JP2005045090A - METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS - Google Patents

METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS Download PDF

Info

Publication number
JP2005045090A
JP2005045090A JP2003278775A JP2003278775A JP2005045090A JP 2005045090 A JP2005045090 A JP 2005045090A JP 2003278775 A JP2003278775 A JP 2003278775A JP 2003278775 A JP2003278775 A JP 2003278775A JP 2005045090 A JP2005045090 A JP 2005045090A
Authority
JP
Japan
Prior art keywords
permanent magnet
fecrco
sintered body
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003278775A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsumoto
裕之 松元
Nobuyuki Ikuta
信之 生田
Teruhiko Fujiwara
照彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003278775A priority Critical patent/JP2005045090A/en
Publication of JP2005045090A publication Critical patent/JP2005045090A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FeCrCo permanent magnet constituted of a sintered body with high magnetic characteristics, wherein relative density is high as the percentage ranging from 95 to 99.9%, the shortest side is 2mm or more long and the degree of freedom of shape is high in a low temperature ranging from 800 to 1300°C and in a short time ranging from 1min to 60min by a powder metallurgy method by using an electric discharge plasma sintering method using powder for a FeCrCo magnet whose average powder particle diameters range from 1.0 to 500μm. <P>SOLUTION: This FeCrCo permanent magnet sintered body is manufactured by a powder metallurgy method using an electric discharge plasma sintering method, and has its relative density rate ranging from 95 to 99.9% and such high magnetic characteristics that Br=1.2 to 1.4T, (BH)max=33.4 to 47.7kJ/m<SP>3</SP>, iHc=39.8 to 51.7kA/m. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、FeCrCo永久磁石及びその製造方法に関し、詳しくは、放電プラズマ焼結法を用いたFeCrCo永久磁石焼結体とその製造方法に関する。   The present invention relates to an FeCrCo permanent magnet and a method for manufacturing the same, and more particularly to an FeCrCo permanent magnet sintered body using a discharge plasma sintering method and a method for manufacturing the same.

FeCrCo磁石は、その基本構成元素であるFeCrCo各々が非常に難焼結性である事から、1300〜1500℃の高温下における焼結工程においても相対密度比65〜75%の低密度焼結体しか得る事ができず、焼結性向上の目的でB等の添加元素物を加えると特性が劣化する等の問題があり、粉末冶金法を用いたFeCrCo永久磁石の製造は非常に難しく、従来より高周波溶解により製造したFeCrCo鋳物体を所定寸法の厚みまで圧延加工し、その圧延体を型抜きプレスにより熱間或いは冷間打ち抜きする事で製造されている。   The FeCrCo magnet is a low density sintered body having a relative density ratio of 65 to 75% even in a sintering process at a high temperature of 1300 to 1500 ° C. because each of the basic constituent elements FeCrCo is very difficult to sinter. However, there are problems such as deterioration of properties when adding additive elements such as B for the purpose of improving sinterability, and it is very difficult to manufacture an FeCrCo permanent magnet using a powder metallurgy method. It is manufactured by rolling an FeCrCo cast body manufactured by higher frequency melting to a thickness of a predetermined dimension, and hot-rolling or cold-punching the rolled body with a die-cutting press.

そのため冷間打ち抜きにより打ち抜き可能な厚さは2mmまでが限界である事から、最も短い辺の長さが2mm以上の製品は製造する事ができないといった欠点があった。   For this reason, the thickness that can be punched by cold punching is limited to 2 mm, so that a product having the shortest side length of 2 mm or more cannot be manufactured.

実際に、特許文献1においてもB等の添加元素を加え高密度化を図ってはいるが、添加元素を加えない組成では1300℃の外部加熱焼結を行ってもその相対密度比は85%と低く、逆にB等添加元素を加える事で高密度化を図った組成においては、(BH)max=33.6〜37.6kJ/mと添加元素の微量添加により若干の磁気特性向上があるのみで、そのレベルは広範囲における実用性を考慮するとまだ適用製品に制約があるといった欠点がある。 Actually, in Patent Document 1, an additive element such as B is added to increase the density, but the composition without the additive element has a relative density ratio of 85% even if external heating sintering is performed at 1300 ° C. On the other hand, in a composition with a high density by adding an additive element such as B, on the contrary, (BH) max = 33.6 to 37.6 kJ / m 3 and slight addition of the additive element slightly improves the magnetic characteristics. However, there is a drawback in that the level of application is still limited in consideration of practicality in a wide range.

従来技術は、FeCrCo永久磁石用粉末における主要構成元素であるFeCrCo間の焼結性が非常に悪く、1300〜1500℃の高温焼結温度下においても、その焼結体の相対密度比が80%程度と極端に低いため、FeCrCo磁石粉末を焼結する事により高密度化を計ることはもとより、主要構成元素が難焼結性元素にて構成されるFeCrCo永久磁石を粉末冶金法により製造する事は不可能な事から、高真空高周波溶解炉により作製したFeCrCo鋳造品を、プレスにより打ち抜き可能な厚みである2mm以下の厚みまで圧延機を用いて圧延を繰り返し、できたFeCrCo磁石板材をプレス機にて打ち抜き加工を施す事によりFeCrCo永久磁石製品とするため、厚み方向の形状自由度が2mm以下の形状制限があるといった欠点があった。
特開昭57−130404号公報
In the prior art, the sinterability between FeCrCo, which is the main constituent element in the powder for FeCrCo permanent magnet, is very poor, and the relative density ratio of the sintered body is 80% even at a high temperature sintering temperature of 1300 to 1500 ° C. Since the density is extremely low, the density of the FeCrCo magnet powder is increased by sintering the powder, and the FeCrCo permanent magnet composed of the hardly sinterable elements is manufactured by powder metallurgy. Because it is impossible, the FeCrCo casting manufactured by the high vacuum high frequency melting furnace is repeatedly rolled to a thickness of 2 mm or less, which is the thickness that can be punched by pressing, and the resulting FeCrCo magnet plate material is pressed. In order to make a FeCrCo permanent magnet product by punching in, there is a shape restriction that the shape freedom in the thickness direction is 2 mm or less Tsu shortcomings there was.
JP 57-130404 A

したがって本発明の技術的課題は、平均粉末粒径が1.0〜500μmのFeCrCo磁石用粉末を、放電プラズマ焼結法を用いる事で、粉末冶金法により800〜1300℃の低温度、1min〜60minの短時間で、相対密度95〜99.9%の高密度且つ最も短い辺の長さが2mm以上で形状自由度の高い、高磁気特性を有する焼結体からなるFeCrCo永久磁石とその製造方法とを提供することにある。   Therefore, the technical problem of the present invention is that a powder for an FeCrCo magnet having an average powder particle size of 1.0 to 500 μm is used at a low temperature of 800 to 1300 ° C. by a powder metallurgy method and 1 min to 1 min. FeCrCo permanent magnet made of a sintered body having a high magnetic property and a high density with a relative density of 95 to 99.9% and a shortest side length of 2 mm or more and a high degree of freedom in a short time of 60 min and its manufacture And to provide a method.

本発明によれば、水又はガスを用いたアトマイズ粉末作製法、ジェットミルによる気流乾式粉砕法、及び湿式粉砕法の内の少なくとも1種の作製法によって、平均粉末粒径が1.0〜500μmのFeCrCo永久磁石用粉末を作製し、この粉末を放電プラズマ焼結法を用いた粉末冶金法によって、焼結高密度化された焼結体を得る事を特徴とするFeCrCo永久磁石の製造方法が得られる。   According to the present invention, the average powder particle size is 1.0 to 500 μm by at least one of the atomized powder preparation method using water or gas, the airflow dry pulverization method using a jet mill, and the wet pulverization method. A method for producing an FeCrCo permanent magnet is characterized in that a sintered compact having a high density is obtained by powder metallurgy using a discharge plasma sintering method. can get.

また、本発明によれば、前記FeCrCo永久磁石の製造方法において、大電流通電による放電プラズマ焼結法によって、プラズマ放電加熱、ジュール熱加熱効果及び焼結中加圧圧縮効果により、800〜1300℃の低温度にて、相対密度比95〜99.9%の高密度FeCrCo永久磁石を得る事を特徴とするFeCrCo永久磁石の製造方法が得られる。   Further, according to the present invention, in the method of manufacturing the FeCrCo permanent magnet, a discharge plasma sintering method by energizing a large current causes a plasma discharge heating, a Joule heat heating effect, and a pressure compression effect during sintering to 800 to 1300 ° C. A high-density FeCrCo permanent magnet having a relative density ratio of 95 to 99.9% is obtained at a low temperature.

また、本発明によれば、前記いずれか一つのFeCrCo永久磁石の製造方法において、大電流通電による放電プラズマ加熱、ジュール熱加熱効果及び焼結中加圧圧縮効果により、1min〜60minの短時間で、相対密度比95〜99.9%の高密度FeCrCo永久磁石焼結体を得ることを特徴とするFeCrCo永久磁石の製造方法が得られる。   Further, according to the present invention, in any one of the above methods for producing a FeCrCo permanent magnet, in a short time of 1 min to 60 min due to discharge plasma heating by high current energization, Joule heat heating effect and pressure compression effect during sintering. A method for producing a FeCrCo permanent magnet is obtained, which is characterized by obtaining a sintered body of high density FeCrCo permanent magnet having a relative density ratio of 95 to 99.9%.

また、本発明によれば、FeCrCo永久磁石焼結体において、相対密度比95〜99.9%を備えるとともに、Br=1.2〜1.4T,(BH)max=33.4〜47.7kJ/m、iHc=39.8〜51.7kA/mの高磁気特性を有する事を特徴とするFeCrCo永久磁石焼結体が得られる。 Further, according to the present invention, the FeCrCo permanent magnet sintered body has a relative density ratio of 95 to 99.9%, Br = 1.2 to 1.4T, and (BH) max = 33.4 to 47.47. A FeCrCo permanent magnet sintered body having high magnetic properties of 7 kJ / m 3 and iHc = 39.8 to 51.7 kA / m can be obtained.

さらに、本発明によれば、前記FeCrCo永久磁石焼結体において、最も短い辺の長さが2mm〜500mmである事を特徴とするFeCrCo永久磁石焼結体が得られる。   Furthermore, according to the present invention, in the FeCrCo permanent magnet sintered body, the FeCrCo permanent magnet sintered body characterized in that the length of the shortest side is 2 mm to 500 mm.

以上述べたように、本発明によればFeCrCo永久磁石の製造方法において、
平均粉末粒径=1.0〜500μmのFeCrCo原料粉末を放電プラズマ焼結法を用いた粉末冶金法により800〜1300℃の低温度、1分〜60分の短時間で、焼結密度7.22〜7.58g/cm、相対密度比95〜99.9%の高密度、Br=1.2〜1.4T(12.0〜14.0kG)、(BH)max=33.4〜47.7kJ/m(4.2〜6.0MGOe)、iHc=39.8〜51.7kA/m(500〜650Oe)の高磁気特性且つ最も短い辺の長さが2mm〜500mmといった優れた形状自由度を有する事を特徴とする永久磁石製品の提供が可能になった。
As described above, according to the present invention, in the method for producing a FeCrCo permanent magnet,
An average powder particle size = 1.0 to 500 μm of FeCrCo raw material powder by a powder metallurgy method using a discharge plasma sintering method at a low temperature of 800 to 1300 ° C. in a short time of 1 to 60 minutes and a sintering density of 7. 22-7.58 g / cm 3 , high density with a relative density ratio of 95-99.9%, Br = 1.2-1.4T (12.0-14.0 kG), (BH) max = 33.4- Excellent magnetic properties of 47.7 kJ / m 3 (4.2 to 6.0 MGOe), iHc = 39.8 to 51.7 kA / m (500 to 650 Oe) and the shortest side length of 2 mm to 500 mm It has become possible to provide permanent magnet products characterized by having a degree of freedom in shape.

まず、本発明についてより詳細に説明する。   First, the present invention will be described in more detail.

図1は本発明の放電プラズマ焼結法を実施するための装置の概略構成を示す図である。また、図2は図1の装置を用いた放電プラズマ焼結法を用いた焼結製品の製造プロセスを示すフローチャート図である。   FIG. 1 is a diagram showing a schematic configuration of an apparatus for carrying out the discharge plasma sintering method of the present invention. FIG. 2 is a flowchart showing a manufacturing process of a sintered product using a discharge plasma sintering method using the apparatus of FIG.

図1を参照すると、この装置10は住友石炭工業(株)社製であり、上部パンチ1と、下部パンチ2と、その対向部間の周囲に配置された焼結ダイ3とを備えており、上部パンチ1,下部パンチ2、及び焼結ダイ3によって形成される空間内の焼結される粉体4が充填される構成である。上部パンチ1,下部パンチ2の対向する端部と反対側のそれぞれ端部には、上部パンチ電極5、及び下部パンチ電極6の一端がそれぞれ設けられ、水冷真空チャンバー7内に収容されている。チャンバーの上下端部から上部パンチ電極5及び下部パンチ電極6の他端がそれぞれ引き出されて、外部に突出している。上部パンチ電極5及び下部パンチ電極6のそれぞれの他端には、特殊な加圧機構16が接続され、また、特殊な焼結電源15が接続されている。焼結電源15及び加圧機構16はそれぞれ制御装置を介して、位置計測機構18a、真空又はAr等の雰囲気制御機構18b,水冷却機構18d,温度計測装置18eを備えた計測システム18に接続されている。   Referring to FIG. 1, this apparatus 10 is manufactured by Sumitomo Coal Industry Co., Ltd., and includes an upper punch 1, a lower punch 2, and a sintering die 3 disposed around the opposing portion. The powder 4 to be sintered is filled in the space formed by the upper punch 1, the lower punch 2, and the sintering die 3. One end of each of the upper punch electrode 5 and the lower punch electrode 6 is provided at each end of the upper punch 1 and the lower punch 2 opposite to the opposing ends, and is accommodated in the water-cooled vacuum chamber 7. The other ends of the upper punch electrode 5 and the lower punch electrode 6 are drawn out from the upper and lower ends of the chamber and project outside. A special pressurizing mechanism 16 is connected to the other end of each of the upper punch electrode 5 and the lower punch electrode 6, and a special sintering power source 15 is connected thereto. The sintering power supply 15 and the pressurizing mechanism 16 are connected to a measuring system 18 including a position measuring mechanism 18a, an atmosphere control mechanism 18b such as vacuum or Ar, a water cooling mechanism 18d, and a temperature measuring device 18e, respectively, via a control device. ing.

このような装置を用いた放電プラズマ焼結法(spark plasma sintering)では、圧粉体間にパルス状の電気エネルギーを直接投入し、火花放電によって瞬時に発生する放電プラズマのエネルギーを熱拡散、活性化焼結を可能とする方法である。   In spark plasma sintering using such an apparatus, pulsed electric energy is directly applied between green compacts, and the energy of the discharge plasma generated instantaneously by spark discharge is thermally diffused and activated. This is a method that enables chemical sintering.

本発明では、上述したように、放電プラズマ焼結法を用いる事で、粉末冶金法により低温度、短時間、且つ高密度で形状自由度が高く、高い磁気特性を有するFeCrCo永久磁石焼結体を製造する事ができるFeCrCo永久磁石製品の製造方法である。また、平均粉末粒径が1.0〜500μmのFeCrCo永久磁石原料粉末を放電プラズマ焼結法を用いる事で、粉末冶合法により低温度、短時間、且つ高密度で形状自由度が高く、高い磁気特性を有するFeCrCo永久磁石焼結体を製造する事ができるFeCrCo永久磁石製品の製造方法である。   In the present invention, as described above, by using the discharge plasma sintering method, the FeCrCo permanent magnet sintered body having high magnetic properties and low temperature, short time, high density and high degree of freedom by powder metallurgy. It is a manufacturing method of the FeCrCo permanent magnet product which can be manufactured. In addition, by using the discharge plasma sintering method for the FeCrCo permanent magnet raw material powder having an average powder particle size of 1.0 to 500 μm, the powder composite method is low in temperature, short time, high density, and high in the degree of freedom of shape. This is a method for producing an FeCrCo permanent magnet product capable of producing an FeCrCo permanent magnet sintered body having magnetic properties.

即ち、本発明では、平均粉末粒径が1.0〜500μmのFeCrCo原料を用い、放電プラズマ焼結法により、FeCrCo永久磁石を製造することで、800〜1300℃の低温及び1min〜60minの短時間で、焼結密度7.22〜7.58g/cm(×10kg/m)、相対密度比95〜99.9%の高密度且つ最も短い辺の長さが2mm〜500mmの極めて形状自由度の高いFeCrCo永久磁石焼結体を得るものである。 That is, in the present invention, an FeCrCo permanent magnet is manufactured by a discharge plasma sintering method using an FeCrCo raw material having an average powder particle size of 1.0 to 500 μm, so that a low temperature of 800 to 1300 ° C. and a short of 1 min to 60 min. In time, the sintered density is 7.22 to 7.58 g / cm 3 (× 10 3 kg / m 3 ), the relative density ratio is 95 to 99.9%, and the shortest side length is 2 to 500 mm. An FeCrCo permanent magnet sintered body having an extremely high degree of shape freedom is obtained.

FeCrCo永久磁石は、FeCrCo永久磁石粉末用原料組成の主要構成元素であるFeの組成が20〜80原子%、Crの組成が5〜40原子%、Coの組成が5〜40原子%で構成され、且つ添加元素としてMo、Ti、V、の1元素或いは複数元素を各々0.1〜10原子%を同時に含有し、その他元素としてo、N、C、Si、Mn、P、S、Cu、Niの1元素或いは複数元素を0.001〜10原子%同時に含有するFeCrCo磁石原料を大気中或いはNガス中或いは不活性ガス中にガスアトマイズ法又は水中への水アトマイズ法、或いはNガス或いは圧縮空気を用いたジェットミル粉砕器による気流分砕法、或いは溶媒としてアルコール、ヘキサン、トルエン、純水等を用いた湿式ボールミル粉砕法により平均粉末粒径が1.0〜500μmの粉末を作製し、その後、カーボングラフアイト又はWC超硬型或いは窒化物セラミック型を用い、放電プラズマ焼結炉を用いて、1×10−1Torr(=13.3Pa)以下の真空中或いは0.1kg/cm(98.1hPa)から5.0kg/cm(4900hPa)のArなどの不活性ガス雰囲気中或いはNガス雰囲気中にて1A〜50000Aの大電流通電効果によるジュール熱加熱及びプラズマ放電による局所加熱及び通電加熱同時加圧により高密度FeCrCo永久磁石焼結体とした。 The FeCrCo permanent magnet is composed of 20 to 80 atomic% of Fe, which is a main constituent element of the raw material composition for FeCrCo permanent magnet powder, 5 to 40 atomic% of Cr, and 5 to 40 atomic% of Co. In addition, one or more elements of Mo, Ti, and V are simultaneously contained as additive elements in an amount of 0.1 to 10 atomic%, and other elements are o, N, C, Si, Mn, P, S, Cu, A FeCrCo magnet raw material containing one or more elements of Ni at the same time of 0.001 to 10 atomic% at the same time in the atmosphere, in N 2 gas or in an inert gas, gas atomization method, water atomization method into water, or N 2 gas or Average powder by air-flow crushing method using jet mill using compressed air or wet ball mill crushing method using alcohol, hexane, toluene, pure water etc. as solvent Diameter to prepare a powder of 1.0~500Myuemu, then using a carbon graphite or WC carbide type or nitride ceramic types, using a discharge plasma sintering furnace, 1 × 10 -1 Torr (= 13. 3 Pa) or less in vacuum or 0.1 kg / cm 2 (98.1 hPa) to 5.0 kg / cm 2 (4900 hPa) in an inert gas atmosphere such as Ar, or N 2 gas atmosphere, 1 A to 50000 A A high-density FeCrCo permanent magnet sintered body was obtained by simultaneous heating by Joule heating by current conduction effect, local heating by plasma discharge, and conduction heating.

即ち、0.1〜500℃/分にて加熱され、800〜1300℃×0.1〜100分で大電流通電によるプラズマ放電加熱及びジュール熱加熱を行うと同時に成形圧0.1〜100kg/mm(約0.98〜98MPa)にて加圧成形後、大気中或いは0.1kg/cm(98.1hPa)から5.0kg/cm(4900hPa)のArなどの不活性ガス中或いはNガス雰囲気中で冷却する大電流通電によるプラズマ放電加熱加圧焼結を行う焼結工程にてFeCrCo永久磁石焼結体を製造した。 That is, it is heated at 0.1 to 500 ° C./min, and at a temperature of 800 to 1300 ° C. × 0.1 to 100 minutes, plasma discharge heating and Joule heating are performed by energizing a large current, and at the same time a molding pressure of 0.1 to 100 kg / After pressure forming at mm 2 (about 0.98 to 98 MPa), in the atmosphere or in an inert gas such as Ar of 0.1 kg / cm 2 (98.1 hPa) to 5.0 kg / cm 2 (4900 hPa) or A FeCrCo permanent magnet sintered body was manufactured by a sintering process in which plasma discharge heating and pressure sintering was performed by energizing a large current cooled in an N 2 gas atmosphere.

その後、大気中或いは0.1kg/cm(98.1hPa)から5.0kg/cm(4900hPa)のArなどの不活性ガス雰囲気中で900〜1300℃×0.1〜100分保持後、大気中或いは0.1kg/cm(98.1hPa)から5.0kg/cm(4900hPa)のArなどの不活性ガス或いはN2ガス雰囲気中或いは水中において急冷処理する均一化熱処理を施した。 Then, after holding at 900 to 1300 ° C. for 0.1 to 100 minutes in the atmosphere or in an inert gas atmosphere such as Ar of 0.1 kg / cm 2 (98.1 hPa) to 5.0 kg / cm 2 (4900 hPa), A uniform heat treatment was performed in the air or in an atmosphere of 0.1 kg / cm 2 (98.1 hPa) to 5.0 kg / cm 2 (4900 hPa) of an inert gas such as Ar, an N 2 gas atmosphere, or water.

次に0.001〜10Tの直流或いは交流外部磁界を印加した状態で、大気中或いは0.1kg/cm(98.1hPa)から5.0kg/cm(4900hPa)のArなどの不活性ガス或いはNガス雰囲気中で、500〜800℃×0.1〜1000分保持後、室温である25℃まで0.1分〜100時間の時間で急冷或いは徐冷処理を行う磁場中熱処理を施した。 Next, an inert gas such as Ar in the atmosphere or 0.1 kg / cm 2 (98.1 hPa) to 5.0 kg / cm 2 (4900 hPa) with a DC1 or AC external magnetic field of 0.001 to 10 T applied. Alternatively, in a N 2 gas atmosphere, after holding at 500 to 800 ° C. for 0.1 to 1000 minutes, heat treatment in a magnetic field is performed in which rapid cooling or slow cooling treatment is performed for 0.1 minutes to 100 hours to 25 ° C., which is room temperature. did.

次に、大気中或いは98.1hPa(0.1k/cm)から5.0kg/cm2(4900hPa)のArなどの不活性ガス或いはNガス雰囲気中で、500〜800℃×0.1〜100分保持後、室温である25℃まで0.1分〜100時間の時間で急冷或いは徐冷処理を行う、2相分離時効処理を施しFeCrCo永久磁石焼結体製品を製造した。 Next, in the atmosphere or in an inert gas or N 2 gas atmosphere such as Ar of 98.1 hPa (0.1 k / cm 2 ) to 5.0 kg / cm 2 (4900 hPa), 500 to 800 ° C. × 0.1 After holding for 100 minutes, a two-phase separation aging treatment was performed in which rapid cooling or slow cooling treatment was performed at room temperature of 25 ° C. for 0.1 minutes to 100 hours to produce a FeCrCo permanent magnet sintered body product.

こうして放電プラズマ焼結法により製造したFeCrCo永久磁石焼結体において、第1の効果として外部加熱焼結法を用いた粉末冶金法により作製した焼結体においては、使用したFeCrCo永久磁石原料粉末の粒径が粗くなるのにしたがい緻密化傾向が低下し、相対密度比が著しく低下していくのに対して、放電プラズマ焼結法を用い粉末冶金法にて作製したプラズマ焼結体においては粒径が1μm〜500μmの範囲においても実用上全く問題のない相対密度比である90〜99.8%の相対密度比が得られている事から、FeCrCo永久磁石粉末の焼結工程として放電プラズマ焼結法を用いた事による高密度化効果が確認される。   In the FeCrCo permanent magnet sintered body thus produced by the discharge plasma sintering method, the sintered body produced by the powder metallurgy method using the external heating sintering method as the first effect is used for the FeCrCo permanent magnet raw material powder used. As the particle size becomes coarser, the tendency to densification decreases and the relative density ratio decreases remarkably, whereas in the plasma sintered body produced by the powder metallurgy method using the discharge plasma sintering method, Since a relative density ratio of 90 to 99.8%, which is a practically no relative problem, is obtained even when the diameter is in the range of 1 μm to 500 μm, discharge plasma sintering is used as a sintering process for FeCrCo permanent magnet powder. The densification effect by using the knot method is confirmed.

尚、本発明を適用したFeCrCo粉末の平均粒径については実行上平均粒径1.0μm以下の粉末をFeCrCo永久磁石組成で製造する事は難しく、500μ以上においては放電プラズマ焼結においても相対密度比は低下傾向にある事から適用FeCrCo永久磁石原料粉末の平均粒径は1.0〜500μmとした。   In terms of the average particle diameter of the FeCrCo powder to which the present invention is applied, it is difficult to produce a powder having an average particle diameter of 1.0 μm or less with an FeCrCo permanent magnet composition in practice. Since the ratio tends to decrease, the average particle diameter of the applied FeCrCo permanent magnet raw material powder was set to 1.0 to 500 μm.

第2の効果として外部加熱焼結法を用いた粉末冶金法により作製した焼結体においては、1400℃の高温下においても相対密度比が85%と低いのに対して、放電プラズマ焼結法により製造した放電プラズマ焼結体においては800℃程度の低温度にて既に実用上全く問題ない95%の相対密度比が得られている事から、放電プラズマ法における低温度での緻密焼結促進効果が確認される。   As a second effect, in the sintered body produced by the powder metallurgy method using the external heating sintering method, the relative density ratio is as low as 85% even at a high temperature of 1400 ° C., whereas the discharge plasma sintering method is used. In the spark plasma sintered body manufactured by the above method, a relative density ratio of 95%, which has no practical problem at a low temperature of about 800 ° C., has already been obtained. The effect is confirmed.

尚、本発明を適用したFeCrCo粉末におけるプラズマ焼結保持温度については800℃以下の温度では若干の相対密度比低下傾向が認められ、1300℃以上ではFeCrCoの融点に近づく事による特性悪化傾向を伴う可能性が非常に高い事から、放電プラズマ焼結法における適用温度範囲は高相対密度比が得られる温度域である800℃〜1300℃の温度範囲とした。   As for the plasma sintering holding temperature in the FeCrCo powder to which the present invention is applied, there is a slight tendency to decrease the relative density ratio at temperatures below 800 ° C., and at 1300 ° C. and above, there is a tendency to deteriorate characteristics due to approaching the melting point of FeCrCo. Since the possibility is very high, the application temperature range in the spark plasma sintering method is a temperature range of 800 ° C. to 1300 ° C., which is a temperature range in which a high relative density ratio is obtained.

第3の効果として外部加熱焼結法を用いた粉末冶金法により作製した焼結体においては、外部加熱保持時間に対する相対密度比の上昇傾向は非常に緩慢で、相対密度比が安定するのに200分以上の保持時間を必要とするにも関わらず、相対密度比は85%と実用上使用不可のレベルの相対密度比しか得られない事に対して、放電プラズマ焼結法により製造したプラズマ焼結体においては、1分程度の保持時間で著しい相対密度比向上傾向を示し、40分程度の保持時間で実用上十分な高相対密度比焼結体が得られる事から、放電プラズマ焼結法における短時間での緻密焼結促進効果が確認される。   As a third effect, in the sintered body produced by the powder metallurgy method using the external heating sintering method, the rising tendency of the relative density ratio with respect to the external heating holding time is very slow, and the relative density ratio is stable. In spite of the fact that the relative density ratio is only 85%, which is not practically usable, although the holding time of 200 minutes or more is required, the plasma produced by the discharge plasma sintering method. In the sintered body, since the relative density ratio is remarkably improved with a holding time of about 1 minute, and a practically sufficient high relative density ratio sintered body is obtained with a holding time of about 40 minutes, discharge plasma sintering is possible. The effect of promoting dense sintering in a short time in the method is confirmed.

尚、本発明を適用したFeCrCo粉末におけるプラズマ焼結保持時間については1分以下においては装置性質上低温度下での定量温度管理が難しく、60分以上では保持温度延長によるさらなる相対密度比向上効果が望めない事から、放電プラズマ焼結法における適用処理時間は安定した高相対密度比焼結体を得る事ができる1〜60分とした。   As for the plasma sintering holding time in the FeCrCo powder to which the present invention is applied, it is difficult to control the quantitative temperature at a low temperature due to the properties of the apparatus if it is 1 minute or less. Therefore, the application treatment time in the discharge plasma sintering method was set to 1 to 60 minutes, which can obtain a stable high relative density ratio sintered body.

第4の効果として外部加熱焼結法を用いた粉末冶金法により作製した焼結体においては、相対密度比が低い事による影響から磁気特性であるBr、(BH)max、iHcの値がBr=0.72〜0.95T(7.2〜9.5kG)、(BH)max=11.9〜17.5kJ/m(1.5〜2.2MGOe)、iHc=27.9〜31.8kA/m(350〜400Oe)と低いのに対して、放電プラズマ焼結法により製造したプラズマ焼結体の磁気特性においてはBr=1.2〜1.4T(12.0〜14.0kG)、(BH)max=33.4〜47.7kJ/m(4.2〜6.0MGOe)、iHc=39.8〜51.7kA/m(500〜650Oe)と高い磁気特性が得られている事から、放電プラズマ焼結法における磁気特性の高特性化効果が確認される。 As a fourth effect, in the sintered body produced by the powder metallurgy method using the external heating sintering method, the values of Br, (BH) max, iHc which are magnetic characteristics are Br due to the influence of the low relative density ratio. = 0.72~0.95T (7.2~9.5kG), (BH ) max = 11.9~17.5kJ / m 3 (1.5~2.2MGOe), iHc = 27.9~31 .8 kA / m (350 to 400 Oe), on the other hand, Br = 1.2 to 1.4 T (12.0 to 14.0 kG) in the magnetic properties of the plasma sintered body produced by the spark plasma sintering method. ), (BH) max = 33.4-47.7 kJ / m 3 (4.2-6.0 MGOe), iHc = 39.8-51.7 kA / m (500-650 Oe) and high magnetic properties are obtained. Magnetic field in the spark plasma sintering method. The effect of improving the gas characteristics is confirmed.

第5の効果として外部加熱焼結法を用いた粉末冶金法により作製した外部加熱焼結体においては、B等の添加元素を加えても1300℃以上までの加熱を必要とする事から、焼結設備上の問題から量産性が悪く、実際には外部加熱焼結炉を用いた粉末冶金によるFeCrCo永久磁石は生産されてはおらず、一般には高真空高周波溶解炉により作製したFeCrCo鋳造品を、プレスにより打ち抜き可能な厚みである2mm以下の厚みまで圧延機を用いて圧延を繰り返し、できたFeCrCo磁石板材をプレス機にて打ち抜き加工を施す事によりFeCrCo永久磁石製品としている事から厚み方向の形状自由度が2mm以下の形状制限があるといった難点がある事に対して、放電プラズマ焼結法を用いる事で低温度、短時間でのFeCrCo永久磁石原料粉末の高密度化が可能で粉末冶金法によるFeCrCoの製造が可能になる事から、製品の厚みである最も短い辺の長さが2mm〜500mmの厚み方向の形状自由度が非常に高くなるといった効果が確認される。   As the fifth effect, in an externally heated sintered body produced by a powder metallurgy method using an externally heated sintering method, heating to 1300 ° C. or higher is required even if an additive element such as B is added. The mass production is poor due to a problem on the sintering equipment, and in fact, an FeCrCo permanent magnet made by powder metallurgy using an external heating and sintering furnace has not been produced. In general, an FeCrCo casting manufactured by a high vacuum high frequency melting furnace is used. Forming in the thickness direction because the FeCrCo permanent magnet product is made by punching the resulting FeCrCo magnet plate material with a press to repeat the rolling to a thickness of 2 mm or less, which is the thickness that can be punched by the press. In contrast to the fact that the degree of freedom is limited to 2 mm or less, FeCrC at low temperature and in a short time by using the discharge plasma sintering method. Since the permanent magnet raw material powder can be densified and FeCrCo can be manufactured by powder metallurgy, the length of the shortest side, which is the product thickness, is 2 mm to 500 mm. The effect of becoming higher is confirmed.

尚、本発明を適用したFeCrCo粉末におけるプラズマ焼結体製品寸法については、現在の放電プラズマ焼結装置の温度分布を考慮した実カ上、安定した特性のFeCrCo永久磁石製品が製造可能な形状は500mmが限界である事から、形状自由度の改善が見込まれる範囲の最も短い辺の長さは2mm〜500mmの範囲とした。   As for the size of the plasma sintered body product in the FeCrCo powder to which the present invention is applied, the shape in which the FeCrCo permanent magnet product with stable characteristics can be manufactured in consideration of the temperature distribution of the current discharge plasma sintering apparatus is Since 500 mm is the limit, the length of the shortest side in a range where improvement in the degree of freedom of shape is expected is set to a range of 2 mm to 500 mm.

上述のようにFeCrCo永久磁石の製造方法において、平均粉末粒径=1.0〜500μmのFeCrCo粉末を放電プラズマ焼結法を用いて800〜1300℃の温度、1分〜60分の短時間にて、粉末冶金法によりFeCrCo高密度焼結体を製造する事で、最も短い辺の長さが2〜500mmと形状自由度が高く、Br=1.2〜1.4T(12.0〜14.0kG)、(BH)max=33.4〜47.7kJ/m(4.2〜6.0MGOe)、iHc=39.8〜51.7kA/m(500〜650Oe)の高い磁気特性を有するFeCrCo永久磁石を得るFeCrCo永久磁石の製造方法を提供する事ができる。 As described above, in the method for producing an FeCrCo permanent magnet, an FeCrCo powder having an average powder particle size = 1.0 to 500 μm is formed at a temperature of 800 to 1300 ° C. in a short time of 1 to 60 minutes using the discharge plasma sintering method. Thus, by producing an FeCrCo high-density sintered body by powder metallurgy, the length of the shortest side is 2 to 500 mm and the shape freedom is high, Br = 1.2 to 1.4T (12.0 to 14 0.0KG), (BH) max = 33.4-47.7 kJ / m 3 (4.2-6.0 MGOe), iHc = 39.8-51.7 kA / m (500-650 Oe). An FeCrCo permanent magnet manufacturing method for obtaining an FeCrCo permanent magnet can be provided.

それでは、本発明の実施の形態について説明する。   Now, an embodiment of the present invention will be described.

(第1の実施の形態)
本発明の第1の実施の形態にて使用したFeCrCo永久磁石原料粉末はFeCrCo磁石を製造する際の代表的な組成であるFe組成が60原子%、Crの組成が25原子%、Coの組成が13原子%の主要元素で構成され、且つ添加元素としTi組成が0.5原子%、V組成が0.5原子%を同時に含有し、その他元素としてO、N、C、Si、Mn、P、S、Cu、Niの1元素或いは複数元素を1.0原子%同時に含有するものを用いた。
(First embodiment)
The FeCrCo permanent magnet raw material powder used in the first embodiment of the present invention has a Fe composition of 60 atomic%, a Cr composition of 25 atomic%, and a Co composition, which is a typical composition for producing an FeCrCo magnet. Is composed of 13 atomic% of the main elements, and the additive element contains Ti composition of 0.5 atomic% and V composition of 0.5 atomic% at the same time, and other elements include O, N, C, Si, Mn, A material containing 1.0 atomic% of one or more elements of P, S, Cu, and Ni at the same time was used.

上記組成のFeCrCo磁石原料を使用し水を用いた水アトマイズ法にて平均粒径=10、50、100μmの粉末を、Nガスを用いたジエットミル粉砕器による気流粉砕法により平均粒径=1.0μmの粉末を、ディスクミルにより平均粒径=500、1000μmのFeCrCo永久磁石粉末を製造した。その後カーボングラファイト型を使用し、放電プラズマ焼結炉を用いて1×10−1Torr(13.33Pa)以下の真空中或いは0.1kg/cm(98.1hPa)から5.0kg/cm(4900hPa)のArなどの不活性ガス雰囲気中或いはNガス雰囲気中にて1A〜50000Aの大電流通電効果によるジュール熱加熱及びプラズマ放電による局所加熱及び通電加熱同時加圧により高密度FeCrCo永久磁石焼結体とした。 Using an FeCrCo magnet raw material having the above composition, a powder having an average particle size of 10, 50, and 100 μm by a water atomization method using water, and an average particle size of 1 by an airflow pulverization method using a jet mill pulverizer using N 2 gas. A FeCrCo permanent magnet powder having an average particle size of 500 and 1000 μm was produced from the 0.0 μm powder by a disk mill. Thereafter, a carbon graphite mold is used, and a vacuum of 1 × 10 −1 Torr (13.33 Pa) or less or 0.1 kg / cm 2 (98.1 hPa) to 5.0 kg / cm 2 using a discharge plasma sintering furnace. (4900 hPa) Ar or other inert gas atmosphere or N 2 gas atmosphere A high-density FeCrCo permanent magnet by Joule heat heating by a large current energizing effect of 1 A to 50000 A, local heating by plasma discharge, and simultaneous heating by energizing heating A sintered body was obtained.

即ち、85〜150℃/分にて加熱され、700〜1300℃×1〜60分で大電流通電によるプラズマ放電加熱及びジュール熱加熱を行うと同時に成形圧4kg/mm(39.2MPa)にて加圧成形後、0.1kg/cm(98.1hPa)のAr不活性ガス中で冷却する大電流通電によるプラズマ放電加熱加圧焼結を行う焼結工程にてFeCrCo永久磁石焼結体を製造した。 That is, it is heated at 85 to 150 ° C./min, and at 700 to 1300 ° C. × 1 to 60 minutes, plasma discharge heating and Joule heat heating by energizing a large current are performed, and at the same time, a molding pressure of 4 kg / mm 2 (39.2 MPa) After the pressure forming, the FeCrCo permanent magnet sintered body is subjected to a sintering process in which plasma discharge heating and pressure sintering is performed by energizing a large current cooled in an Ar inert gas of 0.1 kg / cm 2 (98.1 hPa). Manufactured.

その後0.2kg/cm(196.2hPa)のAr不活性ガス雰囲気中で1200℃×60分保持後、水中において急冷処理を行う均―化熱処理を施した。 Then, after maintaining in an inert gas atmosphere of 0.2 kg / cm 2 (196.2 hPa) at 1200 ° C. for 60 minutes, a leveling heat treatment was performed in which quenching treatment was performed in water.

次に、0.05Tの直流外部磁界を印加した状態で、0.2kg/cm(196.2hPa)のAr不活性ガス雰囲気中で、650℃×90分保持後、室温である25℃まで12時間で徐冷を行う磁場中熱処理を施した。 Next, in a state where an external DC magnetic field of 0.05 T is applied, after holding at 650 ° C. × 90 minutes in an Ar inert gas atmosphere of 0.2 kg / cm 2 (196.2 hPa), the room temperature reaches 25 ° C. A heat treatment was performed in a magnetic field that gradually cooled in 12 hours.

次に、0.2kg/cm(196.2hPa)のAr不活性ガス雰囲気中で、600℃×80分保持後、20時間かけて室温である25℃まで徐冷処理を行う、2相分離時効処理を施しFeCrCo永久磁石焼結体製品を製造した。 Next, after maintaining in an inert gas atmosphere of 0.2 kg / cm 2 (196.2 hPa) at 600 ° C. for 80 minutes, a slow cooling treatment is performed to 25 ° C., which is room temperature over 20 hours. The FeCrCo permanent magnet sintered product was manufactured by aging treatment.

図2は上記製造条件により製造した放電プラズマ焼結体のプラズマ焼結法及び外部加熱焼結法におけるFeCrCo原料粉末の平均粒径と相対密度比密度変化を示した図である。図2において、横軸に使用したFeCrCo永久磁石粉末の平均粒径、縦軸に放電プラズマ焼結法、及び外部加熱法により製造した放電プラズマ焼結体の相対密度比及び外部加熱焼結体の相対密度比の関係を示している。   FIG. 2 is a graph showing changes in the average particle diameter and relative density ratio density of the FeCrCo raw material powder in the plasma sintering method and the external heating sintering method of the discharge plasma sintered body manufactured under the above manufacturing conditions. In FIG. 2, the horizontal axis represents the average particle diameter of the FeCrCo permanent magnet powder, the vertical axis represents the relative density ratio of the discharge plasma sintered body produced by the discharge plasma sintering method and the external heating method, and the external heating sintered body. The relationship of relative density ratio is shown.

図2の曲線12に示すように、外部加熱焼結法を用いた粉末冶金法により作製した外部加熱焼結体においては、使用したFeCrCo永久磁石原料粉末の粒径が1μmから500μmへと平均粒径が粗くなるのにしたがい緻密化傾向が悪化し相対密度比が著しく低下する傾向にある。   As shown by the curve 12 in FIG. 2, in the externally heated sintered body produced by the powder metallurgy method using the externally heated sintering method, the average particle size of the FeCrCo permanent magnet raw material powder used is from 1 μm to 500 μm. As the diameter becomes coarser, the densification tendency deteriorates and the relative density ratio tends to decrease remarkably.

それに対して、曲線11に示すように、放電プラズマ焼結法を用いた粉末冶金法にて作製したプラズマ焼結体においては1000μmにおいては相対密度比の低下傾向が認められるが、平均粒径1.0μm〜500μmの範囲内においては、安定した相対密度比が得られており、その値も95〜99.8%とFeCrCo永久磁石製品として実用上全く問題の無いレベルの相対密度比が得られている事が確認できる。   On the other hand, as shown by the curve 11, in the plasma sintered body produced by the powder metallurgy method using the discharge plasma sintering method, a tendency of decreasing the relative density ratio is observed at 1000 μm, but the average particle size is 1 In the range of 0.0 μm to 500 μm, a stable relative density ratio is obtained, and the value is also 95 to 99.8%, and a relative density ratio at a level that has no practical problem as an FeCrCo permanent magnet product can be obtained. It can be confirmed that

尚、図2には一般的な粉末冶金における焼結法として使われる外部加熱により加熱し焼結を行う外部加熱焼結法における平均粉末粒径と焼結体相対密度比の関係についても同時に示している。   FIG. 2 also shows the relationship between the average powder particle size and the relative density ratio of the sintered body in the external heating sintering method in which heating is performed by external heating used as a sintering method in general powder metallurgy. ing.

この時使用した外部加熱焼結法により製造した焼結体は、プラズマ焼結体同一組成の同一粉末を用いて油圧プレス機にて5.0ton/cm(490MPa)にて加圧成形後、抵抗加熱方式焼結炉による外部加熱焼結を行う外部加熱焼結法によりFeCrCo永久磁石焼結体を製造した。 The sintered body produced by the external heating sintering method used at this time was pressure-molded at 5.0 ton / cm 2 (490 MPa) with a hydraulic press using the same powder having the same composition as the plasma sintered body, A FeCrCo permanent magnet sintered body was manufactured by an external heating sintering method in which external heating sintering was performed in a resistance heating method sintering furnace.

即ち、10℃/分にて加熱され、1400℃×120分の保持の後0.2kg/cm(196.2hPa)のAr不活性ガス冷却により急冷する焼結工程により作製した。 That is, it was manufactured by a sintering process in which it was heated at 10 ° C./min, rapidly cooled by holding an Ar inert gas of 0.2 kg / cm 2 (196.2 hPa) after holding at 1400 ° C. × 120 min.

次に放電プラズマ焼結体と同一条件の磁場中熱処理及び2相分離熱処理を施す事でFeCrCo永久磁石製品とした。   Next, a heat treatment in a magnetic field and a two-phase separation heat treatment under the same conditions as those of the discharge plasma sintered body were performed to obtain a FeCrCo permanent magnet product.

(第2の実施の形態)
図3は第1の実施の形態の製造方法で製造した放電プラズマ焼結による放電プラズマ焼結体の焼結保持温度と放電プラズマ焼結体焼結密度の関係を示す図である。図3において、横軸にプラズマ焼結保持温度及び外部加熱焼結保持温度、縦軸に各プラズマ焼結保持温度及び外部加熱保持温度にて作製したプラズマ焼結体の焼結体密度の値を示している。
(Second Embodiment)
FIG. 3 is a diagram showing the relationship between the sintering holding temperature of the discharge plasma sintered body produced by the discharge plasma sintering manufactured by the manufacturing method of the first embodiment and the sintered density of the discharge plasma sintered body. In FIG. 3, the horizontal axis indicates the plasma sintering holding temperature and the external heating sintering holding temperature, and the vertical axis indicates the value of the sintered compact density of the plasma sintered body produced at each plasma sintering holding temperature and external heating holding temperature. Show.

図3の曲線22に示すように外部加熱焼結法により作製した外部加熱焼結体の焼結体密度は、1200℃近辺まではほとんど緻密化による焼結体密度の向上傾向は認められず1200℃以上の温度域に入りはじめて顕著な緻密化による密度上昇傾向を示すが、一般の抵抗加熱型の外部加熱焼結炉における高温度側の限界温度域である1450℃の外部加熱保持温度においても焼結密度は6.8g/cmまでしか向上しておらず、FeCrCo永久磁石製品としては到底実用不可能な低密度焼結体しか得られていない。 As shown by a curve 22 in FIG. 3, the sintered body density of the externally heated sintered body produced by the externally heated sintering method is almost 1200 ° C. It begins to enter a temperature range of ℃ or higher and shows a tendency of density increase due to remarkable densification, but even at an external heating holding temperature of 1450 ℃, which is a critical temperature range on the high temperature side in a general resistance heating type external heating sintering furnace The sintered density has been improved only to 6.8 g / cm 3, and only a low-density sintered body that cannot be practically used as an FeCrCo permanent magnet product has been obtained.

それに対して、曲線21に示すように、放電プラズマ焼結法により製造した放電プラズマ焼結体においては800℃の低温度域でも既に外部加熱焼結体よりも高い7.22g/cmの密度が得られており、さらに900℃以上の温度域では十分な緻密化促進効果により焼結体密度は飽和傾向にあり、その焼結密度の値も7.42〜7.58g/cmとFeCrCo永久磁石製品として実用上十分な値である事から、放電プラズマ焼結法を用いる事で外部加熱焼結法に比べ650℃も低い800℃の低温度域からFeCrCo永久磁石製品として実用上全く問題のない焼結体密度である7.2g/cm以上の焼結体密度を有するFeCrCo永久磁石焼結体が製造できる事が確認される。 On the other hand, as shown by the curve 21, the discharge plasma sintered body manufactured by the discharge plasma sintering method has a density of 7.22 g / cm 3 which is already higher than that of the external heating sintered body even in the low temperature range of 800 ° C. Further, in the temperature range of 900 ° C. or higher, the sintered body density tends to be saturated due to a sufficient densification promoting effect, and the sintered density value is also 7.42 to 7.58 g / cm 3, which is FeCrCo. Since it is a practically sufficient value as a permanent magnet product, the use of the discharge plasma sintering method has no practical problem as a FeCrCo permanent magnet product from a low temperature range of 800 ° C., which is 650 ° C. lower than the external heating sintering method. It can be confirmed that an FeCrCo permanent magnet sintered body having a sintered body density of 7.2 g / cm 3 or more, which is a sintered body density without any other, can be produced.

図4は放電プラズマ焼結法により製造したFeCrCo永久磁石の放電プラズマ焼結保持温度と放電プラズマ焼結体における相対密度比の関係を示す図である。   FIG. 4 is a view showing the relationship between the discharge plasma sintering holding temperature of the FeCrCo permanent magnet manufactured by the discharge plasma sintering method and the relative density ratio in the discharge plasma sintered body.

図4に示すように、理論密度に対する相対密度のデータとして、横軸にプラズマ焼結保持温度及び外部加熱焼結保持温度、縦軸にプラズマ焼結体における相対密度比、及び外部加熱焼結体における相対密度比を示している。   As shown in FIG. 4, as the data of the relative density with respect to the theoretical density, the horizontal axis represents the plasma sintering holding temperature and the external heating sintered holding temperature, the vertical axis represents the relative density ratio in the plasma sintered body, and the external heating sintered body. The relative density ratio in is shown.

図4に示すように、図4では図3以上に放電プラズマ焼結による放電プラズマ焼結体と外部加熱焼結法により焼結した外部加熱焼結体との焼結時保持温度に対する焼結密度挙動の差違が明確に確認できる。   As shown in FIG. 4, in FIG. 4, the sintering density of the discharge plasma sintered body by the discharge plasma sintering and the external heating sintered body sintered by the external heating sintering method relative to FIG. The difference in behavior can be clearly confirmed.

図4の曲線32に示すように、外部加熱焼結法においては1200℃を越えた辺りから焼結密度の顕著な上昇傾向が認められるが、1450℃の高温度域においても相対密度比は85%と低く、逆にこれ以上に加熱を進め緻密化を図ろうとすると融点直下温度に達してしまい、FeCrCo永久磁石の形態をなさないものになってしまう事から、FeCrCo永久磁石粉末を外部加熱焼結法により焼結した場合は、相対密度比85%程度の焼結体を得るのが限界である事が確認できる。ところが、本発明である放電プラズマ焼結法をFeCrCo永久磁石粉末用製造方法としてFeCrCo永久磁石焼結体を製造すると、放電プラズマ焼結によるジュール加熱、プラズマ放電加熱及び焼結中加圧成形処理を同時に施す事で、曲線31に示すように、800℃の低温においても既に相対密度比は外部加熱1450℃における相対密度比同等以上の相対密度比=95%を示し、さらに900℃以上まで加熱する事でFeCrCo永久磁石製品として十分実用可能な相対密度比=98%以上の値を示している事から外部加熱焼結法に比べ650℃も低温で十分実用可能なFeCrCo永久磁石製品が得られる事が認められ、FeCrCo永久磁石粉末を用いた粉末冶金法でも放電プラズマ焼結法を用いる事で、800℃程度の低温度域から高い焼結体相対密度比を有する、十分実用可能なFeCrCo永久磁石の製造が可能である事が確認される。   As shown by a curve 32 in FIG. 4, in the external heating sintering method, a remarkable increase tendency of the sintering density is recognized from around 1200 ° C., but the relative density ratio is 85 even in a high temperature region of 1450 ° C. %, And conversely, if it is attempted to further heat and densify, it will reach a temperature just below the melting point and will not be in the form of a FeCrCo permanent magnet. When sintered by the sintering method, it can be confirmed that it is the limit to obtain a sintered body having a relative density ratio of about 85%. However, when the FeCrCo permanent magnet sintered body is manufactured using the discharge plasma sintering method according to the present invention as a manufacturing method for FeCrCo permanent magnet powder, Joule heating by plasma discharge sintering, plasma discharge heating, and pressure forming treatment during sintering are performed. By applying simultaneously, as shown in curve 31, the relative density ratio already shows a relative density ratio equal to or higher than the relative density ratio at external heating 1450 ° C. = 95% even at a low temperature of 800 ° C., and further heated to 900 ° C. or higher. As a result, the relative density ratio that is sufficiently practical as an FeCrCo permanent magnet product shows a value of 98% or more, so that an FeCrCo permanent magnet product that is sufficiently practical at a temperature as low as 650 ° C. can be obtained compared to the external heating sintering method. By using the discharge plasma sintering method even in the powder metallurgy method using FeCrCo permanent magnet powder, a low temperature of about 800 ° C. Has a high sintered body relative density ratio from, it is confirmed that can be manufactured sufficiently practicable FeCrCo permanent magnet.

(第3の実施の形態)
図5は第1の実施の形態の製造方法にて製造した放電プラズマ焼結による放電プラズマ焼結体と外部加熱焼結法により焼結した外部加熱焼結体との焼結時保持時間に対する焼結密度の相対密度比変化を示した図である。図5において、横軸にプラズマ放電焼結時間及び外部加熱焼結保持時間、縦軸に放電プラズマ焼結体及び外部加熱焼結体の相対密度比を示す。
(Third embodiment)
FIG. 5 shows the sintering time of the discharge plasma sintered body produced by the discharge plasma sintering produced by the production method of the first embodiment and the externally heated sintered body sintered by the external heating sintering method with respect to the holding time during sintering. It is the figure which showed the relative density ratio change of the consolidation density. In FIG. 5, the horizontal axis represents the plasma discharge sintering time and the external heating sintering holding time, and the vertical axis represents the relative density ratio of the discharge plasma sintered body and the external heating sintered body.

図5の曲線42に示すように、外部加熱焼結法においても焼結時間の長時間化に伴い焼結密度比の向上傾向は認められるが保持時間=60分以上からは相対密度比の上昇傾向は鈍化し、240分保持の時点で既に相対密度比は飽和傾向を示しているものの1400℃の高温度下においても相対密度比はまだ85%と実用上使用不可能な相対密度比しか得られていない。   As shown by the curve 42 in FIG. 5, even in the external heating sintering method, an increase in the sintering density ratio is recognized as the sintering time increases, but the relative density ratio increases from holding time = 60 minutes or more. Although the trend has slowed and the relative density ratio has already shown a saturation tendency at the time of holding for 240 minutes, even at a high temperature of 1400 ° C., the relative density ratio is still 85%, which is only practically unusable. It is not done.

ところが、曲線41に示す放電プラズマ焼結体においては保持時間1分といった極めて短時間の保持で既に相対密度比は96.5%まで向上し、保持時間10分で相対密度比は十分な飽和傾向を示すと共に、既に実用上十分使用可能な相対密度比である98.3%の値が得られている事から、放電プラズマ焼結によるジュール加熱、プラズマ放電加熱及び焼結中加圧成形処理を同時に施す事で、急速に緻密化が進み1分程度の非常に短時間の処理時間でも高密度なFeCrCo永久磁石焼結体を製造する事が可能である事が確認できる。   However, in the spark plasma sintered body shown by the curve 41, the relative density ratio has already been improved to 96.5% by holding for a very short time such as 1 minute, and the relative density ratio tends to be sufficiently saturated at the holding time of 10 minutes. In addition, since the value of 98.3%, which is a relative density ratio that can be sufficiently used in practice, has already been obtained, Joule heating by plasma discharge sintering, plasma discharge heating, and pressure forming during sintering are performed. By applying them simultaneously, it can be confirmed that the densification rapidly progresses and it is possible to produce a high-density FeCrCo permanent magnet sintered body even in a very short processing time of about 1 minute.

(第4の実施の形態)
図6は第1の実施の形態の製造方法にて製造した放電プラズマ焼結法を用いた粉末冶金法により製造したFeCrCo永久磁石の磁気特性である残留磁束密度Brを示す図である。図6にはプラズマ焼結保持温度に対するプラズマ焼結体の磁気特性である残留磁束密度Brの挙動を示しており横軸にプラズマ焼結温度、縦軸にはプラズマ焼結体におけるBrを示している。
(Fourth embodiment)
FIG. 6 is a diagram showing a residual magnetic flux density Br which is a magnetic characteristic of an FeCrCo permanent magnet manufactured by a powder metallurgy method using a discharge plasma sintering method manufactured by the manufacturing method of the first embodiment. FIG. 6 shows the behavior of the residual magnetic flux density Br, which is the magnetic characteristic of the plasma sintered body with respect to the plasma sintering holding temperature. The horizontal axis represents the plasma sintering temperature, and the vertical axis represents Br in the plasma sintered body. Yes.

尚、図6には同時に外部加熱焼結法により製造した外部加熱焼結体の磁気特性である残留磁束密度Brも示しており、横軸に外部加熱保持温度、縦軸に外部加熱焼結体のBrを示している。   FIG. 6 also shows the residual magnetic flux density Br, which is the magnetic characteristic of the externally heated sintered body produced by the externally heated sintered method at the same time, with the externally heated holding temperature on the horizontal axis and the externally heated sintered body on the vertical axis. Of Br.

図7は同様に最大エネルギー積(BH)maxを示す図である。図7にはプラズマ焼結保持温度に対するプラズマ焼結体の磁気特性である最大エネルギー積(BH)maxの挙動を示しており横軸にプラズマ焼結温度、縦軸にはプラズマ焼結体における(BH)maxを示している。   FIG. 7 is a diagram similarly showing the maximum energy product (BH) max. FIG. 7 shows the behavior of the maximum energy product (BH) max, which is the magnetic characteristic of the plasma sintered body with respect to the plasma sintering holding temperature. The horizontal axis represents the plasma sintering temperature, and the vertical axis represents ( BH) max.

尚、図7には同時に外部加熱焼結法により製造した外部加熱焼結体の磁気特性である最大エネルギー積(BH)maxも示しており、横軸に外部加熱保持温度、縦軸に外部加熱焼結体の(BH)maxを示している。   FIG. 7 also shows the maximum energy product (BH) max, which is the magnetic characteristic of the externally heated sintered body manufactured by the externally heated sintering method, with the horizontal axis indicating the external heating holding temperature and the vertical axis indicating the external heating. (BH) max of the sintered body is shown.

図8は同様に保磁力iHcを示す図である。図8にはプラズマ焼結保持温度に対するプラズマ焼結体の磁気特性である保磁力iHcの挙動を示しており横軸にプラズマ焼結温度、縦軸にはプラズマ焼結体におけるiHcを示している。   FIG. 8 is a diagram similarly showing the coercive force iHc. FIG. 8 shows the behavior of the coercive force iHc, which is the magnetic characteristic of the plasma sintered body with respect to the plasma sintering holding temperature. The horizontal axis represents the plasma sintering temperature, and the vertical axis represents iHc in the plasma sintered body. .

尚、図8には同時に外部加熱焼結法により製造した外部加熱焼結体の磁気特性である保磁力iHcも示しており、横軸に外部加熱保持温度、縦軸に外部加熱焼結体のiHcを示している。   FIG. 8 also shows the coercive force iHc, which is the magnetic property of the externally heated sintered body manufactured by the externally heated sintered method at the same time, with the externally heated holding temperature on the horizontal axis and the externally heated sintered body on the vertical axis. iHc is shown.

図6の曲線52に示すように、外部加熱焼結法により製造した外部加熱焼結体については、緻密化不足による焼結体密度レベルの低下から、最大でもBr=0.95T(9.5kG)の値しか得られず、FeCrCo永久磁石材料としては実用上使用不可能な値しか得られていない。   As shown by a curve 52 in FIG. 6, with respect to the externally heated sintered body manufactured by the externally heated sintering method, Br = 0.95T (9.5 kG at maximum) due to a decrease in the sintered body density level due to insufficient densification. Only a value that is practically unusable as an FeCrCo permanent magnet material.

それに対して、曲線51に示す放電プラズマ焼結法により製造した放電プラズマ焼結体においては、800℃の低温においてもFeCrCo永久磁石製品として既に実用上十分な特性であるBr=1.2T(12.0kG)の高い残留磁束密度を持つと共に、さらに加熱し焼結温度を950℃〜1300℃の温度域とする事でさらに優れた磁気特性であるBr=1.3〜1.4T(13.0〜14.0kG)が得られている事から、FeCrCo永久磁石粉末を放電プラズマ焼結法を用いた粉末冶金法により製造する事で、高Br値を有する非常に優れた磁気特性のFeCrCo永久磁石が製造できる事が確認される。   On the other hand, in the spark plasma sintered body produced by the spark plasma sintering method shown by curve 51, Br = 1.2T (12 which is already a practically sufficient characteristic as a FeCrCo permanent magnet product even at a low temperature of 800 ° C. 0.0KG), and further heating to bring the sintering temperature to a temperature range of 950 ° C. to 1300 ° C. Br = 1.3 to 1.4T (13. From 0 to 14.0 kG), it is possible to produce FeCrCo permanent magnet powder by a powder metallurgy method using a discharge plasma sintering method. It is confirmed that the magnet can be manufactured.

図7についても図6と同様に外部加熱焼結法により製造した外部加熱焼結体については、曲線62に示すように、緻密化不足による焼結体密度レベルの低下から、最大でも(BH)max=17.5kJ/m(2.2MGOe)の値しか得られず、FeCrCo永久磁石材料としては実用上使用不可能な値しか得られていない。それに対して、放電プラズマ焼結法により製造した放電プラズマ焼結体においては、曲線61に示すように、800℃の低温においても(BH)max=33.4kJ/m(4.2MGOe)と既に実用上十分に高い最大エネルギー積を示し、さらに加熱し焼結温度を1100℃〜1300℃の温度域とする事でさらに優れた磁気特性である(BH)max=43.0〜47.7kJ/m(5.4〜6.0MGOe)が得られている事から、FeCrCo永久磁石粉末を放電プラズマ焼結法を用いた粉末冶金法により製造する事で、高い(BH)maxの値を有する非常に優れた磁気特性のFeCrCo永久磁石が製造できる事が確認される。 As for FIG. 7, the externally heated sintered body manufactured by the externally heated sintering method as in FIG. 6 is at most (BH) due to the decrease in the sintered body density level due to insufficient densification, as shown by the curve 62. Only a value of max = 17.5 kJ / m 3 (2.2 MGOe) is obtained, and only a value practically unusable as an FeCrCo permanent magnet material is obtained. On the other hand, in the spark plasma sintered body manufactured by the spark plasma sintering method, as shown by the curve 61, (BH) max = 33.4 kJ / m 3 (4.2 MGOe) even at a low temperature of 800 ° C. Already practically high maximum energy product, and further heating to make the sintering temperature range from 1100 ° C. to 1300 ° C. (BH) max = 43.0-47.7 kJ / M 3 (5.4 to 6.0 MGOe) is obtained, and a high (BH) max value can be obtained by producing FeCrCo permanent magnet powder by a powder metallurgy method using a discharge plasma sintering method. It is confirmed that an FeCrCo permanent magnet having very excellent magnetic properties can be manufactured.

図8についても図6、図7と同様に、曲線72に示されるように、外部加熱焼結法により製造した外部加熱焼結体においては、緻密化不足による焼結体密度レベルの低下の影響により、最大でもiHc=31.8kA/m(400Oe)の値しか得られていない事に対して、放電プラズマ焼結法により製造した放電プラズマ焼結体においては、曲線71に示すように800℃の低温においてiHc=39.8kA/m(500Oe)と外部加熱焼結法により製造した外部加熱焼結体に比べて高い保磁力の値を示し、さらに加熱した1050℃〜1300℃の温度域においてはiHc=47.7〜51.7kA/m(600〜650Oe)と極めて優れた高い保磁力を示している事から、FeCrCo永久磁石粉末を放電プラズマ焼結法を用いた粉末冶金法により製造する事で、高い保磁力iHcの値を有する非常に優れた磁気特性のFeCrCo永久磁石が製造できる事が確認される。   As in FIGS. 6 and 7, FIG. 8 also shows the effect of the decrease in the density level of the sintered body due to insufficient densification in the externally heated sintered body manufactured by the externally heated sintering method, as shown by the curve 72. Thus, only a value of iHc = 31.8 kA / m (400 Oe) is obtained at the maximum, whereas in the discharge plasma sintered body manufactured by the discharge plasma sintering method, as shown by the curve 71, 800 ° C. IHc = 39.8 kA / m (500 Oe) at a low temperature of 5 ° C., which shows a higher coercive force value than that of an externally heated sintered body manufactured by an externally heated sintering method, and further in a heated temperature range of 1050 ° C. to 1300 ° C. Shows an extremely high coercive force of iHc = 47.7-51.7 kA / m (600-650 Oe). Therefore, a discharge plasma sintering method is used for FeCrCo permanent magnet powder. By produced by powder metallurgy, that can be produced is FeCrCo permanent magnet very excellent magnetic properties with high values of the coercive force iHc is confirmed.

(第5の実施の形態)
同時に従来粉末冶金法によるFeCrCo永久磁石の製造は、その基本構成元素であるFeCrCoが顕著な難焼結性を示し不可能であった事から、従来はFeCrCo永久磁石鋳造物を冷間或いは熱間圧延処理により薄板材とし、その後FeCrCo永久磁石材料は難焼結性であると同時に切削性、研削性などの加工性が悪い事から熱間或いは冷間打ち抜き加工により製造しているが、打ち抜き加工時の量産性を考慮すると打ち抜き加工時における打ち抜き圧力に限界があるため、FeCrCo永久磁石を薄板材とする際の厚み方向の寸法は最大でも2mm以下にする必要があったが、本発明であるFeCrCo永久磁石粉末を用いた粉末冶金法によるFeCrCo永久磁石の製造方法を適用する事で、薄板材とする必要も無く、且つ厚み方向の寸法についても2mm以下とする必要は無い、実質上最も短い辺の長さが2mm以上の非常に形状自由度の高いFeCrCo永久磁石の製造が可能になった事が確認できる。
(Fifth embodiment)
At the same time, the production of FeCrCo permanent magnets by the conventional powder metallurgy method was impossible because FeCrCo, which is the basic constituent element, was not capable of showing remarkable sinterability. It is made into a thin plate by rolling, and then the FeCrCo permanent magnet material is manufactured by hot or cold punching because it is difficult to sinter and at the same time has poor workability such as machinability and grindability. Considering mass productivity at the time, there is a limit to the punching pressure at the time of punching, so the thickness direction dimension when using the FeCrCo permanent magnet as a thin plate material has to be 2 mm or less at the maximum. By applying the FeCrCo permanent magnet manufacturing method by powder metallurgy using FeCrCo permanent magnet powder, there is no need to make a thin plate material and the thickness Not need to be 2mm or less for the dimensions of the countercurrent, it can be confirmed that the length of the substantially shortest side becomes possible very shape high degree of freedom manufacture of FeCrCo permanent magnets than 2mm is.

以上述べたように、本発明に係るFeCrCo永久磁石の製造方法によれば、放電プラズマ焼結法を用いた粉末冶金法によって、焼結高密度化されたFeCrCo永久磁石の焼結体の製造に適用することができる。   As described above, according to the manufacturing method of the FeCrCo permanent magnet according to the present invention, it is possible to manufacture a sintered compact of the FeCrCo permanent magnet sintered and densified by the powder metallurgy method using the discharge plasma sintering method. Can be applied.

本発明の放電プラズマ焼結法を実施するための装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus for implementing the discharge plasma sintering method of this invention. FeCrCo永久磁石原料粉末の平均粉末粒径とプラズマ焼結法及び外部加熱焼結法により製造したプラズマ焼結体及び外部加熱焼結体の相対密度比の関係を示す図である。It is a figure which shows the relationship between the average powder particle diameter of FeCrCo permanent magnet raw material powder, and the relative density ratio of the plasma sintered compact manufactured by the plasma sintering method and the external heating sintering method, and an external heating sintered body. プラズマ焼結保持温度、及び外部加熱焼結保持温度に対するプラズマ焼結体及び外部加熱焼結体の焼結体密度の関係を示す図である。It is a figure which shows the relationship of the sintered compact density of a plasma sintered compact and an external heating sintering body with respect to plasma sintering retention temperature and external heating sintering retention temperature. プラズマ焼結保持温度及び外部加熱焼結保持温度に対するプラズマ焼結体及び外部加熱焼結体の相対密度比の関係を示す図である。It is a figure which shows the relationship of the relative density ratio of a plasma sintered compact and an external heating sintering body with respect to plasma sintering holding temperature and external heating sintering holding temperature. プラズマ焼結保持時間及び外部加熱焼結保持時間に対するプラズマ焼結体及び外部加熱焼結体の相対密度比の関係を示す図である。It is a figure which shows the relationship of the relative density ratio of a plasma sintered compact and an external heating sintering body with respect to plasma sintering holding time and external heating sintering holding time. プラズマ焼結保持温度及び外部加熱焼結保持温度に対するプラズマ焼結体及び外部加熱焼結体の磁気特性である残留磁束密度Br示す図である。It is a figure which shows the residual magnetic flux density Br which is a magnetic characteristic of a plasma sintered compact and an external heating sintered body with respect to plasma sintering holding temperature and external heating sintering holding temperature. プラズマ焼結保持温度及び外部加熱焼結保持温度に対するプラズマ焼結体及び外部加熱焼結体の磁気特性である最大エネルギー積(BH)maxを示す図である。It is a figure which shows the maximum energy product (BH) max which is a magnetic characteristic of a plasma sintered compact and an external heating sintered body with respect to plasma sintering holding temperature and external heating sintering holding temperature. プラズマ焼結保持温度及び外部加熱焼結保持温度に対するプラズマ焼結体及び外部加熱焼結体の磁気特性である保磁力iHcを示す図である。It is a figure which shows the coercive force iHc which is a magnetic characteristic of a plasma sintered compact and an external heating sintered body with respect to plasma sintering holding temperature and external heating sintering holding temperature.

符号の説明Explanation of symbols

1 上部パンチ
2 下部パンチ
3 焼結ダイ
4 粉体
5 上部パンチ電極
6 下部パンチ電極
7 水冷真空チャンバー
10 装置
11,21,31,41,51,61,71 放電プラズマ法による焼結体の特性を示す曲線
12,22,32,42,52,62,72 外部加熱焼結法による焼結体の特性を示す曲線
15 焼結電源
16 加圧機構
17 制御装置
18 計測システム
18a 位置計測機構
18b 雰囲気制御機構
18d 水冷却機構
18e 温度計測装置
DESCRIPTION OF SYMBOLS 1 Upper punch 2 Lower punch 3 Sintering die 4 Powder 5 Upper punch electrode 6 Lower punch electrode 7 Water-cooled vacuum chamber 10 Apparatus 11, 21, 31, 41, 51, 61, 71 The characteristic of the sintered compact by a discharge plasma method Curves 12, 22, 32, 42, 52, 62, 72 Curves showing characteristics of the sintered body by the external heating sintering method 15 Sintering power source 16 Pressurizing mechanism 17 Controller 18 Measuring system 18 a Position measuring mechanism 18 b Atmosphere control Mechanism 18d Water cooling mechanism 18e Temperature measuring device

Claims (5)

水又はガスを用いたアトマイズ粉末作製法、ジェットミルによる気流乾式粉砕法、及び湿式粉砕法の内の少なくとも1種の作製法によって、平均粉末粒径が1.0〜500μmのFeCrCo永久磁石用粉末を作製し、この粉末を放電プラズマ焼結法を用いた粉末冶金法によって、焼結高密度化された焼結体を得る事を特徴とするFeCrCo永久磁石の製造方法。   FeCrCo permanent magnet powder having an average powder particle size of 1.0 to 500 μm by at least one of atomizing powder production method using water or gas, air-flow dry pulverization method using a jet mill, and wet pulverization method And producing a sintered compact in which the powder is sintered and densified by a powder metallurgy method using a discharge plasma sintering method. 請求項1記載のFeCrCo永久磁石の製造方法において、大電流通電による放電プラズマ焼結法によって、プラズマ放電加熱、ジュール熱加熱効果及び焼結中加圧圧縮効果により、800〜1300℃の低温度にて、相対密度比95〜99.9%の高密度FeCrCo永久磁石を得る事を特徴とするFeCrCo永久磁石の製造方法。   2. The method of manufacturing a FeCrCo permanent magnet according to claim 1, wherein the discharge plasma sintering method using a large current is applied to a low temperature of 800 to 1300 [deg.] C. by plasma discharge heating, Joule heat heating effect and pressure compression effect during sintering. Thus, a high-density FeCrCo permanent magnet having a relative density ratio of 95 to 99.9% is obtained. 請求項1又は2記載のFeCrCo永久磁石の製造方法において、大電流通電による放電プラズマ加熱、ジュール熱加熱効果及び焼結中加圧圧縮効果により、1min〜60minの短時間で、相対密度比95〜99.9%の高密度FeCrCo永久磁石焼結体を得ることを特徴とするFeCrCo永久磁石の製造方法。   The method for producing a FeCrCo permanent magnet according to claim 1 or 2, wherein the relative density ratio is 95 to 95 minutes in a short time of 1 min to 60 min due to discharge plasma heating by high current energization, Joule heat heating effect and pressure compression effect during sintering. A method for producing a FeCrCo permanent magnet, comprising obtaining a 99.9% sintered body of high-density FeCrCo permanent magnet. FeCrCo永久磁石焼結体において、相対密度比95〜99.9%を備えるとともに、Br=1.2〜1.4T,(BH)max=33.4〜47.7kJ/m、iHc=39.8〜51.7kA/mの高磁気特性を有する事を特徴とするFeCrCo永久磁石焼結体。 The FeCrCo permanent magnet sintered body has a relative density ratio of 95 to 99.9%, Br = 1.2 to 1.4T, (BH) max = 33.4 to 47.7 kJ / m 3 , iHc = 39. FeCrCo permanent magnet sintered body having a high magnetic property of .8 to 51.7 kA / m. 請求項4記載のFeCrCo永久磁石焼結体において、最も短い辺の長さが2mm〜500mmである事を特徴とするFeCrCo永久磁石焼結体。

5. The FeCrCo permanent magnet sintered body according to claim 4, wherein the length of the shortest side is 2 mm to 500 mm.

JP2003278775A 2003-07-24 2003-07-24 METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS Withdrawn JP2005045090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278775A JP2005045090A (en) 2003-07-24 2003-07-24 METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278775A JP2005045090A (en) 2003-07-24 2003-07-24 METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS

Publications (1)

Publication Number Publication Date
JP2005045090A true JP2005045090A (en) 2005-02-17

Family

ID=34265084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278775A Withdrawn JP2005045090A (en) 2003-07-24 2003-07-24 METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS

Country Status (1)

Country Link
JP (1) JP2005045090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136679A1 (en) 2013-03-04 2014-09-12 Jx日鉱日石金属株式会社 Tantalum sputtering target and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136679A1 (en) 2013-03-04 2014-09-12 Jx日鉱日石金属株式会社 Tantalum sputtering target and production method therefor

Similar Documents

Publication Publication Date Title
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
CN102766835B (en) Method for preparing high performance SmCo permanent magnet material
JP6691666B2 (en) Method for manufacturing RTB magnet
KR102345075B1 (en) Method for manufacturing a sintered body for forming sintered magnets and a method for manufacturing a permanent magnet using the sintered body for forming sintered magnets
US5100485A (en) Method for manufacturing permanent magnets
JP2003188006A (en) Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
JP2021150547A (en) Method for manufacturing r-t-b based sintered magnet
JP2017073544A (en) Method for manufacturing rare earth magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2014165228A (en) Method of manufacturing r-t-b based permanent magnet
JP2010251740A (en) Method of manufacturing rare-earth magnet
JP2005045090A (en) METHOD FOR MANUFACTURING FeCrCo PERMANENT MAGNET USING ELECTRIC DISCHARGE PLASMA SINTERING PROCESS
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
JPS6159811A (en) Manufacture of sintered rare-earth magnet
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPS61229314A (en) Target material and manufacture thereof
JP2005150355A (en) Iron/chromium/cobalt permanent magnet and its manufacturing method
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JP2023037123A (en) Method of manufacturing r-t-b based sintered magnet
JP2024050383A (en) Method for producing RTB based sintered magnet and RTB based sintered magnet
JP2023035796A (en) Method of manufacturing r-t-b based sintered magnet
JP2004339527A (en) Method of producing hot molded type nanocomposite magnet
CN115631912A (en) Samarium cobalt permanent magnet material and preparation method thereof
JPS63286515A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003