JP2005041148A - Stage b resin composition sheet having film substrate in it - Google Patents

Stage b resin composition sheet having film substrate in it Download PDF

Info

Publication number
JP2005041148A
JP2005041148A JP2003278947A JP2003278947A JP2005041148A JP 2005041148 A JP2005041148 A JP 2005041148A JP 2003278947 A JP2003278947 A JP 2003278947A JP 2003278947 A JP2003278947 A JP 2003278947A JP 2005041148 A JP2005041148 A JP 2005041148A
Authority
JP
Japan
Prior art keywords
resin composition
heat
resistant film
film substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003278947A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Takafumi Omori
貴文 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003278947A priority Critical patent/JP2005041148A/en
Priority to US10/703,488 priority patent/US20040091688A1/en
Priority to TW092131482A priority patent/TW200415974A/en
Publication of JP2005041148A publication Critical patent/JP2005041148A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adhesive sheet for producing a high density printed circuit board in which the thickness of a molded insulating layer is 30 μm or below and warpage/torsion are suppressed and which is excellent in thickness precision, heat resistance after moisture absorption, modulus of elasticity, and reliability. <P>SOLUTION: A stage B resin composition sheet having a heat resistant film substrate in it is used, which is obtained by making a thermosetting resin composition at least 180°C in glass transition temperature after curing adhere to the heat resistant film substrate subjected to surface treatment by plasma treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多層プリント配線板用耐熱フィルム基材入りBステージ樹脂組成物シートに関するものであり、このシートを用いることにより、銅接着力、耐熱性、信頼性等に優れた高密度多層プリント配線板を作製可能であり、得られた多層プリント配線板は、高密度の小型プリント配線板として、半導体チップを搭載し、小型、軽量の新規な半導体プラスチックパッケージ用等に主に使用される。また、本発明はリジット配線板に限定されるものではなく、フレキシブル配線板、リジット−フレキシブル配線板等にも使用される。   TECHNICAL FIELD The present invention relates to a B-stage resin composition sheet containing a heat-resistant film substrate for a multilayer printed wiring board, and by using this sheet, a high-density multilayer printed wiring excellent in copper adhesive strength, heat resistance, reliability, and the like. A board can be produced, and the obtained multilayer printed wiring board is used mainly as a high-density small printed wiring board on which a semiconductor chip is mounted and used for a new small and light semiconductor plastic package. Moreover, this invention is not limited to a rigid wiring board, It is used also for a flexible wiring board, a rigid-flexible wiring board, etc.

近年、ますます小型、薄型、軽量化する電子機器において、高密度の多層プリント配線板が使用されるようになってきている。この多層プリント配線板に使用されるBステージ樹脂組成物シートは、ポリエステルフィルム等の離型フィルム或いは金属箔に積層用又はエポキシ樹脂内に多量にゴムを添加した(セミ)アディティブ用Bステージ樹脂組成物層を付着させた接着シート等が知られている(例えば、特許文献1、2参照)が、これらは、絶縁層間が薄い場合、Z方向の耐マイグレーション性等の信頼性に劣り、更に電気的特性、耐熱性等にも劣り、高密度プリント配線板として使用するのに限度があった。又、内層板が薄い場合、この両側に基材補強の無い(セミ)アディティブ用接着シートを使用すると、ビルドアップして多層にしたプリント配線板は曲げ強度、引張り強度等の機械的強度、弾性率(剛性)が劣り、反りも発生し易く、アッセンブリ等の工程で不良の原因となっていた(例えば、特許文献3参照)。又、耐熱フィルム基材の無処理の表面に樹脂層を付着させたBステージ樹脂組成物シートは、多層板とした場合に少しでも吸湿した後に加熱処理を行うと膨れを生じていた。
特開平8−231940号公報 特開2000ー17148号公報 特開平5−267840号公報
In recent years, high-density multilayer printed wiring boards have been used in electronic devices that are becoming smaller, thinner, and lighter. The B-stage resin composition sheet used for this multilayer printed wiring board is a release film such as a polyester film or a metal foil for laminating or adding a large amount of rubber in an epoxy resin (semi) additive B-stage resin composition Adhesive sheets and the like to which a physical layer is attached are known (for example, refer to Patent Documents 1 and 2). However, when the insulating layer is thin, these are inferior in reliability such as migration resistance in the Z direction, and moreover electric Inferior in mechanical properties and heat resistance, there was a limit to use as a high-density printed wiring board. Also, when the inner layer board is thin, if a (semi) additive adhesive sheet with no base material reinforcement is used on both sides, the printed wiring board that has been built up and made into multilayers has mechanical strength such as bending strength and tensile strength, elasticity The rate (rigidity) is inferior and warpage is likely to occur, causing defects in assembly and other processes (see, for example, Patent Document 3). Further, the B-stage resin composition sheet in which the resin layer was adhered to the untreated surface of the heat-resistant film base material was swollen when subjected to heat treatment after absorbing moisture even when it was a multilayer board.
JP-A-8-231940 JP 2000-17148 A JP-A-5-267840

本発明は、以上の問題点を解決した、多層プリント配線板の弾性率等の機械的強度が高く、積層成形後の厚み精度、吸湿後の耐熱性等に優れ、Z方向の耐マイグレーション性等の絶縁信頼性にも優れた高密度多層プリント配線板を製造するための耐熱フィルム基材入りBステージ樹脂組成物シートを提供するものである。   The present invention solves the above problems, has high mechanical strength such as elastic modulus of multilayer printed wiring board, excellent thickness accuracy after lamination molding, heat resistance after moisture absorption, migration resistance in the Z direction, etc. The present invention provides a B-stage resin composition sheet containing a heat-resistant film substrate for producing a high-density multilayer printed wiring board having excellent insulation reliability.

本発明は、基板上に導体回路と層間樹脂絶縁層とを順次積層し、サブトラクティブ法、(セミ)アディティブ法によって多層プリント配線板を製造するための接着シート、或いは内層板の間及び表層に配置して一体積層成形する一般のガラス布基材のプリプレグと同様に使用して多層板を製造するための接着シートとして使用するものであり、まず耐熱フィルムの表面をプラズマ処理にて表面処理を行い、その後この基材の少なくとも片面にBステージ樹脂組成物層を形成して得られる耐熱フィルム基材入りBステージ樹脂組成物シートを多層プリント配線板用接着シートとして使用する。   In the present invention, a conductor circuit and an interlayer resin insulating layer are sequentially laminated on a substrate, and are arranged between an adhesive sheet for manufacturing a multilayer printed wiring board by a subtractive method or a (semi) additive method, or between inner layers and on a surface layer. It is to be used as an adhesive sheet for producing a multilayer board using the same as a general glass cloth base prepreg that is integrally laminated, and first the surface of the heat-resistant film is subjected to plasma treatment, Thereafter, a B-stage resin composition sheet containing a heat-resistant film substrate obtained by forming a B-stage resin composition layer on at least one surface of the substrate is used as an adhesive sheet for multilayer printed wiring boards.

耐熱フィルムの表面を処理するプラズマ処理は、通常のプラズマ処理方法が適用でき、生産性も高い。また、プラズマによる表面処理は、化学薬液処理よりも微細な凹凸が得られ、樹脂組成物との接着力が強い。   As the plasma treatment for treating the surface of the heat-resistant film, a normal plasma treatment method can be applied and the productivity is high. Further, the surface treatment with plasma provides finer irregularities than the chemical solution treatment, and has a strong adhesive force with the resin composition.

該耐熱フィルム基材入りBステージ樹脂組成物シートの片面には金属箔が付着したものも使用でき、これはビルドアップ用等の接着シートとして好適に使用できる。耐熱フィルムの両面に付着する樹脂組成物は特に限定はないが、目的により適宜選択して使用する。また、樹脂組成物を両面に付着させる場合、上下の樹脂組成物は異なるものを用いても良い。例えば、片面が(セミ)アディティブ用絶縁層で反対面が積層用の一般に公知の樹脂組成物層としたもの等でも良い。   A sheet having a metal foil attached to one side of the B-stage resin composition sheet containing the heat-resistant film substrate can be used, and this can be suitably used as an adhesive sheet for build-up and the like. Although the resin composition adhering to both surfaces of a heat-resistant film does not have limitation in particular, it selects and uses suitably according to the objective. Moreover, when making a resin composition adhere on both surfaces, the upper and lower resin composition may use a different thing. For example, a (semi) additive insulating layer on one side and a generally known resin composition layer for lamination on the opposite side may be used.

この耐熱フィルム基材入りBステージ樹脂組成物シートは、耐熱フィルム基材が入っているために、特に薄い内層板を使用してビルドアップして得られたプリント配線板は、基材が入っていない従来のBステージ樹脂組成物シート使用のプリント配線板に比べて機械的強度が高く、ソリ・ネジレが小さく、積層時の成形厚みに優れたものが得られ、薄型のサブトラクティブ法或いは(セミ)アディティブ法高密度プリント配線板に適したものが得られる。又、Z方向が耐熱フィルムで遮断されているためにZ方向の絶縁信頼性が高く、耐マイグレーション性に非常に優れたプリント配線板が得られた。   Since this B-stage resin composition sheet with a heat-resistant film substrate contains a heat-resistant film substrate, the printed wiring board obtained by building up using a particularly thin inner layer board contains the substrate. Compared to a conventional printed wiring board using a B-stage resin composition sheet, it has a high mechanical strength, a small warp and twist, and an excellent molding thickness at the time of lamination. ) Additive method Suitable for high-density printed wiring boards. Moreover, since the Z direction is blocked by the heat resistant film, a printed wiring board having high insulation reliability in the Z direction and extremely excellent migration resistance was obtained.

通常、耐熱フィルムにBステージ樹脂組成物層が付着したシートは、可撓性を付与するためBステージ樹脂にゴム成分等の柔軟な成分が多く含まれる場合が多く、Bステージ樹脂組成物層の耐熱性が低いものが一般的である。また、接着層にポリイミド等の耐熱性に優れた樹脂を用いたシートもあるが、これらは一般に成形する際の温度が高く、一般FR-4等の耐熱性が低い材料は使用できない等の欠点がある。そこで、耐熱フィルムに付着させるBステージ樹脂組成物層の研究を鋭意進めた結果、硬化後のガラス転移温度が180℃以上である熱硬化性樹脂組成物を付着させることにより、成形する際の温度は通常の積層板の硬化条件と同様で、耐熱フィルムと樹脂が高温でもより強固に接着し、吸湿耐熱性が大幅に向上することを見い出した。   Usually, a sheet having a B-stage resin composition layer attached to a heat-resistant film often contains a lot of soft components such as rubber components in the B-stage resin in order to impart flexibility. Those with low heat resistance are common. In addition, there are sheets using resins with excellent heat resistance such as polyimide for the adhesive layer, but these generally have a high temperature when molding, and it is not possible to use materials with low heat resistance such as general FR-4 There is. Therefore, as a result of earnestly researching the B-stage resin composition layer to be attached to the heat-resistant film, as a result of attaching a thermosetting resin composition having a glass transition temperature of 180 ° C. or higher after curing, the temperature during molding It was found that the heat-resistant film and the resin are more firmly bonded even at high temperatures and the moisture absorption heat resistance is greatly improved under the same conditions as for ordinary laminates.

プラズマ処理により表面処理が施された耐熱フィルム基材の、少なくとも片面に硬化後のガラス転移温度が180℃以上である熱硬化性樹脂組成物を付着して得られる耐熱フィルム基材入りBステージ樹脂組成物シートは、絶縁層間の成形後の厚みを30μm以下に薄くでき、更に成形後の厚みバラツキを小さくでき、特性上は特に吸湿後の耐熱性に優れ、更にZ方向の電気絶縁性などの信頼性に優れ、且つ弾性率も良好な高密度プリント配線板を得ることができた。   A B-stage resin containing a heat-resistant film substrate obtained by adhering a thermosetting resin composition having a glass transition temperature of 180 ° C. or higher after curing to at least one surface of a heat-resistant film substrate surface-treated by plasma treatment The composition sheet can reduce the thickness after molding between insulating layers to 30 μm or less, further reduce the thickness variation after molding, and is excellent in heat resistance especially after moisture absorption, and further has electrical insulation in the Z direction, etc. A high-density printed wiring board having excellent reliability and good elastic modulus could be obtained.

本発明の耐熱フィルム基材は樹脂組成物を付着する前にプラズマ処理を行う。この耐熱フィルム基材は、種類、厚さには特に制限はなく公知のものが使用できる。具体的には、ポリイミドフィルム、ポリパラバン酸フィルム、液晶ポリエステルフィルム、全芳香族ポリアミドフィルム等が使用されるが、熱膨張率の小さい全芳香族ポリアミドフィルムが好適に使用される。厚さは目的により適宜選択する。ラミネート成形後の絶縁層間の厚みを15〜30μm位に薄くするためには、好適には厚さ4〜20μmの耐熱フィルムを使用する。耐熱フィルムの表面に接着剤樹脂層を形成する前に耐熱フィルム表面をプラズマ処理し、表面を処理すると同時に微細な凹凸を付けるとともに表面を活性化させる。プラズマ処理に使用するガスは、ヘリウム、アルゴン、クリプトン、キセノン、ネオン、ラドン、窒素、酸素、空気、一酸化炭素、二酸化炭素、四塩化炭素、クロロホルム、水素、アンモニア、カーボンテトラフルオライド、トリクロロフルオロエタン、トリフルオロメタン等、公知のものが使用でき、これらのガスを単独で使用しても、適宜混合したガスを用いても良い。処理電力密度は特に限定はないが、好ましくは0.1W・秒/cm2以上、更に好ましくは10〜80W・秒/cm2である。また、プラズマ処理の圧力は常圧でも減圧でも良いが、好ましくは0.01〜100Torr、更に好ましくは0.05〜10Torrの減圧下で行う。本発明で、処理電力密度とは、電源(W)、処理面積(cm2)、処理時間(秒)により決定される。例えば、処理電力密度10W・秒/cm2は、処理面積1cm2あたり10Wで1秒間処理した処理量に相当する。また、同様の処理は処理面積1cm2あたり1Wの電力で10秒間処理しても可能である。 The heat-resistant film substrate of the present invention is subjected to plasma treatment before the resin composition is attached. This heat-resistant film substrate is not particularly limited in type and thickness, and known ones can be used. Specifically, a polyimide film, a polyparabanic acid film, a liquid crystal polyester film, a wholly aromatic polyamide film or the like is used, and a wholly aromatic polyamide film having a small coefficient of thermal expansion is preferably used. The thickness is appropriately selected according to the purpose. In order to reduce the thickness between insulating layers after laminate molding to about 15 to 30 μm, a heat resistant film having a thickness of 4 to 20 μm is preferably used. Before the adhesive resin layer is formed on the surface of the heat-resistant film, the surface of the heat-resistant film is subjected to plasma treatment, and the surface is treated, and at the same time, fine irregularities are formed and the surface is activated. The gases used for plasma treatment are helium, argon, krypton, xenon, neon, radon, nitrogen, oxygen, air, carbon monoxide, carbon dioxide, carbon tetrachloride, chloroform, hydrogen, ammonia, carbon tetrafluoride, trichlorofluoro. Known materials such as ethane and trifluoromethane can be used, and these gases may be used alone or may be mixed appropriately. The processing power density is not particularly limited, but preferably 0.1 W · sec / cm 2 or more, more preferably a 10~80W · sec / cm 2. The pressure for the plasma treatment may be normal pressure or reduced pressure, but is preferably 0.01 to 100 Torr, more preferably 0.05 to 10 Torr. In the present invention, the processing power density is determined by the power source (W), the processing area (cm 2 ), and the processing time (seconds). For example, the processing power density of 10 W · sec / cm 2 corresponds to the processing amount processed for 1 second at 10 W per processing area of 1 cm 2 . The same processing can be performed by processing for 10 seconds with a power of 1 W per 1 cm 2 of processing area.

本発明で、プラズマ処理された耐熱フィルム基材面に付着させる樹脂組成物は公知のものが使用され得るが、好適には硬化後のガラス転移温度が180℃以上である熱硬化性樹脂組成物を使用する。ガラス転移温度が低いと、半導体チップ搭載時等にかかる熱により樹脂が軟化してしまい不良の原因となる等、様々な不具合が生じる。この樹脂組成物は、耐熱フィルム基材片面に(セミ)アディティブ用樹脂組成物、その反対面に積層用の樹脂組成物を付着させたもの、両面に(セミ)アディティブ用樹脂組成物を付着させたもの、両面に積層用樹脂組成物を付着させたもの、いずれでも良い。樹脂層の厚さは特に限定はなく、使用に合わせて適宜選択する。積層成形後の絶縁層の厚さを30μm以下とする場合には、例えば耐熱フィルムの厚さが5μmの場合、表側の樹脂層の厚さを5μm、積層側の樹脂層厚さを25μm程度とし、内層板の銅箔厚さ、銅箔残存率にもよるが、積層した後に絶縁層間厚みを30μm以下となるように設定する。   In the present invention, known resin compositions can be used for the plasma-treated heat-resistant film substrate surface, and preferably a thermosetting resin composition having a glass transition temperature after curing of 180 ° C. or higher. Is used. If the glass transition temperature is low, various problems occur, such as the resin softening due to heat applied when the semiconductor chip is mounted and the like, causing a defect. This resin composition has a (semi) additive resin composition on one side of a heat-resistant film substrate, a laminate resin composition on the opposite side, and a (semi) additive resin composition on both sides. Or a laminate having a resin composition for lamination attached to both sides. The thickness of the resin layer is not particularly limited and is appropriately selected according to use. When the thickness of the insulating layer after lamination molding is 30 μm or less, for example, when the thickness of the heat-resistant film is 5 μm, the thickness of the resin layer on the front side is 5 μm, and the thickness of the resin layer on the lamination side is about 25 μm. Depending on the copper foil thickness of the inner layer plate and the copper foil remaining rate, the insulating interlayer thickness is set to 30 μm or less after lamination.

本発明の耐熱フィルム基材入りBステージ樹脂組成物シートの樹脂組成物層で(セミ)アディティブ法にて回路が形成できる樹脂組成物としては、熱硬化型、光硬化と熱硬化併用型等一般に公知のものが挙げられる。この耐熱フィルム基材入りBステージ樹脂組成物シートの樹脂組成物層は、特に限定はなく、一般に公知のものが使用される。この樹脂層には、硬化処理した場合に粗化溶液に可溶性の成分、粗化溶液に難溶性となる樹脂成分が含まれており、可溶性成分が難溶性となる樹脂成分中に均一に分散したものである。ここで、本発明で使用する「可溶性」、「難溶性」の意味は、硬化処理後に同一の粗化溶液で同一時間浸漬した場合に、相対的に溶解速度の速いものを「可溶性」、遅いものを「難溶性」と表現している。   As a resin composition in which a circuit can be formed by the (semi) additive method in the resin composition layer of the B-stage resin composition sheet containing the heat-resistant film substrate of the present invention, a thermosetting type, a photocuring and thermosetting combined type, etc. A well-known thing is mentioned. The resin composition layer of the B-stage resin composition sheet containing the heat-resistant film substrate is not particularly limited, and generally known ones are used. This resin layer contains a component that is soluble in the roughening solution when cured and a resin component that is hardly soluble in the roughening solution, and the soluble component is uniformly dispersed in the resin component that is hardly soluble. Is. Here, the meanings of “soluble” and “slightly soluble” used in the present invention are “soluble” and “slow” when the dissolution rate is relatively high when immersed in the same roughening solution for the same time after the curing treatment. The thing is expressed as “slightly soluble”.

本発明の可溶性樹脂は、一般に公知のものが挙げられる。この樹脂は溶剤に可溶性のもの、液状のものであり、難溶性樹脂中に配合される。これらは特に限定はないが、具体的にはポリブタジエンゴム、アクリロニトリルーブタジエンゴム、これらのエポキシ化物、マレイン化物、イミド化物、カルボキシル基含有物、(メタ)アクリル化物等、スチレンーブタジエンゴム等公知のものが挙げられる。特に分子内にブタジエン骨格が入ったものが、粗化液への溶解性、電気的特性等の点から好適に使用される。又、無官能のものより官能基を含むものが、後硬化処理で他の未反応の樹脂の官能基と反応して架橋し、特性が向上するので好ましい。   The soluble resin of the present invention includes generally known resins. This resin is soluble in a solvent or liquid, and is blended in a hardly soluble resin. These are not particularly limited. Specifically, polybutadiene rubber, acrylonitrile-butadiene rubber, epoxidized products, maleated products, imidized products, carboxyl group-containing products, (meth) acrylated products, styrene-butadiene rubbers, and the like are known. Things. In particular, those containing a butadiene skeleton in the molecule are preferably used from the viewpoints of solubility in the roughening solution, electrical characteristics, and the like. Further, those containing a functional group rather than a non-functional one are preferable because they react with a functional group of other unreacted resin in the post-curing treatment to crosslink and improve characteristics.

本発明の可溶性有機物粉体としては、公知のものが挙げられるが、具体例としては、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂、シリコン樹脂、フェノール樹脂、アクリルゴム、ポリスチレン、MBSゴム、ABS等の粉体、これらの多重構造(コアーシェル)ゴム粉体等が挙げられる。これらは1種或いは2種以上が適宜選択して配合される。   Examples of the soluble organic powder of the present invention include known ones. Specific examples include epoxy resins, polyimide resins, polyphenylene ether resins, polyolefin resins, silicone resins, phenol resins, acrylic rubber, polystyrene, MBS rubber, Examples thereof include powders such as ABS, and multiple structure (core-shell) rubber powders thereof. One or more of these are appropriately selected and blended.

本発明の可溶性無機粉体としては、特に限定はないが、例えばアルミナ、水酸化アルミニウム等のアルミニウム化合物;炭酸カルシウム等のカルシウム化合物類;マグネシア等のマグネシウム化合物類;シリカ、ゼオライト等のシリカ化合物類等が挙げられ、1種或いは2種以上が組み合わせて使用される。   The soluble inorganic powder of the present invention is not particularly limited. For example, aluminum compounds such as alumina and aluminum hydroxide; calcium compounds such as calcium carbonate; magnesium compounds such as magnesia; silica compounds such as silica and zeolite 1 type or 2 types or more are used in combination.

本発明の難溶性樹脂としては、熱硬化性樹脂、感光性樹脂等公知のものが1種或いは2種以上組み合わせて使用され、特に限定はないが、具体的には、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル樹脂、マレイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂、エポキシアクリレート、不飽和基含有ポリカルボン酸樹脂、多官能(メタ)アクリレート等が挙げられる。更にこれらの公知の臭素化物、リン含有化合物も使用される。この中で、耐マイグレーション性、耐熱性等、吸湿後の耐熱性等の点から多官能性シアン酸エステル樹脂が好ましい。   As the hardly soluble resin of the present invention, known ones such as thermosetting resins and photosensitive resins are used alone or in combination of two or more, and there is no particular limitation. Specifically, epoxy resins, polyimide resins, Examples of the polyfunctional cyanate resin, maleimide resin, double bond addition polyphenylene ether resin, polyphenylene ether resin, polyolefin resin, epoxy acrylate, unsaturated group-containing polycarboxylic acid resin, and polyfunctional (meth) acrylate. Further, these known bromides and phosphorus-containing compounds are also used. Among these, a polyfunctional cyanate ester resin is preferable from the viewpoints of migration resistance, heat resistance, etc. and heat resistance after moisture absorption.

本発明で好適に使用される多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類等である。   The polyfunctional cyanate ester compound preferably used in the present invention is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac and cyanogen halide.

これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149等に記載の多官能性シアン酸エステル化合物類も用いられ得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。これらの臭素付加化合物、液状の樹脂等も使用できる。   Besides these, multifunctional cyanic acid described in JP-B-41-1928, JP-A-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-A-51-63149, etc. Ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate ester compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent. These bromine addition compounds and liquid resins can also be used.

エポキシ樹脂は室温で液状のもの、固形のものが使用できるが、室温で液状のエポキシ樹脂としては、一般に公知のものが使用可能である。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリエーテルポリオールのジグリシジル化物、酸無水物のエポキシ化物等が単独或いは2種以上組み合わせて使用される。使用量は、多官能性シアン酸エステル化合物、該シアン酸エステルプレポリマー 100重量部に対し、20〜10,000重量部、好ましくは30〜5,000重量部である。室温で液状とは、室温(25℃)で流動性のあるものを言う。   Epoxy resins can be liquid or solid at room temperature, but generally known epoxy resins can be used as liquid epoxy resins at room temperature. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, alicyclic epoxy resin, diglycidylated product of polyether polyol, epoxidized product of acid anhydride, etc. alone or in combination of two or more Used. The amount used is 20 to 10,000 parts by weight, preferably 30 to 5,000 parts by weight per 100 parts by weight of the polyfunctional cyanate ester compound and the cyanate ester prepolymer. “Liquid at room temperature” means fluidity at room temperature (25 ° C.).

これらの液状エポキシ化合物以外に、公知の室温で破砕できる固形の上記エポキシ樹脂、更にはクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂等が難溶性樹脂として単独或いは2種以上組み合わせて使用される。また、半固形のものも使用できる。   In addition to these liquid epoxy compounds, the above-mentioned solid epoxy resins that can be crushed at room temperature, and further, cresol novolac type epoxy resins, biphenyl type epoxy resins, naphthalene type epoxy resins, etc., are used alone or in combination of two or more. used. Semi-solid materials can also be used.

本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて上記以外の種々の添加物を配合することができる。これらの添加物としては、各種樹脂類、この樹脂類の公知の臭素、燐化合物、公知の無機、有機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は公知の硬化剤、触媒が適宜配合される。   In the thermosetting resin composition of the present invention, various additives other than those described above can be blended as desired within a range where the original properties of the composition are not impaired. These additives include various resins, known bromine and phosphorus compounds of these resins, known inorganic and organic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents. Various additives such as a photosensitizer, a flame retardant, a brightener, a polymerization inhibitor, and a thixotropic agent are used in combination as appropriate. If necessary, the compound having a reactive group is appropriately mixed with a known curing agent and catalyst.

本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため、使用した熱硬化性樹脂に対して公知の熱硬化触媒を用いる。使用量は、熱硬化性樹脂100重量部に対し、0.005〜10重量部、好ましくは0.01〜5重量部である。   The thermosetting resin composition of the present invention is cured by heating, but has a slow curing speed and is inferior in workability, economical efficiency, etc., and therefore a known thermosetting catalyst is used for the thermosetting resin used. . The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, with respect to 100 parts by weight of the thermosetting resin.

本発明の樹脂組成物中に均一分散している可溶性樹脂、有機粉体、無機粉体の配合量は、特に限定はないが、好適には全体の3〜50重量%、更に好適には5〜35重量%を使用する。これらの成分は3成分のうち2成分以上を使用する。又、同一粒径よりは異なる粒径のものを用いることにより、凹凸の形状がより複雑となってアンカー効果が増し、銅メッキ接着力に優れたものが得られる。   The amount of the soluble resin, organic powder, and inorganic powder uniformly dispersed in the resin composition of the present invention is not particularly limited, but is preferably 3 to 50% by weight of the total, more preferably 5%. Use ~ 35% by weight. These components use two or more of the three components. In addition, by using particles having different particle sizes from the same particle size, the shape of the unevenness becomes more complicated, the anchor effect is increased, and a copper plating adhesive force is obtained.

本発明の各成分を均一に混練する方法は、一般に公知の方法が使用され得る。例えば、各成分を配合後、三本ロールにて、室温或いは加熱下に混練するか、ボールミル、ライカイ機、ビーズミル、ホモミキサー等、一般に公知のものが使用される。また、溶剤を添加して加工法に合う粘度として使用する。   As a method for uniformly kneading each component of the present invention, generally known methods can be used. For example, after blending each component, kneaded with a three-roller at room temperature or under heating, or generally known ones such as a ball mill, a lye machine, a bead mill, and a homomixer are used. In addition, a solvent is added and used as a viscosity suitable for the processing method.

本発明の積層用樹脂組成物は特に限定はなく、一般に公知のものが使用できる。具体的には、上記の難溶性樹脂が使用される。耐マイグレーション性、耐熱性、電気特性等の点からは多官能性シアン酸エステル樹脂組成物が好適に使用される。難溶性樹脂は1種或いは2種以上が適宜組み合わせて使用される。又、上記の可溶性の有機、無機粉体も特性に大きく影響しない範囲で添加可能である。更には、上記の各種添加物も目的に応じて添加可能である。   The resin composition for lamination of the present invention is not particularly limited, and generally known resin compositions can be used. Specifically, the above hardly soluble resin is used. From the viewpoint of migration resistance, heat resistance, electrical characteristics, etc., a polyfunctional cyanate ester resin composition is preferably used. One or two or more hardly soluble resins are used in appropriate combination. Also, the above-mentioned soluble organic and inorganic powders can be added within a range that does not greatly affect the characteristics. Furthermore, the above various additives can also be added depending on the purpose.

耐熱フィルムにBステージ樹脂組成物層を付着させる方法は特に限定はなく、公知の方法が使用できる。例えば、耐熱フィルム上に直接ロールで塗布、乾燥してBステージ化するか、離型フィルム或いは金属箔に塗布、乾燥してBステージ化した後にこれを耐熱フィルムの片面或いは両面に配置し、加熱、加圧下にラミネートして一体化する方法等使用できる。この場合樹脂組成物中には少量の溶剤が残存しても良い。樹脂組成物の厚みは特に限定はないが、一般的には耐熱フィルム上に3〜100μm、好ましくは4〜50μm、更に好適には5〜30μmとする。この厚みは目的とする絶縁層の厚みにより、適宜選択する。耐熱フィルムを使用することによりZ方向の絶縁性に優れ、耐マイグレーション性等の信頼性に優れた多層プリント配線板が作製できる。   The method for attaching the B-stage resin composition layer to the heat-resistant film is not particularly limited, and a known method can be used. For example, apply directly on a heat-resistant film with a roll and dry to make a B-stage, or apply to a release film or metal foil and dry to make a B-stage, then place it on one or both sides of the heat-resistant film and heat The method of laminating and integrating under pressure can be used. In this case, a small amount of solvent may remain in the resin composition. The thickness of the resin composition is not particularly limited, but is generally 3 to 100 μm, preferably 4 to 50 μm, and more preferably 5 to 30 μm on the heat-resistant film. This thickness is appropriately selected depending on the desired thickness of the insulating layer. By using a heat resistant film, it is possible to produce a multilayer printed wiring board having excellent insulation in the Z direction and excellent reliability such as migration resistance.

本発明でサブトラクティブ法で使用する銅箔は特に限定はないが、好適には厚さ3〜18μmの電解銅箔を使用する。(セミ)アディティブ用Bステージ樹脂組成物に付着して使用する表面に凹凸のある金属箔は特に限定はなく、具体的にはアルミニウム箔、銅箔等が挙げられる。樹脂を付着させる面の凹凸は特に限定はないが、好適には平均粗度Rzが1〜10μm、更に好ましくは2〜7μmである。これは粗化前に凹凸が大きいと、粗化時間が短く、且つ水分の浸透も少ないために、メッキした銅層の加熱による膨れ軽減等が図れる。金属箔の厚みは特に限定はないが、その後にエッチング等して除去するために薄い方が良く、好ましくは7〜20μmを使用する。   The copper foil used in the subtractive method in the present invention is not particularly limited, but an electrolytic copper foil having a thickness of 3 to 18 μm is preferably used. There are no particular limitations on the metal foil having irregularities on the surface that is used by adhering to the (semi) additive B-stage resin composition, and specific examples include aluminum foil and copper foil. The unevenness of the surface to which the resin is attached is not particularly limited, but preferably the average roughness Rz is 1 to 10 μm, more preferably 2 to 7 μm. If the irregularities are large before roughening, the roughening time is short and the moisture permeation is small, so that swelling of the plated copper layer can be reduced. The thickness of the metal foil is not particularly limited, but it is better that it is thin so as to be removed by etching or the like thereafter, and preferably 7 to 20 μm.

本発明の多層化の場合、銅張積層板や耐熱フィルム基材補強銅張シート等を用いて導体回路を形成した内層板を使用して、導体に公知の表面処理を施した後、又は両面粗化箔を使用した内層用回路板の表裏に上記耐熱フィルム基材入り離型フィルム或いは金属箔付きBステージ樹脂組成物シートを配置し、公知の方法にて加熱、加圧、好適には真空下に積層成形或いはラミネートして硬化処理を行い、(セミ)アディティブ用樹脂組成物では粗化溶液で粗化できる硬化度とする。金属箔付きの場合は積層又はラミネート後にエッチング等で金属箔を除去する。   In the case of multilayering according to the present invention, after using the inner layer plate in which a conductor circuit is formed using a copper-clad laminate or a heat-resistant film substrate-reinforced copper-clad sheet, a known surface treatment is applied to the conductor, or both sides The release film containing the heat-resistant film substrate or the B-stage resin composition sheet with metal foil is placed on the front and back of the circuit board for the inner layer using the roughened foil, and heated, pressurized, and preferably vacuumed by a known method. Under the layer molding or laminating, a curing treatment is performed, and the (semi) additive resin composition has a curing degree that can be roughened with a roughening solution. In the case with a metal foil, the metal foil is removed by etching or the like after lamination or lamination.

本発明の多層化する際の硬化処理積層成形条件は、特に限定はないが、酸或いは酸化剤での粗化が適正にできる条件を、使用した樹脂組成によって適宜選択する。一般には温度60〜300℃、圧力2〜50kgf/cm2 、時間は0.5〜3時間である。又、真空下に積層成形するのが好ましい。装置は真空ラミネータプレス、一般の多段真空プレス等、公知のものが使用できる。 There are no particular limitations on the curing treatment lamination molding conditions for multi-layering of the present invention, but the conditions under which roughening with an acid or an oxidizing agent can be appropriately performed are appropriately selected depending on the resin composition used. Generally, the temperature is 60 to 300 ° C., the pressure is 2 to 50 kgf / cm 2 , and the time is 0.5 to 3 hours. Moreover, it is preferable to laminate and form under vacuum. A known apparatus such as a vacuum laminator press or a general multistage vacuum press can be used.

本発明で得られた金属箔張板の表層の金属或いは離型フィルムを除去後、公知の方法にて樹脂の粗化を酸或いは酸化剤等で行う。使用する酸としては硫酸、塩酸、硝酸、燐酸、蟻酸等が挙げられ、酸化剤としては過マンガン酸ナトリウム、過マンガン酸カリウム、クロム酸、クロム硫酸等が挙げられるが、これに限定されるものではない。この処理前は必要により公知の膨潤液を使用し、処理後は中和液で中和する。この粗化処理で形成する粗化面の平均粗度は、金属箔の凹凸とは別に平均粗度Rz 0.1〜10μm、好適には0.2〜5μmとする。金属箔の凹凸と粗化による凹凸を合わせた粗度は、一般には平均粗度Rzが2〜15 μm、好適にはRz 3〜10 μmとする。   After removing the metal or release film on the surface of the metal foil-clad plate obtained in the present invention, the resin is roughened with an acid or an oxidizing agent by a known method. Examples of the acid used include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, formic acid, and examples of the oxidizing agent include sodium permanganate, potassium permanganate, chromic acid, and chromic sulfuric acid. is not. Prior to this treatment, a known swelling solution is used if necessary, and after the treatment, the solution is neutralized with a neutralizing solution. The average roughness of the roughened surface formed by this roughening treatment is set to an average roughness Rz of 0.1 to 10 μm, preferably 0.2 to 5 μm, separately from the unevenness of the metal foil. In general, the average roughness Rz is 2 to 15 μm, preferably Rz 3 to 10 μm, for the roughness obtained by combining the unevenness of the metal foil and the unevenness due to roughening.

その後は、公知のセミアディティブ法、フルアディティブ法等にて無電解メッキ、厚付け無電解メッキ、蒸着、スパッタリング等を行い、必要により電気メッキを行って導体を厚付けする。樹脂組成によっても異なるが、一般には薬液で粗化できる硬化度では、このままプリント配線板にすると耐熱性、信頼性等が劣り、高密度プリント配線板としては使用できない。従って、一般には回路形成前に後硬化する。樹脂組成によって異なるが、一般には温度100〜250℃で30分〜5時間後硬化する。次に公知の方法で回路を形成し、プリント配線板とする。この同一工程を順次繰り返してビルドアップにて多層化する。   Thereafter, electroless plating, thick electroless plating, vapor deposition, sputtering, or the like is performed by a known semi-additive method, full additive method, or the like, and electroplating is performed as necessary to thicken the conductor. Although it differs depending on the resin composition, in general, the degree of cure that can be roughened with a chemical solution is inferior in heat resistance, reliability, etc. if used as a printed wiring board, and cannot be used as a high-density printed wiring board. Therefore, it is generally post-cured before circuit formation. Although it depends on the resin composition, it is generally post-cured at a temperature of 100 to 250 ° C. for 30 minutes to 5 hours. Next, a circuit is formed by a known method to obtain a printed wiring board. This same process is repeated sequentially to build up multiple layers.

この耐熱フィルム基材入りBステージ樹脂組成物シートは一般の銅張積層板、多層板用のプリプレグとしても使用でき、銅箔を使って積層し、サブトラクティブ法でプリント配線板を製造することも可能であり、公知の方法で使用される。   This B-stage resin composition sheet containing a heat-resistant film substrate can also be used as a prepreg for general copper-clad laminates and multilayer boards, and can be laminated using copper foil to produce printed wiring boards by the subtractive method. Possible and used in a known manner.

以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2-ビス(4-シアナトフェニル)プロパンモノマーを400部150℃に溶融させ、撹拌しながら4時間反応させ、平均分子量1,900のプレポリマーを得た。これをメチルエチルケトンに溶解し、ワニスAとした。これに室温で液状のエポキシ樹脂として、ビスフェノールA型エポキシ樹脂(商品名::エピコート828、ジャパンエポキシレジン<株>製)100部、ビスフェノールF型エポキシ樹脂(商品名:EXA830LVP、大日本インキ化学工業<株>製)50部、ノボラック型エポキシ樹脂(商品名:DEN438、ダウケミカル<株>製)50部、ビスフェノールA型エポキシ樹脂(商品名:エピコート1001、ジャパンエポキシレジン<株>製)400部を配合し、熱硬化触媒としてオクチル酸亜鉛0.3部をメチルエチルケトンに溶解して加えた。これに液状のエポキシ化ポリブタジエン樹脂(商品名:E-1000-8.0、日本石油化学<株>製)100部、エポキシ基変性アクリル多層構造粉体(商品名:スタフィロイドIM-203、平均粒子径0.2μm)30部、を加え、良く攪拌混合して均一なワニスBにした。
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
(Example 1)
2,2-bis (4-cyanatophenyl) propane monomer was melted in 400 parts at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer having an average molecular weight of 1,900. This was dissolved in methyl ethyl ketone to obtain varnish A. As a liquid epoxy resin at room temperature, 100 parts of bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.), bisphenol F type epoxy resin (trade name: EXA830LVP, Dainippon Ink & Chemicals, Inc.) 50 parts <made by Co., Ltd.>, 50 parts novolak type epoxy resin (trade name: DEN438, manufactured by Dow Chemical Co., Ltd.), 400 parts bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.) And 0.3 part of zinc octylate dissolved in methyl ethyl ketone was added as a thermosetting catalyst. Liquid epoxidized polybutadiene resin (trade name: E-1000-8.0, manufactured by Nippon Petrochemical Co., Ltd.), epoxy group-modified acrylic multilayer structure powder (trade name: Staphyloid IM-203, average particle size) 0.2 μm) was added, and stirred and mixed well to obtain a uniform varnish B.

このワニスBを連続して厚さ18μmの銅箔マット面(凹凸3.0〜5.9μm、平均粗度Rz:4.6μm)に塗布、乾燥して銅箔のMax.凸部の先端から5.5μmの高さのBステージ樹脂組成物層(170℃でのゲル化時間48秒)を形成し、乾燥ゾーンから出てきた時点で樹脂側に厚さ20μmの保護ポリプロピレンフィルムを配置し、100℃、4kgf/cmの線圧でラミネートして銅箔付きBステージ樹脂組成物シートCを作製した。このシートCに使用された樹脂組成物の硬化後のガラス転移温度(Tg)をDMAで測定したところ、185℃であった。   This varnish B was continuously applied to a 18 μm thick copper foil mat surface (concave / convex 3.0 to 5.9 μm, average roughness Rz: 4.6 μm) and dried to a height of 5.5 μm from the tip of the convex portion of the copper foil. A B stage resin composition layer (gelation time at 170 ° C. of 48 seconds) is formed, and when it comes out of the drying zone, a protective polypropylene film with a thickness of 20 μm is placed on the resin side, and 100 ° C., 4 kgf / Lamination was performed at a linear pressure of cm to prepare a B-stage resin composition sheet C with copper foil. It was 185 degreeC when the glass transition temperature (Tg) after hardening of the resin composition used for this sheet C was measured by DMA.

又、上記ワニスBにおいて、液状のエポキシ化ポリブタジエン樹脂、エポキシ基変性アクリル多層構造粉体を使用しないワニスDを作製し、このワニスDを厚さ25μmの離型PETフィルムの片面に連続的に塗布、乾燥してゲル化時間67秒、厚さ20μmのBステージ樹脂層を形成し、乾燥ゾーンを出てきた時に樹脂面に厚さ20μmのポリプロピレン保護フィルムを当て、100℃、線圧4kgf/cmでラミネートし、離型フィルム付きBステージ樹脂組成物シートEを作製した。このシートEに使用された樹脂組成物の硬化後のTgは201℃であった。これを厚さ4.5μmの全芳香族ポリアミドフィルムの両面を表1に示す条件でプラズマ処理したものの片面に、保護フィルムを剥離しながら配置し、もう一方の面には上記銅箔付きBステージ樹脂組成物シートCを、保護フィルムを剥離しながら配置し、90℃、7kgf/cmの線圧で連続的にラミネートして一体化し、耐熱フィルム基材入り銅箔付きBステージ樹脂組成物シートFを作製した。この絶縁層厚さは銅箔凸部先端から30μmであった。   Also, in the above varnish B, a varnish D that does not use a liquid epoxidized polybutadiene resin or an epoxy group-modified acrylic multilayer structure powder is prepared, and this varnish D is continuously applied to one side of a release PET film having a thickness of 25 μm. After drying, a B-stage resin layer with a gelation time of 67 seconds and a thickness of 20 μm is formed, and when it comes out of the drying zone, a polypropylene protective film with a thickness of 20 μm is applied to the resin surface, 100 ° C., linear pressure 4 kgf / cm And a B-stage resin composition sheet E with a release film was produced. The Tg after curing of the resin composition used for this sheet E was 201 ° C. This is a 4.5 μm thick wholly aromatic polyamide film that has been plasma treated on both sides under the conditions shown in Table 1 and placed on one side while peeling off the protective film, and on the other side the B-stage resin with copper foil Composition sheet C was placed while peeling off the protective film, and laminated and integrated continuously at 90 ° C. with a linear pressure of 7 kgf / cm. B-stage resin composition sheet F with copper foil containing heat-resistant film substrate Produced. The insulating layer thickness was 30 μm from the tip of the copper foil convex portion.

一方、内層板として絶縁層厚さ0.2mm、12μm両面銅箔張りのBTレジン銅張積層板(商品名:CCL-HL830、三菱ガス化学<株>製 )に回路を形成し、黒色酸化銅処理を銅箔に施した板の両面に、上記耐熱フィルム基材入り銅箔付きBステージ樹脂組成物シートFを、離型PETフィルムを剥離して樹脂層が内層板側を向くように配置し、プレス装置に仕込んだ後、室温から170℃まで25分で温度を上げ、圧力は最初から15kgf/cm2とし、真空度は3mmHg以下で170℃にて30分保持した後、冷却して取り出し、4層の多層板Gを得た。この表面の銅箔をエッチング除去後、炭酸ガスレーザー出力10mJで1ショット照射して孔径95μmのブラインドビア孔をあけた。過マンガン酸カリウム系デスミア溶液(日本マクダーミッド<株>)で膨潤、デスミア(溶解)、中和して、表層からの凹凸合計で3.8〜6.0μm(平均粗度Rz:5.1μm)、とした。同時にブラインドビア孔底部に残存している樹脂層を溶解除去した。次に、この粗化表面に無電解銅メッキ層を0.5μm、電解銅メッキを20μm付着させ、加熱炉に入れて100℃から徐々に温度を30分で150℃まで上げ、更に徐々に温度を上げて190℃で60分加熱硬化した。クロスセクションで絶縁層間の厚みを測定したところ、ほぼ25μmであった。これを用いてセミアディティブ法にて銅導体回路を形成し、更に導体回路表面黒色酸化銅処理して同一工程を繰り返し、6層の多層プリント配線板を作製した。この特性を測定した結果を表1に示す。 On the other hand, a circuit is formed on a BT resin copper-clad laminate (product name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with an insulation layer thickness of 0.2mm and 12μm double-sided copper foil as the inner layer board, and treated with black copper oxide The B-stage resin composition sheet F with the heat-resistant film base material and the copper foil is placed on both sides of the plate made of copper foil so that the release PET film is peeled off and the resin layer faces the inner plate side, After charging the press machine, the temperature was raised from room temperature to 170 ° C in 25 minutes, the pressure was 15 kgf / cm 2 from the beginning, the vacuum degree was 3 mmHg or less and held at 170 ° C for 30 minutes, cooled and taken out, A four-layer multilayer board G was obtained. After removing the copper foil on the surface by etching, a blind via hole having a hole diameter of 95 μm was formed by irradiating one shot at a carbon dioxide laser output of 10 mJ. It was swollen, desmeared (dissolved), and neutralized with a potassium permanganate desmear solution (Nippon McDermid Co., Ltd.) to give a total roughness of 3.8 to 6.0 μm (average roughness Rz: 5.1 μm). At the same time, the resin layer remaining at the bottom of the blind via hole was dissolved and removed. Next, an electroless copper plating layer of 0.5 μm and electrolytic copper plating of 20 μm are attached to this roughened surface, put in a heating furnace, gradually increase the temperature from 100 ° C. to 150 ° C. in 30 minutes, and further gradually increase the temperature. It was heated and cured at 190 ° C. for 60 minutes. When the thickness between the insulating layers was measured with a cross section, it was approximately 25 μm. Using this, a copper conductor circuit was formed by a semi-additive method, and then the surface of the conductor circuit was treated with black copper oxide, and the same process was repeated to produce a six-layer multilayer printed wiring board. The results of measuring this characteristic are shown in Table 1.

(表1)
実施例1-1 実施例1-2 実施例1-3
プラズマ処理条件
酸素ガス Heガス 窒素ガス
60W・秒/cm2 30W・秒/cm2 70W・秒/cm2
0.10Torr 0.10Torr 0.10Torr
銅接着力(kgf/cm) 1.07 1.05 1.07
吸湿後の半田耐熱性
PCT-0hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-1hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-3hrs. 膨れ無し 膨れ無し 膨れ無し
ガラス転移温度 DMA (℃)
195 195 195
弾性率25℃(kgf/mm2)
1577 1573 1575
ソリ・ネジレ(mm) 1.2 1.2 1.2
厚みバラツキ(μm) 3.0 3.1 3.0
Z方向耐マイグレーション性(Ω)
常態 6x1013 6x1013 6x1013
200hrs. 6x1011 6x1011 6x1011
1000hrs. 3x1010 3x1010 3x1010
(Table 1)
Example 1-1 Example 1-2 Example 1-3
Plasma processing conditions
Oxygen gas He gas Nitrogen gas
60W ・ sec / cm 2 30W ・ sec / cm 2 70W ・ sec / cm 2
0.10Torr 0.10Torr 0.10Torr
Copper adhesive strength (kgf / cm) 1.07 1.05 1.07
Solder heat resistance after moisture absorption
PCT-0hrs. No blisters No blisters No blisters
PCT-1hrs. No blisters No blisters No blisters
PCT-3hrs. No blister No blister No blister Glass transition temperature DMA (℃)
195 195 195
Elastic modulus 25 ° C (kgf / mm 2 )
1577 1573 1575
Warp and twist (mm) 1.2 1.2 1.2
Thickness variation (μm) 3.0 3.1 3.0
Z-direction migration resistance (Ω)
Normal 6x10 13 6x10 13 6x10 13
200hrs. 6x10 11 6x10 11 6x10 11
1000hrs. 3x10 10 3x10 10 3x10 10

(実施例2)
2,2-ビス(4-シアナトフェニル)エーテルモノマーを400部を150℃に溶融させ、撹拌しながら4時間反応させ、平均分子量1,900のプレポリマーを得た。これをメチルエチルケトンに溶解し、ワニスHとした。これに室温で液状のエポキシ樹脂として、ビスフェノールA型エポキシ樹脂(商品名:エピコート828)100部、ビスフェノールF型エポキシ樹脂(商品名:EXA830LVP)150部、ノボラック型エポキシ樹脂(商品名:DEN438)150部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN220F、住友化学工業<株>製)200部を配合し、熱硬化触媒としてアセチルアセトン鉄0.3部をメチルエチルケトンに溶解して加え、良く攪拌混合して均一なワニス I にした。
(Example 2)
400 parts of 2,2-bis (4-cyanatophenyl) ether monomer was melted at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer having an average molecular weight of 1,900. This was dissolved in methyl ethyl ketone to obtain Varnish H. As a liquid epoxy resin at room temperature, 100 parts of bisphenol A type epoxy resin (product name: Epicoat 828), 150 parts of bisphenol F type epoxy resin (product name: EXA830LVP), 150 novolak type epoxy resin (product name: DEN438) 150 Part, 200 parts of cresol novolac type epoxy resin (trade name: ESCN220F, manufactured by Sumitomo Chemical Co., Ltd.), 0.3 parts of acetylacetone iron dissolved in methyl ethyl ketone as a thermosetting catalyst, and mixed well with stirring Varnish I.

このワニス I を連続的に厚さ25μmの表面平滑な離型PETフィルムの片面に塗布、乾燥してゲル化時間60秒、厚さ18μmのBステージ樹脂層を形成し、シートJとした。又ゲル化時間64秒、厚さ5μmのBステージ樹脂層を形成し、シートKとした。それぞれ乾燥ゾーンを出てきた時点で厚さ20μmの保護ポリエチレンフィルムを樹脂面に付着させ、一体化した。これらのシートJ,Kの硬化後のTgは210℃であった。厚さ12μmのポリイミドフィルムを表2の条件でプラズマ処理したものの両面に上記シートJ,Kの保護ポリエチレンフィルムを剥離して配置し、100℃、線圧4kgf/cmでラミネートし、総厚さ35μmの耐熱フィルム基材入りBステージ樹脂組成物シートLを作製した。   This varnish I was continuously applied to one side of a 25 μm thick smooth surface release PET film and dried to form a B stage resin layer having a gel time of 60 seconds and a thickness of 18 μm. Further, a B-stage resin layer having a gel time of 64 seconds and a thickness of 5 μm was formed to obtain a sheet K. At the time of exiting the drying zone, a protective polyethylene film having a thickness of 20 μm was adhered to the resin surface and integrated. Tg of these sheets J and K after curing was 210 ° C. A 12μm thick polyimide film was plasma treated under the conditions shown in Table 2 and the protective polyethylene films of the above-mentioned sheets J and K were peeled and placed on both sides, laminated at 100 ° C with a linear pressure of 4kgf / cm, and a total thickness of 35μm A B-stage resin composition sheet L containing a heat-resistant film substrate was prepared.

一方、内層板として絶縁層厚さ0.2mm、18μm両面銅箔のBTレジン銅張積層板(商品名:CCL-HL830、三菱ガス化学<株>製 )に銅残率30%の回路を形成し、黒色酸化銅処理を銅箔に施した内層板の両面に、上記耐熱フィルム基材入りBステージ樹脂組成物シートLの片面の離型PETフィルムを剥離して樹脂層が内層板側を向くように両面に配置し、100℃、5kgf/cmの線圧で内層板にラミネート接着させた後、表層の離型PETフィルムを剥離し、この上に厚さ3μmの一般の電解銅箔を厚さ35μmの銅キャリアシートに付着させた銅箔(商品名:Super Thin箔、三井金属<株>製)を配置し、110℃・30分+200℃・90分、5kgf/cm2・20分+20kgf/cm2・最後まで、真空度30mmHg以下で2時間積層成形した。この絶縁層間の厚みはほぼ23μmであった。この表面の銅キャリアシートを剥離後、この上から炭酸ガスレーザー出力13mJで1ショット直接照射して孔径100μmのブラインドビア孔をあけた。デスミア処理後、無電解銅メッキを0.5μm、電解銅メッキを10μm付着させ、定法にて回路を形成し、黒色酸化銅処理後に同様に上記耐熱フィルム基材入りBステージ樹脂組成物シートLの離型フィルムを剥離して配置し、同様に加工して6層プリント配線板を作製した。評価結果を表2に示す。 On the other hand, a circuit with 30% copper residue was formed on a BT resin copper clad laminate (trade name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with an insulation layer thickness of 0.2 mm and double-sided copper foil as the inner layer plate. The release layer PET film on one side of the B-stage resin composition sheet L containing the heat-resistant film base material is peeled on both sides of the inner layer plate that has been subjected to black copper oxide treatment on the copper foil so that the resin layer faces the inner layer plate side. Placed on both sides and laminated and bonded to the inner layer plate at 100 ° C and a linear pressure of 5 kgf / cm, then the release PET film on the surface layer was peeled off, and a general electrolytic copper foil with a thickness of 3 μm was formed on this copper foil adhered to 35μm copper carrier sheet (trade name: Super Thin foil, Mitsui Mining and Smelting <strain> Ltd.) place, 110 ° C. · 30 min + 200 ° C. · 90 minutes, 5kgf / cm 2 · 20 minutes + 20 kgf / Laminate molding was performed for 2 hours at a degree of vacuum of 30 mmHg or less until cm 2 · last. The thickness between the insulating layers was approximately 23 μm. After peeling off the copper carrier sheet on this surface, a blind via hole having a hole diameter of 100 μm was made by directly irradiating one shot at a carbon dioxide laser output of 13 mJ from above. After the desmear treatment, 0.5 μm of electroless copper plating and 10 μm of electrolytic copper plating are adhered, and a circuit is formed by a conventional method. After the black copper oxide treatment, the B-stage resin composition sheet L containing the heat-resistant film substrate is similarly separated. The mold film was peeled and arranged, and processed in the same manner to produce a 6-layer printed wiring board. The evaluation results are shown in Table 2.

(表2)
実施例2-1 実施例2-2 実施例2-3
プラズマ処理条件
酸素ガス Arガス 酸素/Ar混合ガス
20W・秒/cm2 40W・秒/cm2 70W・秒/cm2
0.20Torr 0.10Torr 10Torr
吸湿後の半田耐熱性
PCT-0hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-1hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-3hrs. 膨れ無し 膨れ無し 膨れ無し
ガラス転移温度DMA (℃)
216 213 215
厚みバラツキ(μm)
3.3 3.3 3.2
Z方向耐マイグレーション性(Ω)
常態 6x1013 6x1013 6x1013
200hrs. 5x1011 5x1011 5x1011
1000hrs. 2x1011 2x1011 2x1011
(Table 2)
Example 2-1 Example 2-2 Example 2-3
Plasma processing conditions
Oxygen gas Ar gas Oxygen / Ar mixed gas
20W ・ sec / cm 2 40W ・ sec / cm 2 70W ・ sec / cm 2
0.20Torr 0.10Torr 10Torr
Solder heat resistance after moisture absorption
PCT-0hrs. No blisters No blisters No blisters
PCT-1hrs. No blisters No blisters No blisters
PCT-3hrs. No blister No blister No blister Glass transition temperature DMA (℃)
216 213 215
Thickness variation (μm)
3.3 3.3 3.2
Z-direction migration resistance (Ω)
Normal 6x10 13 6x10 13 6x10 13
200hrs. 5x10 11 5x10 11 5x10 11
1000hrs. 2x10 11 2x10 11 2x10 11

(比較例1)
ビスフェノールA型エポキシ樹脂(商品名:エピコ−ト1001)500部、フェノールノボラック型エポキシ樹脂(商品名:DEN438)450部、イミダゾール系硬化剤(商品名:2E4MZ、四国化成<株>製)1部、ジシアンジアミド30部を加え、3本ロールにて良く均一分散し、ワニス M とした。このワニス M を連続的に厚さ25μmの表面平滑な離型PETフィルムに塗布、乾燥して樹脂組成物厚さ20μm、ゲル化時間が68秒のBステージ樹脂組成物層シートNを作製した。このシートNの硬化後のTgは160℃であった。厚さ4.5μmの全芳香族ポリアミドフィルムの両面を表3の条件でプラズマ処理し、シートNを両面に配置し、連続的に温度100℃、線圧5kgf/cmの加熱ロールにてラミネートし、耐熱フィルム基材入り離型フィルム付きBステージ樹脂組成物シート O を作製した。この絶縁層厚みはほぼ45μmであった。
(Comparative Example 1)
500 parts of bisphenol A type epoxy resin (trade name: Epicote 1001), 450 parts of phenol novolac type epoxy resin (trade name: DEN438), 1 part of imidazole curing agent (trade name: 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) Then, 30 parts of dicyandiamide was added and uniformly dispersed with three rolls to obtain Varnish M. This varnish M was continuously applied to a 25 μm thick smooth PET release film and dried to prepare a B stage resin composition layer sheet N having a resin composition thickness of 20 μm and a gel time of 68 seconds. Tg of this sheet N after curing was 160 ° C. Plasma treatment is performed on both sides of a 4.5 μm thick wholly aromatic polyamide film under the conditions shown in Table 3, sheet N is placed on both sides, and continuously laminated with a heating roll at a temperature of 100 ° C. and a linear pressure of 5 kgf / cm. A B-stage resin composition sheet O with a release film containing a heat-resistant film substrate was prepared. The insulating layer thickness was approximately 45 μm.

一方、厚さ0.2mm、18μm両面銅箔のエポキシ系銅張積層板(商品名:CCL-EL170、三菱ガス化学<株>製)に銅残率30%の回路を形成し、導体に黒色酸化銅処理した内層板Pを作製後、この両面に上記耐熱フィルム基材入り離型フィルム付きBステージ樹脂組成物シート O の樹脂面が向くように配置し、100℃、5kgf/cmの線圧でラミネートして基板Qを作製した。又内層板Pの片面に同様に付着させ、基板Rとした。この基板Q,Rの離型PETフィルムを剥離し、基板RのシートOが付着していない面に基板Qを配置し、基板Q,Rを組み合わせた両外側に厚さ12μmの一般の電解銅箔を配置し、110℃・30分+180℃・90分、5kgf/cm2・15分+20kgf/cm2・最後まで、真空度30mmHg以下で2時間積層成形して6層板を作製し、その後、定法にてプリント配線板とした。内層間絶縁層厚さは約20μmであった。評価結果を表3に示す。 On the other hand, a circuit with 30% copper residue was formed on an epoxy-based copper-clad laminate (trade name: CCL-EL170, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 0.2mm and double-sided copper foil. After the copper-treated inner layer plate P is prepared, the both sides of the B-stage resin composition sheet O with the heat-resistant film base material and the release film are placed so that the resin surface faces, and the linear pressure is 100 ° C. and 5 kgf / cm. The substrate Q was produced by laminating. In addition, the substrate R was made to adhere to one side of the inner layer plate P in the same manner. The release PET film of the substrates Q and R is peeled off, the substrate Q is arranged on the surface of the substrate R where the sheet O is not attached, and a general electrolytic copper having a thickness of 12 μm is formed on both sides of the combination of the substrates Q and R. Place the foil, and laminate it at 110 ° C for 30 minutes + 180 ° C for 90 minutes, 5 kgf / cm 2 for 15 minutes + 20 kgf / cm 2 for the last 2 hours at a vacuum of 30 mmHg or less to make a 6-layer board. A printed wiring board was obtained by a conventional method. The inner interlayer insulating layer thickness was about 20 μm. The evaluation results are shown in Table 3.

(表3)
比較例1-1 比較例1-2 比較例1-3
プラズマ処理条件
酸素ガス Arガス 酸素/Ar混合ガス
70W・秒/cm2 50W・秒/cm2 70W・秒/cm2
0.10Torr 0.10Torr 0.10Torr
吸湿後の半田耐熱性
PCT-0hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-1hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-3hrs. 膨れ発生 膨れ発生 膨れ発生
ガラス転移温度 DMA (℃)
165 165 165
厚みバラツキ(μm)
5.7 5.2 5.5
Z方向耐マイグレーション性(Ω)
常態 5x1013 5x1013 5x1013
200hrs. 5x1010 5x1010 5x1010
1000hrs. 8x109 8x109 8x109
(Table 3)
Comparative Example 1-1 Comparative Example 1-2 Comparative Example 1-3
Plasma processing conditions
Oxygen gas Ar gas Oxygen / Ar mixed gas
70W ・ sec / cm 2 50W ・ sec / cm 2 70W ・ sec / cm 2
0.10Torr 0.10Torr 0.10Torr
Solder heat resistance after moisture absorption
PCT-0hrs. No blisters No blisters No blisters
PCT-1hrs. No blisters No blisters No blisters
PCT-3hrs. Swelling Swelling Swelling Swelling Glass transition temperature DMA (℃)
165 165 165
Thickness variation (μm)
5.7 5.2 5.5
Z-direction migration resistance (Ω)
Normal 5x10 13 5x10 13 5x10 13
200hrs. 5x10 10 5x10 10 5x10 10
1000hrs. 8x10 9 8x10 9 8x10 9

(比較例2)
実施例2において、ワニスIに液状のエポキシ化ポリブタジエン樹脂(商品名:E-1000-8.0、日本石油化学<株>製)400部を加え、良く均一に攪拌し、ワニスSとした。このワニスSを同様に塗布、乾燥してBステージ樹脂組成物シートTを作成した。このシートTの硬化後のTgは170℃未満であった。厚さ4.5μmの全芳香族ポリアミドフィルムの両面を表4の条件でプラズマ処理し、同様に耐熱基材入りBステージ樹脂組成物シートを作成し、6層プリント配線板とした。評価結果を表4に示す。
(Comparative Example 2)
In Example 2, 400 parts of a liquid epoxidized polybutadiene resin (trade name: E-1000-8.0, manufactured by Nippon Petrochemical Co., Ltd.) was added to Varnish I, and the mixture was well stirred uniformly to obtain Varnish S. This varnish S was applied and dried in the same manner to prepare a B stage resin composition sheet T. The Tg of this sheet T after curing was less than 170 ° C. Both surfaces of a 4.5 μm-thick wholly aromatic polyamide film were subjected to plasma treatment under the conditions shown in Table 4, and similarly, a B-stage resin composition sheet containing a heat-resistant substrate was prepared to obtain a 6-layer printed wiring board. The evaluation results are shown in Table 4.

(表4)
比較例2-1 比較例2-2 比較例2-3
プラズマ処理条件
酸素ガス Arガス 酸素/Ar混合ガス
20W・秒/cm2 40W・秒/cm2 70W・秒/cm2
0.20Torr 0.10Torr 10Torr
吸湿後の半田耐熱性
PCT-0hrs. 膨れ無し 膨れ無し 膨れ無し
PCT-1hrs. 膨れ発生 膨れ発生 膨れ発生
PCT-3hrs. 膨れ発生 膨れ発生 膨れ発生
ガラス転移温度DMA (℃)
170℃未満 170℃未満 170℃未満
(Table 4)
Comparative Example 2-1 Comparative Example 2-2 Comparative Example 2-3
Plasma processing conditions
Oxygen gas Ar gas Oxygen / Ar mixed gas
20W ・ sec / cm 2 40W ・ sec / cm 2 70W ・ sec / cm 2
0.20Torr 0.10Torr 10Torr
Solder heat resistance after moisture absorption
PCT-0hrs. No blisters No blisters No blisters
PCT-1hrs. Swelling Swelling Swelling Swelling
PCT-3hrs. Swelling Swelling Swelling Swelling Glass transition temperature DMA (℃)
<170 ° C <170 ° C <170 ° C

(比較例3)
実施例1で銅箔の凹凸部に付着するBステージの樹脂層の厚さを、凸部先端から30μm付着させて金属箔付きBステージ樹脂組成物シートUを作製し、実施例1において耐熱フィルム基材を使用せず、この金属箔付きBステージ樹脂組成物シートUのみを使用して同様に積層硬化処理成形し、粗化処理を同様に行って、実施例1と同様に表層からの凹凸合計をほぼ同じとし、同様に6層の多層プリント配線板とした。この評価結果を表5に示す。
(Comparative Example 3)
The B-stage resin composition sheet U with metal foil was prepared by attaching the thickness of the B-stage resin layer attached to the concavo-convex part of the copper foil in Example 1 to 30 μm from the tip of the convex part. Using only this B-stage resin composition sheet U with metal foil, without using a base material, it was similarly laminated and cured, and the roughening treatment was performed in the same manner. The total was almost the same, and a multilayer printed wiring board with 6 layers was similarly formed. The evaluation results are shown in Table 5.

(表5)
比較例3
銅接着力(kgf/cm) 1.08
吸湿後の半田耐熱性
PCT-0hrs. 膨れ無し
PCT-1hrs. 膨れ無し
PCT-3hrs. 膨れ無し
ガラス転移温度DMA (℃) 192
弾性率25℃ (kgf/mm2) 995
ソリ・ネジレ(mm) 5.3
厚みバラツキ(μm) 6.5
Z方向耐マイグレーション性(Ω)
常態 5x1013
200hrs. 6x1010
1000hrs. <108
(Table 5)
Comparative Example 3
Copper adhesive strength (kgf / cm) 1.08
Solder heat resistance after moisture absorption
PCT-0hrs. No blister
PCT-1hrs. No blister
PCT-3hrs. No blistering glass transition temperature DMA (℃) 192
Elastic modulus 25 ℃ (kgf / mm 2 ) 995
Warp and twist (mm) 5.3
Thickness variation (μm) 6.5
Z-direction migration resistance (Ω)
Normal 5x10 13
200hrs. 6x10 10
1000hrs. <10 8

<測定方法>
1)吸湿後の半田耐熱性 : 6層のプリント配線板を、常態で、もしくはプレッシャクッカー試験機にて吸湿処理し、260℃の半田中に30sec.浸漬してから異常の有無を観察した。
PCT-0hrs. :プレッシャクッカー試験は行っていない。常態を示す。
PCT-1hrs. :プレッシャクッカー試験機にて121℃/203kPa環境下で1時間処理を行った。
PCT-3hrs. :プレッシャクッカー試験機にて121℃/203kPa環境下で3時間処理を行った。
2)銅接着力 : JIS C6481に準じて測定した。
3)ガラス転移温度 : 耐熱基材入りBステージ樹脂組成物シートを複数枚使用して積層成形し、厚さをほぼ0.8mmとしたものを作成し、DMA法にて測定した。
4)弾性率 : 3)で測定したDMAのチャートの25℃での弾性率を示した。
5)ソリ、ネジレ : 250x250mmで作製した6層のプリント配線板を用い、定盤上に置き、ソリ、ネジレの最大値を測定した。
6)厚みバラツキ : 1)の250x250mmの6層のプリント配線板の積層した層の一層当たりの厚みのバラツキを厚み測定器で測定し、(最大値−最小値)で表した。
7)耐マイグレーション性 : 各実施例、比較例の6層板の2層目と3層目に10mm角の銅箔を同じ位置に残して100個つなぎ、Z方向の絶縁層間の絶縁抵抗値を85℃・85%RHにて70VDC印加して測定した。
<Measurement method>
1) Solder heat resistance after moisture absorption: Six layers of printed wiring boards were subjected to moisture absorption treatment in a normal state or with a pressure cooker test machine, and immersed in 260 ° C. solder for 30 seconds.
PCT-0hrs .: No pressure cooker test. Shows normal.
PCT-1hrs .: Treated in a pressure cooker tester in an environment of 121 ° C./203 kPa for 1 hour.
PCT-3hrs .: Treated in a pressure cooker tester at 121 ° C./203 kPa for 3 hours.
2) Copper adhesion strength: Measured according to JIS C6481.
3) Glass transition temperature: A plurality of B-stage resin composition sheets containing a heat-resistant substrate were laminated and formed to a thickness of approximately 0.8 mm, and measured by the DMA method.
4) Elastic modulus: The elastic modulus at 25 ° C of the DMA chart measured in 3) is shown.
5) Warp and twist: A 6-layer printed wiring board made with 250 x 250 mm was placed on a surface plate, and the maximum values of warp and twist were measured.
6) Thickness variation: The variation in thickness per layer of the 6 layers of printed wiring board of 250x250mm in 1) was measured with a thickness meter and expressed as (maximum value-minimum value).
7) Migration resistance: 100 pieces of 10mm square copper foil were left in the same position on the second and third layers of the 6-layer board of each example and comparative example, and the insulation resistance value between the insulation layers in the Z direction was determined. Measurement was performed by applying 70 VDC at 85 ° C. and 85% RH.

Claims (4)

プラズマ処理により表面処理が施された耐熱フィルム基材の、少なくとも片面に硬化後のガラス転移温度が180℃以上である熱硬化性樹脂組成物を付着して得られる耐熱フィルム基材入りBステージ樹脂組成物シート。 A B-stage resin containing a heat-resistant film substrate obtained by adhering a thermosetting resin composition having a glass transition temperature of 180 ° C. or higher after curing to at least one surface of a heat-resistant film substrate surface-treated by plasma treatment Composition sheet. 該耐熱フイルム基材入りBステージ樹脂組成物シートの片面に金属箔を付着させた請求項1記載の耐熱フィルム基材入り金属箔付きBステージ樹脂組成物シート。 The B-stage resin composition sheet with a metal foil containing a heat-resistant film substrate according to claim 1, wherein a metal foil is attached to one side of the B-stage resin composition sheet containing the heat-resistant film substrate. 該耐熱フィルム基材が全芳香族ポリアミドフィルムであることを特徴とする請求項1又は2記載の耐熱フィルム基材入りBステージ樹脂組成物シート。 The B-stage resin composition sheet containing a heat-resistant film substrate according to claim 1 or 2, wherein the heat-resistant film substrate is a wholly aromatic polyamide film. 該耐熱フイルム基材入りBステージ樹脂組成物シートのBステージ樹脂組成物が多官能性シアン酸エステル樹脂組成物である請求項1又は2又は3記載の耐熱フイルム基材入りBステージ樹脂組成物シート。 4. The B-stage resin composition sheet with a heat-resistant film substrate according to claim 1, wherein the B-stage resin composition of the B-stage resin composition sheet with a heat-resistant film substrate is a polyfunctional cyanate ester resin composition. .
JP2003278947A 2002-11-11 2003-07-24 Stage b resin composition sheet having film substrate in it Pending JP2005041148A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003278947A JP2005041148A (en) 2003-07-24 2003-07-24 Stage b resin composition sheet having film substrate in it
US10/703,488 US20040091688A1 (en) 2002-11-11 2003-11-10 Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board
TW092131482A TW200415974A (en) 2002-11-11 2003-11-11 Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278947A JP2005041148A (en) 2003-07-24 2003-07-24 Stage b resin composition sheet having film substrate in it

Publications (1)

Publication Number Publication Date
JP2005041148A true JP2005041148A (en) 2005-02-17

Family

ID=34265206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278947A Pending JP2005041148A (en) 2002-11-11 2003-07-24 Stage b resin composition sheet having film substrate in it

Country Status (1)

Country Link
JP (1) JP2005041148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045112A1 (en) * 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Multilayer body, metal foil-clad laminate, multilayer body with patterned metal foil, multilayer body having buildup structure, printed wiring board, multilayer coreless substrate and method for producing same
CN113613411A (en) * 2021-09-23 2021-11-05 浙江清华柔性电子技术研究院 Flexible circuit substrate and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045112A1 (en) * 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Multilayer body, metal foil-clad laminate, multilayer body with patterned metal foil, multilayer body having buildup structure, printed wiring board, multilayer coreless substrate and method for producing same
JPWO2020045112A1 (en) * 2018-08-30 2021-09-09 三菱瓦斯化学株式会社 Laminates, metal foil-clad laminates, patterned metal foil laminates, laminates with build-up structures, printed wiring boards, multilayer coreless substrates, and methods of manufacturing them.
US11877396B2 (en) 2018-08-30 2024-01-16 Mitsubishi Gas Chemical Company, Inc. Laminate, metal foil-clad laminate, laminate having patterned metal foil, laminate having buildup structure, printed wiring board, multilayer coreless substrate, and method for producing same
CN113613411A (en) * 2021-09-23 2021-11-05 浙江清华柔性电子技术研究院 Flexible circuit substrate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6866919B2 (en) Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof
JP5641942B2 (en) Resin composite copper foil
US20040091688A1 (en) Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP2003249751A (en) Method for producing multilayer printed wiring board using additive method
JP2003251757A (en) B-stage resin composition sheet having heat resistant film base material for lamination
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP2003238772A (en) Curable resin composition and sheet of b-stage resin composition
JP2005041148A (en) Stage b resin composition sheet having film substrate in it
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2003246843A (en) Curable resin composition
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2005028825A (en) B-stage resin composition sheet with film base therein
JP2004319888A (en) Multilayer printed circuit board
JP2004165255A (en) B stage resin composition sheet filled with heat-resistant film base superior in adhesion to resin
JP2003258434A (en) B-stage resin composition sheet containing heat-resistant film substrate for additive
TWI663895B (en) Resin laminate for printed circuit board for forming fine via hole, multilayer printed circuit board with fine via hole in resin insulating layer and manufacturing method thereof
JP2003298243A (en) Multilayer printed-wiring board
JP2004296601A (en) Method of manufacturing multilayer board employing b stage resin composition sheet containing heat resistant film
JP2003251739A (en) Sheet of b-stage resin composition with metal leaf containing base material for additive
JP2005288714A (en) B-stage resin composition sheet and manufacturing method of copper clad laminate using it
JP2004342827A (en) Multilayer printed circuit board
JP2004319887A (en) Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board