JP2005044527A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2005044527A
JP2005044527A JP2003199973A JP2003199973A JP2005044527A JP 2005044527 A JP2005044527 A JP 2005044527A JP 2003199973 A JP2003199973 A JP 2003199973A JP 2003199973 A JP2003199973 A JP 2003199973A JP 2005044527 A JP2005044527 A JP 2005044527A
Authority
JP
Japan
Prior art keywords
current collector
collector plate
electrode current
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199973A
Other languages
Japanese (ja)
Other versions
JP4090956B2 (en
Inventor
Katsunori Nishimura
勝憲 西村
Jinichi Imahashi
甚一 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003199973A priority Critical patent/JP4090956B2/en
Publication of JP2005044527A publication Critical patent/JP2005044527A/en
Application granted granted Critical
Publication of JP4090956B2 publication Critical patent/JP4090956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of battery performance due to an eluted ion from a battery member of a solid polymer fuel cell. <P>SOLUTION: In the fuel cell, by improving the arrangement of a manifold of gas and a current collector, the eluted ion from the battery member is reduced and the deterioration of the battery performance is prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子型燃料電池に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、出力が高い、寿命が長い、起動・停止による劣化が少ない、運転温度が低い(約70〜80℃)ため、起動・停止が容易である等の長所を有しているため、電気自動車用電源、業務用及び家庭用の分散電源等の幅広い用途が期待されている。
【0003】
これらの用途の中で、固体高分子型燃料電池を搭載した分散電源(例えば、コジェネレーション発電システム)は、固体高分子型燃料電池より電気を取り出すと同時に、発電時に電池から発生する熱を温水として回収することにより、エネルギーを有効活用しようとするシステムである。このような分散電源は使用期間として50,000時間以上の長寿命が要求され、膜−電極接合体、セル構成、発電条件等の改良が進められている。
【0004】
しかし、固体高分子型燃料電池の実用レベルでの長寿命化にさらなる技術開発が必要である。特に、膜−接合体の研究によると、燃料電池に用いられる金属部材の溶出イオン、ガスを加湿する水の中に含まれる不純物イオンなどが膜−電極接合体に達し、これらのイオンが膜中の水素イオンと置換した結果、水素イオン抵抗の増大による燃料電池の出力特性、寿命の低下が起こることが指摘されている(非特許文献1)。
【0005】
【非特許文献1】
第4回燃料電池シンポジウム講演予稿集、p.134−139
【0006】
【発明が解決しようとする課題】
膜−電極接合体の抵抗増大による電池性能の劣化を防止するためには、電池部材からの溶出イオンの発生を防止することが望ましい。しかしながら、電池構造の簡略化のため、ガスや冷却水を流通させる貫通孔(マニホールド)を電池内部に設けることが多く、これによって以下のような電池性能の劣化が生じ得る。
【0007】
すなわち、燃料電池から電力を取り出す集電板にもこのようなマニホールドが設けられ、マニホールドは加湿された酸素または水素を含むガスを流通させることにより、集電板のマニホールドにおいて酸素と水素による局部電池が形成され、その結果、集電板からの溶出イオンが発生しやすくなる。このように生じた溶出イオンは、酸素あるいは水素を含むガスとともに、膜−電極接合体の電極表面に到達し、そこで膜中の水素イオンとのイオン交換による膜抵抗の増大や、溶出イオンの電極表面への電析による触媒の活性低下がもたらされる。
【0008】
また、固体高分子型燃料電池では、膜−電極接合体の乾燥による膜抵抗の増大を抑制するために、酸素または水素を含むガスに添加された水蒸気、ならびに発電時には水素の燃焼による生成水が電池内部に含まれている。これらの水は、電池温度の変化によって、電池の積層体内部のマニホールドに凝集し、滞留してしまう場合がある。この凝集水が正極集電板と負極集電板の間に存在すると、両極の間で電気化学反応により、正極集電板からの金属等の溶解反応が起こりやすくなる。このようなメカニズムによって発生した溶出イオンが、膜−電極接合体の膜抵抗の増大等をもたらす。
【0009】
電池構造の簡略化と電池性能の低下の抑制を両立させるためには、上述のような集電体等の電池部材からの溶出イオンが発生しにくく、さらに溶出イオンが生成しても膜−電極接合体に到達しにくい電池構造が必要である。本発明は、電池部材、特に集電板からの溶出イオンによる燃料電池の出力や寿命の劣化を防止できる電池を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明は、ガス流通溝を有する2枚の単セル用セパレータと、触媒層と水素イオン伝導性高分子膜からなる膜−電極接合体を挟持させた単セルを複数個積層した積層体の両端面に導電性の正極集電板及び負極集電板を配置し、当該積層体と当該集電板を端板によって挟持し、該端板は酸素を含むガス、水素を含むガス、冷却水を供給しかつ排出するためのマニホールドを有する固体高分子型燃料電池であって、上記セパレータに設けた上記負極集電板を貫通する供給側マニホールドと上記正極集電板は、電解抑制部により電気化学的に遮断され、かつ上記セパレータに設けた排出側マニホールドと負極集電板は、電解抑制部により電気化学的に遮断されていることを特徴とする固体高分子型燃料電池を提供するものである。又、本発明は、上記マニホールドは上記単板に形成されたコネクターに接続された固体高分子型燃料電池を提供する。
【0011】
固体高分子型燃料電池は、水素イオンを透過させる機能を有する固体高分子電解質膜、当該膜の両面に形成した電極層、当該電極層を挟持するように配置されたセパレータからなる基本構成を単セルとし、通常、十分な電力を得るために当該単セルを複数個直列に接続した構成を有する。
【0012】
水素イオンを透過させる機能を有する固体高分子電解質膜とは、フッ素系高分子のフッ素の一部をスルホン酸に置換したものが一般的であり、水素イオンを移動させる機能を有する高分子膜であれば、本発明を適用可能である。例えば、4フッ化エチレンを基本単位とする高分子鎖に含まれるフッ素原子を2〜5個程度のアルキル鎖(−CFCF−、−CFCF(CF)−など)を介して、当該アルキル鎖の末端にスルホン酸基(−SOH)を有する高分子膜がある。
【0013】
電極層とは、白金、あるいは白金とルテニウム等の異種元素との合金を電極触媒とし、当該触媒と炭素粉末とバインダーからなる層である。固体高分子型燃料電池に供給される燃料ガスは、純水素あるいは水素を含む混合ガスであり、この水素は上述の電極触媒上で(式1)に示した酸化反応により酸化される。同時に、反対側の電極触媒上では、酸素の還元反応(式2)が進行する。水素の酸化反応にて生じた水素イオンは、固体高分子電解質膜に受け渡され、当該イオンは反対側の電極層にて酸素と結合することにより水が生成する。
【0014】
→2H+2e (式1)
2H+1/2O+2e→HO (式2)
この電池反応により単セルの起電力は約1.2V、負荷を接続して発電したときは0.5〜0.7V程度の電圧が得られるため、この発電に寄与する単セルを複数個積層することにより、数十から数百ボルトの電圧を取ることができる。
【0015】
本発明で用いる燃料電池の基本構成を図1(a)に示す。発電部は単セルであり、通常は数十セル以上の多積層セルによって、燃料電池より直流電力を取り出している。この単セルは、固体高分子電解質膜の両面に電極層を設けた膜−電極接合体(拡大図である図1(b)中の102と103からなる膜)、ガス拡散層106とこれを挟持する2枚のセパレータ104より構成され、セパレータ104の間にはガスケット105が挿入されている。
【0016】
この膜−電極接合体の周辺の拡大図を図1(b)中に示した。セパレータ104の一方には、燃料ガスが流通する溝が加工されている。他方のセパレータ104には、酸化剤ガス、通常は空気を流通させる溝がある。これらを積層し、末端に正極集電板113と負極集電板114を配置させる。この集電板113、114の外側から、絶縁板107を介して端板109によって加圧されている。
【0017】
端板109を固定する部品は、ボルト116、皿ばね117、ナット118である。燃料ガス、酸化剤ガス、冷却水は、端板に設けたコネクター110、111、112より供給され、他方の端板に設けたコネクターより排出される。直流電力(出力)は、正極集電板113と負極集電板114より得ることができる。
【0018】
本発明の目的を達成するための第1の手段は、少なくとも酸素を含むガスは電位の低い負極集電板側に設置した端板に接続されたマニホールド特にコネクターよりに接続されたマニホールドより供給するものである。このような方法を採ると、酸素による酸化反応によって発生した集電板の溶出イオンが、酸素を含むガスとともに、膜−電極接合体に運び込まれることがなく、膜抵抗の増大等による電池性能の低下が起こりにくくなる。なお、酸素含有ガス、水素含有ガス及び冷却水のマニホールドないしコネクタは図1又は図2の紙面の奥行きに並べて配置されている。
【0019】
本発明の目的を達成するための第2の手段は、正極と負極の集電板を連絡するマニホールドの途中に電解を抑制又は遮断する部位(図2の電解抑制部212、213)を設けることにより、正極集電板203と負極集電板209が、マニホールド内部に蓄積した水分を介して直接連絡されることがないようにすることである。このような構成にすることにより、正極集電板と負極集電板の間において、マニホールド内部に蓄積した水(凝集水)を介した電気分解が起こりにくくなり、集電板からの溶出イオンの生成が抑制される。
【0020】
本発明の燃料電池で用いる電解抑制部は、集電板に接する黒鉛製セパレータにマニホールドに面する部分をそのまま利用しても良い。すなわち、ガス排出用マニホールド208の場合、負極集電板に接する黒鉛製セパレータ207にガス排出用マニホールドの位置に貫通孔を設けないで、黒鉛製セパレータ自身で当該マニホールドを封止し、正極集電板203と負極集電板209が対向しない構造とする。逆に、ガス供給用マニホールド204の場合は、正極集電板203に接する黒鉛セパレータ205のガス供給用マニホールドの位置に貫通孔を設けない構造とする。
【0021】
電解抑制部には、電解抑制部において電気化学的に水を酸化還元させる作用の小さいもの、すなわち、電気絶縁性の部材を用いることがより望ましい。その方法として、絶縁性部品によって、マニホールドの一端を封止して、正極、負極の集電板間の電気分解を防止する方法がある。例えば、ガス供給用マニホールドの場合、負極集電板に接する黒鉛製セパレータにガス供給用マニホールドの位置に、4フッ化ポリエチレン、ポリプロピレンなどの樹脂製板、あるいはシリコンゴム、エチレン・プロピレンゴム、フッ素ゴムなどのゴム製板をはめ込む構造とし、当該マニホールドの一端を樹脂板により封止することができる。逆に、ガス排出用マニホールドの場合は、正極集電板に接する黒鉛セパレータのガス排出用マニホールドの位置に、4フッ化ポリエチレン等の樹脂板をはめ込むことで本発明の効果が得られる。電解抑制部は、上述の材料に限定されず、また形状も板状、円柱状、薄膜状のいずれの形状であっても、本発明の効果が得られる。
【0022】
【発明の実施の形態】
以下に実施例により、本発明の内容を説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
【0023】
(実施例1)
図2は、本発明の固体高分子型燃料電池の構成図である。単セルの構成は図1に示すように、フッ素系電解質膜102の両面に白金系触媒層103を接合させた膜−電極接合体(図1(b)中の102と103からなる膜)とこれを挟持する2枚のセパレータ104より構成した。ガス拡散層(図1(b)中の106)は、厚さ200μmのカーボンペーパーを用いた。
【0024】
アノード側のセパレータ面には、幅1mm、深さ0.5mmのアノードガスの流路を、カソード側のセパレータ面には、幅1mm、深さ0.8mmのカソードガスの流路を設けた。
【0025】
本実施例の固体高分子型燃料電池は、複数の50個の単セルを直列に接続した構成とし、2セル毎に冷却水の流路を形成させた冷却水用セパレータ108を挿入した。これは、電池外部に設置したポンプにより、冷却水用セパレータ108に冷却水を供給し、ポンプと電池を接続する冷却水の配管の途中に設けた熱交換器によって、電池内部で発生した熱を回収するためである。
【0026】
本発明の燃料電池では、酸素を含むガスとして空気を用いた。空気は正極集電板を設置した方の端板面内に設けた配管コネクターより供給した。また、水素を含むガスとして純水素を用い、同様に正極集電板を設置した方の端板面内に設けた配管コネクターより供給することにした。本発明の効果を得るためには、少なくとも酸素を含むガスを、正極集電板を設置した方の端板側より供給すれば良い。また、水素を含むガスとして、天然ガスや灯油等の有機物を触媒作用によって水素を生成させた改質ガスを用いることもできる。
【0027】
出力端子付き集電板113、114は、電池積層部の側面より突き出させた。この端子を外部の負荷に接続することにより、電力を取り出すことができる。これらの集電板の材質は、ニッケル製とした。集電板の材質は、ステンレス鋼、炭素、導電性樹脂などを用いることができる。集電板113、114と端板109の間に絶縁シート107を挿入し、電気的絶縁を図った。
【0028】
単電池101、冷却水用セパレータ108、集電板113、114等からなる積層体は、ボルト116、皿ばね117、ナット118からなる締め付け部品により固定した。固定の条件は、2枚の端板で挟みつけた積層体を油圧プレスで圧縮し、そのままの状態で1.5時間放置した後、ナット118を締め付けることとした。
【0029】
単セルを構成する積層体の内部には、酸素あるいは水素を含むガスを流通させるマニホールドが形成されている。本発明のマニホールドの概念を図2に示した。マニホールドは、各単セルにガスを供給するまでの供給側のマニホールド204と、単セルにて発電後に生成した排ガスを電池外部に排出させるための排出側のマニホールド208に分かれている。
【0030】
本発明では、供給側マニホールド204は負極集電板206を貫通しているが、正極集電板203とは、セパレータ205の電解抑制部213(本実施例では、図2のセパレータ205自身)により電気化学的に遮断され、供給側マニホールド204が正極集電板203に連絡されていない構造とした。他方、排出側マニホール208は、電解抑制部212(本実施例では、図2のセパレータ207自身)により電気化学的に遮断され、正極集電板203のマニホールドとのみ連絡させた。このような構造にすることにより、正極集電板203と負極集電板206が、電解抑制部(212、213)によって、いずれか一方のマニホールドと連絡することがないため、マニホールド内に滞留した凝集水を介して電気化学反応(集電板の腐食反応)が起こりにくくなる。なお、本発明の構成によると、低電位にあり溶出イオンが生じにくい負極集電板206のマニホールド204から、酸素を含むガスが各単セルに供給されるため、集電板からの溶出イオンが膜−電極接合体に到達しにくく、膜抵抗の増大、電極触媒の失活等による電池性能の劣化を抑制することができる。
【0031】
本実施例において、発電可能な電極有効面積を100cmとし、電流50Aにて出力を計測した。アノードに供給するガスは水素、カソードに供給するガスを空気とし、圧力を常圧(一気圧)とした。水素と酸素の利用率をそれぞれ70%、40%とした。セルに供給する冷却水の温度は70±2℃に設定した。本実施例の電池をS1とする。
【0032】
(実施例2)
実施例1と同じ単セル構成とし、電解抑制部(212、213)を絶縁性部品に変更した電池を製作した。電解抑制部には、セパレータ205、207のマニホールド対向部に凹部を加工し、そのくぼみの部分に、エチレン・プロピレン製ゴムシート(厚さ0.3mm)を挿入した。その他の電池構成、発電条件は、実施例1の電池S1と同一とした。本実施例の電池をS2とする。
【0033】
(比較例)
実施例1の固体高分子型燃料電池で用いたセパレータ205に貫通孔を設け、マニホールド204を介して、負極集電板206と正極集電板203が対向した構成とした。本比較例の電池をRとする。
【0034】
(実施例3)
実施例1、2の電池S1、S2ならびに比較例1の電池Rを、図3に示す発電システムに組み込みこんだ装置を製作した。
【0035】
図3において、天然ガス1001を脱硫器1016に貯蔵し、ブロアー1008により改質器1003に供給し、水素リッチガスを製造し、それを燃料電池スタック1012に供給する。更に、燃料電池スタック1012のアノードには空気1002をブロアー1009により供給する。また、蒸留水1006を冷却水用ポンプ1010により燃料電池に供給する。燃料電池で水素が消費されたカソードガスは、カソードガス排出用配管1013から排出される。冷却水は燃料電池を循環して、燃料電池から排出され、温められた水は、熱交換器1011で熱交換を行い、温度を下げて再び供給側に戻る。熱交換によって温められた水は、循環水用ポンプ1015により貯湯槽1007に送られる。
【0036】
電池S1を搭載した装置(燃料電池システム)をA1、電池S2を搭載した装置(燃料電池システム)をA2、電池Rを搭載した装置(燃料電池システム)をA3とする。これらの装置は、電池の種類のみ異なるが、他の構成部品や構成は同一になるようにした。
【0037】
各装置に、都市ガスを改質することにより水素濃度70%の燃料ガスをアノードに導入し、カソードには空気を供給させた。発電開始時の貯湯槽の水温は40℃、燃料電池に供給される循環水の温度も40℃とした。外気温は10℃一定になるように、空調設備を有する定温実験室にて試験を実施した。
【0038】
水素および酸素の利用率は、それぞれ70%、40%とし、各電流に対して一定とした。ガスの圧力は常圧とした。
【0039】
電流密度は0.5mA/cmに設定し、連続発電試験を実施した。本発明の装置(燃料電池システム)A1は、連続発電によって、単セル当りの電圧低下率100mV/1000hの値を得た。本発明の装置A2は、同じ発電条件にて、単セル当りの電圧低下率15mV/1000hの優れた特性値を得た。これに対し、比較例の電池Rを搭載した装置A3を用いたときの単セル当りの電圧低下率は、250mV/1000hと大きく、性能低下が認められた。
【0040】
【発明の効果】
本発明の電池構成によって、固体高分子型燃料電池の性能低下を軽減できる。
【図面の簡単な説明】
【図1】固体高分子型燃料電池の基本構成を示す主要部の断面図。
【図2】本発明のマニホールドの構成を示す概略断面図。
【図3】本発明の固体高分子型燃料電池を搭載した発電システムの実施例の線図。
【符号の説明】
101…単セル、102…固体高分子電解質膜、103…触媒層、104…単セル用セパレータ、105…ガスケット、106…ガス拡散層、107…絶縁板、108…冷却水用セパレータ、109…端板、110…アノードガス配管用コネクター、111…冷却水配管用コネクター、112…カソードガス配管用コネクター、113…集電板、114…集電板、116…ボルト、117…皿ばね、118…ナット、201…ガスの供給用コネクター、202…正極側の端板、203…正極集電板、204…ガスの供給用マニホールド、205…正極集電板に接するセパレータ、206…負極集電板、207…負極集電板に接するセパレータ、208…ガスの排出用マニホールド、209…絶縁シート、210…負極側の端板、211…ガスの排出用コネクター、212…電解抑制部、213…電解抑制部、1001…天然ガス、1002…空気、1003…改質器、1006…蒸留水、1007…貯湯槽、1008…アノードガス用ポンプ、1009…カソードガス用ポンプ、1010…冷却水用ポンプ、1015…循環水用ポンプ、1011…熱交換器、1012…燃料電池、1013…カソードガス排気用配管、1014…アノードガス排気用配管、1016…脱硫器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell.
[0002]
[Prior art]
The polymer electrolyte fuel cell has advantages such as high output, long life, little deterioration due to start / stop, and low operating temperature (about 70-80 ° C), which makes it easy to start / stop. Therefore, a wide range of uses such as power sources for electric vehicles, distributed power sources for business use and home use are expected.
[0003]
Among these applications, a distributed power source (for example, a cogeneration power generation system) equipped with a polymer electrolyte fuel cell takes out electricity from the polymer electrolyte fuel cell, and at the same time, generates heat from the battery during power generation with hot water. It is a system that tries to make effective use of energy by collecting as Such a distributed power source is required to have a long life of 50,000 hours or more as a period of use, and improvements in membrane-electrode assemblies, cell configurations, power generation conditions, and the like are being promoted.
[0004]
However, further technological development is required to extend the life of solid polymer fuel cells at a practical level. In particular, according to research on membrane-conjugates, elution ions of metal members used in fuel cells, impurity ions contained in water that humidifies gas, etc. reach the membrane-electrode assembly, and these ions are found in the membrane. It has been pointed out that as a result of replacement with hydrogen ions, the output characteristics and lifetime of the fuel cell are reduced due to an increase in hydrogen ion resistance (Non-Patent Document 1).
[0005]
[Non-Patent Document 1]
Proceedings of the 4th Fuel Cell Symposium, p. 134-139
[0006]
[Problems to be solved by the invention]
In order to prevent deterioration of battery performance due to an increase in resistance of the membrane-electrode assembly, it is desirable to prevent the generation of eluted ions from the battery member. However, in order to simplify the battery structure, a through hole (manifold) through which gas and cooling water are circulated is often provided inside the battery, which may cause the following deterioration in battery performance.
[0007]
That is, such a manifold is also provided on a current collector plate for extracting electric power from the fuel cell, and the manifold distributes a gas containing humidified oxygen or hydrogen so that a local battery made of oxygen and hydrogen is supplied to the collector plate manifold. As a result, ions eluted from the current collector plate are likely to be generated. The elution ions generated in this way reach the electrode surface of the membrane-electrode assembly together with the gas containing oxygen or hydrogen, where there is an increase in membrane resistance due to ion exchange with hydrogen ions in the membrane, and the electrode of the elution ions The activity of the catalyst is reduced by electrodeposition on the surface.
[0008]
In a polymer electrolyte fuel cell, in order to suppress an increase in membrane resistance due to drying of the membrane-electrode assembly, water added to a gas containing oxygen or hydrogen and water generated by combustion of hydrogen during power generation are generated. Included inside the battery. These waters may aggregate and stay in the manifold inside the battery stack due to changes in battery temperature. When this agglomerated water exists between the positive electrode current collector plate and the negative electrode current collector plate, a dissolution reaction of a metal or the like from the positive electrode current collector plate easily occurs due to an electrochemical reaction between both electrodes. Eluted ions generated by such a mechanism cause an increase in the membrane resistance of the membrane-electrode assembly.
[0009]
In order to achieve both simplification of the battery structure and suppression of deterioration in battery performance, the eluting ions from the battery member such as the current collector are hardly generated, and even if the eluting ions are generated, the membrane electrode A battery structure that does not easily reach the joined body is required. An object of the present invention is to provide a battery member, in particular, a battery that can prevent deterioration of the output and life of a fuel cell due to ions eluted from a current collector plate.
[0010]
[Means for Solving the Problems]
The present invention provides two separators for a single cell having gas flow grooves and both ends of a laminate in which a plurality of unit cells each having a catalyst layer and a membrane-electrode assembly composed of a hydrogen ion conductive polymer membrane are sandwiched. Conductive positive and negative current collector plates are arranged on the surface, and the laminate and the current collector plate are sandwiched between end plates, and the end plates contain oxygen-containing gas, hydrogen-containing gas, and cooling water. A polymer electrolyte fuel cell having a manifold for supplying and discharging, wherein the supply side manifold passing through the negative electrode current collector plate provided in the separator and the positive electrode current collector plate are electrochemically separated by an electrolysis suppression unit. The discharge side manifold and the negative electrode current collector plate provided in the separator are electrochemically cut off by the electrolysis suppressing part, and the polymer electrolyte fuel cell is provided. . The present invention also provides a polymer electrolyte fuel cell in which the manifold is connected to a connector formed on the single plate.
[0011]
A solid polymer fuel cell has a basic configuration consisting of a solid polymer electrolyte membrane having a function of permeating hydrogen ions, electrode layers formed on both sides of the membrane, and a separator disposed so as to sandwich the electrode layer. The cell usually has a configuration in which a plurality of the single cells are connected in series in order to obtain sufficient power.
[0012]
A solid polymer electrolyte membrane having a function of permeating hydrogen ions is generally a polymer membrane in which a part of fluorine of a fluorine-based polymer is replaced with sulfonic acid, and is a polymer membrane having a function of moving hydrogen ions. If present, the present invention is applicable. For example, the fluorine atom contained in the polymer chain having tetrafluoroethylene as a basic unit is passed through about 2 to 5 alkyl chains (—CF 2 CF 2 —, —CF 2 CF (CF 3 ) —, etc.). There is a polymer membrane having a sulfonic acid group (—SO 3 H) at the end of the alkyl chain.
[0013]
The electrode layer is a layer made of platinum or an alloy of a different element such as platinum and ruthenium as an electrode catalyst and comprising the catalyst, carbon powder, and a binder. The fuel gas supplied to the polymer electrolyte fuel cell is pure hydrogen or a mixed gas containing hydrogen, and this hydrogen is oxidized by the oxidation reaction shown in (Equation 1) on the above electrode catalyst. At the same time, the oxygen reduction reaction (formula 2) proceeds on the opposite electrode catalyst. Hydrogen ions generated by the oxidation reaction of hydrogen are transferred to the solid polymer electrolyte membrane, and the ions are combined with oxygen in the opposite electrode layer to generate water.
[0014]
H 2 → 2H + + 2e (Formula 1)
2H + + 1 / 2O 2 + 2e → H 2 O (Formula 2)
Due to this battery reaction, the electromotive force of a single cell is about 1.2V, and when a load is connected to generate power, a voltage of about 0.5 to 0.7V can be obtained, so a plurality of single cells that contribute to this power generation are stacked. By doing so, a voltage of tens to hundreds of volts can be taken.
[0015]
A basic configuration of a fuel cell used in the present invention is shown in FIG. The power generation unit is a single cell, and DC power is taken out from the fuel cell by a multi-layered cell of usually several tens of cells or more. This single cell includes a membrane-electrode assembly (a membrane composed of 102 and 103 in FIG. 1 (b) which is an enlarged view), a gas diffusion layer 106, and an electrode layer provided on both sides of a solid polymer electrolyte membrane. It consists of two separators 104 to be sandwiched, and a gasket 105 is inserted between the separators 104.
[0016]
An enlarged view of the periphery of this membrane-electrode assembly is shown in FIG. On one side of the separator 104, a groove through which the fuel gas flows is processed. The other separator 104 has a groove through which an oxidant gas, usually air, flows. These are laminated, and the positive electrode current collector plate 113 and the negative electrode current collector plate 114 are disposed at the ends. Pressure is applied from the outside of the current collecting plates 113 and 114 by the end plate 109 through the insulating plate 107.
[0017]
Components for fixing the end plate 109 are a bolt 116, a disc spring 117, and a nut 118. Fuel gas, oxidant gas, and cooling water are supplied from connectors 110, 111, and 112 provided on the end plate, and discharged from the connector provided on the other end plate. DC power (output) can be obtained from the positive current collector 113 and the negative current collector 114.
[0018]
According to a first means for achieving the object of the present invention, at least oxygen-containing gas is supplied from a manifold connected to an end plate installed on the negative electrode current collector plate side having a low potential, particularly from a manifold connected to a connector. Is. When such a method is adopted, the ion eluted from the current collector plate generated by the oxidation reaction with oxygen is not carried into the membrane-electrode assembly together with the gas containing oxygen, and the battery performance is increased due to an increase in membrane resistance. The decrease is less likely to occur. Note that the manifolds or connectors of oxygen-containing gas, hydrogen-containing gas, and cooling water are arranged side by side in the depth of the paper surface of FIG. 1 or FIG.
[0019]
The second means for achieving the object of the present invention is to provide a portion for suppressing or blocking electrolysis (electrolysis suppressing portions 212 and 213 in FIG. 2) in the middle of the manifold connecting the positive and negative current collecting plates. Thus, the positive electrode current collector plate 203 and the negative electrode current collector plate 209 are prevented from being directly communicated with each other through moisture accumulated in the manifold. By adopting such a configuration, electrolysis through the water (aggregated water) accumulated in the manifold is less likely to occur between the positive electrode current collector plate and the negative electrode current collector plate, and the generation of eluted ions from the current collector plate is prevented. It is suppressed.
[0020]
The electrolysis suppressing part used in the fuel cell of the present invention may use the part facing the manifold as it is in the graphite separator in contact with the current collector plate. That is, in the case of the gas discharge manifold 208, the graphite separator 207 in contact with the negative electrode current collector plate is not provided with a through hole at the position of the gas discharge manifold, and the manifold is sealed with the graphite separator itself, The plate 203 and the negative electrode current collector plate 209 are not opposed to each other. On the contrary, in the case of the gas supply manifold 204, the through hole is not provided at the position of the gas supply manifold of the graphite separator 205 in contact with the positive electrode current collector plate 203.
[0021]
It is more preferable to use a member having a small action of electrochemically oxidizing and reducing water in the electrolytic suppression unit, that is, an electrically insulating member, for the electrolytic suppression unit. One method is to seal one end of the manifold with an insulating component to prevent electrolysis between the positive and negative current collector plates. For example, in the case of a gas supply manifold, a graphite separator in contact with the negative electrode current collector plate, a resin plate such as tetrafluoropolyethylene or polypropylene, or silicon rubber, ethylene / propylene rubber, fluorine rubber at the position of the gas supply manifold It is possible to have a structure in which a rubber plate such as a rubber plate is fitted, and one end of the manifold can be sealed with a resin plate. Conversely, in the case of a gas discharge manifold, the effect of the present invention can be obtained by fitting a resin plate such as tetrafluoropolyethylene at the position of the gas discharge manifold of the graphite separator in contact with the positive electrode current collector plate. The electrolysis suppression part is not limited to the above-mentioned material, and the effect of the present invention can be obtained regardless of the shape of the plate, columnar, or thin film.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described below with reference to examples. In addition, this invention is not limited to the Example described below.
[0023]
(Example 1)
FIG. 2 is a configuration diagram of the polymer electrolyte fuel cell of the present invention. As shown in FIG. 1, the structure of the single cell is a membrane-electrode assembly (a membrane composed of 102 and 103 in FIG. 1B) in which a platinum-based catalyst layer 103 is bonded to both surfaces of a fluorine-based electrolyte membrane 102. The separator 104 is configured to sandwich this. For the gas diffusion layer (106 in FIG. 1B), carbon paper having a thickness of 200 μm was used.
[0024]
An anode gas channel having a width of 1 mm and a depth of 0.5 mm was provided on the anode side separator surface, and a cathode gas channel having a width of 1 mm and a depth of 0.8 mm was provided on the cathode side separator surface.
[0025]
The polymer electrolyte fuel cell of this example has a configuration in which a plurality of 50 single cells are connected in series, and a cooling water separator 108 in which a cooling water flow path is formed every two cells is inserted. This is because the cooling water is supplied to the cooling water separator 108 by a pump installed outside the battery, and the heat generated inside the battery is generated by a heat exchanger provided in the middle of the cooling water pipe connecting the pump and the battery. This is for recovery.
[0026]
In the fuel cell of the present invention, air is used as a gas containing oxygen. Air was supplied from a pipe connector provided in the end plate surface on which the positive electrode current collector plate was installed. Further, pure hydrogen was used as the gas containing hydrogen, and the gas was supplied from a pipe connector provided in the end plate surface on which the positive electrode current collector plate was similarly installed. In order to obtain the effect of the present invention, a gas containing at least oxygen may be supplied from the end plate side on which the positive electrode current collector plate is provided. Further, as the gas containing hydrogen, a reformed gas in which hydrogen is generated by a catalytic action of an organic substance such as natural gas or kerosene can also be used.
[0027]
The current collector plates 113 and 114 with output terminals protruded from the side surface of the battery stack. By connecting this terminal to an external load, electric power can be taken out. These current collector plates were made of nickel. As the material of the current collector plate, stainless steel, carbon, conductive resin, or the like can be used. An insulating sheet 107 was inserted between the current collector plates 113 and 114 and the end plate 109 to achieve electrical insulation.
[0028]
The laminate composed of the unit cell 101, the cooling water separator 108, the current collector plates 113 and 114, and the like was fixed by fastening parts including a bolt 116, a disc spring 117, and a nut 118. The fixing condition was to compress the laminate sandwiched between the two end plates with a hydraulic press and leave it for 1.5 hours, and then tighten the nut 118.
[0029]
A manifold that circulates a gas containing oxygen or hydrogen is formed inside the laminate constituting the single cell. The concept of the manifold of the present invention is shown in FIG. The manifold is divided into a supply-side manifold 204 until gas is supplied to each single cell, and a discharge-side manifold 208 for discharging exhaust gas generated after power generation in the single cell to the outside of the battery.
[0030]
In the present invention, the supply-side manifold 204 passes through the negative electrode current collector plate 206, but the positive electrode current collector plate 203 is separated from the positive electrode current collector plate 203 by the electrolytic suppression unit 213 of the separator 205 (in this embodiment, the separator 205 itself in FIG. 2). The structure is such that the supply side manifold 204 is not connected to the positive electrode current collector plate 203 while being electrochemically cut off. On the other hand, the discharge-side manifold 208 was electrochemically cut off by the electrolysis suppressing part 212 (in this embodiment, the separator 207 itself in FIG. 2) and was in communication only with the manifold of the positive electrode current collector plate 203. By adopting such a structure, the positive electrode current collector plate 203 and the negative electrode current collector plate 206 do not communicate with any one of the manifolds by the electrolysis suppressing portions (212, 213), and thus stay in the manifold. An electrochemical reaction (corrosion reaction of the current collector plate) is less likely to occur through the condensed water. According to the configuration of the present invention, since the oxygen-containing gas is supplied to each single cell from the manifold 204 of the negative electrode current collector plate 206 that is at a low potential and hardly generates eluted ions, the eluted ions from the current collector plate It is difficult to reach the membrane-electrode assembly, and deterioration of battery performance due to increase in membrane resistance, deactivation of the electrode catalyst, etc. can be suppressed.
[0031]
In this example, the electrode effective area capable of power generation was set to 100 cm 2 and the output was measured at a current of 50 A. The gas supplied to the anode was hydrogen, the gas supplied to the cathode was air, and the pressure was normal pressure (one atmospheric pressure). The utilization rates of hydrogen and oxygen were 70% and 40%, respectively. The temperature of the cooling water supplied to the cell was set to 70 ± 2 ° C. The battery of this example is designated as S1.
[0032]
(Example 2)
A battery having the same single cell configuration as that of Example 1 and having the electrolytic suppression portions (212, 213) changed to insulating parts was manufactured. In the electrolysis suppression part, a recess was processed in the manifold facing part of the separators 205 and 207, and an ethylene / propylene rubber sheet (thickness 0.3 mm) was inserted into the recessed part. Other battery configurations and power generation conditions were the same as those of the battery S1 of Example 1. The battery of this example is designated S2.
[0033]
(Comparative example)
The separator 205 used in the polymer electrolyte fuel cell of Example 1 was provided with a through hole, and the negative electrode current collector plate 206 and the positive electrode current collector plate 203 were opposed to each other through the manifold 204. Let R be the battery of this comparative example.
[0034]
(Example 3)
A device in which the batteries S1 and S2 of Examples 1 and 2 and the battery R of Comparative Example 1 were incorporated in the power generation system shown in FIG. 3 was manufactured.
[0035]
In FIG. 3, natural gas 1001 is stored in a desulfurizer 1016 and supplied to a reformer 1003 by a blower 1008 to produce a hydrogen rich gas, which is supplied to a fuel cell stack 1012. Further, air 1002 is supplied to the anode of the fuel cell stack 1012 by a blower 1009. Also, distilled water 1006 is supplied to the fuel cell by the cooling water pump 1010. The cathode gas that has consumed hydrogen in the fuel cell is discharged from the cathode gas discharge pipe 1013. The cooling water circulates through the fuel cell and is discharged from the fuel cell. The warmed water is heat-exchanged by the heat exchanger 1011 to lower the temperature and return to the supply side again. The water heated by heat exchange is sent to the hot water tank 1007 by the circulating water pump 1015.
[0036]
The device (fuel cell system) on which the battery S1 is mounted is A1, the device (fuel cell system) on which the battery S2 is mounted is A2, and the device (fuel cell system) on which the battery R is mounted is A3. These devices differ only in the type of battery, but the other components and configurations are the same.
[0037]
In each apparatus, a fuel gas having a hydrogen concentration of 70% was introduced into the anode by reforming the city gas, and air was supplied to the cathode. The temperature of the hot water storage tank at the start of power generation was 40 ° C., and the temperature of the circulating water supplied to the fuel cell was also 40 ° C. The test was carried out in a constant temperature laboratory having an air conditioner so that the outside air temperature was constant at 10 ° C.
[0038]
The utilization rates of hydrogen and oxygen were 70% and 40%, respectively, and were constant for each current. The gas pressure was normal pressure.
[0039]
The current density was set to 0.5 mA / cm 2 and a continuous power generation test was performed. The device (fuel cell system) A1 of the present invention obtained a voltage drop rate of 100 mV / 1000 h per unit cell by continuous power generation. The device A2 of the present invention obtained an excellent characteristic value with a voltage drop rate per unit cell of 15 mV / 1000 h under the same power generation conditions. On the other hand, the voltage drop rate per unit cell when using the device A3 equipped with the battery R of the comparative example was as large as 250 mV / 1000 h, and a performance drop was recognized.
[0040]
【The invention's effect】
With the battery configuration of the present invention, it is possible to reduce the performance degradation of the polymer electrolyte fuel cell.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing a basic configuration of a solid polymer fuel cell.
FIG. 2 is a schematic cross-sectional view showing a configuration of a manifold according to the present invention.
FIG. 3 is a diagram of an embodiment of a power generation system equipped with the polymer electrolyte fuel cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Single cell, 102 ... Solid polymer electrolyte membrane, 103 ... Catalyst layer, 104 ... Single cell separator, 105 ... Gasket, 106 ... Gas diffusion layer, 107 ... Insulating plate, 108 ... Cooling water separator, 109 ... End Plate 110, connector for anode gas piping, 111 ... connector for cooling water piping, 112 ... connector for cathode gas piping, 113 ... current collector plate, 114 ... current collector plate, 116 ... bolt, 117 ... disc spring, 118 ... nut 201 ... Gas supply connector, 202 ... Positive electrode end plate, 203 ... Positive current collector plate, 204 ... Gas supply manifold, 205 ... Separator in contact with the positive current collector plate, 206 ... Negative current collector plate, 207 ... Separator in contact with the negative electrode current collector plate, 208 ... Gas discharge manifold, 209 ... Insulating sheet, 210 ... End plate on the negative electrode side, 211 ... Gas Connector for discharge, 212 ... Electrolysis suppression unit, 213 ... Electrolysis suppression unit, 1001 ... Natural gas, 1002 ... Air, 1003 ... Reformer, 1006 ... Distilled water, 1007 ... Hot water storage tank, 1008 ... Pump for anode gas, 1009 ... Cathode gas pump, 1010 ... Cooling water pump, 1015 ... Circulating water pump, 1011 ... Heat exchanger, 1012 ... Fuel cell, 1013 ... Cathode gas exhaust pipe, 1014 ... Anode gas exhaust pipe, 1016 ... Desulfurizer .

Claims (4)

ガス流通溝を有する2枚の単セル用セパレータと、触媒層と水素イオン伝導性高分子膜からなる膜−電極接合体を挟持させた単セルを複数個積層した積層体の両端面に導電性の正極集電板及び負極集電板を配置し、当該積層体と当該集電板を端板によって挟持し、該端板は酸素を含むガス、水素を含むガス、冷却水を供給しかつ排出するためのマニホールドを有する固体高分子型燃料電池であって、上記セパレータに設けた上記負極集電板を貫通する供給側マニホールドと上記正極集電板は、電解抑制部により電気化学的に遮断され、かつ上記セパレータに設けた排出側マニホールドと負極集電板は、電解抑制部により電気化学的に遮断されていることを特徴とする固体高分子型燃料電池。Conductivity is provided on both end faces of a laminate in which a plurality of single cells having a gas-flow groove and a single cell sandwiching a membrane-electrode assembly composed of a catalyst layer and a hydrogen ion conductive polymer membrane are stacked. The positive electrode current collector plate and the negative electrode current collector plate are disposed, and the laminate and the current collector plate are sandwiched by end plates, and the end plates supply and discharge oxygen-containing gas, hydrogen-containing gas, and cooling water. In the polymer electrolyte fuel cell having a manifold for performing the operation, the supply-side manifold penetrating the negative electrode current collector plate provided in the separator and the positive electrode current collector plate are electrochemically cut off by the electrolysis suppression unit. A solid polymer fuel cell, wherein the discharge side manifold and the negative electrode current collector plate provided in the separator are electrochemically cut off by an electrolysis suppressing part. ガス流通溝を有する2枚の単セル用セパレータと、触媒層と水素イオン伝導性高分子膜からなる膜−電極接合体を挟持させた単セルを複数個積層した積層体の両端面に導電性の正極集電板及び負極集電板を配置し、当該積層体と当該集電板を端板によって挟持し、該端板は酸素を含むガス、水素を含むガス、冷却水を供給しかつ排出するためのコネクターを有する固体高分子型燃料電池であって、上記セパレータに設けた上記負極集電板を貫通する供給側マニホールドと上記正極集電板は、電解抑制部により電気化学的に遮断され、かつ上記セパレータに設けた排出側マニホールドと負極集電板は、電解抑制部により電気化学的に遮断されていることを特徴とする固体高分子型燃料電池。Conductivity is provided on both end faces of a laminate in which a plurality of single cells having a gas-flow groove and a single cell sandwiching a membrane-electrode assembly composed of a catalyst layer and a hydrogen ion conductive polymer membrane are stacked. The positive electrode current collector plate and the negative electrode current collector plate are disposed, and the laminate and the current collector plate are sandwiched by end plates, and the end plates supply and discharge oxygen-containing gas, hydrogen-containing gas, and cooling water. In the polymer electrolyte fuel cell having a connector, the supply-side manifold penetrating the negative electrode current collector plate provided in the separator and the positive electrode current collector plate are electrochemically cut off by an electrolysis suppression unit. A solid polymer fuel cell, wherein the discharge side manifold and the negative electrode current collector plate provided in the separator are electrochemically cut off by an electrolysis suppressing part. 上記供給側マニホールドから供給された酸素を含むガスはセパレータ流路内を通過することなく、かつ上記正極集電板と上記負極集電板に接触することがないことを特徴とする請求項1又は2記載の固体高分子型燃料電池。The oxygen-containing gas supplied from the supply-side manifold does not pass through the separator flow path and does not contact the positive electrode current collector plate and the negative electrode current collector plate. 3. The polymer electrolyte fuel cell according to 2. 水素を含むガスを製造する機器または水素を貯蔵する機器と、水素を含むガスを流通させる配管を介して請求項1または2記載の固体高分子型燃料電池を連結したことを特徴とする発電システム。3. A power generation system comprising: a device for producing a gas containing hydrogen or a device for storing hydrogen; and the polymer electrolyte fuel cell according to claim 1 or 2 connected via a pipe for circulating the gas containing hydrogen. .
JP2003199973A 2003-07-22 2003-07-22 Polymer electrolyte fuel cell Expired - Fee Related JP4090956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199973A JP4090956B2 (en) 2003-07-22 2003-07-22 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199973A JP4090956B2 (en) 2003-07-22 2003-07-22 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2005044527A true JP2005044527A (en) 2005-02-17
JP4090956B2 JP4090956B2 (en) 2008-05-28

Family

ID=34260566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199973A Expired - Fee Related JP4090956B2 (en) 2003-07-22 2003-07-22 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4090956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251330A (en) * 2007-03-30 2008-10-16 Equos Research Co Ltd Fuel cell system
JP2010009754A (en) * 2008-06-24 2010-01-14 Panasonic Corp Solid polymer fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251330A (en) * 2007-03-30 2008-10-16 Equos Research Co Ltd Fuel cell system
JP2010009754A (en) * 2008-06-24 2010-01-14 Panasonic Corp Solid polymer fuel cell

Also Published As

Publication number Publication date
JP4090956B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
CA2646422C (en) Fuel cell implementing fuel deficiency countermeasures at the anode and cathode
US20080292921A1 (en) Recovery of inert gas from a fuel cell exhaust stream
US20100068599A1 (en) Fuel cell stack
JP2008525961A (en) Direct oxidation fuel cell and direct oxidation fuel cell system operating at high concentration fuel and low oxidant stoichiometry
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
KR101343475B1 (en) Fuel cell stack
JP2001357869A (en) Solid high-polymer type fuel cell stack
WO2007119130A1 (en) Fuel cell
JP4788151B2 (en) Method and apparatus for returning characteristics of fuel cell
EP2341571B1 (en) Fuel cell, fuel cell system, and operating method for a fuel cell
JP4090956B2 (en) Polymer electrolyte fuel cell
JP2009064604A (en) Single cell of fuel cell and fuel cell stack
US9281536B2 (en) Material design to enable high mid-temperature performance of a fuel cell with ultrathin electrodes
JP3685039B2 (en) Polymer electrolyte fuel cell system
JP4100096B2 (en) Polymer electrolyte fuel cell
KR100531822B1 (en) Apparatus for supplying air of fuel cell
JP2005141994A (en) Polyelectrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JP2007026857A (en) Fuel cell
JP2008021533A (en) Fuel cell stack
JP2004241185A (en) Polymer electrolyte type fuel cell
KR100446781B1 (en) Electrode structure for fuel cell
JP2007335112A (en) Fuel cell
JP2007287412A (en) Fuel cell
KR20060020024A (en) Fuel cell system and stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees