JP2005043001A - Quantity controller in multiple unit installation system for boilers - Google Patents

Quantity controller in multiple unit installation system for boilers Download PDF

Info

Publication number
JP2005043001A
JP2005043001A JP2003279036A JP2003279036A JP2005043001A JP 2005043001 A JP2005043001 A JP 2005043001A JP 2003279036 A JP2003279036 A JP 2003279036A JP 2003279036 A JP2003279036 A JP 2003279036A JP 2005043001 A JP2005043001 A JP 2005043001A
Authority
JP
Japan
Prior art keywords
control
pressure
boiler
combustion
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003279036A
Other languages
Japanese (ja)
Other versions
JP4148514B2 (en
Inventor
Kanji Kuroda
寛治 黒田
Masahito Nishiyama
将人 西山
Atsuhiro Aida
敦裕 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2003279036A priority Critical patent/JP4148514B2/en
Publication of JP2005043001A publication Critical patent/JP2005043001A/en
Application granted granted Critical
Publication of JP4148514B2 publication Critical patent/JP4148514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a frequency of changing a burning capacity of a boiler, and to carry out efficient operation of the boiler in a multiple unit installation system for boilers. <P>SOLUTION: In the multiple unit installation system for boilers, a plurality of boilers 1 is installed comprising basic units and auxiliary units, and steam generated by each boiler 1 is collected and then supplied to a steam using part 2. It is provided with the quantity controller setting a plurality of pressure divisions by dividing a pressure control range of a steam pressure on the basis of a combustion control pattern, determining combustion states in individual boilers by detecting a corresponding pressure division of a steam pressure value in a steam collecting part 4, and carrying out quantity control of carrying out combustion in a necessary number of boilers. Quantity control of using only boilers of the basic units, and quantity control of using all controllable boilers are carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はボイラの多缶設置システムにおける台数制御装置に関するものである。   The present invention relates to a number control device in a boiler multi-can installation system.

ボイラを複数台設置し、負荷に応じてボイラの燃焼台数を調節するボイラの多缶設置システムが知られている。蒸気ボイラの多缶設置システムの場合、台数制御装置によってボイラの燃焼量(台数)を制御することで蒸気の発生量を調節する。ボイラの設置台数は、修理や故障によって一部のボイラが使用できなくなっても、蒸気供給量が不足しないように、蒸気供給に必要である基礎缶分のボイラ台数の他に予備缶として数缶程度のボイラを余分に設置しておき、各ボイラで発生した蒸気はスチームヘッダに集合させて蒸気使用部へ供給する。なお、基礎缶と予備缶の区分は、ボイラの設置台数を検討する際の区分であって、実際に設置したボイラに基礎缶と予備缶の区別はなく、ボイラの台数制御は設置しているボイラ全体で行っている。   2. Description of the Related Art A boiler multi-can installation system that installs a plurality of boilers and adjusts the number of boiler combustions according to the load is known. In the case of a multi-can installation system for steam boilers, the amount of steam generated is adjusted by controlling the combustion amount (number) of the boilers using a unit control device. The number of boilers installed is a few cans as spare cans in addition to the number of boilers required for steam supply so that the steam supply amount will not be insufficient even if some boilers become unusable due to repairs or malfunctions. An extra boiler is installed, and the steam generated in each boiler is collected in a steam header and supplied to the steam using section. The classification of basic cans and spare cans is a category when considering the number of boilers installed. There is no distinction between basic cans and spare cans in the actual installed boilers, and the number of boilers is controlled. This is done throughout the boiler.

台数制御装置は、スチームヘッダに設けた圧力検出装置にて検出する蒸気圧力値に基づいて台数制御を行う。台数制御装置では、蒸気圧力の圧力制御範囲を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼量を定めておき、スチームヘッダで検出される蒸気圧力値がどの圧力区分に該当するかによってボイラの燃焼量を求め、必要台数分のボイラを燃焼させる。蒸気圧力値が高圧側の圧力区分に移るほどボイラの燃焼台数を少なくし、蒸気圧力値が低圧側の圧力区分に移るほどボイラの燃焼台数を多くすることで、蒸気圧力値が制御圧力幅内に保たれるように制御する。   The number control device performs number control based on the steam pressure value detected by the pressure detection device provided in the steam header. In the multi-unit control system, the pressure control range of steam pressure is divided into multiple pressure categories, the combustion amount of the boiler is determined for each pressure category, and which pressure category the steam pressure value detected by the steam header corresponds to The amount of boiler combustion is calculated by the above, and the required number of boilers are burned. The steam pressure value falls within the control pressure range by decreasing the number of boiler combustions as the steam pressure value shifts to the high pressure side pressure category, and increasing the number of boiler combustions as the steam pressure value shifts to the low pressure side pressure category. Control to be kept at.

図9及び図10は従来の台数制御を説明するものであり、図9は基礎缶3台と予備缶2台からなる5台のボイラを設置し、圧力制御範囲は0.70MPaから0.78MPaとした場合の蒸気圧力値とボイラ燃焼制御パターンの関係を示した説明図、図10は蒸気圧力値とボイラ燃焼台数の変化を示した説明図である。ON-OFF制御するボイラを5台設置しておき、圧力制御範囲が0.70MPaから0.78MPaである場合、蒸気圧力値が圧力制御範囲の下限である0.70MPaに満たないで制御対象のボイラ全てを燃焼する場合と、圧力制御範囲の上限である0.78MPaを越えて制御対象のボイラ全てを停止とする場合を除いた燃焼制御パターンは、「ON,OFF,OFF,OFF,OFF」「ON,ON,OFF,OFF,OFF」「ON,ON,ON,OFF,OFF」「ON,ON,ON,ON,OFF」の4通りとなる。圧力制御範囲内では該燃焼制御パターンの数である4で等分するため、圧力制御範囲内では0.02MPaごとに圧力区分を設け、圧力区分ごとにボイラの燃焼台数を定めることになる。つまり、蒸気圧力値が0.70MPaに満たない場合には5台のボイラを燃焼、蒸気圧力値が0.70MPaから0.72MPaの範囲内にある場合には4台のボイラを燃焼、蒸気圧力値が0.72MPaから0.74MPaの範囲内にある場合には3台のボイラを燃焼、蒸気圧力値が0.74MPaから0.76MPaの範囲内にある場合には2台のボイラを燃焼、蒸気圧力値が0.76MPaから0.78MPaの範囲内にある場合には1台のボイラを燃焼、蒸気圧力値が0.78MPaを越えるとボイラの燃焼台数を0台とするように燃焼台数を定める。   9 and 10 explain the conventional number control. FIG. 9 shows that five boilers consisting of three basic cans and two spare cans are installed, and the pressure control range is 0.70 MPa to 0.78 MPa. FIG. 10 is an explanatory diagram showing changes in the steam pressure value and the number of boiler combustions. If 5 boilers that are ON-OFF controlled are installed and the pressure control range is 0.70MPa to 0.78MPa, the steam pressure value is less than 0.70MPa, which is the lower limit of the pressure control range. Except when combusting and when stopping all boilers to be controlled exceeding the upper limit of the pressure control range, 0.78 MPa, the combustion control pattern is `` ON, OFF, OFF, OFF, OFF '', `` ON, ON , OFF, OFF, OFF ”,“ ON, ON, ON, OFF, OFF ”,“ ON, ON, ON, ON, OFF ”. In the pressure control range, the number of combustion control patterns is equally divided by 4. Therefore, in the pressure control range, a pressure section is provided for each 0.02 MPa, and the number of boiler combustions is determined for each pressure section. In other words, when the steam pressure value is less than 0.70MPa, 5 boilers are burned. When the steam pressure value is within the range of 0.70MPa to 0.72MPa, 4 boilers are burned, and the steam pressure value is 0.72. When it is within the range of MPa to 0.74 MPa, 3 boilers are burned. When the steam pressure value is within the range of 0.74 MPa to 0.76 MPa, 2 boilers are burned, and the steam pressure value is from 0.76 MPa. If it is within the range of 0.78MPa, one boiler will be burned, and if the steam pressure value exceeds 0.78MPa, the number of burners will be set to 0.

図10での蒸気圧力値は、圧力制御範囲の下限である0.70MPa未満の状態から始まっており、この場合には5台のボイラが全て燃焼することになる。蒸気圧力値が上昇して0.70MPaから0.72MPaの圧力区分内に入ると燃焼台数は4台、さらに上昇して0.72MPaから0.74MPaの区分内に入ると燃焼台数は3台とする。蒸気圧力値が上昇して高圧側の圧力区分に移る毎に燃焼台数を少なくする制御を行い、逆に蒸気圧力値が低下している場合には、低圧側の圧力区分に移るごとにボイラの燃焼台数を増加する制御を行う。   The steam pressure value in FIG. 10 starts from a state below 0.70 MPa, which is the lower limit of the pressure control range, and in this case, all five boilers are combusted. If the steam pressure rises and enters the pressure range from 0.70 MPa to 0.72 MPa, the number of combusted units will be four, and if it further rises and falls within the range of 0.72 MPa to 0.74 MPa, the number of combusted units will be three. Every time the steam pressure value rises and moves to the high pressure side pressure section, control is performed to reduce the number of combustion units. Conversely, if the steam pressure value decreases, the boiler pressure Control to increase the number of combustion.

この場合、設置している全てのボイラを使用して台数制御を行うため、始業時など蒸気圧力が低い場合には、基礎缶の台数よりも予備缶の台数分多いボイラの全てを燃焼するため蒸気圧力上昇に要する時間を短縮することができる。しかし、台数制御を行うボイラの台数を多くすれば、制御圧力範囲内に定める各圧力区分の圧力幅が小さくなり、わずかの圧力変動でも燃焼台数の変更を行うため、燃焼台数の変更が頻繁に行われることとなる。さらに、燃焼台数変更の出力と実際の蒸気発生量の増減には時間差があるため、圧力区分の圧力幅が小さい場合には、必要以上に燃焼台数変更の出力を行って蒸気発生量を大きく変化させてしまい、その後に燃焼台数を逆の方向に大きく変更する出力を行うことを繰り返す発振を引き起こすことがある。このような場合には、蒸気圧力の安定性が悪化することとなり、さらに機器の発停回数が多くなるために寿命が短くなるという問題があった。   In this case, the number of boilers is controlled using all the installed boilers, so when the steam pressure is low, such as at the start of work, to burn all the boilers that are more than the number of basic cans. The time required for increasing the steam pressure can be shortened. However, if the number of boilers that control the number of units increases, the pressure range of each pressure category defined within the control pressure range decreases, and the number of combustion units changes even with slight pressure fluctuations. Will be done. In addition, there is a time difference between the output of the change in the number of burned units and the actual increase or decrease in the amount of steam generated. Then, there is a possibility that the oscillation repeatedly causes the output to be greatly changed in the opposite direction. In such a case, there is a problem that the stability of the steam pressure is deteriorated and the life is shortened because the number of start / stop times of the device is increased.

そこで、蒸気使用量が少ない場合には台数制御を行うボイラの台数を減少させて圧力区分を広く設定し直し、設定し直した圧力区分に基づいて台数制御を行うことが考えられた。しかし、台数制御を行うボイラの台数を減少すれば、蒸気供給量の不足によって蒸気圧力値が圧力制御範囲の下限以下になる可能性が増加し、低下した蒸気圧力が圧力制御範囲内へ回復しない恐れが生じることとなる。
特開2001−132902号公報
Therefore, when the amount of steam used is small, it has been considered to reduce the number of boilers that perform unit control, re-set the pressure category widely, and perform unit control based on the reset pressure category. However, if the number of boilers that perform unit control is reduced, the possibility that the steam pressure value will fall below the lower limit of the pressure control range increases due to a shortage of steam supply, and the reduced steam pressure does not recover to the pressure control range. Fear will arise.
JP 2001-132902 A

本発明が解決しようとする課題は、ボイラの多缶設置システムにおいて、ボイラの燃焼量を変更する頻度を低下し、ボイラの効率的な運転を行うことにある。   The problem to be solved by the present invention is to reduce the frequency of changing the amount of combustion of the boiler in a boiler multi-can installation system and to operate the boiler efficiently.

基礎缶分と予備缶分からなる複数台のボイラを設置し、各ボイラで発生させた蒸気は集合させた後で蒸気使用部へ供給しており、蒸気圧力の圧力制御範囲内を燃焼制御パターンに基づいて分割することで複数の圧力区分を設定し、蒸気集合部における蒸気圧力値がどの圧力区分に該当するかを検出することによって個々のボイラにおける燃焼状態を定め、必要台数のボイラを燃焼させる台数制御を行う台数制御装置を設けているボイラの多缶設置システムにおいて、基礎缶分のボイラのみを使用する台数制御と、制御可能なボイラ全体を使用する台数制御を行う。   Multiple boilers consisting of basic cans and spare cans are installed, and the steam generated in each boiler is collected and then supplied to the steam use section. The steam pressure within the pressure control range is set to the combustion control pattern. By dividing based on this, multiple pressure categories are set, and by detecting which pressure category corresponds to the steam pressure value in the steam collecting part, the combustion state in each boiler is determined, and the required number of boilers are burned In a boiler multi-can installation system provided with a unit control device for controlling the number of units, the unit control using only the boiler for the basic can and the unit control using the entire controllable boiler are performed.

本発明を実施することで、ボイラの燃焼量を変更する頻度を少なくすることができ、さらに不要なボイラの燃焼をなくすことでボイラの運転効率を向上することができるという利点がある。   By implementing the present invention, there is an advantage that the frequency of changing the combustion amount of the boiler can be reduced, and further, the operation efficiency of the boiler can be improved by eliminating unnecessary combustion of the boiler.

図1は本発明装置の実施例におけるボイラ多缶設置システムの全体構成を示すブロック図、図2は実施例における台数制御Aの蒸気圧力値とボイラ燃焼制御パターンの関係を示した説明図、図3は実施例における台数制御Bの蒸気圧力値とボイラ燃焼制御パターンの関係を示した説明図、図4は実施例における台数制御Cの蒸気圧力値とボイラ燃焼制御パターンの関係を示した説明図、図5は第1の実施例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図、図6は第2の実施例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図、図7は第3の実施例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図、図8は第4の実施例における台数制御切り替え状況の説明図である。   FIG. 1 is a block diagram showing the overall configuration of a boiler multi-can installation system in an embodiment of the present invention device, and FIG. 2 is an explanatory diagram showing the relationship between the steam pressure value of the unit control A and the boiler combustion control pattern in the embodiment. 3 is an explanatory diagram showing the relationship between the steam pressure value of the unit control B and the boiler combustion control pattern in the embodiment, and FIG. 4 is an explanatory diagram showing the relationship between the steam pressure value of the unit control C and the boiler combustion control pattern in the embodiment. FIG. 5 is an explanatory diagram of the steam pressure change and boiler combustion unit control status in the first embodiment, FIG. 6 is an explanatory diagram of the steam pressure change and boiler combustion unit control status in the second embodiment, and FIG. FIG. 8 is an explanatory diagram of the steam pressure change state and the boiler combustion unit control status in the embodiment, and FIG. 8 is an explanatory diagram of the unit control switching status in the fourth embodiment.

本実施例では、ON-OFFで燃焼制御を行う5台のボイラ1を設置しており、各ボイラで発生させた蒸気を集合させるスチームヘッダ4を設ける。発生させた蒸気は各ボイラ1とスチームヘッダ4を繋ぐ蒸気配管5を通じてスチームヘッダ4に集合させた後で蒸気使用部2へ送っており、スチームヘッダ4には、蒸気圧力を検出する圧力検出器6を設ける。各ボイラには、それぞれに運転制御装置7を設けており、運転制御装置7は台数制御装置3からの燃焼要求信号を受けてボイラの燃焼制御を行う。圧力制御範囲は0.70MPaから0.78MPaとしており、台数制御装置3はスチームヘッダ4の圧力検出器6で検出している蒸気圧力値が0.70MPaから0.78MPaの圧力制御範囲内に保つようにボイラの燃焼台数を制御する。ここでは5台のボイラを設置しているが、通常の運転時に必要なボイラ(基礎缶)は3台分であり、残りの2台分はボイラに故障が発生して蒸気を供給することができなくなった場合にも蒸気供給量が不足しないように余分に設置している予備缶に相当する。   In this embodiment, five boilers 1 that perform combustion control by ON-OFF are installed, and a steam header 4 that collects steam generated in each boiler is provided. The generated steam is collected in the steam header 4 through the steam pipe 5 that connects each boiler 1 and the steam header 4 and then sent to the steam using unit 2. The steam header 4 includes a pressure detector that detects the steam pressure. 6 is provided. Each boiler is provided with an operation control device 7, and the operation control device 7 receives a combustion request signal from the number control device 3 and performs combustion control of the boiler. The pressure control range is 0.70MPa to 0.78MPa, and the unit control device 3 keeps the steam pressure value detected by the pressure detector 6 of the steam header 4 within the pressure control range of 0.70MPa to 0.78MPa. Control the number of combustion. Here, five boilers are installed, but only three boilers (basic cans) are required during normal operation, and the remaining two boilers can supply steam due to a failure in the boiler. It corresponds to a spare can installed extra so that the steam supply amount will not be insufficient even when it becomes impossible.

まず第1の実施例を説明する。第1の実施例の場合、台数制御装置3には、制御可能なボイラの全体を使用してできる燃焼制御パターン数で圧力制御範囲内を分割して圧力区分を設けた台数制御Aと、基礎缶分のボイラのみを使用した燃焼制御パターン数で圧力制御範囲内を分割して圧力区分を設けた台数制御Bの設定を行っておく。台数制御装置3は、圧力検出器6で検出している蒸気圧力値が圧力制御範囲の下限よりも低ければ台数制御Aによる台数制御を実行し、検出している蒸気圧力値が圧力制御範囲の下限よりも高ければ台数制御Bによる台数制御を実行する。   First, the first embodiment will be described. In the case of the first embodiment, the number control device 3 includes a number control A in which the pressure control range is divided by the number of combustion control patterns that can be used by using the entire controllable boiler, and a basic unit. The number control B is set in which the pressure control range is divided by the number of combustion control patterns using only the boiler for the can and the pressure classification is provided. If the steam pressure value detected by the pressure detector 6 is lower than the lower limit of the pressure control range, the number control device 3 executes the number control by the number control A, and the detected steam pressure value is within the pressure control range. If it is higher than the lower limit, the number control by the number control B is executed.

台数制御Aの場合、圧力制御範囲は0.70MPaから0.78MPaであるため、蒸気圧力値が圧力制御範囲の下限である0.70MPaに満たないで制御対象のボイラ全てを燃焼する場合と、圧力制御範囲の上限である0.78MPaを越えて制御対象のボイラ全てを停止とする場合を除いた燃焼制御パターンは、「ON,OFF,OFF,OFF,OFF」「ON,ON,OFF,OFF,OFF」「ON,ON,ON,OFF,OFF」「ON,ON,ON,ON,OFF」の4通りとなる。圧力制御範囲内では該燃焼制御パターンの数である4で等分するため、圧力制御範囲内では0.02MPaごとに圧力区分を設け、圧力区分ごとにボイラの燃焼台数を定めることになる。つまり、蒸気圧力値が0.70MPaに満たない場合には5台のボイラを燃焼、蒸気圧力値が0.70MPaから0.72MPaの圧力区分にある場合には4台のボイラを燃焼、蒸気圧力値が0.72MPaから0.74MPaの圧力区分にある場合には3台のボイラを燃焼、蒸気圧力値が0.74MPaから0.76MPaの圧力区分にある場合には2台のボイラを燃焼、蒸気圧力値が0.76MPaから0.78MPaの圧力区分にある場合には1台のボイラを燃焼、蒸気圧力値が0.78MPaを越えればボイラの燃焼台数を0台とするように燃焼台数を定めている。   In the case of unit control A, the pressure control range is 0.70MPa to 0.78MPa, so the steam pressure value does not reach the lower limit of 0.70MPa which is the lower limit of the pressure control range, Except when stopping all boilers to be controlled exceeding the upper limit of 0.78 MPa, the combustion control pattern is `` ON, OFF, OFF, OFF, OFF '', `` ON, ON, OFF, OFF, OFF '', `` ON, ON, ON, OFF, OFF ”and“ ON, ON, ON, ON, OFF ”. In the pressure control range, the number of combustion control patterns is equally divided by 4. Therefore, in the pressure control range, a pressure section is provided for each 0.02 MPa, and the number of boiler combustions is determined for each pressure section. In other words, when the steam pressure value is less than 0.70 MPa, 5 boilers are burned, and when the steam pressure value is in the pressure category of 0.70 MPa to 0.72 MPa, 4 boilers are burned, and the steam pressure value is 0.72 When in the pressure range from MPa to 0.74 MPa, 3 boilers are combusted. When the steam pressure value is in the pressure range from 0.74 MPa to 0.76 MPa, 2 boilers are combusted, and the steam pressure value is from 0.76 MPa. The number of combustion units is determined so that one boiler is burned when the pressure classification is 0.78 MPa, and the number of boilers burned is zero when the steam pressure exceeds 0.78 MPa.

台数制御Bは、基礎缶の台数である3台のみで圧力制御範囲内の台数制御を行うものであるため、各圧力区分が大きくなる。蒸気圧力値が圧力制御範囲の下限である0.70MPaに満たないで基礎缶分のボイラ全てを燃焼する場合と、圧力制御範囲の上限である0.78MPaを越えて基礎缶分のボイラ全てを停止とする場合を除いた燃焼制御パターンは、「ON,OFF,OFF」「ON,ON,OFF」の2通りとなる。圧力制御範囲内では該燃焼制御パターンの数である2で等分するため、圧力制御範囲内では0.04MPaごとに圧力区分を設け、圧力区分ごとにボイラの燃焼台数を定めることになる。つまり、蒸気圧力値が0.70MPaに満たない場合には3台のボイラを燃焼、蒸気圧力値が0.70MPaから0.74MPaの圧力区分にある場合には2台のボイラを燃焼、蒸気圧力値が0.74MPaから0.78MPaの圧力区分にある場合には1台のボイラを燃焼、蒸気圧力値が0.78MPaを越えればボイラの燃焼台数を0台とするように燃焼台数を定めている。   Since the unit control B is for controlling the number of units within the pressure control range with only three basic cans, each pressure classification becomes large. If the steam pressure value is less than the lower limit of 0.70 MPa, which is the lower limit of the pressure control range, all boilers for the basic can are combusted, and if the upper limit of the pressure control range is 0.78 MPa, all boilers for the basic can are stopped. There are two combustion control patterns excluding the case of “ON, OFF, OFF” and “ON, ON, OFF”. In the pressure control range, the number of combustion control patterns is equally divided by 2. Therefore, in the pressure control range, a pressure section is provided for each 0.04 MPa, and the number of boiler combustions is determined for each pressure section. In other words, when the steam pressure value is less than 0.70MPa, 3 boilers are burned, and when the steam pressure value is in the pressure category from 0.70MPa to 0.74MPa, 2 boilers are burned, and the steam pressure value is 0.74 The number of combustion units is determined so that one boiler is burned when the pressure range is from MPa to 0.78 MPa, and the number of boilers burned is zero when the steam pressure exceeds 0.78 MPa.

第1の実施例を示している図5は、蒸気圧力値が0.70MPaよりも低い状態から始まっているため、当初は台数制御Aを実行し、台数制御Aでは蒸気圧力値が0.70MPaより低い場合の燃焼量は5台であるため、台数制御装置3は5台のボイラに対して燃焼を指示する。蒸気圧力値が上昇し、圧力制御範囲の下限値である0.70MPaよりも高くなると、台数制御装置3は台数制御をAからBに切り替える。台数制御Bの場合、蒸気圧力値が0.70MPaから0.74MPaの圧力区分での燃焼量は2台であるため、台数制御装置3は2台のボイラへのみ燃焼を指示し、他のボイラは燃焼を停止する。更に蒸気圧力が上昇して蒸気圧力値が0.74MPaから0.78MPaの圧力区分に入ると、台数制御Bでの燃焼量は1台であるため、台数制御装置3は1台のボイラ1のみの燃焼とする。その後蒸気圧力が低下して蒸気圧力値が0.70MPaから0.74MPaの圧力区分に入ると、ボイラの燃焼台数を2台とするように、蒸気圧力値が圧力制御範囲内にある場合には基礎缶分の台数で台数制御を行う。   FIG. 5 showing the first embodiment starts from a state in which the steam pressure value is lower than 0.70 MPa. Therefore, the number control A is initially executed. In the number control A, the steam pressure value is lower than 0.70 MPa. In this case, since the number of combustion is five, the number control device 3 instructs the five boilers to perform combustion. When the steam pressure value increases and becomes higher than 0.70 MPa, which is the lower limit value of the pressure control range, the unit control device 3 switches the unit control from A to B. In the case of unit control B, since the combustion amount in the pressure category of the steam pressure value from 0.70 MPa to 0.74 MPa is two units, the unit control device 3 instructs the combustion to only two boilers, and the other boilers combust To stop. When the steam pressure further rises and the steam pressure value enters the pressure range from 0.74 MPa to 0.78 MPa, the combustion amount in the unit control B is one, so the unit control device 3 burns only one boiler 1. And After that, when the steam pressure falls and the steam pressure value enters the pressure range of 0.70MPa to 0.74MPa, the basic can is used when the steam pressure value is within the pressure control range so that the number of boilers burned is two. Unit control is performed by the number of minutes.

蒸気圧力値が圧力制御範囲の下限値よりも低くなると、台数制御装置3は台数制御をBからAに切り替える。台数制御Aの場合、蒸気圧力値が0.70MPa未満での燃焼量は5台であるため、台数制御装置3は5台のボイラ全てに燃焼を指示し、全てのボイラで燃焼する。以下同様に蒸気圧力値が圧力制御範囲の下限値を通過する毎に台数制御パターンの変更を行う。蒸気圧力値が圧力制御範囲内にある場合には圧力区分が広く燃焼量の少ない台数制御Bを実行することで、ボイラの燃焼量を少なくするとともに、燃焼量の頻繁な変更を防ぎ、蒸気圧力値が圧力制御範囲よりも低い場合には燃焼量の多い台数制御Aを実行することで、蒸気圧力値を短時間で回復させる。   When the steam pressure value becomes lower than the lower limit value of the pressure control range, the unit control device 3 switches the unit control from B to A. In the case of the number control A, since the number of combustion when the steam pressure value is less than 0.70 MPa is five, the number control device 3 instructs the combustion to all five boilers and burns in all the boilers. Similarly, every time the steam pressure value passes the lower limit value of the pressure control range, the number control pattern is changed. When the steam pressure value is within the pressure control range, the number control B with a wide pressure category and a small combustion amount is executed to reduce the combustion amount of the boiler and prevent frequent changes in the combustion amount. When the value is lower than the pressure control range, the steam pressure value is recovered in a short time by executing the unit control A with a large combustion amount.

次に第2の実施例を説明する。第2の実施例でも、前記第1の実施例で記載している台数制御Aと台数制御Bによる台数制御を行うものである。第2の実施例は、検出している蒸気圧力値が圧力制御範囲の下限よりも低いことを検出すれば台数制御Aによる台数制御を実行し、検出している蒸気圧力値が圧力制御範囲の下限よりも所定幅(例えば圧力制御範囲の30%)分以上高いことを検出すれば台数制御Bによる台数制御を実行するものである。   Next, a second embodiment will be described. Also in the second embodiment, the number control A and the number control B described in the first embodiment are performed. In the second embodiment, if it is detected that the detected steam pressure value is lower than the lower limit of the pressure control range, the number control by the number control A is executed, and the detected steam pressure value is within the pressure control range. If it is detected that it is higher than the lower limit by a predetermined width (for example, 30% of the pressure control range) or more, the number control by the number control B is executed.

図6では0.70MPaよりも低い状態から始まっているため、当初は台数制御Aを実行し、台数制御Aでは蒸気圧力値が0.70MPaより低い場合の燃焼量は5台であるため、台数制御装置3は5台のボイラに対して燃焼を指示する。蒸気圧力値が上昇し、圧力制御範囲の下限値より高くなっても、蒸気圧力値が圧力制御範囲の30%(0.024MPa)分高くなるまでは台数制御Aを継続し、蒸気圧力値が0.70MPaから0.72MPaの圧力区分での燃焼量は4台であるため、台数制御装置3は4台のボイラへ燃焼を指示し、燃焼対象から外れた1台のボイラは燃焼を停止する。蒸気圧力が上昇して蒸気圧力値が0.72MPaから0.74MPaの圧力区分に入ると、台数制御Aでの燃焼量は3台であるため、台数制御装置3はボイラ1の燃焼台数を3台とする。   In FIG. 6, since it starts from a state lower than 0.70 MPa, the number control A is initially executed. In the number control A, the combustion amount is 5 when the steam pressure value is lower than 0.70 MPa. 3 instructs combustion to five boilers. Even if the steam pressure value rises and becomes higher than the lower limit of the pressure control range, unit control A is continued until the steam pressure value increases by 30% (0.024 MPa) of the pressure control range, and the steam pressure value becomes 0.70. Since the number of combustion in the pressure section from MPa to 0.72 MPa is four, the unit control device 3 instructs the four boilers to perform combustion, and one boiler that is excluded from the combustion target stops combustion. When the steam pressure rises and the steam pressure value enters the pressure range from 0.72 MPa to 0.74 MPa, the number of combustions in the unit control A is 3, so the unit controller 3 sets the number of combustion units in the boiler 1 to 3 units. To do.

さらに蒸気圧力値が上昇し、圧力制御範囲の下限から圧力制御範囲の30%、つまり0.724MPaまで上昇すると、台数制御装置3は台数制御をAからBに切り替える。台数制御Bの場合、0.70MPaから0.74MPaの圧力区分における燃焼量は2台であるため、台数制御装置3はボイラの燃焼台数を2台とする。その後は第1の実施例と同様に、蒸気圧力値が圧力制御範囲内にある場合は台数制御Bを実行し、蒸気圧力値が圧力制御範囲の下限より低くなると台数制御Aを実行する。台数制御パターンのAからBへの変更は、圧力制御範囲の下限よりも所定幅分以上高くなった後で行うようにしておき、AからBへ変更する圧力値をBからAへ変更する圧力値よりも高くしているため、ボイラの燃焼量増加を遅らせることによる不要な燃焼量増加を少なくすることができ、燃焼量を増加した場合には蒸気圧力値が圧力制御範囲内の半ばまで上昇する時間を短くすることができるようになる。   When the steam pressure value further rises and rises from the lower limit of the pressure control range to 30% of the pressure control range, that is, 0.724 MPa, the unit control device 3 switches the unit control from A to B. In the case of the number control B, since the combustion amount in the pressure section from 0.70 MPa to 0.74 MPa is two, the number control device 3 sets the number of combustion of the boiler to two. Thereafter, as in the first embodiment, the unit control B is executed when the steam pressure value is within the pressure control range, and the unit control A is executed when the steam pressure value becomes lower than the lower limit of the pressure control range. The change in the number control pattern from A to B is made after a predetermined width or more has been made higher than the lower limit of the pressure control range, and the pressure value for changing the pressure value from A to B is changed from B to A. Because it is higher than the value, unnecessary increase in combustion amount due to delaying the increase in boiler combustion amount can be reduced, and when the combustion amount is increased, the steam pressure value rises to half of the pressure control range. The time to do can be shortened.

次に第3の実施例を説明する。第3の実施例では、台数制御装置3には圧力制御範囲内では基礎缶の台数のみで圧力区分を設定して基礎缶のみによる台数制御を行い、圧力制御範囲の下限よりも低い圧力域では予備缶による圧力区分を設定して予備缶を含めた台数制御を行う台数制御Cを定めておく。   Next, a third embodiment will be described. In the third embodiment, the unit control device 3 controls the number of units based on only the number of basic cans within the pressure control range and controls the number of units based only on the basic cans. In a pressure range lower than the lower limit of the pressure control range, A unit number control C for setting the pressure classification by the spare cans and controlling the number of units including the spare cans is determined.

台数制御Cの場合、圧力制御範囲内での台数制御は基礎缶の3台のみで行うため、圧力制御範囲内では前記の台数制御Bと同じであり、予備缶分の圧力区分は圧力制御範囲よりも低い圧力領域に圧力制御範囲の圧力区分と同じ圧力幅で設定している。つまり、台数制御Cは、台数制御Bに圧力制御範囲の下限から下方に2つの圧力区分を追加したものであり、蒸気圧力値が追加した圧力区分の下限である0.62MPaに満たない場合には5台のボイラを燃焼、蒸気圧力値が0.62MPaから0.66MPaの圧力区分にある場合には4台のボイラを燃焼、蒸気圧力値が0.66MPaから0.70MPaの圧力区分にある場合には3台のボイラを燃焼、蒸気圧力値が0.70MPaから0.74MPaの圧力区分にある場合には2台のボイラを燃焼、蒸気圧力値が0.74MPaから0.78MPaの圧力区分にある場合には1台のボイラを燃焼、蒸気圧力値が0.78MPaを越えればボイラの燃焼台数を0台とするように燃焼台数を定めている。   In the case of the unit control C, the unit control within the pressure control range is performed by only three basic cans. Therefore, the pressure control range is the same as the unit control B, and the pressure classification for the spare can is the pressure control range. The lower pressure region is set with the same pressure range as the pressure section of the pressure control range. In other words, the unit control C is obtained by adding two pressure categories to the unit control B downward from the lower limit of the pressure control range, and when the steam pressure value is less than 0.62 MPa, which is the lower limit of the added pressure category. If 5 boilers are burned and the steam pressure value is in the pressure range from 0.62 MPa to 0.66 MPa, then 4 boilers are burned. If the steam pressure value is in the pressure range from 0.66 MPa to 0.70 MPa, 3 units are burned. If the steam pressure value is in the pressure category from 0.70MPa to 0.74MPa, then two boilers will be burned. If the steam pressure value is in the pressure category from 0.74MPa to 0.78MPa, one boiler will be burned If the steam pressure value exceeds 0.78MPa, the number of combustion is determined so that the number of boilers burned is zero.

第3の実施例である図7は、蒸気圧力値が0.66MPaから0.70MPaの圧力区分から始まっており、台数制御Cでは蒸気圧力値が0.66MPaから0.70MPaの圧力区分における燃焼量は3台であるため、台数制御装置3は3台のボイラに対して燃焼を指示し、他のボイラは燃焼を停止しておく。蒸気圧力値が上昇し、0.70MPaから0.74MPaの圧力区分に入ると、台数制御Cでの燃焼量は2台であるため、台数制御装置3はボイラの燃焼台数を2台とする。
その後も蒸気圧力値が変化して圧力区分を移動する毎に燃焼台数を変更する台数制御を行う。台数制御Cでは、各圧力区分の幅が広いため、台数制御Cによる台数制御を実行することで、蒸気圧力値が圧力制御範囲内にある場合のボイラ燃焼台数を少なくするとともに、全領域での燃焼台数の頻繁な変更を防ぐことができる。
FIG. 7, which is the third embodiment, starts from a pressure section with a steam pressure value of 0.66 MPa to 0.70 MPa. In unit control C, the combustion amount in the pressure section with a steam pressure value of 0.66 MPa to 0.70 MPa is three. Therefore, the unit control device 3 instructs the three boilers to perform combustion, and the other boilers stop combustion. When the steam pressure value rises and enters the pressure range from 0.70 MPa to 0.74 MPa, the number of combustions in the unit control C is two, so the unit control device 3 sets the number of combustion units in the boiler to two.
After that, each time the steam pressure value changes and the pressure section is moved, the number control is performed to change the number of combustion. In the unit control C, since the range of each pressure category is wide, by executing the unit control by the unit control C, the number of boiler combustions when the steam pressure value is within the pressure control range is reduced, and in all regions It is possible to prevent frequent changes in the number of burned units.

次に第4の実施例を説明する。第4の実施例の場合、台数制御装置3には、前記の台数制御A、台数制御B、台数制御Cをそれぞれ設定しておき、台数制御Aと台数制御Bを組み合わせる台数制御と、台数制御Cによる台数制御を、負荷変動の大きさや、時間帯に応じて選択切り替えするものである。   Next, a fourth embodiment will be described. In the case of the fourth embodiment, the number control device 3 is set with the number control A, the number control B, and the number control C, and the number control is combined with the number control A and the number control B. The number control by C is selectively switched according to the magnitude of load fluctuation and the time zone.

図8は、バッチ式に蒸気を使用する時期と連続的に蒸気を使用する時期がある蒸気使用部に蒸気を供給する多缶設置システムにおける台数制御パターンの選択切り替え状況を示したものである。図では前期と後期はバッチ式蒸気使用期、中期は連続的蒸気使用期となっている。バッチ式蒸気使用期の場合、短時間に多量の蒸気を使用することがあり、蒸気圧力値が大きく低下することがある。蒸気圧力が大きく低下した場合には、できるだけ早く蒸気圧力を回復させる必要があるため、負荷変動の大きさを検出しておき、負荷変動が大きいことを検出している場合には台数制御Aと台数制御Bを組み合わせる台数制御を実行する。台数制御Aと台数制御Bを組み合わせた制御では、短時間で蒸気圧力を回復することのできる台数制御Aと、蒸気圧力が圧力制御範囲内にある場合には圧力区分が広く燃焼量の少ない台数制御Bを実行することで、蒸気圧力を短時間で回復させるとともに、燃焼台数の頻繁な変更を防ぐことができる。負荷変動が小さいことを検出している場合には、台数制御Cによる台数制御を行う。連続的蒸気使用期の場合、バッチ式蒸気使用期のような急激な蒸気使用を行うものではないため、蒸気圧力が大きく低下可能性は少なくなる。そのため台数制御Cを実行することで、ボイラの燃焼台数を少なくするとともに、燃焼台数の変更頻度をより少なくすることができる。現在がバッチ式蒸気使用期であるか連続的蒸気使用期であるかは、負荷変動の大きさを検出することで判断でき、また予め時間帯が分かっている場合にはタイマ予約を行っておき、タイマによって切り替えるようにしてもよい。   FIG. 8 shows the selection switching state of the unit control pattern in the multi-can installation system that supplies steam to the steam using part that has the time to use steam in a batch type and the time to use steam continuously. In the figure, the first and second periods are batch-type steam use periods, and the middle period is a continuous steam use period. In the case of the batch type steam use period, a large amount of steam may be used in a short time, and the steam pressure value may be greatly reduced. If the steam pressure drops greatly, it is necessary to recover the steam pressure as soon as possible. Therefore, the magnitude of the load fluctuation is detected, and if the load fluctuation is detected, the unit control A and The number control combining the number control B is executed. In the combination control of the unit control A and the unit control B, the unit control A that can recover the steam pressure in a short time, and the unit with a wide pressure category and a small combustion amount when the steam pressure is within the pressure control range By executing the control B, the steam pressure can be recovered in a short time, and frequent changes in the number of combustion can be prevented. When it is detected that the load fluctuation is small, the number control by the number control C is performed. In the case of the continuous steam use period, since the steam is not used rapidly as in the batch-type steam use period, the possibility that the steam pressure is greatly reduced is reduced. Therefore, by executing the unit control C, the number of combustion of the boiler can be reduced and the change frequency of the number of combustion can be further reduced. Whether it is the batch steam use period or the continuous steam use period can be determined by detecting the magnitude of the load fluctuation, and if the time zone is known in advance, a timer reservation is made. It may be switched by a timer.

なお、台数制御Bと台数制御Cは、圧力制御範囲内では同じ台数制御となるため、各実施例において台数制御Bの設定に代えて台数制御Cを設定しておき、台数制御Bの代わりに台数制御Cによる台数制御を行うようにしてもよい。また、実施例ではボイラはON-OFF制御するものであって燃焼量は燃焼台数で制御するようにしているが、高燃焼・低燃焼・停止の3位置で燃焼制御するボイラを用いて台数制御を行う場合も同様である。各ボイラが段階的な燃焼制御を行う場合であれば、燃焼量の制御は燃焼台数だけでなく各ボイラにおえける燃焼量でも調節することになるが、台数制御方法は上記の実施例と同じである。   Since the unit control B and the unit control C are the same unit control within the pressure control range, the unit control C is set instead of the unit control B in each embodiment. The number control by the number control C may be performed. In the embodiment, the boiler is controlled on and off, and the combustion amount is controlled by the number of combustion units. However, the number of units is controlled by using a boiler that controls combustion at three positions: high combustion, low combustion, and stop. The same applies when performing the above. If each boiler performs stepwise combustion control, the control of the combustion amount is adjusted not only by the number of combustion units but also by the combustion amount in each boiler, but the unit number control method is the same as in the above embodiment. is there.

本発明装置の実施例におけるボイラ多缶設置システムの全体構成を示すブロック図The block diagram which shows the whole structure of the boiler multi-can installation system in the Example of this invention apparatus. 実施例における台数制御Aの蒸気圧力値と燃焼制御パターンの説明図Explanatory drawing of the steam pressure value and combustion control pattern of unit control A in an Example 実施例における台数制御Bの蒸気圧力値と燃焼制御パターンの説明図Explanatory drawing of the steam pressure value and combustion control pattern of unit control B in an Example 実施例における台数制御Cの蒸気圧力値と燃焼制御パターンの説明図Explanatory drawing of the steam pressure value and combustion control pattern of unit control C in an Example 第1の実施例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図Explanatory diagram of steam pressure change and boiler combustion unit control status in the first embodiment 第2の実施例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図Explanatory diagram of steam pressure change and boiler combustion unit control status in the second embodiment 第3の実施例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図Explanatory diagram of steam pressure change and boiler combustion unit control status in the third embodiment 第4の実施例における台数制御パターン切り替え状況の説明図Explanatory drawing of the number control pattern switching situation in the fourth embodiment 従来例における蒸気圧力値と燃焼制御パターンの説明図Explanatory drawing of steam pressure value and combustion control pattern in conventional example 従来例における蒸気圧力変化とボイラ燃焼台数制御状況の説明図Explanatory drawing of steam pressure change and boiler combustion unit control status in conventional example

符号の説明Explanation of symbols

1 ボイラ
2 蒸気使用部
3 台数制御装置
4 スチームヘッダ
5 蒸気配管
6 圧力検出器
7 運転制御装置
1 boiler
2 Steam use part
3 Number control device
4 Steam header
5 Steam piping
6 Pressure detector
7 Operation control device

Claims (6)

基礎缶分と予備缶分からなる複数台のボイラを設置し、各ボイラで発生させた蒸気は集合させた後で蒸気使用部へ供給しており、蒸気圧力の圧力制御範囲内を燃焼制御パターンに基づいて分割することで複数の圧力区分を設定し、蒸気集合部における蒸気圧力値がどの圧力区分に該当するかを検出することによって個々のボイラにおける燃焼状態を定め、必要台数のボイラを燃焼させる台数制御を行う台数制御装置を設けているボイラの多缶設置システムにおいて、基礎缶分のボイラのみを使用する台数制御と、制御可能なボイラ全体を使用する台数制御を行うことを特徴とするボイラの多缶設置システムにおける台数制御装置。   Multiple boilers consisting of basic cans and spare cans are installed, and the steam generated in each boiler is collected and then supplied to the steam use section. The steam pressure within the pressure control range is set to the combustion control pattern. By dividing based on this, multiple pressure categories are set, and by detecting which pressure category corresponds to the steam pressure value in the steam collecting part, the combustion state in each boiler is determined, and the required number of boilers are burned In a boiler multi-can installation system equipped with a unit control device for controlling the number of units, a boiler that performs unit control using only the boiler for the basic can and unit control using the entire controllable boiler Unit control system for multi-can installation system. 請求項1に記載のボイラの多缶設置システムにおける台数制御装置において、制御可能なボイラ全体を使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設けた台数制御Aと、基礎缶分のボイラのみを使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設けた台数制御Bの設定を行っておき、検出している蒸気圧力値が所定の圧力P1よりも低ければ台数制御Aによる台数制御を実行し、検出している蒸気圧力値が所定の圧力P2よりも高ければ台数制御Bによる台数制御を実行することを特徴とするボイラの多缶設置システムにおける台数制御装置。   In the number control apparatus in the boiler multi-can installation system according to claim 1, the number control A and the number control A provided by dividing the pressure control range based on the number of combustion control patterns using the entire controllable boiler Based on the number of combustion control patterns using only the boiler for the basic can, the number control B is set by dividing the pressure control range and the pressure classification is set, and the detected steam pressure value is a predetermined value. If the pressure is lower than the pressure P1, the number control by the number control A is executed, and if the detected steam pressure value is higher than the predetermined pressure P2, the number control by the number control B is executed. Number control device in the installation system. 請求項2に記載のボイラの多缶設置システムにおける台数制御装置において、台数制御Aを行う圧力P1よりも台数制御Bを行う圧力P2の値を大きくしたことを特徴とするボイラの多缶設置システムにおける台数制御装置。   3. The boiler multi-can installation system according to claim 2, wherein the pressure P2 for performing the unit control B is larger than the pressure P1 for performing the unit control A. Unit control device in 請求項1に記載のボイラの多缶設置システムにおける台数制御装置において、基礎缶分のボイラのみを使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設け、圧力制御範囲よりも低い圧力領域には予備缶用の圧力区分を設けておき、圧力制御範囲の下限より高い圧力領域では基礎缶分のボイラのみで燃焼量制御を行い、圧力制御範囲の下限よりも低い圧力領域では予備缶分を含めた制御可能なボイラ全体で燃焼量制御を行う台数制御を実行することを特徴とするボイラの多缶設置システムにおける台数制御装置。   The number control device in the boiler multiple can installation system according to claim 1, wherein the pressure control range is divided based on the number of combustion control patterns using only the boiler for the basic can, and the pressure control range is provided. In the lower pressure region, a pressure section for the preliminary can is provided, and in the pressure region higher than the lower limit of the pressure control range, the combustion amount is controlled only by the boiler for the basic can, and the pressure lower than the lower limit of the pressure control range. A unit control device for a boiler multi-can installation system characterized in that in the area, unit control is performed to control the combustion amount in the entire controllable boiler including the spare can. 請求項1に記載のボイラの多缶設置システムにおける台数制御装置において、制御可能なボイラ全体を使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設けた台数制御A、基礎缶分のボイラのみを使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設けた台数制御B、基礎缶分のボイラのみを使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設け、圧力制御範囲よりも低い圧力領域には予備缶用の圧力区分を設けた台数制御Cの設定を行っておき、台数制御Aと台数制御Bを組み合わせる台数制御と、台数制御Cによる台数制御を選択切り替えすることを特徴とするボイラの多缶設置システムにおける台数制御装置。   In the number control device in the boiler multi-can installation system according to claim 1, the number control A in which the pressure control range is divided and the pressure division is provided based on the number of combustion control patterns using the entire controllable boiler, Unit control B with pressure division divided into the pressure control range based on the number of combustion control patterns using only the boiler for the basic can, Pressure based on the number of combustion control patterns using only the boiler for the basic can The control range is divided and the pressure division is provided. In the pressure region lower than the pressure control range, the unit control C is set with the pressure division for the spare can, and the unit control A and the unit control B are combined. A number control device in a boiler multi-can installation system, wherein the number control and the number control by the number control C are selectively switched. 請求項1に記載のボイラの多缶設置システムにおける台数制御装置において、制御可能なボイラ全体を使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設けた台数制御Aと、基礎缶分のボイラのみを使用した燃焼制御パターン数に基づいて圧力制御範囲内を分割して圧力区分を設け、圧力制御範囲よりも低い圧力領域でも圧力区分を設けた台数制御Cの設定を行っておき、台数制御Aと台数制御Cを組み合わせる台数制御と、台数制御Cによる台数制御を選択切り替えすることを特徴とするボイラの多缶設置システムにおける台数制御装置。   In the number control apparatus in the boiler multi-can installation system according to claim 1, the number control A and the number control A provided by dividing the pressure control range based on the number of combustion control patterns using the entire controllable boiler The number control C is set by dividing the pressure control range based on the number of combustion control patterns using only the boiler for the basic can, and providing the pressure division even in the pressure region lower than the pressure control range. A number control device in a boiler multi-can installation system characterized in that the number control by combining the number control A and the number control C and the number control by the number control C are selectively switched.
JP2003279036A 2003-07-24 2003-07-24 Number control device in boiler multi-can installation system Expired - Fee Related JP4148514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279036A JP4148514B2 (en) 2003-07-24 2003-07-24 Number control device in boiler multi-can installation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279036A JP4148514B2 (en) 2003-07-24 2003-07-24 Number control device in boiler multi-can installation system

Publications (2)

Publication Number Publication Date
JP2005043001A true JP2005043001A (en) 2005-02-17
JP4148514B2 JP4148514B2 (en) 2008-09-10

Family

ID=34265269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279036A Expired - Fee Related JP4148514B2 (en) 2003-07-24 2003-07-24 Number control device in boiler multi-can installation system

Country Status (1)

Country Link
JP (1) JP4148514B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972594B1 (en) 2008-12-16 2010-07-27 (주)에스코프로 Method of operating boiler system for improving energy efficiency and subsidiary equipment for the method
US20110162593A1 (en) * 2008-08-25 2011-07-07 Miura Co., Ltd. Control program, controller, and boiler system
CN102207285A (en) * 2010-03-29 2011-10-05 三浦工业株式会社 Program, controller, and boiler system
CN102620277A (en) * 2012-04-19 2012-08-01 广东电网公司电力科学研究院 Method and system for controlling load-shedding working condition of supercritical unit
JP2013204823A (en) * 2012-03-27 2013-10-07 Miura Co Ltd Boiler system
JP2014134344A (en) * 2013-01-10 2014-07-24 Miura Co Ltd Boiler system
CN105444147A (en) * 2016-01-14 2016-03-30 杨存岩 Automatic control system for remotely monitoring water supply, constant temperature and limiting pressure of boiler
JP2016114335A (en) * 2014-12-17 2016-06-23 三浦工業株式会社 Boiler system
CN105953207A (en) * 2016-05-20 2016-09-21 华北电力大学(保定) High-quality steam temperature control system for power station boiler

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568187B2 (en) * 2008-08-25 2017-02-14 Miura Co., Ltd. Control program, controller, and boiler system
US20110162593A1 (en) * 2008-08-25 2011-07-07 Miura Co., Ltd. Control program, controller, and boiler system
KR100972594B1 (en) 2008-12-16 2010-07-27 (주)에스코프로 Method of operating boiler system for improving energy efficiency and subsidiary equipment for the method
CN102207285A (en) * 2010-03-29 2011-10-05 三浦工业株式会社 Program, controller, and boiler system
US8682490B2 (en) 2010-03-29 2014-03-25 Miura Co., Ltd. Program, controller, and boiler system
CN102207285B (en) * 2010-03-29 2014-09-10 三浦工业株式会社 Program, controller, and boiler system
KR101739884B1 (en) * 2010-03-29 2017-05-25 미우라고교 가부시키카이샤 Program, controller and boiler system
JP2013204823A (en) * 2012-03-27 2013-10-07 Miura Co Ltd Boiler system
CN102620277A (en) * 2012-04-19 2012-08-01 广东电网公司电力科学研究院 Method and system for controlling load-shedding working condition of supercritical unit
JP2014134344A (en) * 2013-01-10 2014-07-24 Miura Co Ltd Boiler system
JP2016114335A (en) * 2014-12-17 2016-06-23 三浦工業株式会社 Boiler system
CN105444147A (en) * 2016-01-14 2016-03-30 杨存岩 Automatic control system for remotely monitoring water supply, constant temperature and limiting pressure of boiler
CN105444147B (en) * 2016-01-14 2017-11-07 杨存岩 The automatic control system of remotely monitor boiler water supply, constant temperature and pressure limiting
CN105953207A (en) * 2016-05-20 2016-09-21 华北电力大学(保定) High-quality steam temperature control system for power station boiler

Also Published As

Publication number Publication date
JP4148514B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4148514B2 (en) Number control device in boiler multi-can installation system
JP2002130602A (en) Method for controlling number of boilers
JP4059728B2 (en) Multi-can boiler
JP4118206B2 (en) Number control device in boiler multi-can installation system
JP2008107021A (en) Multi-can installation system for boiler
JP2005055014A (en) Method of controlling number of boilers
JP2004020041A (en) Multi-can type boiler controlling number of boilers
JP6550999B2 (en) Boiler system
JP5302078B2 (en) Boiler multi-can installation system
JP2006234359A (en) Boiler control method
JP5045914B2 (en) Boiler unit controller
JP2007192435A (en) Multitubular installation system for boiler
JP3357573B2 (en) Boiler unit control device
JP2004317105A (en) Control method for number of boilers
JP5541781B2 (en) Boiler multi-can installation system
JP6597341B2 (en) Boiler system
JP5835842B2 (en) Multi-can boiler
JP2008224084A (en) Boiler multi-can installation system
JP6551005B2 (en) Boiler system
JP6433203B2 (en) Multi-can boiler
JP5541780B2 (en) Boiler multi-can installation system
JP2004101095A (en) Multi-can installation system allowing individual operation of boiler
JPH11337004A (en) Controlling method for operating number or multitubular boiler
JP2010236719A (en) Multi-can installed boiler
JP2016148460A (en) Multi-can installed boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees