JP2005041352A - Torque controlling method for power-assisted bicycle - Google Patents

Torque controlling method for power-assisted bicycle Download PDF

Info

Publication number
JP2005041352A
JP2005041352A JP2003277972A JP2003277972A JP2005041352A JP 2005041352 A JP2005041352 A JP 2005041352A JP 2003277972 A JP2003277972 A JP 2003277972A JP 2003277972 A JP2003277972 A JP 2003277972A JP 2005041352 A JP2005041352 A JP 2005041352A
Authority
JP
Japan
Prior art keywords
torque
torque sensor
motor
point
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277972A
Other languages
Japanese (ja)
Inventor
Yukiyasu Takano
行康 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Electronics Co Ltd
Original Assignee
Moric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moric Co Ltd filed Critical Moric Co Ltd
Priority to JP2003277972A priority Critical patent/JP2005041352A/en
Publication of JP2005041352A publication Critical patent/JP2005041352A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque controlling method for a power-assisted bicycle capable of determining whether zero point abnormality is due to some fault in a torque sensor itself or abnormal measuring operation when the zero point abnormality occurs. <P>SOLUTION: In this torque controlling method for the power-assisted bicycle comprising: a torque sensor 41 for detecting a stepping force from a pedal; a motor 42 for assisting the stepping force; a toque-current calculating means 50 for calculating a motor driving current instruction value based on the detection data of stepping force torque synchronously fluctuating with pedal rotation; and a motor driving circuit 44 for driving the motor based on the current instruction value, the toque-current calculating means measures the zero point of the torque sensor when the motor starts drive control, and subtracts a zero point value from the detection data of the torque sensor so as to calculate the stepping force. A torque sensor abnormality determination means 52 is provided, which sets a threshold for determining the torque sensor abnormality, judges abnormality to stop the motor driving when a state in which the lowest point of the detection data is larger than the threshold continues over a specified time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ペダル踏力を検出するトルクセンサを用いた電動補助自転車のトルク制御方法に関する。 The present invention relates to a torque control method for a battery-assisted bicycle using a torque sensor that detects pedal effort.

電動補助自転車が特許文献1に開示されている。この電動補助自転車は、ペダルに踏み込まれる踏力をトルクセンサで検出し、この踏力に応じた補助動力をモータから付与する。このモータの駆動電流を算出する場合、まず、電源を投入してモータによるアシスト制御を開始するときに、無踏力状態のトルクセンサのトルク値(ゼロ点)を計測する。続いて、ペダル回転に同期して最上点及び最下点を繰り返して変動する踏力トルクの検出データを読込み、このトルク検出データの値からゼロ点の値を差し引いて踏力を算出する。この踏力に基づいて前記モータの駆動電流指令値を算出する。モータはこの電流指令値に基づいて回転し、ペダル踏力を補助する。 A battery-assisted bicycle is disclosed in Patent Document 1. In this battery-assisted bicycle, a pedaling force depressed by a pedal is detected by a torque sensor, and auxiliary power corresponding to the pedaling force is applied from a motor. When calculating the drive current of this motor, first, when turning on the power and starting assist control by the motor, the torque value (zero point) of the torque sensor in the no-pressing force state is measured. Subsequently, the detection data of the pedaling force torque that fluctuates by repeating the uppermost point and the lowermost point in synchronization with the pedal rotation is read, and the pedaling force is calculated by subtracting the zero point value from the torque detection data value. A drive current command value for the motor is calculated based on the pedal effort. The motor rotates based on the current command value and assists the pedal effort.

しかしながら、トルクセンサのゼロ点検出時に、以下の原因により正常なゼロ点が計測できないことがある。
1)トルクセンサの故障
2)ゼロ点計測時にペダルに踏力がかけられていた状態
However, when the zero point of the torque sensor is detected, a normal zero point may not be measured due to the following reasons.
1) Torque sensor failure 2) State in which pedal force was applied to the pedal during zero point measurement

上記1は、トルクセンサ自体に異常があって無負荷状態の正しいゼロ点トルク値が計測できない状態である。一方上記2は、トルクセンサ自体は正常であるがペダルに踏力をかけた状態でゼロ点を計測したためにゼロ点計測値に異常が起きた状態である。このようなゼロ点異常により、例えば正常なトルクセンサで高いゼロ点トルクが計測された場合、その後のトルク検出値からゼロ点値が差し引かれるため、踏力算出値が小さくなってモータからの十分なアシスト力が得られなくなる。また、ゼロ点計測値が大きくなる異常が生じた場合に、ゼロ点値を所定の量だけ低下させて設定したとすれば、その後このゼロ点設定値に基づいてトルク検出値から算出する踏力が大きくなりすぎてモータから過大なアシスト力が付与されるおそれがある。 The above 1 is a state where the torque sensor itself is abnormal and a correct zero point torque value in a no-load state cannot be measured. On the other hand, the above 2 is a state in which the zero point measurement value is abnormal because the zero point is measured in a state where the torque sensor itself is normal but the pedal is applied. Due to such a zero point abnormality, for example, when a high zero point torque is measured by a normal torque sensor, the zero point value is subtracted from the subsequent torque detection value. Assist power cannot be obtained. In addition, if an abnormality that increases the zero point measurement value occurs, and if the zero point value is set by lowering by a predetermined amount, then the pedaling force calculated from the torque detection value based on this zero point setting value is reduced. There is a possibility that an excessive assist force is applied from the motor due to the excessive increase.

一方、ゼロ点異常が起きたときに一律にトルクセンサ故障と判別してアシストモータの駆動を停止すると、上記2のような正常なトルクセンサでゼロ点計測操作が正常でない場合に、トルクセンサが正常に機能するにもかかわらずアシスト機能が得られなくなり、電動補助自転車の本来の機能が無益なものとなる。   On the other hand, if it is determined that the torque sensor has failed evenly when a zero point abnormality occurs and the assist motor is stopped, the torque sensor will be activated when the zero point measurement operation is not normal with the normal torque sensor as described above. Despite functioning normally, the assist function cannot be obtained, and the original function of the battery-assisted bicycle becomes useless.

特開平11−171081号公報Japanese Patent Laid-Open No. 11-171081

本発明は上記従来技術を考慮したものであって、ゼロ点異常が起きた場合に、その原因がトルクセンサ自体の故障かあるいは正常なトルクセンサで異常な計測操作によるものかを判別し、トルクセンサの機能を有効に発揮して信頼性の高いアシストモータ駆動制御ができる電動補助自転車のトルク制御方法の提供を目的とする。   The present invention is based on the above prior art, and when a zero point abnormality occurs, it is determined whether the cause is a failure of the torque sensor itself or an abnormal measurement operation with a normal torque sensor, An object of the present invention is to provide a torque control method for a battery-assisted bicycle that can effectively perform a sensor function and perform highly reliable assist motor drive control.

前記目的を達成するため、請求項1に係る発明では、ペダルからの踏力を検出するトルクセンサと、踏力を補助するモータと、前記トルクセンサにより検出したペダル回転に同期して最上点及び最下点を繰り返して変動する踏力トルクの検出データに基づいて前記モータの駆動電流指令値を算出するトルク−電流計算手段と、このトルク−電流計算手段からの電流指令値に基づいて前記モータを駆動するモータ駆動回路とを備え、前記トルク−電流計算手段は、前記モータの駆動制御開始時に、前記トルクセンサのゼロ点を計測し、その後トルクセンサの検出データからゼロ点値を差し引いて踏力を算出する電動補助自転車のトルク制御方法において、前記トルクセンサの異常判別用の閾値を設定し、前記検出データの最下点の値がこの閾値より大きい状態が所定時間以上続いた場合にトルクセンサの異常と判断して前記モータの駆動を停止することを特徴とする電動補助自転車のトルク制御方法を提供する。   In order to achieve the above object, according to the first aspect of the present invention, a torque sensor for detecting the pedaling force from the pedal, a motor for assisting the pedaling force, and the highest point and the lowest point in synchronization with the pedal rotation detected by the torque sensor. Torque-current calculation means for calculating a drive current command value for the motor based on detection data of pedaling torque that fluctuates repeatedly, and the motor is driven based on a current command value from the torque-current calculation means. A motor drive circuit, and the torque-current calculation means measures the zero point of the torque sensor at the start of the drive control of the motor, and then subtracts the zero point value from the detection data of the torque sensor to calculate the pedaling force. In the torque control method for a battery-assisted bicycle, a threshold value for determining abnormality of the torque sensor is set, and a value of the lowest point of the detection data is the threshold value. Large state provides a torque control method of the motor-assisted bicycle, characterized in that to stop the drive determines that abnormality of the torque sensor of the motor when the subsequent predetermined time or more Ri.

また、請求項2に係る発明では、連続して検出される前記検出データの最上点と最下点間の振幅に基づいて前記閾値を変えることを特徴としている。 The invention according to claim 2 is characterized in that the threshold value is changed based on the amplitude between the highest point and the lowest point of the detection data detected continuously.

また、請求項3に係る発明では、車速に基づいて前記所定時間を変えることを特徴としている。 The invention according to claim 3 is characterized in that the predetermined time is changed based on the vehicle speed.

また、請求項4に係る発明では、連続して検出される前記検出データの最上点と最下点間の振幅が所定値以上の場合には、前記モータの駆動を停止しないことを特徴としている。 The invention according to claim 4 is characterized in that the driving of the motor is not stopped when the amplitude between the uppermost point and the lowermost point of the detection data detected continuously is a predetermined value or more. .

請求項1に係る発明によれば、電源を投入してアシスト用モータの駆動制御を開始するときに、ゼロ点計測値が異常値を示した場合に、その異常値より低い閾値を設定してその後のトルクセンサからの検出データの最下点が所定時間内に閾値より低下するかどうかによりトルクセンサの故障を判別できる。すなわち、正常なトルクセンサであれば、ゼロ点計測時にペダルに踏力をかけた異常な検出操作状態でゼロ点値に異常が起きても、その後の通常走行によりゼロ点は出力値がゼロ付近まで低下するため、設定した閾値より低下する。一方、トルクセンサ自体の故障によりゼロ点値に異常が起きた場合には、その異常ゼロ点がその後継続して出力され閾値より低下することはない。これにより、ゼロ点異常が起きた場合に、トルクセンサ自体の故障か又はトルクセンサは正常で計測値のみが異常なのかを判別でき、正常なトルクセンサの機能を有効に発揮して信頼性の高いアシストモータ駆動制御ができる。 According to the first aspect of the present invention, when the power supply is turned on and the drive control of the assist motor is started, when the zero point measurement value shows an abnormal value, a threshold value lower than the abnormal value is set. The failure of the torque sensor can be determined based on whether the lowest point of the detection data from the torque sensor thereafter falls below the threshold value within a predetermined time. In other words, if the torque sensor is normal, even if the zero point value is abnormal in the abnormal detection operation state where the pedal is pressed during zero point measurement, the normal point will cause the zero point to reach an output value close to zero. Since it falls, it falls below the set threshold value. On the other hand, when an abnormality occurs in the zero point value due to a failure of the torque sensor itself, the abnormal zero point is continuously output and does not fall below the threshold value. As a result, when a zero point abnormality occurs, it can be determined whether the torque sensor itself is faulty or whether the torque sensor is normal and only the measured value is abnormal. High assist motor drive control is possible.

請求項2に係る発明によれば、トルク変動の最上点と最下点との間の変動幅(振幅)に応じてゼロ点異常時のトルクセンサ故障判別の閾値を変えるため、踏力の状況にかかわらず常に正確にトルクセンサの異常判別が可能になる。すなわち、トルク変動の最下点は基本的にはゼロ点まで下降するが、踏力が大きくなるとこのトルク変動の最下点が高くなる。したがって、トルクの振幅が大きいときには、閾値を高くすることにより、トルクセンサの異常判別の信頼性が向上する。   According to the second aspect of the present invention, the threshold of the torque sensor failure determination at the time of the zero point abnormality is changed according to the fluctuation range (amplitude) between the highest point and the lowest point of the torque fluctuation. Regardless, the torque sensor abnormality can always be accurately determined. That is, the lowest point of torque fluctuation is basically lowered to the zero point, but when the pedal effort is increased, the lowest point of torque fluctuation becomes higher. Accordingly, when the torque amplitude is large, the reliability of the torque sensor abnormality determination is improved by increasing the threshold value.

請求項3に係る発明によれば、車速に応じてトルクセンサの異常判別時間を変えるため、車速にかかわらず常に正確にトルクセンサの異常判別が可能になる。すなわち、車速によりトルクの変動波形の1周期の時間が変わり、車速が速い程1周期の時間が短い。したがって、車速が速いときには、異常判別時間を短くして短時間でトルクセンサの異常を判別することができる。これにより、車速が速いときにトルクセンサの異常を迅速に検出し、異常のあるトルクセンサを用いた不適正なモータ駆動制御を直ちに停止することができる。この場合、異常判別時間を短くしても、トルク変動波形の周期が短いため短時間で多くの最下点を検出できるため、判別精度が低下することはなく判別の信頼性は維持される。   According to the invention of claim 3, since the abnormality determination time of the torque sensor is changed according to the vehicle speed, the abnormality determination of the torque sensor can always be accurately performed regardless of the vehicle speed. In other words, the time of one cycle of the torque fluctuation waveform varies depending on the vehicle speed, and the faster the vehicle speed, the shorter the time of one cycle. Therefore, when the vehicle speed is high, the abnormality determination time can be shortened to determine the abnormality of the torque sensor in a short time. Thereby, when the vehicle speed is high, abnormality of the torque sensor can be detected quickly, and improper motor drive control using the abnormal torque sensor can be stopped immediately. In this case, even if the abnormality determination time is shortened, since the cycle of the torque fluctuation waveform is short and many bottom points can be detected in a short time, the determination accuracy is not lowered and the reliability of the determination is maintained.

請求項4に係る発明によれば、例えば上り坂等で大きな踏力がかかっている状態でトルクセンサが異常と判別された場合に、モータによるアシストを停止しないでそのまま続けることができる。これにより、例えば上り坂等のアシストが必要な状態では確実にモータからのアシスト動力が得られる。   According to the fourth aspect of the present invention, for example, when the torque sensor is determined to be abnormal while a large pedaling force is applied on an uphill or the like, the assist by the motor can be continued without stopping. Thereby, for example, in the state where assistance such as uphill is necessary, the assist power from the motor can be obtained with certainty.

これは、例えば、第1の方法として、トルクセンサが異常と判別されたときに、モータへの駆動電流出力を遮断するか否かのトルク振幅の閾値を設けて、閾値以上のトルク振幅の場合にはモータ駆動を停止しないようにする方法、又は第2の方法として、ゼロ点異常時に、トルク振幅が所定値以上に大きい場合にはトルクセンサの異常判別を行わないでトルクセンサが異常又は正常にかかわらずモータによるアシストを続行する方法により実行できる。 For example, as a first method, when a torque sensor is determined to be abnormal, a torque amplitude threshold value indicating whether or not to interrupt the drive current output to the motor is provided. If the torque amplitude is larger than the predetermined value when the zero point is abnormal, the torque sensor is abnormal or normal without performing abnormality determination of the torque sensor. Regardless of the method, it can be executed by the method of continuing the assist by the motor.

図1は、本発明が適用される電動補助自転車の側面図である。
電動補助自転車1は、左右のハンドル2の中央のステアリング軸3が挿通するヘッドパイプ4を有し、ステアリング軸3が左右のフロントフォーク5に連結され前輪6の方向を操作する。ヘッドパイプ4にはダウンチューブ7が接合され、サドル8の下方のシートチューブ9に連結される。これらのダウンチューブ7およびシートチューブ9の下端部にカバー10に上部を覆われた走行用電動モータ37等の電気駆動系とペダルクランク軸等の人力駆動系とを一体化したパワーユニット11が支持される。このパワーユニット11において、ペダルクランク軸12と同軸的に配置された合力機構(図示しない)により、ペダル15からの踏力とモータ力が融合される。この合力機構は遊星歯車機構からなり、この遊星歯車機構に連結してペダル15からの踏力に応じて変位する踏力検出機構(トルクセンサ)が設けられる。
FIG. 1 is a side view of a battery-assisted bicycle to which the present invention is applied.
The battery-assisted bicycle 1 has a head pipe 4 through which the center steering shaft 3 of the left and right handles 2 is inserted, and the steering shaft 3 is connected to the left and right front forks 5 to operate the direction of the front wheels 6. A down tube 7 is joined to the head pipe 4 and connected to a seat tube 9 below the saddle 8. A power unit 11 in which an electric drive system such as a traveling electric motor 37 covered with a cover 10 and a human power drive system such as a pedal crankshaft are integrated at the lower ends of the down tube 7 and the seat tube 9 is supported. The In the power unit 11, the pedal force from the pedal 15 and the motor force are fused by a resultant force mechanism (not shown) arranged coaxially with the pedal crankshaft 12. The resultant force mechanism includes a planetary gear mechanism, and is provided with a pedaling force detection mechanism (torque sensor) that is connected to the planetary gear mechanism and is displaced according to the pedaling force from the pedal 15.

パワーユニット11の後部には補助動力制御用コントローラ13が設けられる。このコントローラ13は、後述の車速計算手段(図2)で求めた車速に基づいて、速度に応じたアシスト比となるようにモータ37を駆動制御するためのマイクロコンピュータにより構成される。このようなコントローラ13の設置位置は、図の例に限らず、ダウンチュープ7の途中あるいはカバー10の内部、フロントフォーク5、チェーンステー38、シートステー39の途中その他の適当な位置であってもよい。   An auxiliary power control controller 13 is provided at the rear of the power unit 11. The controller 13 is constituted by a microcomputer for driving and controlling the motor 37 so as to obtain an assist ratio corresponding to the speed based on the vehicle speed obtained by a vehicle speed calculating means (FIG. 2) described later. Such an installation position of the controller 13 is not limited to the example shown in the figure, and may be any appropriate position in the middle of the down tube 7 or in the cover 10, in the middle of the front fork 5, the chain stay 38, and the seat stay 39. Good.

サドル8の下部のシートチューブ9の後方にはバッテリケース14が上方に着脱自在に設けられ内部にモータ37駆動用のバッテリが収納される。ペダルクランク軸12上で合力機構により融合された踏力と補助動力は、チェーン16により後輪17に伝達されこれを回転駆動する。後輪17のハブ18には、チェーン16の回転を伝達するスプロケット(図示しない)、ロータリ式またはスライド式の変速ギヤ機構(図示しない)が設けられ、これに近接したフレーム側にはこの変速ギヤ機構を駆動するモータあるいはソレノイドからなるアクチュエータが装着される。   A battery case 14 is detachably provided on the rear side of the seat tube 9 below the saddle 8, and a battery for driving the motor 37 is accommodated therein. The pedaling force and auxiliary power fused by the resultant force mechanism on the pedal crankshaft 12 are transmitted to the rear wheel 17 by the chain 16 to rotate. The hub 18 of the rear wheel 17 is provided with a sprocket (not shown) for transmitting the rotation of the chain 16 and a rotary or slide type transmission gear mechanism (not shown). An actuator composed of a motor or a solenoid for driving the mechanism is mounted.

図2は、本発明の実施形態に係る電動補助自転車のトルク制御装置のブロック構成図である。   FIG. 2 is a block diagram of the torque control device for the battery-assisted bicycle according to the embodiment of the present invention.

このトルク制御装置は、ペダル踏力を検出するトルクセンサ41と、このトルクセンサ41の検出トルクに基づいてパルスモータからなる電動モータ42の駆動電流を算出してこれを駆動制御するためのコントローラ43と、コントローラ43からの駆動信号により電動モータ42を駆動するためのモータ駆動回路44と、モータ42の電流を検出するための電流検出回路(電流計)45と、モータ42の回転を検出するためのエンコーダ46とにより構成される。   The torque control device includes a torque sensor 41 for detecting pedal depression force, a controller 43 for calculating a drive current of an electric motor 42 composed of a pulse motor based on the detected torque of the torque sensor 41, and driving and controlling the drive current. A motor drive circuit 44 for driving the electric motor 42 by a drive signal from the controller 43, a current detection circuit (ammeter) 45 for detecting the current of the motor 42, and a rotation for detecting the rotation of the motor 42 And an encoder 46.

コントローラ43は、例えばCPUからなり、予め設定されたソフトプログラム又はハード回路によるモータ回転数計算手段47、車速計算手段48、トルクセンサ値加工手段49、トルク−電流計算手段50、デューティ計算手段51とを備える。   The controller 43 is composed of, for example, a CPU, and includes a motor speed calculation means 47, a vehicle speed calculation means 48, a torque sensor value processing means 49, a torque-current calculation means 50, a duty calculation means 51 by a preset software program or hardware circuit. Is provided.

トルクセンサ41で検出されたペダル踏力は、トルクセンサ値加工フィルタ49でノイズ等を除去されるとともに、検出トルク及び車速に基づいて演算加工され、ペダル踏力に応じた出力電圧(加工トルク値)が得られる。車速は、コントローラ43内で、エンコーダ46からのパルス信号に基づいて、モータ回転数計算手段47及び車速計算手段48により演算され、加工フィルタ手段49に入力される。   The pedal depression force detected by the torque sensor 41 is noise-removed by the torque sensor value processing filter 49 and is calculated and processed based on the detected torque and the vehicle speed, and an output voltage (processing torque value) corresponding to the pedal depression force is obtained. can get. The vehicle speed is calculated by the motor speed calculation means 47 and the vehicle speed calculation means 48 in the controller 43 based on the pulse signal from the encoder 46 and is input to the processing filter means 49.

加工された後の加工トルク値はトルク−電流計算手段50に入力され、加工トルクに応じた電流指令値が算出される。この電流指令値に基づき、デューティ計算手段51で駆動パルスのデューティ比が算出され、PWM出力としてモータ駆動回路44に入力され、モータ42を駆動する。モータ42の駆動電流は電流検出回路45で検出されデューティ計算回路51に戻されてフィードバック制御される。   The machining torque value after machining is input to the torque-current calculation means 50, and a current command value corresponding to the machining torque is calculated. Based on this current command value, the duty ratio of the drive pulse is calculated by the duty calculation means 51 and is input to the motor drive circuit 44 as a PWM output to drive the motor 42. The drive current of the motor 42 is detected by the current detection circuit 45 and returned to the duty calculation circuit 51 for feedback control.

本実施形態では、トルクセンサ1からのトルク検出値を加工した加工トルク値に基づいて、後述(図5)のように、トルクセンサの異常を判別してセンサ故障のときはアシストを中断するトルクセンサ異常判別手段52が備わる。   In this embodiment, based on the processing torque value obtained by processing the torque detection value from the torque sensor 1, as described later (FIG. 5), the torque that determines abnormality of the torque sensor and interrupts the assist when the sensor is faulty. Sensor abnormality determination means 52 is provided.

図3は、トルクセンサからのトルク検出データのトルク変動を示すトルク波形のグラフである。横軸は時間、縦軸はトルク検出値を示す。aは正常トルクセンサの出力波形であり、bは異常トルクセンサの出力波形であり、cは踏力がかかった状態でゼロ点計測された正常トルクセンサの出力波形である。Aは正常トルクセンサのゼロ点を示し、Bは異常トルクセンサのゼロ点を示す。時間t0が電源を投入してアシスト制御を開始するときのゼロ点計測時間である。t1の時点からペダルを踏み込んで走行が開始される。各グラフa,b,cは、最上点(上ピーク)と最下点(下ピーク)を繰り返す波形であり、連続する最上点と最下点間の幅(トルク振幅)がペダルの踏み込み力の強さに対応する。   FIG. 3 is a graph of a torque waveform showing torque fluctuation of torque detection data from the torque sensor. The horizontal axis represents time, and the vertical axis represents the detected torque value. a is an output waveform of the normal torque sensor, b is an output waveform of the abnormal torque sensor, and c is an output waveform of the normal torque sensor measured at a zero point in a state where the pedal force is applied. A indicates the zero point of the normal torque sensor, and B indicates the zero point of the abnormal torque sensor. Time t0 is the zero point measurement time when the power is turned on and the assist control is started. The pedal is depressed from time t1 to start traveling. Each of the graphs a, b, and c is a waveform that repeats the highest point (upper peak) and the lowest point (lower peak), and the width (torque amplitude) between successive highest points and lowest points is the pedal depression force. Corresponds to strength.

正常トルクセンサの場合、グラフaに示すように、最下点は常にゼロ点A近くまで下がる。   In the case of a normal torque sensor, as shown in the graph a, the lowest point is always lowered to near the zero point A.

異常トルクセンサの場合、グラフbに示すように、最下点は常にゼロ点Aより高いゼロ点B近くまで下がる。 In the case of an abnormal torque sensor, as shown in the graph b, the lowest point is always lowered to near the zero point B higher than the zero point A.

一方、正常トルクセンサでゼロ点計測時間t0の間ペダルを踏み込んだ状態の場合、グラフcに示すように、ゼロ点計測時間t0でのトルク検出値はペダル踏力分だけ本来のゼロ点Aよりも高くなる。しかしトルクセンサ自体は正常であるため、その後の走行中は、トルク検出波形の最下点は低下して正常なゼロ点Aに近付く。   On the other hand, when the pedal is depressed for the zero point measurement time t0 with the normal torque sensor, as shown in the graph c, the detected torque value at the zero point measurement time t0 is larger than the original zero point A by the pedal depression force. Get higher. However, since the torque sensor itself is normal, during the subsequent running, the lowest point of the torque detection waveform decreases and approaches the normal zero point A.

本発明は、このようなトルク検出データ特性を利用するものであり、グラフb,cのように、アシスト制御開始のゼロ点計測時(時間t0)に、ゼロ点が本来のA点より大きなB点以上になった場合に、トルクセンサ自体の異常(グラフb)か又はトルクセンサは正常でゼロ点計測状態が異常(グラフc)かを判別する。   The present invention utilizes such torque detection data characteristics. As shown in the graphs b and c, the zero point is larger than the original A point when the zero point is measured (time t0) at the start of the assist control. When the number of points is exceeded, it is determined whether the torque sensor itself is abnormal (graph b) or whether the torque sensor is normal and the zero point measurement state is abnormal (graph c).

この判別方法として、ゼロ点Aとゼロ点Bとの間の中間点に閾値Cを設定し、t1時点後のトルク検出データの波形で最下点がこの閾値C以下に低下した場合には正常なトルクセンサ(グラフc)であると判別する。図の例では、t3の時点で最下点が閾値Cより低下している。このt3時点が、電源を投入してアシスト制御開始時点から又はゼロ点計測後t1時点から所定時間以内に得られた場合には正常なトルクセンサ(グラフc)であると判別する。トルクセンサ自体が異常の場合(グラフb)の検出波形では最下点は常にゼロ点B以上であり、閾値Cより低下することはない。   As a determination method, a threshold value C is set at an intermediate point between the zero point A and the zero point B, and when the lowest point of the waveform of the torque detection data after the time point t1 falls below the threshold value C, it is normal. It is determined that the torque sensor is a correct torque sensor (graph c). In the example in the figure, the lowest point is lower than the threshold value C at time t3. When the time point t3 is obtained within a predetermined time from the start of assist control after turning on the power or from the time point t1 after the zero point measurement, it is determined that the torque sensor is normal (graph c). In the detected waveform when the torque sensor itself is abnormal (graph b), the lowest point is always equal to or higher than the zero point B and does not fall below the threshold value C.

本発明ではさらに、トルク検出データ波形の最上点と最下点間の幅(トルク振幅)に応じてトルクセンサ判別の閾値を設定する。これは、正常なトルクセンサの場合、トルク振幅に応じて最下点が変わることを考慮したものである。すなわち、トルク振幅が大きい(踏力が強い)とトルク検出波形の最下点が高くなる。したがって、トルク振幅が大きいときには閾値を高く設定することにより、迅速に確実にトルクセンサの異常を判別できる。図の例では、t1時点後の最上点と最下点間のトルク振幅に応じて例えばC点より幾分高いD点に閾値を設定すれば、t2時点でグラフcの最下点が閾値Dより低下するため、この時点t2でトルクセンサが正常であると判別できる。   In the present invention, a threshold for torque sensor determination is further set according to the width (torque amplitude) between the highest point and the lowest point of the torque detection data waveform. This is because the lowest point changes in accordance with the torque amplitude in the case of a normal torque sensor. That is, when the torque amplitude is large (the pedal force is strong), the lowest point of the torque detection waveform becomes high. Therefore, when the torque amplitude is large, the abnormality of the torque sensor can be quickly and reliably determined by setting the threshold value high. In the example of the figure, if the threshold value is set at a point D that is somewhat higher than the point C, for example, according to the torque amplitude between the uppermost point and the lowermost point after the time point t1, the lowest point of the graph c at the time point t2 is the threshold value D. Therefore, it can be determined that the torque sensor is normal at this time t2.

本発明ではさらに、車速に応じてトルクセンサの異常判別時間を変えている。こりにより、車速にかかわらず常に正確にトルクセンサの異常判別が可能になる。すなわち、車速によりトルクの変動波形の1周期の時間が変わり、車速が速い程1周期の時間が短い。したがって、車速が速いときには、異常判別時間を短くして短時間でトルクセンサの異常を判別することができる。これにより、車速が速いときにトルクセンサの異常を迅速に検出し、異常のあるトルクセンサを用いた不適正なモータ駆動制御を直ちに停止することができる。この場合、異常判別時間を短くしても、トルク変動波形の周期が短いため短時間で多くの最下点を検出できるため、判別精度が低下することはなく判別の信頼性は維持される。   In the present invention, the abnormality determination time of the torque sensor is further changed according to the vehicle speed. By this, it becomes possible to always correctly determine the abnormality of the torque sensor regardless of the vehicle speed. In other words, the time of one cycle of the torque fluctuation waveform varies depending on the vehicle speed, and the faster the vehicle speed, the shorter the time of one cycle. Therefore, when the vehicle speed is high, the abnormality determination time can be shortened to determine the abnormality of the torque sensor in a short time. Thereby, when the vehicle speed is high, abnormality of the torque sensor can be detected quickly, and improper motor drive control using the abnormal torque sensor can be stopped immediately. In this case, even if the abnormality determination time is shortened, since the cycle of the torque fluctuation waveform is short and many bottom points can be detected in a short time, the determination accuracy is not lowered and the reliability of the determination is maintained.

図4は、トルク振幅とトルクセンサの異常判定閾値の関係を示すグラフである。トルク変動の最下点は、トルク振幅が大きい程高くなる。したがって、この最下点に対応してグラフ(折れ線)dで示すようにトルクセンサの異常判定閾値(図3のC,D)を高くする。この閾値のグラフdの上側領域Eがトルクセンサ異常判別領域(最下点が閾値dまで下がらない領域)であり、グラフdより下側の領域Fがトルクセンサ正常判別領域(最下点が閾値d以下になる領域)である。   FIG. 4 is a graph showing the relationship between the torque amplitude and the abnormality determination threshold value of the torque sensor. The lowest point of torque fluctuation increases as the torque amplitude increases. Therefore, the abnormality determination threshold value (C, D in FIG. 3) of the torque sensor is increased as indicated by a graph (broken line) d corresponding to this lowest point. An upper area E of the threshold graph d is a torque sensor abnormality determination area (an area where the lowermost point is not lowered to the threshold d), and an area F below the graph d is a torque sensor normal determination area (the lowermost point is a threshold). d) or less).

このような閾値の設定によりトルクセンサの正常異常を判別し、トルクセンサが異常の場合には、後述(図5)のように、モータのアシストを中断する。本発明では、このアシスト中断をトルク振幅が所定値Tw以下のときにのみ行う。すなわち、図4のトルク振幅がTw以下の領域では、トルクセンサが異常(E領域)であっても正常(F領域)であっても、アシストは中断せずに続行する。これにより、例えば上り坂等のアシストが必要な状態では確実にモータからのアシスト動力が得られる。   The normality / abnormality of the torque sensor is determined by setting the threshold value, and when the torque sensor is abnormal, the assist of the motor is interrupted as will be described later (FIG. 5). In the present invention, this assist interruption is performed only when the torque amplitude is equal to or smaller than the predetermined value Tw. That is, in the region where the torque amplitude in FIG. 4 is equal to or less than Tw, the assist continues without interruption regardless of whether the torque sensor is abnormal (E region) or normal (F region). Thereby, for example, in the state where assistance such as uphill is necessary, the assist power from the motor can be obtained with certainty.

このようなアシスト中断を判断する方法として、例えば、第1の方法として、トルクセンサが異常と判別されたときに、図4のように、モータへの駆動電流出力を遮断するか否かのトルク振幅の閾値Twを設けて、閾値Tw以上のトルク振幅の場合にはモータ駆動を停止しないようにする方法、又は第2の方法として、ゼロ点異常時に、トルク振幅が所定値以上に大きい場合にはトルクセンサの異常判別を行わないでトルクセンサが異常又は正常にかかわらずモータによるアシストを続行する方法により実行できる。 As a method for determining such assist interruption, for example, as a first method, when it is determined that the torque sensor is abnormal, torque for determining whether or not to interrupt the drive current output to the motor as shown in FIG. A method of setting an amplitude threshold Tw so that the motor drive is not stopped when the torque amplitude is greater than or equal to the threshold Tw, or as a second method, when the torque amplitude is larger than a predetermined value when the zero point is abnormal Can be executed by a method of continuing assist by the motor regardless of whether the torque sensor is abnormal or normal without performing abnormality determination of the torque sensor.

図5は、本発明の実施形態に係る電動モータによるアシスト制御プログラムの手順を示すフローチャートである。各ステップのルーチンは以下の通りである。このプログラム制御は、図2のトルクセンサ異常判別手段52で行われる。   FIG. 5 is a flowchart showing a procedure of an assist control program by the electric motor according to the embodiment of the present invention. The routine of each step is as follows. This program control is performed by the torque sensor abnormality determination means 52 of FIG.

ステップS1:
トルクセンサからの出力値をフィルタを通して演算処理可能な電圧出力に加工後、この加工トルク値の検出データの波形(図3参照)の最上点(トップピーク)及び最下点(ボトムピーク)の値を読み込む。
Step S1:
After processing the output value from the torque sensor into a voltage output that can be processed through a filter, the values of the highest point (top peak) and the lowest point (bottom peak) of this detected torque waveform data (see Fig. 3) Is read.

ステップS2:
アシストモードかどうかを判別する。アシストモードでなければフローを抜けて以下の処理を実行することなく終了する。
Step S2:
Determine whether in assist mode. If it is not the assist mode, the process exits from the flow and ends without executing the following processing.

ステップS3:
アシストモードの場合、ステップS1のデータからトルク振幅(最上点−最下点)を計算する。
Step S3:
In the assist mode, the torque amplitude (uppermost point-lowermost point) is calculated from the data in step S1.

ステップS4:
トルク振幅からトルク検出データの最下点の閾値(ボトム電圧閾値)を算出する。これは、請求項2の発明を実施するためのステップであり、前述のように、ゼロ点計測値に異常が起きたときに、トルクセンサ自体が異常なのか又はトルクセンサは正常で計測状態が異常のためゼロ点異常が起きたのかを判別するための閾値(請求項1)であって、その閾値をトルク振幅に対応して設定したものである。
Step S4:
A threshold (bottom voltage threshold) at the lowest point of the torque detection data is calculated from the torque amplitude. This is a step for carrying out the invention of claim 2. As described above, when an abnormality occurs in the zero point measurement value, the torque sensor itself is abnormal or the torque sensor is normal and the measurement state is A threshold for determining whether a zero point abnormality has occurred due to an abnormality (Claim 1), and the threshold is set corresponding to the torque amplitude.

ステップS5:
トルク検出データの最下点電圧がステップS4の閾値より低いかどうかを判別する。これは請求項1の発明を実施するためのステップであり、トルク電圧データのボトム電圧が閾値より低くなれば正常なトルクセンサと判別でき、異常判別時間をカウントするカウンタをクリアし
Step S5:
It is determined whether the lowest point voltage of the torque detection data is lower than the threshold value in step S4. This is a step for carrying out the invention of claim 1. If the bottom voltage of the torque voltage data becomes lower than the threshold value, it can be determined as a normal torque sensor, and the counter for counting the abnormality determination time is cleared.

ステップS6:
トルクセンサ異常判別カウンタをクリアしてフローを終了する。これは、判別結果が正常であった場合である。
Step S6:
The torque sensor abnormality determination counter is cleared and the flow ends. This is a case where the determination result is normal.

ステップS7:
トルク振幅がアシスト停止を許容できる所定の振幅以下かどうかを判別する。これは、請求項4の発明に対応するステップであり、ゼロ点計測値に異常があった場合に、直ちにアシストを停止できるかどうかを判別するためのステップである。トルク振幅が所定値以下であれば、アシスト停止可能であり、ステップS9以下のアシスト停止処理に進む。トルク振幅が所定値より大きければ、トルクセンサが正常でも異常でもアシストを停止できない状態(例えば上り坂等)であり、したがってトルクセンサの異常判別カウンタをクリアし(ステップS8)、トルクセンサの異常判別を行うことなくフローを終了する。
Step S7:
It is determined whether or not the torque amplitude is equal to or less than a predetermined amplitude that allows the assist stop. This is a step corresponding to the invention of claim 4, and is a step for determining whether or not the assist can be stopped immediately when there is an abnormality in the zero point measurement value. If the torque amplitude is equal to or smaller than the predetermined value, the assist can be stopped, and the process proceeds to the assist stop process in step S9 and subsequent steps. If the torque amplitude is larger than the predetermined value, the assist cannot be stopped regardless of whether the torque sensor is normal or abnormal (for example, uphill). Therefore, the torque sensor abnormality determination counter is cleared (step S8), and the torque sensor abnormality determination is performed. The flow is terminated without performing.

ステップS8:
トルクセンサ異常判別カウンタをクリアしてフローを終了する。これは、アシストが必要な状況で、判別結果に応じてアシストが停止されることを避けるためにフローを終了するものである。
Step S8:
The torque sensor abnormality determination counter is cleared and the flow ends. This ends the flow in order to avoid stopping the assist according to the determination result in a situation where the assist is required.

ステップS9:
車速計算手段8(図2)で算出した現在の車速に基づき、トルクセンサの異常判別時間を設定する。これは、請求項3の発明を実施するためのルーチンである。前述のように、車速によりトルクの変動波形の1周期の時間が変わり、車速が速い程1周期の時間が短い。したがって、車速が速いときには、異常判別時間を短くして短時間でトルクセンサの異常を判別することができる。これにより、車速が速いときにトルクセンサの異常を迅速に検出し、異常のあるトルクセンサを用いた不適正なモータ駆動制御を直ちに停止することができる。この場合、異常判別時間を短くしても、トルク変動波形の周期が短いため短時間で多くの最下点を検出できるため、判別精度が低下することはなく判別の信頼性は維持される。
Step S9:
Based on the current vehicle speed calculated by the vehicle speed calculation means 8 (FIG. 2), the abnormality determination time of the torque sensor is set. This is a routine for carrying out the invention of claim 3. As described above, the time of one cycle of the torque fluctuation waveform varies depending on the vehicle speed, and the faster the vehicle speed, the shorter the time of one cycle. Therefore, when the vehicle speed is high, the abnormality determination time can be shortened to determine the abnormality of the torque sensor in a short time. Thereby, when the vehicle speed is high, abnormality of the torque sensor can be detected quickly, and improper motor drive control using the abnormal torque sensor can be stopped immediately. In this case, even if the abnormality determination time is shortened, since the cycle of the torque fluctuation waveform is short and many bottom points can be detected in a short time, the determination accuracy is not lowered and the reliability of the determination is maintained.

ステップS10:
上記ステップS9で算出したトルクセンサの異常判別時間が経過したかどうかを判別する。経過していなければ、一旦フローを終了する。ここで一旦フローを抜けて再びこのゼロ点異常時の制御プログラムのフローを時間経過までSTARTから繰り返す。
Step S10:
It is determined whether or not the torque sensor abnormality determination time calculated in step S9 has elapsed. If it has not elapsed, the flow is temporarily terminated. Here, the flow is temporarily exited, and the control program flow at the time of the zero point abnormality is repeated from START until the passage of time.

ステップS11:
上記ステップS9で算出したトルクセンサの異常判別時間が経過した場合に、アシスト中断フラグをセットしてアシストモータへの電流指令を停止し、モータ駆動を停止する。これは、異常判別時間経過までカウンタがクリアされない状況であって、トルク検出データの最下点が閾値より高い状態が判別時間経過まで続いた場合であり、トルクセンサ自体が異常と判別される状態である。このような状態では踏力に応じた適正なアシスト動力が付与されないおそれがあるため、アシストを中断する。
Step S11:
When the abnormality determination time of the torque sensor calculated in step S9 has elapsed, the assist interruption flag is set, the current command to the assist motor is stopped, and the motor drive is stopped. This is a situation where the counter is not cleared until the abnormality determination time elapses, and the state where the lowest point of the torque detection data is higher than the threshold value continues until the determination time elapses, and the torque sensor itself is determined to be abnormal. It is. In such a state, since there is a possibility that appropriate assist power corresponding to the pedal effort may not be applied, the assist is interrupted.

本発明が適用される電動補助自転車の全体図。1 is an overall view of a battery-assisted bicycle to which the present invention is applied. 本発明の実施形態の構成を示すブロック図。The block diagram which shows the structure of embodiment of this invention. トルクセンサからの検出データの波形を示すグラフ。The graph which shows the waveform of the detection data from a torque sensor. トルクセンサ異常判別の閾値の説明図。Explanatory drawing of the threshold value of torque sensor abnormality determination. 本発明の実施形態の手順を示すフローチャート。The flowchart which shows the procedure of embodiment of this invention.

符号の説明Explanation of symbols

1:電動補助自転車、2:ハンドル、3:ステアリング軸、
4:ヘッドパイプ、5:フロントフォーク、6:前輪、
7:ダウンチューブ、8:サドル、9:シートチューブ、10:カバー、11:パワーユニット、12:ペダルクランク軸、13:コントローラ、14:バッテリケース、15:ペダル、16:チェーン、17:後輪、18:ハブ、37:電動モータ、38:チェーンステー、
39:シートステー、41:トルクセンサ、42:電動モータ、
43:コントローラ、44:モータ駆動回路、
45:電流検出回路(電流計)、46:エンコーダ、
47:モータ回転数計算手段、48:車速計算手段、
49:トルクセンサ値加工手段、50:トルク−電流計算手段、
51:デューティ計算手段、52:トルクセンサ異常判別手段。


1: Electric assist bicycle, 2: Handle, 3: Steering shaft,
4: Head pipe, 5: Front fork, 6: Front wheel,
7: Down tube, 8: Saddle, 9: Seat tube, 10: Cover, 11: Power unit, 12: Pedal crankshaft, 13: Controller, 14: Battery case, 15: Pedal, 16: Chain, 17: Rear wheel 18: Hub, 37: Electric motor, 38: Chain stay,
39: Seat stay, 41: Torque sensor, 42: Electric motor,
43: Controller, 44: Motor drive circuit,
45: Current detection circuit (ammeter), 46: Encoder,
47: motor rotation speed calculation means, 48: vehicle speed calculation means,
49: Torque sensor value processing means, 50: Torque-current calculation means,
51: Duty calculation means, 52: Torque sensor abnormality determination means.


Claims (4)

ペダルからの踏力を検出するトルクセンサと、
踏力を補助するモータと、
前記トルクセンサにより検出したペダル回転に同期して最上点及び最下点を繰り返して変動する踏力トルクの検出データに基づいて前記モータの駆動電流指令値を算出するトルク−電流計算手段と、
このトルク−電流計算手段からの電流指令値に基づいて前記モータを駆動するモータ駆動回路とを備え、
前記トルク−電流計算手段は、前記モータの駆動制御開始時に、前記トルクセンサのゼロ点を計測し、その後トルクセンサの検出データからゼロ点値を差し引いて踏力を算出する電動補助自転車のトルク制御方法において、
前記トルクセンサの異常判別用の閾値を設定し、前記検出データの最下点の値がこの閾値より大きい状態が所定時間以上続いた場合にトルクセンサの異常と判断して前記モータの駆動を停止することを特徴とする電動補助自転車のトルク制御方法。
A torque sensor that detects the pedaling force from the pedal;
A motor to assist the pedaling force;
Torque-current calculation means for calculating a drive current command value for the motor based on detection data of pedaling force torque that fluctuates by repeating the highest point and the lowest point in synchronization with the pedal rotation detected by the torque sensor;
A motor drive circuit for driving the motor based on a current command value from the torque-current calculation means,
The torque-current calculating means measures the zero point of the torque sensor at the start of driving control of the motor, and then subtracts the zero point value from the detection data of the torque sensor to calculate the pedaling force. In
A threshold for determining the abnormality of the torque sensor is set, and when the value of the lowest point of the detected data is greater than the threshold for a predetermined time or more, it is determined that the torque sensor is abnormal and the driving of the motor is stopped. A torque control method for a battery-assisted bicycle.
連続して検出される前記検出データの最上点と最下点間の振幅に基づいて前記閾値を変えることを特徴とする請求項1に記載の電動補助自転車のトルク制御方法。   The torque control method for a battery-assisted bicycle according to claim 1, wherein the threshold value is changed based on an amplitude between the uppermost point and the lowermost point of the detection data that are continuously detected. 車速に基づいて前記所定時間を変えることを特徴とする請求項1又は2に記載の電動補助自転車のトルク制御方法。   3. The torque control method for a battery-assisted bicycle according to claim 1, wherein the predetermined time is changed based on a vehicle speed. 連続して検出される前記検出データの最上点と最下点間の振幅が所定値以上の場合には、前記モータの駆動を停止しないことを特徴とする請求項1,2又は3に記載の電動補助自転車のトルク制御方法。
The drive of the motor is not stopped when the amplitude between the highest point and the lowest point of the detection data detected continuously is a predetermined value or more. Torque control method for battery-assisted bicycles.
JP2003277972A 2003-07-23 2003-07-23 Torque controlling method for power-assisted bicycle Pending JP2005041352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277972A JP2005041352A (en) 2003-07-23 2003-07-23 Torque controlling method for power-assisted bicycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277972A JP2005041352A (en) 2003-07-23 2003-07-23 Torque controlling method for power-assisted bicycle

Publications (1)

Publication Number Publication Date
JP2005041352A true JP2005041352A (en) 2005-02-17

Family

ID=34264517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277972A Pending JP2005041352A (en) 2003-07-23 2003-07-23 Torque controlling method for power-assisted bicycle

Country Status (1)

Country Link
JP (1) JP2005041352A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275526A (en) * 2010-06-11 2011-12-14 株式会社岛野 electrical component control system for bicycle
JP2013536445A (en) * 2010-08-27 2013-09-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for detecting an offset error of a torque sensor in a bicycle pedal drive
JP2014139067A (en) * 2012-12-17 2014-07-31 Yamaha Motor Co Ltd Drive unit and battery-assisted bicycle
EP2840017A1 (en) * 2013-08-22 2015-02-25 Robert Bosch Gmbh Vehicle that can be operated using muscle power and/or engine power and method for operating the vehicle
EP2161831A4 (en) * 2007-06-22 2016-01-20 Mitsubishi Motors Corp Controller of electric vehicle
JP2017189305A (en) * 2016-04-01 2017-10-19 上銀科技股▲分▼有限公司 Control method of walking machine for rehabilitation
US10259529B2 (en) * 2016-08-18 2019-04-16 Shimano Inc. Bicycle controller and bicycle controlling method
JP2021517533A (en) * 2018-03-06 2021-07-26 ブローゼ・アントリープシュテヒニク・ゲーエムベーハー・ウント・シーオー.コマンディートゲゼルシャフト,ベルリンBROSE ANTRIEBSTECHNIK GmbH & CO.KOMMANDITGESELLSCHAFT,BERLIN Drive system
CN114599568A (en) * 2019-09-18 2022-06-07 赛贝克斯有限公司 Child vehicle or child vehicle frame with a motor and a control unit for auxiliary drive and with force sensor calibration, method for controlling a motor and computer-readable storage medium
CN117682001A (en) * 2024-02-01 2024-03-12 苏州拓氪科技有限公司 Zero point determining method of torque sensor of center drive system and center drive system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2161831A4 (en) * 2007-06-22 2016-01-20 Mitsubishi Motors Corp Controller of electric vehicle
US8655531B2 (en) 2010-06-11 2014-02-18 Shimano Inc. Bicycle electrical component control system
CN102275526A (en) * 2010-06-11 2011-12-14 株式会社岛野 electrical component control system for bicycle
JP2013536445A (en) * 2010-08-27 2013-09-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for detecting an offset error of a torque sensor in a bicycle pedal drive
JP2014139067A (en) * 2012-12-17 2014-07-31 Yamaha Motor Co Ltd Drive unit and battery-assisted bicycle
US9522713B2 (en) 2013-08-22 2016-12-20 Robert Bosch Gmbh Vehicle operable with muscle power and/or motor power, and method for operating the vehicle
EP2840017A1 (en) * 2013-08-22 2015-02-25 Robert Bosch Gmbh Vehicle that can be operated using muscle power and/or engine power and method for operating the vehicle
JP2017189305A (en) * 2016-04-01 2017-10-19 上銀科技股▲分▼有限公司 Control method of walking machine for rehabilitation
US10259529B2 (en) * 2016-08-18 2019-04-16 Shimano Inc. Bicycle controller and bicycle controlling method
JP2021517533A (en) * 2018-03-06 2021-07-26 ブローゼ・アントリープシュテヒニク・ゲーエムベーハー・ウント・シーオー.コマンディートゲゼルシャフト,ベルリンBROSE ANTRIEBSTECHNIK GmbH & CO.KOMMANDITGESELLSCHAFT,BERLIN Drive system
JP7316290B2 (en) 2018-03-06 2023-07-27 ブローゼ・アントリープシュテヒニク・ゲーエムベーハー・ウント・シーオー.コマンディートゲゼルシャフト,ベルリン drive system
CN114599568A (en) * 2019-09-18 2022-06-07 赛贝克斯有限公司 Child vehicle or child vehicle frame with a motor and a control unit for auxiliary drive and with force sensor calibration, method for controlling a motor and computer-readable storage medium
CN117682001A (en) * 2024-02-01 2024-03-12 苏州拓氪科技有限公司 Zero point determining method of torque sensor of center drive system and center drive system

Similar Documents

Publication Publication Date Title
EP2644492B1 (en) Motor assisted bicycle
US9376163B2 (en) Driving unit and battery-assisted bicycle
TWI507322B (en) Bicycle control device
US6816765B2 (en) Motor-driven power steering control apparatus
EP0635423B1 (en) Muscle-operated vehicle
US5664636A (en) Vehicle with electric motor
TWI503257B (en) Electric power assisted bicyle
TW201341260A (en) Bicycle control apparatus
JP2005041352A (en) Torque controlling method for power-assisted bicycle
EP2444311B1 (en) Electric assist bicycle
JP2005132275A (en) Method for discriminating abnormality of torque sensor of electric power assisted bicycle
JP7249540B2 (en) FAILURE DETECTION DEVICE, ELECTRIC BICYCLE, AND FAILURE DETECTION METHOD
JP4075622B2 (en) Control system for electric power steering device
JP7285452B2 (en) Electric assist bicycle control method, electric assist bicycle control device, and electric assist bicycle
JP4229718B2 (en) Auxiliary force control device for electric auxiliary vehicle
JP2005132274A (en) Assist control method for electric power assisted bicycle
JP3440729B2 (en) Electric bicycle
JP2004182008A (en) Steering control system of vehicle and steering system control method
JP4283614B2 (en) Motor check method for battery-assisted bicycles
JP2005145309A (en) Battery discharge control method for motor-assisted bicycle
JP2006078304A (en) Torque sensor
WO2022172424A1 (en) Electrically powered bicycle control method, electrically powered bicycle control device, and electrically powered bicycle
JP2001122183A (en) Self-traveling prevention device for motor-assisted vehicle
JP2005080352A (en) Method and apparatus for checking current sensor of power-assisted bicycle
JPH09286373A (en) Driving force control device for motor-driven vehicle

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106