor is the one wherein at least first and second nitride semiconductor layers are grown on a substrate. The growth temperature of the second nitride semiconductor layer grown on the first nitride semiconductor layer is set to 700-1,300 °C. The growth speed and growth temperature of the first nitride semiconductor layer are selected respectively from the scope of 0.5-2.3 μm/hour and from the scope of 430-580 °C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ウエハ面内の転位密度の分布が狭い窒化物半導体の製造方法、その方法により得られる窒化物半導体を有する窒化物半導体ウエハ及び窒化物半導体デバイスに関する。   The present invention relates to a method for manufacturing a nitride semiconductor having a narrow distribution of dislocation density in the wafer surface, a nitride semiconductor wafer having a nitride semiconductor obtained by the method, and a nitride semiconductor device.

一般に半導体エピタキシャル層を形成するのに最も容易な方法は、成長させる半導体と同一の材料からなる単結晶基板を形成し、その基板上に半導体結晶を気相成長させる方法であり、幾つかの材料系で実用化に成功している。しかしながら、単結晶基板を得ることが技術的に困難であったり、コスト高である等の理由により、基板上に基板材料と異なる半導体結晶を成長させざるを得ないことが多い。そのような場合の基板と半導体結晶の組合せとしては、例えばシリコン基板とGaAs、サファイア又は炭化珪素の基板と窒化物半導体、GaAs基板とII-VI族半導体等が知られている。   In general, the easiest method for forming a semiconductor epitaxial layer is a method in which a single crystal substrate made of the same material as a semiconductor to be grown is formed, and a semiconductor crystal is vapor-phase grown on the substrate. The system has been successfully put into practical use. However, it is often unavoidable to grow a semiconductor crystal different from the substrate material on the substrate because it is technically difficult to obtain a single crystal substrate or the cost is high. As a combination of a substrate and a semiconductor crystal in such a case, for example, a silicon substrate and GaAs, a sapphire or silicon carbide substrate and a nitride semiconductor, a GaAs substrate and a II-VI group semiconductor, and the like are known.

ところが基板上に基板材料と異なる半導体を成長させると、格子、熱膨張係数、表面エネルギー等の様々な特性の不整合により、成長した半導体エピタキシャル層中に高密度で転位が導入される。半導体中の転位は光デバイス、電子デバイス等の半導体デバイスにおいて非発光再結合中心、散乱中心等となる。そのため、転位密度の高い半導体を用いるデバイスでは性能及び安定性が著しく劣るという問題がある。   However, when a semiconductor different from the substrate material is grown on the substrate, dislocations are introduced at a high density into the grown semiconductor epitaxial layer due to mismatch of various characteristics such as lattice, thermal expansion coefficient, surface energy and the like. Dislocations in semiconductors become non-radiative recombination centers, scattering centers, etc. in semiconductor devices such as optical devices and electronic devices. Therefore, there is a problem that a device using a semiconductor with a high dislocation density is extremely inferior in performance and stability.

窒化ガリウム(GaN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウムガリウム(InGaN)等に代表される窒化物半導体もバルク結晶成長が困難であり、実用に耐えるサイズの単結晶基板はまだ得られていない。そのためサファイアや炭化珪素等の基板上に窒化物半導体結晶をエピタキシャル成長させる方法が一般に使用されているが、上述のように転位の発生が深刻な問題となっている。   Nitride semiconductors such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), and indium gallium nitride (InGaN) are also difficult to grow bulk crystals, and single crystal substrates of a size that can withstand practical use have not yet been obtained. . Therefore, a method of epitaxially growing a nitride semiconductor crystal on a substrate such as sapphire or silicon carbide is generally used. However, as described above, the occurrence of dislocation is a serious problem.

このような事情下、特公平8-8217号(特許文献1)は、有機金属気相成長法(MOVPE法)を用いる2段階成長法により、窒化物半導体層の転位密度を低減する方法を提案した。この方法では、サファイア等からなる基板表面上に1,000℃以上の高温で水素ガスを噴射することにより表面の酸化膜を除去した後(熱清浄化)、(a) 基板上に400〜600℃でGaN、AlN等からなる低温バッファ層を成長させ、(b) 1,000℃程度に昇温し(熱処理)、(c) 1,000℃程度でGaN等からなる窒化物半導体層を成長させる。工程(a) では、結晶成長温度がGaN、AlN等の融点より低いため、多結晶の低温バッファ層が形成される。工程(b) で1,000℃程度に昇温することにより、低温バッファ層が部分的に単結晶化して微結晶粒が形成される。工程(c) では、この微結晶粒を核としてGaN等のエピタキシャル層を形成する。この方法により得られたサファイア基板上のGaN半導体層の転位密度は109個/cm2程度であり、従来の方法により得られたGaN半導体層の転位密度(1010〜1011個/cm2)より低かった。 Under these circumstances, Japanese Patent Publication No. 8-8217 (Patent Document 1) proposes a method for reducing the dislocation density of a nitride semiconductor layer by a two-stage growth method using a metal organic vapor phase epitaxy method (MOVPE method). did. In this method, after removing the oxide film on the surface by injecting hydrogen gas onto the substrate surface made of sapphire or the like at a high temperature of 1,000 ° C. or more (thermal cleaning), (a) at 400 to 600 ° C. on the substrate. A low temperature buffer layer made of GaN, AlN or the like is grown, (b) heated to about 1,000 ° C. (heat treatment), and (c) a nitride semiconductor layer made of GaN or the like is grown at about 1,000 ° C. In the step (a), since the crystal growth temperature is lower than the melting point of GaN, AlN or the like, a polycrystalline low-temperature buffer layer is formed. By raising the temperature to about 1,000 ° C. in the step (b), the low-temperature buffer layer is partially single-crystallized to form fine crystal grains. In the step (c), an epitaxial layer such as GaN is formed using the fine crystal grains as nuclei. The dislocation density of the GaN semiconductor layer on the sapphire substrate obtained by this method is about 10 9 pieces / cm 2 , and the dislocation density of the GaN semiconductor layer obtained by the conventional method (10 10 to 10 11 pieces / cm 2 ) Was lower.

サファイア基板上に形成したGaN半導体層の転位密度を1×109個/cm2以下にする方法として、本発明者等は、特願2003-185486号において下記の3つの工程を含む方法(先発明の方法)を提案した。
(i) 基板上に低温バッファ層を成長させ、それを熱処理することにより窒化物半導体からなる微結晶粒を形成する工程。
(ii) 上記微結晶粒を核とし、上記基板表面に対して傾斜した複数のファセット面を有する島状構造窒化物半導体層を形成する工程(膜厚>1μm)。
(iii) 上記島状構造窒化物半導体層を上記基板の表面と平行な方向に成長させることにより複数の上記島状構造窒化物半導体層を相互に結合させ、もって平坦な表面を有する窒化物半導体結晶層を形成する工程
この方法により転位密度を107〜106個/cm2台にすることができた。
As a method for reducing the dislocation density of the GaN semiconductor layer formed on the sapphire substrate to 1 × 10 9 pieces / cm 2 or less, the present inventors disclosed in Japanese Patent Application No. 2003-185486 a method including the following three steps (first Inventive method) was proposed.
(i) A step of forming a microcrystalline grain made of a nitride semiconductor by growing a low-temperature buffer layer on a substrate and heat-treating it.
(ii) A step of forming an island-shaped nitride semiconductor layer having a plurality of facet surfaces inclined with respect to the substrate surface using the fine crystal grains as a nucleus (film thickness> 1 μm).
(iii) The island-shaped nitride semiconductor layer is grown in a direction parallel to the surface of the substrate to bond the plurality of island-shaped nitride semiconductor layers to each other, and thus has a flat surface. Step of forming a crystal layer By this method, the dislocation density could be reduced to 10 7 to 10 6 pieces / cm 2 .

従来の2段階成長法及び先発明の方法により得られる窒化物半導体ウエハを工業的に利用するためには、転位密度がウエハ全面で均一であることが重要である。転位密度は、窒化物半導体の電気的.光学的特性に大きく影響するので、もし転位密度が均一でなければ、その上に形成する素子特性も不均一となってしまうからである。   In order to industrially use the nitride semiconductor wafer obtained by the conventional two-step growth method and the method of the prior invention, it is important that the dislocation density is uniform over the entire surface of the wafer. This is because the dislocation density greatly affects the electrical and optical characteristics of the nitride semiconductor, and if the dislocation density is not uniform, the element characteristics formed thereon will also be non-uniform.

転位密度は、従来の2段階成長法及び先発明の方法において形成する低温バッファ層の厚さに大きく依存する。このため、ウエハ全面において均一な転位密度を有する窒化物半導体ウエハを得るためには、低温バッファ層の厚さを均一にする必要がある。しかしながら、低温バッファ層の膜厚をウエハ全面において均一に制御する方法はこれまで知られていない。   The dislocation density greatly depends on the thickness of the low-temperature buffer layer formed in the conventional two-step growth method and the method of the prior invention. Therefore, in order to obtain a nitride semiconductor wafer having a uniform dislocation density over the entire wafer surface, it is necessary to make the thickness of the low-temperature buffer layer uniform. However, a method for uniformly controlling the film thickness of the low-temperature buffer layer over the entire wafer surface has not been known so far.

特公平8-8217号公報Japanese Patent Publication No.8-8217

従って本発明の目的は、低温バッファ層の膜厚をウエハ全面において均一にすることにより、ウエハ全面における転位密度を均一にする窒化物半導体の製造方法、その方法により得られる窒化物半導体を有する窒化物半導体ウエハ及び窒化物半導体デバイスを提供することである。   Accordingly, an object of the present invention is to make a nitride semiconductor having a uniform dislocation density over the entire surface of the wafer by making the film thickness of the low-temperature buffer layer uniform over the entire surface of the wafer, and nitride a nitride semiconductor obtained by the method. A semiconductor wafer and a nitride semiconductor device.

上記目的に鑑み鋭意研究の結果、本発明者等は、基板上に第1の窒化物半導体層(低温バッファ層)を成長させ、その上に第2の窒化物半導体層を成長させる窒化物半導体の製造方法において、低温バッファ層の面内の膜厚分布の均一性が低温バッファ層成長時の成長温度及び成長速度に強く依存し、この成長温度及び成長速度を適切に制御することにより、その上に形成する第2の窒化物半導体表面の転位密度の分布を均一にできることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventors have grown a first nitride semiconductor layer (low-temperature buffer layer) on a substrate and grown a second nitride semiconductor layer thereon. In this manufacturing method, the uniformity of the in-plane film thickness distribution of the low-temperature buffer layer strongly depends on the growth temperature and growth rate during the growth of the low-temperature buffer layer, and by appropriately controlling this growth temperature and growth rate, The inventors have discovered that the distribution of dislocation density on the surface of the second nitride semiconductor formed above can be made uniform, and have arrived at the present invention.

すなわち、本発明の第1の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を2μm/時以上2.3μm/時未満、かつ成長温度を480〜520℃とすることを特徴とする。   In other words, the first manufacturing method of the present invention is a method for manufacturing a nitride semiconductor in which at least a first and second nitride semiconductor layer are grown on a substrate, and is formed on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer to be grown is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 2 μm / hour or more and less than 2.3 μm / hour, and the growth temperature is 480 to 520 ° C. It is characterized by.

ここで、膜厚及び成長速度が不均一な場合を対象としている本発明において、上記の「成長速度」をどのように定義するかについては注意が必要となる。すなわち、本明細書において対象としている層の「成長速度」とは、ウエハを円板とみなしたときの中心点を通る直線上に中心点を含んで1cm間隔に並んだ各点の成長速度の平均値を意味する。この場合、上記の直線は最も成長速度の分布が大きくなるように設定するものとする。   Here, in the present invention intended for the case where the film thickness and the growth rate are not uniform, it is necessary to pay attention to how the “growth rate” is defined. That is, the “growth rate” of the target layer in this specification is the growth rate of each point arranged at 1 cm intervals including the center point on a straight line passing through the center point when the wafer is regarded as a disk. Mean value. In this case, the above straight line is set so that the distribution of the growth rate becomes the largest.

本発明の第2の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.8μm/時以上2μm/時未満、かつ成長温度を470〜530℃とすることを特徴とする。   A second manufacturing method of the present invention is a nitride semiconductor manufacturing method in which at least a first and a second nitride semiconductor layer are grown on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.8 μm / hour or more and less than 2 μm / hour, and the growth temperature is 470 to 530 ° C. It is characterized by that.

本発明の第3の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.6μm/時以上1.8μm/時未満、かつ成長温度を460〜545℃とすることを特徴とする。   A third manufacturing method of the present invention is a method for manufacturing a nitride semiconductor in which at least first and second nitride semiconductor layers are grown on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.6 μm / hour or more and less than 1.8 μm / hour, and the growth temperature is 460 to 545 ° C. It is characterized by doing.

本発明の第4の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.4μm/時以上1.6μm/時未満、かつ成長温度を450〜560℃とすることを特徴とする。   A fourth manufacturing method of the present invention is a nitride semiconductor manufacturing method for growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.4 μm / hour or more and less than 1.6 μm / hour, and the growth temperature is 450 to 560 ° C. It is characterized by doing.

本発明の第5の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.2μm/時以上1.4μm/時未満、かつ成長温度を445〜565℃とすることを特徴とする。   A fifth manufacturing method of the present invention is a nitride semiconductor manufacturing method for growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.2 μm / hour or more and less than 1.4 μm / hour, and the growth temperature is 445 to 565 ° C. It is characterized by doing.

本発明の第6の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1μm/時以上1.2μm/時未満、かつ成長温度を440〜570℃とすることを特徴とする。   A sixth manufacturing method of the present invention is a nitride semiconductor manufacturing method for growing at least first and second nitride semiconductor layers on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1 μm / hour or more and less than 1.2 μm / hour, and the growth temperature is 440 to 570 ° C. It is characterized by that.

本発明の第7の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を0.8μm/時以上1μm/時未満、かつ成長温度を435〜575℃とすることを特徴とする。   A seventh manufacturing method of the present invention is a nitride semiconductor manufacturing method in which at least a first and a second nitride semiconductor layer are grown on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 0.8 μm / hour or more and less than 1 μm / hour, and the growth temperature is 435 to 575 ° C. It is characterized by that.

本発明の第8の製造方法は、基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を0.5μm/時以上0.8μm/時未満、かつ成長温度を430〜580℃とすることを特徴とする。   An eighth manufacturing method of the present invention is a method for manufacturing a nitride semiconductor in which at least a first and a second nitride semiconductor layer are grown on a substrate, and is grown on the first nitride semiconductor layer. The growth temperature of the second nitride semiconductor layer is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 0.5 μm / hour or more and less than 0.8 μm / hour, and the growth temperature is 430 to 580 ° C. It is characterized by doing.

窒化物半導体の結晶成長は気相成長装置内で行うのが好ましく、例えば有機金属気相成長(MOVPE)装置又はハイドライド気相成長(HVPE)装置内で行うのが好ましい。前記基板は、サファイア、炭化珪素、珪素、ZrB2、ZnO、LiGaO2又はLiAlO2からなる単結晶基板であるのが好ましい。前記第1及び第2の窒化物半導体はそれぞれInxAlyGazN(x≧0、y≧0、z≧0、x+y+z=1)からなるのが好ましい。 Crystal growth of the nitride semiconductor is preferably performed in a vapor phase growth apparatus, for example, in a metal organic vapor phase growth (MOVPE) apparatus or a hydride vapor phase growth (HVPE) apparatus. The substrate is preferably a single crystal substrate made of sapphire, silicon carbide, silicon, ZrB 2 , ZnO, LiGaO 2 or LiAlO 2 . It said first and second nitride respective semiconductor In x Al y Ga z N ( x ≧ 0, y ≧ 0, z ≧ 0, x + y + z = 1) consist preferably.

本発明の製造方法を用いることにより、第1の窒化物半導体層(低温バッファ層)の厚さのバラツキを、2インチ径ウエハ面内で平均値±10%以内とすることが可能であり、これにより第2の窒化物半導体表面の転位密度を均一にできる。具体的には、第2の窒化物半導体表面の転位密度のバラツキを平均値±10%以内とすることが可能である。   By using the manufacturing method of the present invention, the thickness variation of the first nitride semiconductor layer (low-temperature buffer layer) can be made within an average value ± 10% within the 2-inch wafer surface, Thereby, the dislocation density on the surface of the second nitride semiconductor can be made uniform. Specifically, the variation in the dislocation density on the second nitride semiconductor surface can be within an average value ± 10%.

本発明の窒化物半導体ウエハは、本発明の製造方法により得られた第2の窒化物半導体層の上に複数の半導体層が形成されている。本発明の製造方法によれば、窒化物半導体ウエハ面内の転位密度の分布を均一にできるため、このウエハを用いて作製した窒化物半導体デバイスの特性を均一にできる。第2の窒化物半導体結晶層の上に設ける半導体層は、半導体ウエハの用途により適宜選択してよい。   In the nitride semiconductor wafer of the present invention, a plurality of semiconductor layers are formed on the second nitride semiconductor layer obtained by the manufacturing method of the present invention. According to the manufacturing method of the present invention, since the distribution of dislocation density in the nitride semiconductor wafer surface can be made uniform, the characteristics of the nitride semiconductor device manufactured using this wafer can be made uniform. The semiconductor layer provided on the second nitride semiconductor crystal layer may be appropriately selected depending on the application of the semiconductor wafer.

本発明の半導体デバイスは、本発明の窒化物半導体ウエハにより構成され、第2の窒化物半導体層上にデバイス構造を有する。半導体デバイスは、高電子移動度トランジスタ(HEMT)、電界効果トランジスタ(FET)等のトランジスタ、発光ダイオード(LED)等であってよい。   The semiconductor device of the present invention is composed of the nitride semiconductor wafer of the present invention, and has a device structure on the second nitride semiconductor layer. The semiconductor device may be a transistor such as a high electron mobility transistor (HEMT) or a field effect transistor (FET), a light emitting diode (LED), or the like.

本発明の窒化物半導体の製造方法によれば、面内の転位密度の分布が狭い窒化物半導体を作製することが可能となる。そのため、この窒化物半導体を用いることにより、ウエハ全面において均一な特性を有する窒化物半導体デバイスを得ることが可能である。   According to the method for producing a nitride semiconductor of the present invention, it is possible to produce a nitride semiconductor having a narrow distribution of in-plane dislocation density. Therefore, by using this nitride semiconductor, it is possible to obtain a nitride semiconductor device having uniform characteristics over the entire wafer surface.

本発明の製造方法は、基板上に少なくとも第1の窒化物半導体層及び第2の窒化物半導体層を形成する。第1及び第2の窒化物半導体層を形成する方法は特に限定されず、例えば通常の2段階成長法を用いてもよいし、先発明の方法を用いてもよい。先発明の方法を用いる場合は、表面の転位密度がより低い窒化物半導体を得ることが可能である。   In the manufacturing method of the present invention, at least a first nitride semiconductor layer and a second nitride semiconductor layer are formed on a substrate. The method for forming the first and second nitride semiconductor layers is not particularly limited. For example, a normal two-stage growth method may be used, or the method of the prior invention may be used. When the method of the prior invention is used, it is possible to obtain a nitride semiconductor having a lower surface dislocation density.

先発明の方法を用いる場合、まず基板上に第1の窒化物半導体層(低温バッファ層)を430〜580℃で成長させ、これを700〜1300℃で熱処理し、転位が導入されない微結晶粒を形成する。次に微結晶粒を核とし700〜1300℃で第2の窒化物半導体層を成長させる。第2の窒化物半導体層は、キャリアガスとして水素を63体積%以上、好ましくは82〜100体積%含有する水素/窒素混合ガスを使用し、微結晶粒を核とし島状構造の半導体層を1μmより厚く成長させる工程と、キャリアガスとして窒素を50体積%以上、好ましくは70〜100体積%含有する水素/窒素混合ガスを使用し、成長した島状構造窒化物半導体層を平坦化する工程により形成することができる。島状構造の半導体層は基板と結晶との接触面積が大きいので転位が導入され、島状構造の半導体層の成長過程で転位が基板表面に垂直方向に伝播してファセット面まで達する。ファセット面まで達した転位は、その伝播方向をある確率により基板表面と平行な方向に変える傾向があるため、基板表面と平行な方向に伝播する転位は互いに出会い、転位ループが形成されたり2本の転位が1本に合成されたりしてその密度が減少する。このため、先発明の方法によれば、結晶層の表面に現れる転位密度がより低い窒化物半導体を得ることができる。   When using the method of the prior invention, first, a first nitride semiconductor layer (low-temperature buffer layer) is grown on a substrate at 430 to 580 ° C., and this is heat-treated at 700 to 1300 ° C., so that dislocations are not introduced. Form. Next, the second nitride semiconductor layer is grown at 700 to 1300 ° C. using the microcrystal grains as nuclei. The second nitride semiconductor layer uses a hydrogen / nitrogen mixed gas containing 63% by volume or more, preferably 82 to 100% by volume of hydrogen as a carrier gas. A step of growing thicker than 1 μm, and a step of planarizing the grown island-shaped nitride semiconductor layer using a hydrogen / nitrogen mixed gas containing 50% by volume or more, preferably 70 to 100% by volume of nitrogen as a carrier gas Can be formed. Since the island-shaped semiconductor layer has a large contact area between the substrate and the crystal, dislocations are introduced, and the dislocation propagates in the direction perpendicular to the substrate surface and reaches the facet plane during the growth process of the island-shaped semiconductor layer. Dislocations that reach the facet plane tend to change their propagation direction to a direction parallel to the substrate surface with a certain probability. Therefore, dislocations that propagate in the direction parallel to the substrate surface meet each other, forming a dislocation loop or two lines. The dislocations are synthesized into one, and the density decreases. For this reason, according to the method of the prior invention, a nitride semiconductor having a lower dislocation density appearing on the surface of the crystal layer can be obtained.

窒化物半導体の結晶成長は気相成長装置内で行うのが好ましく、例えば有機金属気相成長(MOVPE)装置又はハイドライド気相成長(HVPE)装置内で行うのが好ましい。MOVPE法は高結晶性の窒化物半導体結晶を成長させることができ、HVPE法は結晶成長速度が速いので効率良く窒化物半導体結晶を成長させることができる。MOVPE法及びHVPE法の実施条件は適宜設定してよい。またMOVPE法とHVPE法とを組み合せてもよい。例えば、まず基板上にMOVPE法により窒化物半導体結晶をエピタキシャル成長させて第1の窒化物半導体層(低温バッファ層)を形成し、次いでその上にHVPE法により第2の窒化物半導体層の結晶成長を行うこともできる。   Crystal growth of the nitride semiconductor is preferably performed in a vapor phase growth apparatus, for example, in a metal organic vapor phase growth (MOVPE) apparatus or a hydride vapor phase growth (HVPE) apparatus. The MOVPE method can grow a highly crystalline nitride semiconductor crystal, and the HVPE method can grow a nitride semiconductor crystal efficiently because the crystal growth rate is fast. The implementation conditions for the MOVPE method and the HVPE method may be set as appropriate. Further, the MOVPE method and the HVPE method may be combined. For example, a nitride semiconductor crystal is first epitaxially grown on a substrate by the MOVPE method to form a first nitride semiconductor layer (low-temperature buffer layer), and then a second nitride semiconductor layer is grown on the substrate by the HVPE method. Can also be done.

基板上に形成する第1の窒化物半導体層の成長温度及び成長速度は、第1の窒化物半導体層の膜厚分布に影響を与え、第1の窒化物半導体層の膜厚分布はその上に形成する第2の窒化物半導体表面の転位密度の分布に影響を与える。第2の窒化物半導体表面の転位密度の分布を平均値±10%以内にするためには、第1の窒化物半導体層の膜厚の分布を平均値±10%以内にするのが望ましい。   The growth temperature and growth rate of the first nitride semiconductor layer formed on the substrate affect the film thickness distribution of the first nitride semiconductor layer, and the film thickness distribution of the first nitride semiconductor layer is above it. This affects the distribution of dislocation density on the surface of the second nitride semiconductor to be formed. In order to make the dislocation density distribution on the second nitride semiconductor surface within an average value ± 10%, it is desirable to make the film thickness distribution of the first nitride semiconductor layer within an average value ± 10%.

第1の窒化物半導体層の成長速度及び成長温度を以下のいずれかの組み合わせにすることにより、第1の窒化物半導体層の膜厚分布を平均値±10%以内にすることができる。すなわち、成長速度が2μm/時以上2.3μm/時未満で、かつ成長温度が480〜520℃、成長速度が1.8μm/時以上2μm/時未満で、かつ成長温度が470〜530℃、成長速度が1.6μm/時以上1.8μm/時未満で、かつ成長温度が460〜545℃、成長速度が1.4μm/時以上1.6μm/時未満で、かつ成長温度が450〜560℃、成長速度が1.2μm/時以上1.4μm/時未満で、かつ成長温度が445〜565℃、成長速度が1μm/時以上1.2μm/時未満で、かつ成長温度が440〜570℃、成長速度が0.8μm/時以上1μm/時未満で、かつ成長温度が435〜575℃、成長速度が0.5μm/時以上0.8μm/時未満で、かつ成長温度が430〜580℃である。   By setting the growth rate and growth temperature of the first nitride semiconductor layer to any one of the following combinations, the film thickness distribution of the first nitride semiconductor layer can be within an average value ± 10%. That is, the growth rate is 2 μm / hour or more and less than 2.3 μm / hour, the growth temperature is 480 to 520 ° C., the growth rate is 1.8 μm / hour or more and less than 2 μm / hour, and the growth temperature is 470 to 530 ° C. Is 1.6 μm / hour or more and less than 1.8 μm / hour, the growth temperature is 460 to 545 ° C., the growth rate is 1.4 μm / hour or more and less than 1.6 μm / hour, the growth temperature is 450 to 560 ° C., and the growth rate is 1.2. μm / hour or more and less than 1.4 μm / hour, growth temperature is 445 to 565 ° C., growth rate is 1 μm / hour or more and less than 1.2 μm / hour, growth temperature is 440 to 570 ° C., growth rate is 0.8 μm / hour. The growth temperature is 435 to 575 ° C., the growth rate is 0.5 μm / hour or more and less than 0.8 μm / hour, and the growth temperature is 430 to 580 ° C.

上記の全ての場合において、低温バッファ層上に成長させる第2の窒化物半導体層の成長温度を700〜1300℃とする。700℃より温度が低いとデバイスヘ応用する際に好ましくない深い準位が結晶中に導入されてしまい、1300℃よりも温度が高いと結晶表面の平坦性がrms値で20nmを超え、デバイスに使用するのに好ましくない。第2の窒化物半導体層の成長速度は特に制限されないが、通常の2段階成長法による場合は2〜4.8μm/時とするのが好ましく、先発明の方法による場合は島状構造の半導体層を成長させる工程で1.5〜4.8μm/時、成長した島状構造窒化物半導体層を平坦化する工程で2.2〜10.9μm/時とするのが好ましい。第1の窒化物半導体層の膜厚は0.005〜0.042μmであるのが好ましく、第2の窒化物半導体層の膜厚は0.3〜10μmであるのが好ましい。   In all the above cases, the growth temperature of the second nitride semiconductor layer grown on the low-temperature buffer layer is set to 700 to 1300 ° C. If the temperature is lower than 700 ° C, an undesired deep level is introduced into the crystal when applied to the device, and if the temperature is higher than 1300 ° C, the flatness of the crystal surface exceeds 20 nm in terms of rms value and is used for the device. It is not preferable to do. Although the growth rate of the second nitride semiconductor layer is not particularly limited, it is preferably 2 to 4.8 μm / hour in the case of the usual two-stage growth method, and the semiconductor layer having an island structure in the case of the method of the previous invention. It is preferable that the growth rate is 1.5 to 4.8 μm / hour in the step of growing silicon and 2.2 to 10.9 μm / hour in the step of planarizing the grown island-shaped nitride semiconductor layer. The film thickness of the first nitride semiconductor layer is preferably 0.005 to 0.042 μm, and the film thickness of the second nitride semiconductor layer is preferably 0.3 to 10 μm.

基板は、サファイア、炭化珪素、珪素、ZrB2、ZnO、LiGaO2又はLiAlO2からなる単結晶基板であるのが好ましい。基板上に成長させる第1及び第2の窒化物半導体層は、それぞれInxAlyGazN(x≧0、y≧0、z≧0、x+y+z=1)からなるのが好ましい。第1及び第2の窒化物半導体層は同じであっても異なっていてもよい。例えば、第1及び第2の窒化物半導体層がともにGaNからなる半導体層であってもよいし、第1の窒化物半導体層がInxGa1-xN(0≦x≦0.3)からなり、第2の窒化物半導体層はGaNからなる半導体層であってもよい。 The substrate is preferably a single crystal substrate made of sapphire, silicon carbide, silicon, ZrB 2 , ZnO, LiGaO 2 or LiAlO 2 . First and second nitride semiconductor layer grown on the substrate, each In x Al y Ga z N ( x ≧ 0, y ≧ 0, z ≧ 0, x + y + z = 1) consist preferably. The first and second nitride semiconductor layers may be the same or different. For example, both the first and second nitride semiconductor layers may be semiconductor layers made of GaN, or the first nitride semiconductor layer is made of In x Ga 1-x N (0 ≦ x ≦ 0.3). The second nitride semiconductor layer may be a semiconductor layer made of GaN.

第1及び第2の窒化物半導体層の少なくとも一つは、アンドープ層、シリコンドープ層、酸素ドープ層、鉄ドープ層、亜鉛ドープ層又はマグネシウムドープ層であってよい。特にシリコンドープ層、酸素ドープ層、鉄ドープ層、亜鉛ドープ層又はマグネシウムドープ層である場合には、そのドーピング濃度は5×1019原子/cm3以下であるのが好ましい。ドーピング濃度が高すぎると、結晶の汚染の問題とともに、最終的な窒化物半導体の表面平坦性が損なわれてしまうという問題が生じる。 At least one of the first and second nitride semiconductor layers may be an undoped layer, a silicon doped layer, an oxygen doped layer, an iron doped layer, a zinc doped layer, or a magnesium doped layer. Particularly in the case of a silicon doped layer, an oxygen doped layer, an iron doped layer, a zinc doped layer or a magnesium doped layer, the doping concentration is preferably 5 × 10 19 atoms / cm 3 or less. When the doping concentration is too high, there arises a problem that the surface flatness of the final nitride semiconductor is impaired as well as the problem of crystal contamination.

本発明の窒化物半導体ウエハは本発明の製造方法により基板上に窒化物半導体層を形成したもので、その上に複数の半導体層が形成されていることを特徴とする。本発明の製造方法により窒化物半導体層の表面全体における転位密度の分布を狭くすることができるので、高性能の窒化物半導体ウエハが得られる。窒化物半導体結晶層上に形成する複数の半導体層は、半導体ウエハの用途により適宜選択してよい。複数の半導体層は窒化物半導体結晶層と同一の成長装置内で連続的に形成してもよいし、異なる成長装置内で形成してもよい。本発明の窒化物半導体ウエハは、半導体層形成の他に研削、エッチング、熱処理等を施してもよい。   The nitride semiconductor wafer of the present invention is obtained by forming a nitride semiconductor layer on a substrate by the manufacturing method of the present invention, and a plurality of semiconductor layers are formed thereon. Since the dislocation density distribution over the entire surface of the nitride semiconductor layer can be narrowed by the manufacturing method of the present invention, a high-performance nitride semiconductor wafer can be obtained. The plurality of semiconductor layers formed on the nitride semiconductor crystal layer may be appropriately selected depending on the application of the semiconductor wafer. The plurality of semiconductor layers may be formed continuously in the same growth apparatus as the nitride semiconductor crystal layer, or may be formed in different growth apparatuses. The nitride semiconductor wafer of the present invention may be subjected to grinding, etching, heat treatment, etc. in addition to semiconductor layer formation.

本発明の半導体デバイスは本発明の窒化物半導体ウエハにより構成される。本発明の窒化物半導体ウエハに真空蒸着、スパッタリング等による電極の形成、表面酸化、ドーピング、フォトリソグラフィ、エッチング、洗浄、ダイシング、組み立て等を施すことにより、高電子移動度トランジスタ(HEMT)、電界効果トランジスタ(FET)等のトランジスタ、発光ダイオード(LED)等の窒化物半導体デバイスを得ることができる。   The semiconductor device of the present invention is constituted by the nitride semiconductor wafer of the present invention. High electron mobility transistor (HEMT), field effect by applying electrode formation, surface oxidation, doping, photolithography, etching, cleaning, dicing, assembly, etc. to the nitride semiconductor wafer of the present invention A transistor such as a transistor (FET) or a nitride semiconductor device such as a light emitting diode (LED) can be obtained.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
直径50.8 mm(2インチ)及び厚さ330μmのC面サファイア基板上に第1及び第2の窒化物半導体層としてGaN層をMOVPE法により成長させた。まず、基板をMOVPE装置内に設置し、760 Torrの水素/窒素混合ガス雰囲気中(総流量=150 slm、水素濃度=33体積%)で1135℃で10分間加熱することにより基板表面の酸化物等を除去した(熱清浄化)。
Example 1
A GaN layer was grown as a first and second nitride semiconductor layer on a C-plane sapphire substrate having a diameter of 50.8 mm (2 inches) and a thickness of 330 μm by the MOVPE method. First, the substrate is placed in a MOVPE apparatus and heated at 1135 ° C for 10 minutes in a 760 Torr hydrogen / nitrogen mixed gas atmosphere (total flow rate = 150 slm, hydrogen concentration = 33 vol%). Etc. were removed (thermal cleaning).

基板温度を430〜580℃に下げるとともに、キャリアガス流量を140 slm、キャリアガス中の水素濃度を29体積%とし、窒素原料であるアンモニア(NH3)ガスを10 slmの流量で成長装置に導入した。さらにGaの原料としてトリメチルガリウム(TMG)を成長装置に導入し、成長速度及び成長温度を変化させて基板上にGaN低温バッファ層(第1の窒化物半導体層)を厚さが約1μmになるまで成長させた。 The substrate temperature is lowered to 430-580 ° C, the carrier gas flow rate is 140 slm, the hydrogen concentration in the carrier gas is 29% by volume, and ammonia (NH 3 ) gas, which is a nitrogen material, is introduced into the growth apparatus at a flow rate of 10 slm. did. Furthermore, trimethyl gallium (TMG) is introduced into the growth apparatus as a Ga raw material, and the growth rate and growth temperature are changed so that the thickness of the GaN low-temperature buffer layer (first nitride semiconductor layer) becomes about 1 μm on the substrate. Grown up to.

成長終了後に、基板の温度を室温付近まで下げてから試料を取りだし、断面の走査型電子顕微鏡(SEM)観察により、面内の膜厚分布を調べた。断面観察の測定点は先の成長速度の定義で述べた方法に従って決定した。図1に、低温バッファ層の膜厚分布測定の結果を示す。図1は横軸を成長温度、縦軸を成長速度で表し、低温バッファ層の面内の膜厚分布が平均値±10%以内となる条件(領域)を斜線で示した。具体的には、低温バッファ層の成長速度が2μm/時以上2.3μm/時未満で、かつ成長温度が480〜520℃の領域、成長速度が1.8μm/時以上2μm/時未満で、かつ成長温度が470〜530℃の領域、成長速度が1.6μm/時以上1.8μm/時未満で、かつ成長温度が460〜545℃の領域、成長速度が1.4μm/時以上1.6μm/時未満で、かつ成長温度が450〜560℃の領域、成長速度が1.2μm/時以上1.4μm/時未満で、かつ成長温度が445〜565℃の領域、成長速度が1μm/時以上1.2μm/時未満で、かつ成長温度が440〜570℃の領域、成長速度が0.8μm/時以上1μm/時未満で、かつ成長温度が435〜575℃の領域、成長速度が0.5μm/時以上0.8μm/時未満で、かつ成長温度が430〜580℃の領域である。この領域の外では、低温バッファ層の膜厚分布が平均値±15%以上であった。   After completion of the growth, the temperature of the substrate was lowered to near room temperature and a sample was taken out, and the in-plane film thickness distribution was examined by observing the cross section with a scanning electron microscope (SEM). The measurement points for cross-sectional observation were determined according to the method described in the previous definition of growth rate. FIG. 1 shows the results of measuring the film thickness distribution of the low-temperature buffer layer. In FIG. 1, the abscissa represents the growth temperature, the ordinate represents the growth rate, and the condition (region) in which the in-plane film thickness distribution of the low-temperature buffer layer is within an average value ± 10% is indicated by hatching. Specifically, the growth rate of the low-temperature buffer layer is 2 μm / hour or more and less than 2.3 μm / hour, the growth temperature is 480 to 520 ° C., the growth rate is 1.8 μm / hour or more and less than 2 μm / hour, and the growth is performed. The region where the temperature is 470 to 530 ° C, the growth rate is 1.6 μm / hour or more and less than 1.8 μm / hour, the region where the growth temperature is 460 to 545 ° C, the growth rate is 1.4 μm / hour or more and less than 1.6 μm / hour, The growth temperature is 450 to 560 ° C., the growth rate is 1.2 μm / hour or more and less than 1.4 μm / hour, the growth temperature is 445 to 565 ° C., the growth rate is 1 μm / hour or more and less than 1.2 μm / hour. In the region where the growth temperature is 440 to 570 ° C., the growth rate is 0.8 μm / hour or more and less than 1 μm / hour, and the growth temperature is 435 to 575 ° C., the growth rate is 0.5 μm / hour or more and less than 0.8 μm / hour. And the growth temperature is in the range of 430 to 580 ° C. Outside this region, the film thickness distribution of the low-temperature buffer layer was an average value of ± 15% or more.

実施例2
実施例1と同じ条件でGaNからなる低温バッファ層(第1の窒化物半導体層)を22 nmの厚さに成長させた後、キャリアガス流量を80 slm、キャリアガス中の水素濃度を25体積%、アンモニアガス流量を20 slmに変更し、基板温度を1075℃として、GaN層(第2の窒化物半導体層)を4.4μm/時の成長速度で2.2μmの厚さに成長させた(通常の2段階成長法)。成長後に、ウエハ面内の転位密度の分布を透過型電子顕微鏡(TEM)により調べた。
Example 2
After growing a low-temperature buffer layer (first nitride semiconductor layer) made of GaN to a thickness of 22 nm under the same conditions as in Example 1, the carrier gas flow rate was 80 slm and the hydrogen concentration in the carrier gas was 25 volumes. %, The ammonia gas flow rate was changed to 20 slm, the substrate temperature was 1075 ° C, and the GaN layer (second nitride semiconductor layer) was grown to a thickness of 2.2 μm at a growth rate of 4.4 μm / hour (usually Two-stage growth method). After the growth, the dislocation density distribution in the wafer surface was examined by a transmission electron microscope (TEM).

実施例1において低温バッファ層の膜厚分布が平均値±10%以内となる、図1に示す条件(斜線領域)で低温バッファ層を成長させた場合、その上に成長させた第2の窒化物半導体層の表面における転位密度の平均値は1〜2×109 個/cm2であり、転位密度の分布は平均値±10%以内であった。図1の斜線領域の外側の条件で低温バッファ層を成長させた場合は、第2の窒化物半導体層の表面における転位密度の分布は平均値±13%以上であった。 When the low temperature buffer layer is grown under the conditions (shaded area) shown in FIG. 1 in which the film thickness distribution of the low temperature buffer layer is within ± 10% in Example 1, the second nitridation grown thereon The average value of dislocation density on the surface of the physical semiconductor layer was 1 to 2 × 10 9 pieces / cm 2 , and the distribution of dislocation density was within ± 10% of the average value. When the low-temperature buffer layer was grown under conditions outside the hatched region in FIG. 1, the dislocation density distribution on the surface of the second nitride semiconductor layer was an average value of ± 13% or more.

以上の結果から明らかなように、ウエハ面内の転位密度の分布を少なくするためには、低温バッファ層の膜厚分布を狭くすること、及びそのための低温バッファ層成長条件として図1に示す斜線領域の条件を使用することが重要であることがわかる。   As is clear from the above results, in order to reduce the dislocation density distribution in the wafer plane, the film thickness distribution of the low temperature buffer layer is narrowed, and the low temperature buffer layer growth conditions for that are shown by the oblique lines in FIG. It can be seen that it is important to use region conditions.

実施例3
先発明(特願2003-185486号)の窒化物半導体の製造方法に、本発明における低温バッファ層の成長条件を適用した。まず、実施例1と同じ条件でGaNからなる低温バッファ層(第1の窒化物半導体層)を22 nmの厚さに成長させた。次に、キャリアガス流量を80 slm、キャリアガス中の水素濃度を29体積%、アンモニア流量を20 slmとし、基板温度を1075℃に昇温することにより上記GaN層に熱処理を施した。GaN層の熱処理が終了した時点で、キャリアガス中の水素濃度を82体積%にし、第2の窒化物半導体層として、まずGaN層を基板温度1075℃、成長速度2.25μm/時で2.25μmの厚さに成長させた後、成長させながら装置内の圧力を300 Torrまで下げ、キャリアガスの流量を130 slm、キャリアガス中の水素濃度を23体積%、基板温度を1005℃とし、さらにGaN層を3.1μm/時の成長速度で3μmの厚さに成長させた。成長終了後に基板温度を200℃以下に下げ、成長装置内を760 Torrの窒素ガスで満たした後、基板を成長装置より取り出した。
Example 3
The growth conditions of the low-temperature buffer layer in the present invention were applied to the nitride semiconductor manufacturing method of the prior invention (Japanese Patent Application No. 2003-185486). First, a low-temperature buffer layer (first nitride semiconductor layer) made of GaN was grown to a thickness of 22 nm under the same conditions as in Example 1. Next, the carrier gas flow rate was 80 slm, the hydrogen concentration in the carrier gas was 29 vol%, the ammonia flow rate was 20 slm, and the substrate temperature was raised to 1075 ° C. to heat-treat the GaN layer. When the heat treatment of the GaN layer is completed, the hydrogen concentration in the carrier gas is set to 82% by volume, and as the second nitride semiconductor layer, the GaN layer is first formed at a substrate temperature of 1075 ° C. and a growth rate of 2.25 μm / hour and 2.25 μm. After growing to a thickness, the pressure inside the device is lowered to 300 Torr while growing, the carrier gas flow rate is 130 slm, the hydrogen concentration in the carrier gas is 23% by volume, the substrate temperature is 1005 ° C, and the GaN layer Was grown to a thickness of 3 μm at a growth rate of 3.1 μm / hour. After the growth was completed, the substrate temperature was lowered to 200 ° C. or lower, and the inside of the growth apparatus was filled with 760 Torr of nitrogen gas, and then the substrate was taken out of the growth apparatus.

成長後の試料をTEMで観察し転位密度及びその分布を調べたところ、低温バッファ層を図1に示す斜線領域内の条件で成長させた場合には、表面における転位密度の平均値は4〜6×107 個/cm2であり、転位密度の分布は平均値±8%以内であった。一方、図1に示す斜線領域の外側の条件で低温バッファ層を成長させた場合には、転位密度の分布は平均値±11%以上であった。 When the grown sample was observed by TEM to examine the dislocation density and its distribution, when the low temperature buffer layer was grown under the conditions in the hatched region shown in FIG. The distribution was 6 × 10 7 pieces / cm 2 , and the dislocation density distribution was within an average value ± 8%. On the other hand, when the low temperature buffer layer was grown under conditions outside the shaded area shown in FIG. 1, the distribution of dislocation density was an average value of ± 11% or more.

実施例4
基板として、炭作珪素、珪素、ZrB2、ZnO、LiGaO2及びLiAlO2のそれぞれからなる単結晶基板を用い、実施例3と同じ条件でこれらの基板上にGaN層を成長させた。いずれの場合においても、低温バッファ層を図1に示す斜線領域内の条件で成長させたときは、第2の窒化物半導体層の面内の転位密度の分布は平均値±9.5%以内であった。
Example 4
As substrates, single crystal substrates made of carbonized silicon, silicon, ZrB 2 , ZnO, LiGaO 2 and LiAlO 2 were used, and GaN layers were grown on these substrates under the same conditions as in Example 3. In any case, when the low temperature buffer layer is grown under the conditions in the hatched region shown in FIG. 1, the distribution of dislocation density in the plane of the second nitride semiconductor layer is within an average value ± 9.5%. It was.

実施例5
GaNの代わりにInxAlyGazN(x≧0、y≧0、z≧0、x+y+z=1)を成長させた以外、実施例3と同様にして基板上に第1及び第2の窒化物半導体層を成長させた。III族原料としては、TMGに加えトリメチルインジウム(TMI)及びトリメチルアルミニウム(TMA)を用い、これらの原料の比率を適宜変更して成長させた。その結果、全ての組成範囲において図1に示す斜線領域内の条件で低温バッファ層を成長させた場合に、面内の転位密度の分布は平均値±10%以内であった。また、図1に示す斜線領域の外側の条件で低温バッファ層を成長させた場合には、転位密度の分布は平均値±12%以上であった。
Example 5
The first and second layers are formed on the substrate in the same manner as in Example 3 except that In x Al y Ga z N (x ≧ 0, y ≧ 0, z ≧ 0, x + y + z = 1) is grown instead of GaN. A nitride semiconductor layer was grown. As the group III raw material, trimethylindium (TMI) and trimethylaluminum (TMA) were used in addition to TMG, and the ratio of these raw materials was appropriately changed and grown. As a result, when the low-temperature buffer layer was grown under the conditions in the hatched region shown in FIG. 1 in the entire composition range, the in-plane dislocation density distribution was within an average value ± 10%. When the low-temperature buffer layer was grown under conditions outside the hatched region shown in FIG. 1, the dislocation density distribution was an average value of ± 12% or more.

実施例6、比較例1
第1の窒化物半導体層(低温バッファ層)の成長温度及び成長速度をそれぞれ520℃及び1.0μm/時とした以外実施例3と同様にして、図2に示すようにサファイア基板1上に第1及び第2の窒化物半導体層からなるアンドープGaN層3(厚さ6000 nm)を形成した。その上に連続して図2に示す青色LED構造の結晶を成長させた。アンドープGaN層3上にn-GaN層4(厚さ3μm)、InGaN/GaN多重量子井戸層5(InGaN層の厚さ2nm、GaN層の厚さ5nm)、p-Al0.1Ga0.9N層6(厚さ20 nm)、p-GaNコンタクト層7(厚さ0.2μm)を順次形成し、青色LED構造を有する実施例6の窒化物半導体ウエハを得た。
Example 6, Comparative Example 1
As shown in FIG. 2, the first nitride semiconductor layer (low-temperature buffer layer) was grown on the sapphire substrate 1 as shown in FIG. 2 except that the growth temperature and growth rate were 520 ° C. and 1.0 μm / hour, respectively. An undoped GaN layer 3 (thickness 6000 nm) made of the first and second nitride semiconductor layers was formed. A blue LED structure crystal shown in FIG. 2 was continuously grown thereon. On the undoped GaN layer 3, an n-GaN layer 4 (thickness 3 μm), an InGaN / GaN multiple quantum well layer 5 (InGaN layer thickness 2 nm, GaN layer thickness 5 nm), p-Al 0.1 Ga 0.9 N layer 6 A p-GaN contact layer 7 (thickness 0.2 μm) was sequentially formed (thickness 20 nm) to obtain a nitride semiconductor wafer of Example 6 having a blue LED structure.

比較のために、図1に示す斜線領域の外側の条件(成長温度:550℃、成長速度:2.0μm/時)で低温バッファ層を成長させた以外、実施例の窒化物半導体ウエハと同様にして比較例1の窒化物半導体ウエハを得た。   For comparison, the same procedure as in the nitride semiconductor wafer of the example was performed except that the low-temperature buffer layer was grown under conditions outside the hatched region shown in FIG. 1 (growth temperature: 550 ° C., growth rate: 2.0 μm / hour). Thus, a nitride semiconductor wafer of Comparative Example 1 was obtained.

得られた双方のウエハの表面をRIE(Reactive Ion Etching)により部分的に除去し、n-GaN層の一部を露出させてn-電極(Ti/Al電極)8を形成した。さらにp-GaNコンタクト層上にp-電極(Ni/Au電極)9を形成し、LEDを作製した。各々の2インチウエハから約8000個のLEDチップが得られた。   The surfaces of both the obtained wafers were partially removed by RIE (Reactive Ion Etching) to expose a part of the n-GaN layer to form an n-electrode (Ti / Al electrode) 8. Further, a p-electrode (Ni / Au electrode) 9 was formed on the p-GaN contact layer to produce an LED. Approximately 8000 LED chips were obtained from each 2 inch wafer.

実施例6及び比較例1のLEDに20 mAの電流を通電したところ、実施例6のLEDの平均の発光出力とそのバラツキは、13 mW±6%であり、比較例1のLEDの平均の発光出力とそのバラツキは、12.5 mW±14%であった。以上より、本発明の方法によりウエハ面内の転位密度を均一にすることにより、その上に作製する青色LEDの特性を均一にできることが分かった。   When a current of 20 mA was applied to the LED of Example 6 and Comparative Example 1, the average light output and variation of the LED of Example 6 was 13 mW ± 6%, which was the average of the LED of Comparative Example 1. The light output and its variation were 12.5 mW ± 14%. From the above, it has been found that by making the dislocation density in the wafer surface uniform by the method of the present invention, the characteristics of the blue LED fabricated thereon can be made uniform.

実施例7、比較例2
図1に示す斜線領域内の低温バッファ層の成長条件(成長温度:520℃、成長速度:1.0μm/時)を用い、図3に示すようにサファイア基板11上にアンドープGaN層13(厚さ6000 nm)を成長させ、その上に連続してアンドープAl0.25Ga0.75N層14(厚さ3nm)、n-Al0.25Ga0.75N層15(厚さ20 nm)、アンドープAl0.25Ga0.75N層16(厚さ5nm)を順次形成し、窒化物半導体ウエハを作製した。得られたウエハ上に、フォトリソグラフィ及び真空蒸着プロセスを用いてソース電極17、ゲート電極18及びドレイン電極19を形成し、図3に示す高電子移動度トランジスタ(HEMT)を作製した(実施例7)。
Example 7, Comparative Example 2
The undoped GaN layer 13 (thickness) is formed on the sapphire substrate 11 as shown in FIG. 3 using the growth conditions (growth temperature: 520 ° C., growth rate: 1.0 μm / hour) of the low temperature buffer layer in the hatched region shown in FIG. 6000 nm), and an undoped Al 0.25 Ga 0.75 N layer 14 (thickness 3 nm), n-Al 0.25 Ga 0.75 N layer 15 (thickness 20 nm), and undoped Al 0.25 Ga 0.75 N layer 16 (thickness 5 nm) were sequentially formed to produce a nitride semiconductor wafer. A source electrode 17, a gate electrode 18 and a drain electrode 19 were formed on the obtained wafer using photolithography and a vacuum deposition process, and a high electron mobility transistor (HEMT) shown in FIG. 3 was produced (Example 7). ).

比較のために、図1の斜線領域の外側の条件(成長温度:550℃、成長速度:2.0μm/時)で低温バッファ層を成長させた以外、実施例と同様にして窒化物半導体ウエハを作製し、さらにHEMTを作製した(比較例2)。各々の2インチウエハから約1000個のHEMTデバイスが得られた。   For comparison, a nitride semiconductor wafer was fabricated in the same manner as in the example except that the low-temperature buffer layer was grown under conditions outside the hatched region in FIG. 1 (growth temperature: 550 ° C., growth rate: 2.0 μm / hour). The HEMT was manufactured (Comparative Example 2). Approximately 1000 HEMT devices were obtained from each 2 inch wafer.

実施例7及び比較例2のHEMTの直流伝達特性を調べたところ、実施例7のHEMTの相互コンダクタンスの平均値及びそのバラツキは250 mS/mm±7%であったが、比較例2のHEMTの相互コンダクタンスの平均値及びそのバラツキは240 mS/mm±15%であった。以上より、本発明の方法によりウエハ面内の転位密度を均一にすることにより、その上に作製するHEMTの特性を均一にできること分かった。   When the direct current transfer characteristics of the HEMTs of Example 7 and Comparative Example 2 were examined, the average value and the variation of the mutual conductance of the HEMT of Example 7 were 250 mS / mm ± 7%. The average value of the mutual conductance and the variation thereof were 240 mS / mm ± 15%. From the above, it has been found that by making the dislocation density in the wafer plane uniform by the method of the present invention, the characteristics of the HEMT fabricated thereon can be made uniform.

低温バッファ層の膜厚分布が平均値±10%以内となる低温バッファ層の成長条件を示すグラフである。It is a graph which shows the growth conditions of the low temperature buffer layer from which the film thickness distribution of a low temperature buffer layer becomes less than the average value +/- 10%. 本発明の半導体デバイスの一例(青色LED)の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of an example (blue LED) of the semiconductor device of this invention. 本発明の半導体デバイスの他の例(高電子移動度トランジスタ)の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the other example (high electron mobility transistor) of the semiconductor device of this invention.

符号の説明Explanation of symbols

1, 11・・・サファイア基板
3, 13・・・アンドープGaN層
4・・・n-GaN層
5・・・InGaN/GaN多重量子井戸層
6・・・p-Al0.1Ga0.9N層
7・・・p-GaNコンタクト層
8・・・n-電極
9・・・p-電極
14・・・アンドープAl0.25Ga0.75N層
15・・・n-Al0.25Ga0.75N層
16・・・アンドープAl0.25Ga0.75N層
17・・・ソース電極
18・・・ゲート電極
19・・・ドレイン電極
DESCRIPTION OF SYMBOLS 1, 11 ... Sapphire substrate 3, 13 ... Undoped GaN layer 4 ... n-GaN layer 5 ... InGaN / GaN multiple quantum well layer 6 ... p-Al 0.1 Ga 0.9 N layer 7. ..P-GaN contact layer 8 ... n-electrode 9 ... p-electrode
14 ... Undoped Al 0.25 Ga 0.75 N layer
15 ... n-Al 0.25 Ga 0.75 N layer
16 ... Undoped Al 0.25 Ga 0.75 N layer
17 ... Source electrode
18 ... Gate electrode
19 ... Drain electrode

Claims (12)

基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を2μm/時以上2.3μm/時未満、かつ成長温度を480〜520℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 2 μm / hour or more and less than 2.3 μm / hour, and the growth temperature is 480 to 520 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.8μm/時以上2μm/時未満、かつ成長温度を470〜530℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.8 μm / hour or more and less than 2 μm / hour, and the growth temperature is 470 to 530 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.6μm/時以上1.8μm/時未満、かつ成長温度を460〜545℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.6 μm / hour or more and less than 1.8 μm / hour, and the growth temperature is 460 to 545 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.4μm/時以上1.6μm/時未満、かつ成長温度を450〜560℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.4 μm / hour or more and less than 1.6 μm / hour, and the growth temperature is 450 to 560 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1.2μm/時以上1.4μm/時未満、かつ成長温度を445〜565℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 1.2 μm / hour or more and less than 1.4 μm / hour, and the growth temperature is 445 to 565 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を1μm/時以上1.2μm/時未満、かつ成長温度を440〜570℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is set to 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is set to 1 μm / hour or more and less than 1.2 μm / hour, and the growth temperature is set to 440 to 570 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を0.8μm/時以上1μm/時未満、かつ成長温度を435〜575℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 0.8 μm / hour or more and less than 1 μm / hour, and the growth temperature is 435 to 575 ° C. 基板上に少なくとも第1及び第2の窒化物半導体層を成長させる窒化物半導体の製造方法であって、前記第1の窒化物半導体層の上に成長させる前記第2の窒化物半導体層の成長温度を700〜1300℃とし、前記第1の窒化物半導体層の成長速度を0.5μm/時以上0.8μm/時未満、かつ成長温度を430〜580℃とすることを特徴とする方法。 A method for manufacturing a nitride semiconductor, comprising growing at least a first nitride semiconductor layer and a second nitride semiconductor layer on a substrate, wherein the second nitride semiconductor layer is grown on the first nitride semiconductor layer. The method is characterized in that the temperature is 700 to 1300 ° C., the growth rate of the first nitride semiconductor layer is 0.5 μm / hour or more and less than 0.8 μm / hour, and the growth temperature is 430 to 580 ° C. 請求項1〜8のいずれかに記載の窒化物半導体の製造方法において、前記基板がサファイア、炭化珪素、珪素、ZrB2、ZnO、LiGaO2又はLiAlO2からなる単結晶基板であることを特徴とする方法。 In the nitride semiconductor manufacturing method according to claim 1, and wherein the substrate is sapphire, silicon carbide, silicon, ZrB 2, ZnO, a single crystal substrate made of LiGaO 2 or LiAlO 2 how to. 請求項1〜9のいずれかに記載の窒化物半導体の製造方法において、前記第1及び第2の窒化物半導体層がそれぞれInxAlyGazN(x≧0、y≧0、z≧0、x+y+z=1)からなることを特徴とする方法。 In the nitride semiconductor manufacturing method according to claim 1, wherein the first and second nitride semiconductor layers are each In x Al y Ga z N ( x ≧ 0, y ≧ 0, z ≧ 0, x + y + z = 1). 請求項1〜10のいずれかに記載の方法により作製した窒化物半導体を有する窒化物半導体ウエハであって、前記第2の窒化物半導体層上に複数の半導体層が形成されていることを特徴とする窒化物半導体ウエハ。 A nitride semiconductor wafer having a nitride semiconductor manufactured by the method according to claim 1, wherein a plurality of semiconductor layers are formed on the second nitride semiconductor layer. Nitride semiconductor wafer. 請求項11に記載の窒化物半導体ウエハを用いたことを特徴とする窒化物半導体デバイス。
12. A nitride semiconductor device using the nitride semiconductor wafer according to claim 11.
JP2003279763A 2003-07-25 2003-07-25 Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device Pending JP2005045153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279763A JP2005045153A (en) 2003-07-25 2003-07-25 Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279763A JP2005045153A (en) 2003-07-25 2003-07-25 Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2005045153A true JP2005045153A (en) 2005-02-17

Family

ID=34265775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279763A Pending JP2005045153A (en) 2003-07-25 2003-07-25 Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2005045153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223878A (en) * 2006-02-27 2007-09-06 Sumitomo Electric Ind Ltd Method for producing group iii nitride crystal and group iii nitride crystal substrate
JP2012243780A (en) * 2011-05-13 2012-12-10 Toshiba Corp Semiconductor light-emitting element and wafer
US10629717B2 (en) 2017-09-28 2020-04-21 Kabushiki Kaisha Toshiba High power device
CN114203865A (en) * 2021-12-07 2022-03-18 宁波安芯美半导体有限公司 Preparation method of aluminum nitride epitaxial wafer based on sapphire substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223878A (en) * 2006-02-27 2007-09-06 Sumitomo Electric Ind Ltd Method for producing group iii nitride crystal and group iii nitride crystal substrate
JP2012243780A (en) * 2011-05-13 2012-12-10 Toshiba Corp Semiconductor light-emitting element and wafer
US9142717B2 (en) 2011-05-13 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and wafer
US10629717B2 (en) 2017-09-28 2020-04-21 Kabushiki Kaisha Toshiba High power device
CN114203865A (en) * 2021-12-07 2022-03-18 宁波安芯美半导体有限公司 Preparation method of aluminum nitride epitaxial wafer based on sapphire substrate
CN114203865B (en) * 2021-12-07 2023-08-01 宁波安芯美半导体有限公司 Preparation method of aluminum nitride epitaxial wafer based on sapphire substrate

Similar Documents

Publication Publication Date Title
JP4371202B2 (en) Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device
JP3968566B2 (en) Nitride semiconductor crystal manufacturing method, nitride semiconductor wafer, and nitride semiconductor device
JP3866540B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3569807B2 (en) Method for manufacturing nitride semiconductor device
JP4597259B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JPH1140893A (en) Semiconductor light emitting element and its manufacture
JP2006210578A (en) Nitride semiconductor element and method for growing nitride semiconductor crystal layer
JP2000031588A (en) Semiconductor element
JP2004319711A (en) Porous substrate for epitaxial growth and its manufacturing method, and method of manufacturing group iii nitride semiconductor substrate
WO2014068838A1 (en) Epitaxial wafer and method for manufacturing same
JPH11243253A (en) Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
JP4449357B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
KR100841269B1 (en) Group ¥² nitride semiconductor multilayer structure
JP2009023853A (en) Group iii-v nitride semiconductor substrate, method for manufacturing the same, and group iii-v nitride semiconductor device
JPH11340147A (en) Manufacture of nitride semiconductor wafer and element
CN117410405A (en) Deep ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light-emitting diode
JP2003178976A (en) Semiconductor device, and method for manufacturing it
US8529699B2 (en) Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device
JP2005045153A (en) Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer
JP2004296701A (en) Epitaxial substrate, semiconductor device and method for growing crystal for nitride-based semiconductor
JP2003224072A (en) Semiconductor structure and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070110