JP2005040306A - Coaxial probe - Google Patents

Coaxial probe Download PDF

Info

Publication number
JP2005040306A
JP2005040306A JP2003202658A JP2003202658A JP2005040306A JP 2005040306 A JP2005040306 A JP 2005040306A JP 2003202658 A JP2003202658 A JP 2003202658A JP 2003202658 A JP2003202658 A JP 2003202658A JP 2005040306 A JP2005040306 A JP 2005040306A
Authority
JP
Japan
Prior art keywords
coaxial probe
slit
dielectric
tip
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202658A
Other languages
Japanese (ja)
Other versions
JP4438338B2 (en
Inventor
Kikuo Wakino
喜久男 脇野
Toshihide Kitazawa
敏秀 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003202658A priority Critical patent/JP4438338B2/en
Publication of JP2005040306A publication Critical patent/JP2005040306A/en
Application granted granted Critical
Publication of JP4438338B2 publication Critical patent/JP4438338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coaxial probe in which the emission efficiency of an electromagnetic wave is improved and SAR in a vicinity closer to the tip is enhanced. <P>SOLUTION: In the coaxial probe in which a dielectric material 2 is interposed between an inner conductive material 1 and an outer conductive material 3, the outer conductive material 3 is electrically connected to the inner conductive material 1 at a distal end portion, and a slit S is formed at a part of the outer conductive material 3, the slit S is formed at the position which becomes a substantial attenuation pole in the nature of the reflection coefficient of the coaxial probe when varying the dimension h1 from the distal end of the coaxial probe 100 to the position for forming the slit S. Thereby, the emission efficiency of the electromagnetic wave can be enhanced. Further, the area having high SAR is formed at the vicinity of the distal end of the coaxial probe 100, by setting the dielectric coefficient of the dielectric material 2 lower than and 1/5 or more of the dielectric coefficient of the periphery (a biological tissue to be irradiated with the electromagnetic wave). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、例えば生体組織内に侵入させてマイクロ波により加熱治療を行う際に用いることができる同軸プローブに関するものである。
【0002】
【従来の技術】
近年、悪性腫瘍等の病気に対する治療法として電磁波を利用した方法が幾つか開発されている。その1つに同軸プローブを用いた凝固療法と呼ばれる治療法がある。
この凝固療法は、同軸プローブを直接患部に挿し込み、同軸プローブから放射される電磁波で患部を直接加温することによって、患部の組織を凝固壊死させる方法である。
【0003】
同軸プローブを患部に挿し込む方法として例えば肝臓に対しては、開腹した状態で穿刺する方法、経皮的に穿刺する方法、胸腔鏡または腹腔鏡のガイド針の中に挿入する方法等がある。この同軸プローブを用いた凝固療法は、切開部分が小さく、治療に要する時間も比較的短くてすむため、手術の際患者への負担が小さい等の利点がある。
【0004】
ここで、従来の同軸プローブ(例えば特許文献1参照)の構造を図10に示す。図10において(A)は肝臓などを模式化した臓器OR内に同軸プローブ100を挿入した状態での同軸プローブ100の長手方向の断面図、(B)は同軸プローブ100の長手方向に対して垂直な面での断面図である。この図10に示すように、内導体1と外導体3との間に誘電体2を介在させて、先端部分で外導体3と内導体1とを電気的に接続するとともに、外導体3の一部にスリットSを設けている。
【0005】
【特許文献1】
特開平7−275247号公報
【0006】
【発明が解決しようとする課題】
図10において図中の寸法は従来用いられている同軸プローブの具体的な寸法(単位mm)である。このような寸法構造の同軸プローブをシミュレーションしたところ、反射係数が0.65であり、入力信号の約6.5割も入力側に反射してしまうため、電磁波の放射効率が低いという問題があった。
【0007】
また、この同軸プローブの放射パターンを求めたところ、図11に示すような結果が得られた。ここで横軸は同軸プローブ先端位置を0とするプローブの位置(単位mm)、縦軸は半径方向の距離(単位mm)であり、SAR(Specific Absorption Rate)を濃度で表している。SARは電磁波の生体に対するエネルギー吸収量の評価として使用されるものであり、単位質量に吸収される単位時間あたりのエネルギーをW/kgで表したものである。図11で濃度変化の1段階は2.5dBに相当している。このようにスリットS付近でSARが高く、このスリットSの近傍で患部が加熱されることになる。
【0008】
従来の同軸プローブでは、同軸プローブ100の先端から離れた位置(図10に示した例では10mm)位置にスリットSが設けられていたため、使用し難いという問題があった。すなわち、加熱すべき患部を通り抜けて同軸プローブのスリット部分が患部の中央にくるように挿入することになり、その分患者に対する侵入度(正常な組織を冒す度合い) が増大したり治療可能範囲が狭くなるといった問題があった。
【0009】
しかし、スリットの位置を単に同軸プローブの先端付近に配置しただけでは、上記反射係数の低下に起因して放射効率を高めることができない。
そこでこの発明の目的は、電磁波の放射効率を高めるとともに、より先端付近でSARを高めた同軸プローブを提供することにある。
【0010】
【課題を解決するための手段】
この発明は、内導体と外導体との間に誘電体が介在し、先端で外導体と内導体とを電気的に接続するとともに、外導体の一部にスリットを設けた同軸プローブにおいて、先端に対するスリットの位置を、先端位置からの距離変化に対する反射係数の特性で略減衰極となる位置に定めたことを特徴としている。
【0011】
このように同軸プローブの先端に対するスリットの位置を変化させると、同軸プローブに接続されるマイクロ波発振源からこの同軸プローブを見た反射係数が変化するが、その反射係数が略減衰極となる位置にスリットを設けることによって電磁波の放射効率を高める。
【0012】
また、この発明は、前記誘電体の誘電率を周囲の誘電率より低く且つ当該周囲の誘電率の1/5以上に定めたことを特徴としている。
このように同軸プローブの誘電体部分の誘電率を定めることによって反射係数を低減するとともにスリットの形成位置をより先端に近づける。
【0013】
また、この発明は、前記誘電体をアルミナセラミックスとしたことを特徴としている。
このように生体組織の比誘電率に近いアルミナセラミックスを用いることにより生体組織との界面での反射損失を低減する。さらに、誘電体損失も小さくして高い電磁波放射効率を得る。また、高い機械的強度を得るとともに、生体に対して生化学的に無害とする。
【0014】
また、この発明は、前記スリットを第1のスリットとし、前記同軸プローブの先端から第1のスリットまでの距離より遠い位置に第2のスリットを設け、第1のスリットの中心から第2のスリットの中心までの距離が前記同軸ケーブルの管内波長の略1/4以下で且つ第1・第2のスリット周囲の誘電率で換算した電磁波伝搬波長の略1/4以上とする。
これにより同軸プローブの根元部分での電磁波の放射を抑え、先端部付近でのみ効率良く電磁波を放射できるようにする。また、電磁波放射対象である生体組織内部で同軸プローブの外導体表面に発生する定在波を抑えて、患部以外の生体組織への加熱を抑える。
【0015】
【発明の実施の形態】
第1の実施形態に係る同軸プローブの構造を図1に示す。ここで(A)は肝臓などを模式化した臓器OR内に同軸プローブ100を挿入した状態での同軸プローブ100の長手方向の断面図、(B)は同軸プローブ100の長手方向に対して垂直な面での断面図である。この図に示すように、内導体1と外導体3との間に誘電体2を介在させて、先端部分で外導体3と内導体1とを電気的に接続するとともに、外導体3の一部にスリットSを設けている。
【0016】
一般に、同軸プローブによって生体組織にマイクロ波を照射した場合、単位時間当たりに吸収される割合である比吸収率SARは次のようにして求める。
【0017】
すなわち、SARは単位質量に吸収される単位時間あたりのエネルギーをW/kgで表したものであり、電界強度Eのなかにある誘電体に吸収される単位体積あたりの電力Pは、生体組織の誘電率をεとすると、
P=ωεEtanδ
と表せる。
【0018】
また、単位質量に吸収される電力は、生体組織の密度をρとすると、
SAR=ωεEtanδ/ρ
である。さらに、生体組織の導電率をσとすると、
tan δ=σ/(ωε)であるから、
SAR=σE/ρ
と表せる。
【0019】
したがって電磁波の吸収率を如何に高めるかは、電界Eを如何に強くするかにかかっている。
【0020】
図2および図3は図1に示した同軸プローブにおいて、同軸プローブ100の先端からスリットSまでの距離h1を変化させたときの反射係数の変化をシミュレーションによって求めた結果を示している。ここで、図1における各部の条件は次のとおりである。
【0021】
〈各部の寸法〉
h1=0.8
g1=2.0
L1=72
L2=30
r1=0.24
r2=0.8
L=50
R=10
ここで単位は全て[mm]である。
【0022】
〈臓器OR〉
比誘電率=43.0(肝臓の比誘電率に等しい値)
tanδ=10×1010
導電率=1.69
とし、周波数を2.45GHzとし、FEM(有限要素法)を用いてシミュレーションした。
【0023】
図2の(A)は誘電体2として、比誘電率が2.1のポリテトラフルオロエチレン(PTFE)を用いた場合、(B)は誘電体2として、比誘電率が9.7のアルミナを用いた場合である。また、図3の(A)は誘電体2として比誘電率35のセラミックスを用いた場合、(B)は比誘電率60のセラミックスを用いた場合である。
【0024】
同軸プローブの誘電体部分にポリテトラフルオロエチレンを用いた場合、同軸プローブの同軸ケーブル部分の管内波長は2.45GHzで約80mmである。したがってその1/4波長は20mmであるが、図2の(A)に示したように、同軸プローブの先端からの距離h1が20mm付近で最も反射係数が大きくなっていて、h1が20mmより大きくても小さくても反射係数が小さくなる傾向にある。このことから、先端からの距離h1が管内波長で1/4波長に相当する位置にスリットSを設けても、すなわち電流がほぼ0となる位置にスリットSを設けても電磁波の放射にほとんど寄与せず反射係数はほぼ1となることが分かる。また、先端からの距離h1を変化させると、反射係数は同軸プローブに生じる定在波の位相に対応して変化するが、スリットSが存在するため、反射係数の変化は必ずしも正弦波状にはならないことが分かる。
【0025】
誘電体2としてポリテトラフルオロエチレンを用いた場合には、h1=4.6のとき、反射係数が0.23(dB表示で−12.8)となる。スリットSの位置をこのように定めることによって、従来のh1=10mmとしたときの反射係数より1/2以上に小さくでき、しかも同軸プローブのより先端付近から電磁波を放射できることになる。
【0026】
同軸プローブ100の誘電体2としてアルミナセラミックスを用いた場合には、管内波長が約40mmであるので、図2の(B)に示したように、h1の変化に対する反射係数の変化が管内波長の1/2(約20mm)の周期で変化している。これはスリットSで隔てられた外導体間の電位差によって反射係数が定まり、その電位差の正負に関係がないためである。この例では、同軸プローブの先端から0.8mmで反射係数が0.15(dB表示で−16.4)という特性が得られる。なお、そこから1周期離れた20mm付近で更に低い反射係数が得られているが、この位置は同軸プローブの先端から離れすぎているため同軸プローブの先端付近で生体組織を加熱するという目的には使えない。
【0027】
同軸プローブ100の誘電体2の比誘電率が35の誘電体セラミックスの場合には、図3の(A)に示したように、先端からの距離h1を0.6mmとしたとき、反射係数が最も低く0.138(dB表示で−17.2)の特性が得られる。
【0028】
また、同軸プローブ100の誘電体2の比誘電率が60の誘電体セラミックスの場合には、図3の(B)に示したように、先端からの距離h1を0.4mmとしたとき、反射係数が最も低く0.245(dB表示で−12.2)の特性が得られる。
【0029】
図4はアルミナセラミックスを誘電体の材料とした同軸プローブのSAR分布を示している。図11に示した従来の同軸プローブのSAR分布と比較すれば明らかなように、スリットの形成位置が先端から10mmであったものが0.8mmとなり、同軸プローブのより先端に近い位置で高いSARが得られる。
【0030】
以上の結果から分かるように、同軸プローブ100の誘電体2にアルミナセラミックスを用いることによって、反射係数が従来0.65であったものが0.15にまで改善される。また、比誘電率35の誘電体セラミックスを用いることによって、0.138にまで改善できる。しかも、最も小さな反射係数が得られるときのスリットSの位置も先端に近づく。
【0031】
なお、図3の(B)に示したように、誘電体2の比誘電率が60のとき、スリットSの位置が最も先端に近づいているが、反射係数が、比誘電率を35にした場合に比べて悪くなっている。これは、肝臓の比誘電率43.0よりも同軸プローブ100の誘電体2の比誘電率が大きくなることによって、同軸プローブからの電磁波の放射が妨げられているからである。すなわち、同軸プローブ100と生体組織との整合がとれていないからである。
【0032】
このように、誘電体2として比誘電率35の(周囲の誘電体の比誘電率43.0より低い)誘電体セラミックスを用いたときと、比誘電率9.7(周囲の誘電体の比誘電率43.0の1/5以上の値)であるアルミナセラミックスを用いたときに、先端に近い位置にスリットを設けた場合に低反射特性が得られる。したがって、同軸プローブの誘電体2の誘電率を周囲の加熱対象の誘電率より低く、且つ当該周囲の誘電率の1/5以上に定めればよい。
【0033】
次に、第2の実施形態に係る同軸プローブについて図5〜図9を参照して説明する。
第1の実施形態に係る同軸プローブでは、その外導体3の所定位置で軸回りに外導体3を取り除いた単一のスリットSを設けたが、この第2の実施形態に係る同軸プローブでは、第1のスリットS1と第2のスリットS2を形成している。
【0034】
第1の実施形態に係る同軸プローブのSAR分布の例では、同軸プローブに生じる定在波の影響で、図4に示したようにSARの高い領域A0以外に同軸プローブの根元方向に戻った位置にSARの比較的高い領域A1が生じている。この第2の実施形態に係る同軸プローブは、同軸プローブ100の外導体3を伝って根元方向に延びる部分でのSARの強度を抑えて、先端部付近にのみSARの高い領域を集中させるようにしたものである。
【0035】
図5において各部の寸法を次のとおりにしてシミュレーションを行った。
h1=0.8
g1=2.0
g2=1.5
L1=72
L2=30
r1=0.24
r2=0.8
L=50
R=10
単位は全てmmである。
【0036】
ここでは第1のスロットS1を主たる電磁波の漏れを生じさせる部分とし、第2のスリットS2は不要な電磁波の放射を抑制するために設ける。そのため、第2のスリットS2のスリット幅g2を第1のスリットS1のスリット幅g1より小さく定めている。
【0037】
図6〜図9は図5に示した第1のスリットS1と第2のスリットS2との間の寸法h2を変化させたときの反射係数とSARの分布について示している。ここで横軸は同軸プローブの先端位置を0とするプローブの位置(単位mm)、縦軸は半径方向の距離(単位mm)であり、SARを濃度で表している。
【0038】
同軸プローブ100の誘電体2にアルミナを用いた場合の周波数2.45GHzにおける管内波長は約40mmである。このときにスリットS2に生じる電界の位相を180ずらすためには、第1のスリットS1の中心から第2のスリットS2の中心までの距離を管内波長の1/4付近に設定すればよい。したがって計算上では第1・第2のスリットS1−S2間の中心間隔を10mm程度に設定すればよいと考えられる。図6〜図9に示した例では、h2=5.7mm(中心間距離7.45mm)とした場合に最も反射係数が小さく良好な特性を示している。これは、生体組織の比誘電率を43.0に設定しているため、波長短縮効果が生じ、位相を180°にずらすために必要な第1・第2のスリットS1−S2間の距離が短縮化されたためであろう。したがって、上記中心間距離を、管内波長の1/4以下で且つ同軸プローブ周囲の誘電率で換算した電磁波の伝搬波長の1/4以上に設定すればよい。
【0039】
以上のようにして同軸プローブに2つのスリットを設け、それぞれの位置を定めることによって、同軸プローブの外導体表面に発生する(先端部以外の根元方向に延びる)定在波を抑えることができ、患部以外の生体組織への不要な加熱を抑えることができる。
【0040】
【発明の効果】
この発明によれば、内導体と外導体との間に誘電体が介在し、先端で外導体と内導体とを電気的に接続するとともに、外導体の一部にスリットを設けた同軸プローブにおいて、先端に対するスリットの位置を、先端位置からの距離変化に対する反射係数の特性で略減衰極となる位置に定めたことにより、電磁波の放射効率が高まる。
【0041】
また、この発明によれば、誘電体の誘電率を周囲の誘電率より低く且つ当該周囲の誘電率の1/5以上に定めたことによって反射係数が低減されるとともにスリットの形成位置がより先端に近づき、より低侵入での治療が可能となる。
【0042】
また、この発明によれば、前記誘電体をアルミナセラミックスとしたことにより、生体組織との界面での反射損失を低減でき、さらに誘電体損失も小さいため高い電磁波放射効率が得られる。また、高い機械的強度が得られるとともに、生体に対して生化学的に無害とすることができる。
【0043】
また、この発明によれば、前記スリットを第1のスリットとし、前記同軸プローブの先端から第1のスリットまでの距離より遠い位置に第2のスリットを設け、第1のスリットの中心から第2のスリットの中心までの距離が前記同軸ケーブルの管内波長の1/4以下で且つ第1・第2のスリット周囲の誘電率で換算した電磁波伝搬波長の1/4以上としたことにより、同軸プローブの根元部分での電磁波の放射が抑えられ、先端部付近でのみ効率良く電磁波を放射できるようになる。また、電磁波放射対象である生体組織内部で同軸プローブの外導体表面に発生する定在波を抑えて、患部以外の生体組織への加熱が抑えられる。
【図面の簡単な説明】
【図1】第1の実施形態に係る同軸プローブの構造を示す図
【図2】同同軸プローブの誘電体の比誘電率を定めたときの、同軸プローブ先端からの距離に対する反射係数の変化について示す図
【図3】同同軸プローブの誘電体の比誘電率を定めたときの、同軸プローブ先端からの距離に対する反射係数の変化について示す図
【図4】同同軸プローブのSAR分布を示す図
【図5】第2の実施形態に係る同軸プローブの構成を示す図
【図6】同同軸プローブの第1・第2のスリット間の間隔を変化させたときのSAR分布を示す図
【図7】同同軸プローブの第1・第2のスリット間の間隔を変化させたときのSAR分布を示す図
【図8】同同軸プローブの第1・第2のスリット間の間隔を変化させたときのSAR分布を示す図
【図9】同同軸プローブの第1・第2のスリット間の間隔を変化させたときのSAR分布を示す図
【図10】従来の同軸プローブの構成を示す図
【図11】同同軸プローブのSAR分布を示す図
【符号の説明】
1−内導体
2−誘電体
3−外導体
S−スリット
OR−臓器
100−同軸プローブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coaxial probe that can be used, for example, when performing heat treatment using microwaves by invading a living tissue.
[0002]
[Prior art]
In recent years, several methods using electromagnetic waves have been developed as treatments for diseases such as malignant tumors. One of them is a treatment method called coagulation therapy using a coaxial probe.
In this coagulation therapy, a coaxial probe is directly inserted into an affected part, and the affected part is directly heated by electromagnetic waves radiated from the coaxial probe, whereby the tissue of the affected part is coagulated and necrotized.
[0003]
Examples of the method of inserting the coaxial probe into the affected area include a method of puncturing the liver in an open state, a method of percutaneous puncture, and a method of inserting into a guide needle of a thoracoscope or a laparoscope. The coagulation therapy using the coaxial probe has advantages such as a small incision portion and a relatively short time required for the treatment, so that the burden on the patient during the operation is small.
[0004]
Here, the structure of a conventional coaxial probe (see, for example, Patent Document 1) is shown in FIG. 10A is a cross-sectional view in the longitudinal direction of the coaxial probe 100 in a state where the coaxial probe 100 is inserted into the organ OR schematically representing the liver and the like, and FIG. 10B is perpendicular to the longitudinal direction of the coaxial probe 100. FIG. As shown in FIG. 10, the dielectric 2 is interposed between the inner conductor 1 and the outer conductor 3, and the outer conductor 3 and the inner conductor 1 are electrically connected at the distal end portion. A slit S is provided in a part.
[0005]
[Patent Document 1]
JP-A-7-275247 [0006]
[Problems to be solved by the invention]
In FIG. 10, the dimensions in the figure are specific dimensions (unit: mm) of a conventionally used coaxial probe. When a coaxial probe having such a dimensional structure was simulated, the reflection coefficient was 0.65, and about 6.5% of the input signal was reflected to the input side, so there was a problem that the radiation efficiency of electromagnetic waves was low. It was.
[0007]
Further, when the radiation pattern of the coaxial probe was obtained, the result as shown in FIG. 11 was obtained. Here, the horizontal axis represents the probe position (unit: mm) where the tip position of the coaxial probe is 0, the vertical axis represents the distance in the radial direction (unit: mm), and SAR (Specific Absorption Rate) is represented by concentration. The SAR is used as an evaluation of the amount of energy absorbed by the living body of electromagnetic waves, and represents the energy per unit time absorbed by the unit mass in W / kg. In FIG. 11, one stage of density change corresponds to 2.5 dB. Thus, the SAR is high in the vicinity of the slit S, and the affected part is heated in the vicinity of the slit S.
[0008]
The conventional coaxial probe has a problem that it is difficult to use because the slit S is provided at a position away from the tip of the coaxial probe 100 (10 mm in the example shown in FIG. 10). In other words, it is inserted through the affected area to be heated so that the slit portion of the coaxial probe comes to the center of the affected area, and accordingly the degree of penetration into the patient (the degree to which normal tissue is affected) increases or the treatment range is reduced. There was a problem of narrowing.
[0009]
However, simply placing the slit position near the tip of the coaxial probe cannot increase the radiation efficiency due to the decrease in the reflection coefficient.
SUMMARY OF THE INVENTION An object of the present invention is to provide a coaxial probe that increases the radiation efficiency of electromagnetic waves and increases the SAR near the tip.
[0010]
[Means for Solving the Problems]
The present invention relates to a coaxial probe in which a dielectric is interposed between an inner conductor and an outer conductor, the outer conductor and the inner conductor are electrically connected at the tip, and a slit is provided in a part of the outer conductor. The position of the slit with respect to is defined as a position that is substantially an attenuation pole by the characteristic of the reflection coefficient with respect to the change in distance from the tip position.
[0011]
When the position of the slit relative to the tip of the coaxial probe is changed in this way, the reflection coefficient when the coaxial probe is viewed from the microwave oscillation source connected to the coaxial probe changes, but the position where the reflection coefficient becomes an approximately attenuation pole. The radiation efficiency of electromagnetic waves is increased by providing a slit in the surface.
[0012]
In addition, the present invention is characterized in that the dielectric constant of the dielectric is set lower than the surrounding dielectric constant and at least 1/5 of the surrounding dielectric constant.
By determining the dielectric constant of the dielectric portion of the coaxial probe in this way, the reflection coefficient is reduced and the slit is formed closer to the tip.
[0013]
In addition, the present invention is characterized in that the dielectric is alumina ceramics.
Thus, the use of alumina ceramics having a dielectric constant close to that of living tissue reduces reflection loss at the interface with the living tissue. Furthermore, the dielectric loss is also reduced to obtain high electromagnetic wave radiation efficiency. Moreover, while obtaining high mechanical strength, it is biochemically harmless to the living body.
[0014]
In the present invention, the slit is a first slit, a second slit is provided at a position farther from a distance from the tip of the coaxial probe to the first slit, and the second slit is formed from the center of the first slit. The distance to the center of the coaxial cable is approximately ¼ or less of the in-tube wavelength of the coaxial cable and approximately ¼ or more of the electromagnetic wave propagation wavelength converted by the dielectric constant around the first and second slits.
This suppresses the radiation of electromagnetic waves at the base portion of the coaxial probe, and enables the electromagnetic waves to be efficiently radiated only near the tip. Moreover, the standing wave which generate | occur | produces on the outer conductor surface of a coaxial probe inside the biological tissue which is electromagnetic wave radiation | emission object is suppressed, and the heating to biological tissues other than an affected part is suppressed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The structure of the coaxial probe according to the first embodiment is shown in FIG. Here, (A) is a cross-sectional view in the longitudinal direction of the coaxial probe 100 in a state where the coaxial probe 100 is inserted into the organ OR schematically representing the liver and the like, and (B) is perpendicular to the longitudinal direction of the coaxial probe 100. It is sectional drawing in a surface. As shown in this figure, a dielectric 2 is interposed between the inner conductor 1 and the outer conductor 3 to electrically connect the outer conductor 3 and the inner conductor 1 at the tip portion. A slit S is provided in the part.
[0016]
In general, when a living tissue is irradiated with microwaves using a coaxial probe, the specific absorption rate SAR, which is the rate of absorption per unit time, is obtained as follows.
[0017]
That is, the SAR is the energy per unit time absorbed by the unit mass in W / kg, and the electric power P per unit volume absorbed by the dielectric in the electric field strength E is the biological tissue. If the dielectric constant is ε,
P = ωεE 2 tan δ
It can be expressed.
[0018]
In addition, the power absorbed by the unit mass is ρ when the density of the living tissue is ρ.
SAR = ωεE 2 tan δ / ρ
It is. Furthermore, if the electrical conductivity of the living tissue is σ,
Since tan δ = σ / (ωε),
SAR = σE 2 / ρ
It can be expressed.
[0019]
Therefore, how to increase the electromagnetic wave absorption depends on how strong the electric field E is.
[0020]
FIGS. 2 and 3 show the results obtained by simulation of the change in the reflection coefficient when the distance h1 from the tip of the coaxial probe 100 to the slit S is changed in the coaxial probe shown in FIG. Here, the conditions of each part in FIG. 1 are as follows.
[0021]
<Dimensions of each part>
h1 = 0.8
g1 = 2.0
L1 = 72
L2 = 30
r1 = 0.24
r2 = 0.8
L = 50
R = 10
Here, the unit is all [mm].
[0022]
<Organ OR>
Relative permittivity = 43.0 (value equal to the relative permittivity of the liver)
tan δ = 10 × 10 10
Conductivity = 1.69
The frequency was 2.45 GHz, and simulation was performed using FEM (finite element method).
[0023]
2A shows the dielectric 2 and polytetrafluoroethylene (PTFE) having a relative dielectric constant of 2.1. FIG. 2B shows the dielectric 2 and alumina having a relative dielectric constant of 9.7. Is used. 3A shows a case where a ceramic having a relative dielectric constant of 35 is used as the dielectric 2, and FIG. 3B shows a case where a ceramic having a relative dielectric constant of 60 is used.
[0024]
When polytetrafluoroethylene is used for the dielectric portion of the coaxial probe, the in-tube wavelength of the coaxial cable portion of the coaxial probe is about 80 mm at 2.45 GHz. Therefore, the quarter wavelength is 20 mm, but as shown in FIG. 2A, the reflection coefficient is the largest when the distance h1 from the tip of the coaxial probe is around 20 mm, and h1 is larger than 20 mm. Even if it is small, the reflection coefficient tends to be small. Therefore, even if the slit S is provided at a position where the distance h1 from the tip corresponds to a quarter wavelength in the tube, that is, even if the slit S is provided at a position where the current becomes almost zero, it contributes almost to the radiation of electromagnetic waves. It can be seen that the reflection coefficient is approximately 1. Further, when the distance h1 from the tip is changed, the reflection coefficient changes corresponding to the phase of the standing wave generated in the coaxial probe. However, since the slit S exists, the change in the reflection coefficient does not necessarily have a sine wave shape. I understand that.
[0025]
When polytetrafluoroethylene is used as the dielectric 2, the reflection coefficient is 0.23 (-12.8 in dB display) when h1 = 4.6. By determining the position of the slit S in this way, the reflection coefficient can be reduced to 1/2 or more than the conventional reflection coefficient when h1 = 10 mm, and electromagnetic waves can be emitted from the vicinity of the tip of the coaxial probe.
[0026]
When alumina ceramic is used as the dielectric 2 of the coaxial probe 100, the wavelength in the tube is about 40 mm. Therefore, as shown in FIG. 2B, the change in the reflection coefficient with respect to the change in h1 is the wavelength of the tube. It changes with a period of 1/2 (about 20 mm). This is because the reflection coefficient is determined by the potential difference between the outer conductors separated by the slit S and is not related to the positive or negative of the potential difference. In this example, the characteristic that the reflection coefficient is 0.15 (-16.4 in dB display) at 0.8 mm from the tip of the coaxial probe is obtained. Further, a lower reflection coefficient is obtained near 20 mm that is one cycle away from it, but this position is too far from the tip of the coaxial probe, so that the purpose of heating the living tissue near the tip of the coaxial probe is Not available.
[0027]
In the case of a dielectric ceramic having a relative dielectric constant 35 of the dielectric 2 of the coaxial probe 100, as shown in FIG. 3A, when the distance h1 from the tip is 0.6 mm, the reflection coefficient is The lowest characteristic of 0.138 (-17.2 in dB display) is obtained.
[0028]
Further, in the case of a dielectric ceramic having a dielectric constant 2 of the dielectric 2 of the coaxial probe 100, as shown in FIG. 3B, when the distance h1 from the tip is 0.4 mm, the reflection is performed. The lowest coefficient is 0.245 (-12.2 dB display).
[0029]
FIG. 4 shows the SAR distribution of a coaxial probe using alumina ceramic as a dielectric material. As apparent from comparison with the SAR distribution of the conventional coaxial probe shown in FIG. 11, the slit forming position is 10 mm from the tip is 0.8 mm, and the SAR is higher at a position closer to the tip of the coaxial probe. Is obtained.
[0030]
As can be seen from the above results, by using alumina ceramics for the dielectric 2 of the coaxial probe 100, the conventional reflection coefficient of 0.65 is improved to 0.15. Moreover, it can be improved to 0.138 by using dielectric ceramics having a relative dielectric constant of 35. Moreover, the position of the slit S when the smallest reflection coefficient is obtained also approaches the tip.
[0031]
As shown in FIG. 3B, when the relative permittivity of the dielectric 2 is 60, the position of the slit S is closest to the tip, but the reflection coefficient sets the relative permittivity to 35. It is worse than the case. This is because radiation of electromagnetic waves from the coaxial probe is hindered by the relative permittivity of the dielectric 2 of the coaxial probe 100 being larger than the relative permittivity 43.0 of the liver. That is, the coaxial probe 100 and the living tissue are not matched.
[0032]
Thus, when dielectric ceramics having a relative dielectric constant of 35 (lower than the relative dielectric constant of the surrounding dielectric 43.0) is used as the dielectric 2, the relative dielectric constant of 9.7 (ratio of the surrounding dielectric). When alumina ceramics having a dielectric constant of 43.0 or more) is used, low reflection characteristics can be obtained when a slit is provided at a position close to the tip. Therefore, the dielectric constant of the dielectric 2 of the coaxial probe may be set lower than the dielectric constant of the surrounding heating target and 1/5 or more of the surrounding dielectric constant.
[0033]
Next, a coaxial probe according to a second embodiment will be described with reference to FIGS.
In the coaxial probe according to the first embodiment, a single slit S in which the outer conductor 3 is removed around the axis at a predetermined position of the outer conductor 3 is provided. However, in the coaxial probe according to the second embodiment, A first slit S1 and a second slit S2 are formed.
[0034]
In the example of the SAR distribution of the coaxial probe according to the first embodiment, the position returned to the root direction of the coaxial probe in addition to the high SAR region A0 as shown in FIG. 4 due to the influence of the standing wave generated in the coaxial probe. A region A1 having a relatively high SAR is generated. The coaxial probe according to the second embodiment suppresses the strength of the SAR in the portion extending in the root direction along the outer conductor 3 of the coaxial probe 100 and concentrates the high SAR region only in the vicinity of the tip portion. It is a thing.
[0035]
In FIG. 5, the simulation was performed with the dimensions of each part as follows.
h1 = 0.8
g1 = 2.0
g2 = 1.5
L1 = 72
L2 = 30
r1 = 0.24
r2 = 0.8
L = 50
R = 10
All units are mm.
[0036]
Here, the first slot S <b> 1 is a portion that causes leakage of the main electromagnetic wave, and the second slit S <b> 2 is provided to suppress the emission of unnecessary electromagnetic waves. Therefore, the slit width g2 of the second slit S2 is set smaller than the slit width g1 of the first slit S1.
[0037]
6 to 9 show the reflection coefficient and the SAR distribution when the dimension h2 between the first slit S1 and the second slit S2 shown in FIG. 5 is changed. Here, the horizontal axis is the probe position (unit mm) where the tip position of the coaxial probe is 0, the vertical axis is the radial distance (unit mm), and SAR is expressed as a concentration.
[0038]
When alumina is used for the dielectric 2 of the coaxial probe 100, the guide wavelength at a frequency of 2.45 GHz is about 40 mm. In order to shift the phase of the electric field generated in the slit S2 by 180 at this time, the distance from the center of the first slit S1 to the center of the second slit S2 may be set to about ¼ of the guide wavelength. Therefore, in calculation, it is considered that the center distance between the first and second slits S1-S2 should be set to about 10 mm. In the examples shown in FIGS. 6 to 9, when h2 = 5.7 mm (distance between centers: 7.45 mm), the reflection coefficient is the smallest and good characteristics are shown. This is because the relative permittivity of the living tissue is set to 43.0, so that the wavelength shortening effect is produced, and the distance between the first and second slits S1-S2 necessary for shifting the phase to 180 ° is obtained. Probably because it was shortened. Therefore, the center-to-center distance may be set to ¼ or less of the guide wavelength and ¼ or more of the propagation wavelength of the electromagnetic wave converted by the dielectric constant around the coaxial probe.
[0039]
By providing two slits in the coaxial probe as described above and determining the respective positions, standing waves generated on the outer conductor surface of the coaxial probe (extending in the root direction other than the tip) can be suppressed, Unnecessary heating to living tissue other than the affected part can be suppressed.
[0040]
【The invention's effect】
According to the present invention, in the coaxial probe in which the dielectric is interposed between the inner conductor and the outer conductor, the outer conductor and the inner conductor are electrically connected at the tip, and a slit is provided in a part of the outer conductor. By setting the position of the slit with respect to the tip to a position that becomes a substantially attenuation pole by the characteristic of the reflection coefficient with respect to the change in distance from the tip position, the radiation efficiency of electromagnetic waves is increased.
[0041]
In addition, according to the present invention, the dielectric constant of the dielectric is set lower than the surrounding dielectric constant and equal to or more than 1/5 of the surrounding dielectric constant, so that the reflection coefficient is reduced and the slit is formed at a more advanced position. The treatment with less invasion becomes possible.
[0042]
In addition, according to the present invention, since the dielectric is made of alumina ceramic, the reflection loss at the interface with the living tissue can be reduced, and the dielectric loss is also small, so that high electromagnetic wave radiation efficiency can be obtained. Further, high mechanical strength can be obtained, and it can be biochemically harmless to the living body.
[0043]
According to the present invention, the slit is the first slit, the second slit is provided at a position farther from the distance from the tip of the coaxial probe to the first slit, and the second slit is provided from the center of the first slit. The distance to the center of the slit of the coaxial cable is ¼ or less of the guide wavelength of the coaxial cable and ¼ or more of the electromagnetic wave propagation wavelength converted by the dielectric constant around the first and second slits. Radiation of electromagnetic waves at the root of the slab is suppressed, and electromagnetic waves can be radiated efficiently only near the tip. Moreover, the standing wave which generate | occur | produces on the outer conductor surface of a coaxial probe inside the living tissue which is electromagnetic wave radiation | emission object is suppressed, and the heating to living tissues other than an affected part is suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of a coaxial probe according to a first embodiment. FIG. 2 shows the change in reflection coefficient with respect to the distance from the tip of the coaxial probe when the relative dielectric constant of the dielectric of the coaxial probe is determined. FIG. 3 is a diagram showing a change in reflection coefficient with respect to the distance from the tip of the coaxial probe when the relative dielectric constant of the dielectric of the coaxial probe is determined. FIG. 4 is a diagram showing a SAR distribution of the coaxial probe. FIG. 5 is a diagram showing a configuration of a coaxial probe according to a second embodiment. FIG. 6 is a diagram showing a SAR distribution when an interval between first and second slits of the coaxial probe is changed. FIG. 8 is a diagram showing the SAR distribution when the distance between the first and second slits of the coaxial probe is changed. FIG. 8 shows the SAR when the distance between the first and second slits of the coaxial probe is changed. Diagram showing distribution [Fig. 9] Coaxial plug Fig. 10 is a diagram showing the SAR distribution when the distance between the first and second slits of the probe is changed. Fig. 10 is a diagram showing the configuration of a conventional coaxial probe. Fig. 11 is a diagram showing the SAR distribution of the coaxial probe. [Explanation of symbols]
1-inner conductor 2-dielectric 3-outer conductor S-slit OR-organ 100-coaxial probe

Claims (4)

内導体と外導体との間に誘電体が介在し、先端で外導体と内導体とを電気的に接続するとともに、外導体の一部にスリットを設けた同軸プローブにおいて、
前記先端に対する前記スリットの位置を、前記先端位置からの距離変化に対する反射係数の特性で略減衰極となる位置に定めたことを特徴とする同軸プローブ。
In the coaxial probe in which a dielectric is interposed between the inner conductor and the outer conductor, electrically connecting the outer conductor and the inner conductor at the tip, and a slit is provided in a part of the outer conductor,
A coaxial probe characterized in that the position of the slit with respect to the tip is determined to be a position that becomes a substantially attenuation pole by a characteristic of a reflection coefficient with respect to a change in distance from the tip position.
前記誘電体の誘電率を周囲の誘電率より低く且つ当該周囲の誘電率の1/5以上に定めた請求項1に記載の同軸プローブ。The coaxial probe according to claim 1, wherein the dielectric constant of the dielectric is set lower than a surrounding dielectric constant and at least 1/5 of the surrounding dielectric constant. 前記誘電体をアルミナセラミックスとした請求項2に記載の同軸プローブ。The coaxial probe according to claim 2, wherein the dielectric is alumina ceramic. 前記スリットを第1のスリットとし、前記同軸プローブの先端から第1のスリットまでの距離より遠い位置に第2のスリットを設け、第1のスリットの中心から第2のスリットの中心までの距離が前記同軸ケーブルの管内波長の略1/4以下であり、且つ第1・第2のスリット周囲の誘電率で換算した前記電磁波の伝搬波長の略1/4以上である請求項1〜3のいずれかに記載の同軸プローブ。The slit is the first slit, a second slit is provided at a position farther from the distance from the tip of the coaxial probe to the first slit, and the distance from the center of the first slit to the center of the second slit is 4. The optical fiber according to claim 1, which is approximately ¼ or less of the in-pipe wavelength of the coaxial cable and is approximately ¼ or more of the propagation wavelength of the electromagnetic wave converted by a dielectric constant around the first and second slits. A coaxial probe according to claim 1.
JP2003202658A 2003-07-28 2003-07-28 Coaxial probe Expired - Fee Related JP4438338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202658A JP4438338B2 (en) 2003-07-28 2003-07-28 Coaxial probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202658A JP4438338B2 (en) 2003-07-28 2003-07-28 Coaxial probe

Publications (2)

Publication Number Publication Date
JP2005040306A true JP2005040306A (en) 2005-02-17
JP4438338B2 JP4438338B2 (en) 2010-03-24

Family

ID=34262305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202658A Expired - Fee Related JP4438338B2 (en) 2003-07-28 2003-07-28 Coaxial probe

Country Status (1)

Country Link
JP (1) JP4438338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245990A (en) * 2007-03-30 2008-10-16 Namiki Precision Jewel Co Ltd High-frequency therapy apparatus and system, and their usage
KR100877941B1 (en) 2007-05-28 2009-01-12 서울시립대학교 산학협력단 Method of menufacturing a probe, probe and measurement device for measuring complex permittivities and complex permeabilities
JP2019515697A (en) * 2016-04-04 2019-06-13 クレオ・メディカル・リミテッドCreo Medical Limited Electrosurgical probe for delivering RF energy and microwave energy
CN113398491A (en) * 2021-07-14 2021-09-17 武汉博激世纪科技有限公司 Semiconductor laser therapeutic instrument convenient to operate and use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245990A (en) * 2007-03-30 2008-10-16 Namiki Precision Jewel Co Ltd High-frequency therapy apparatus and system, and their usage
KR100877941B1 (en) 2007-05-28 2009-01-12 서울시립대학교 산학협력단 Method of menufacturing a probe, probe and measurement device for measuring complex permittivities and complex permeabilities
JP2019515697A (en) * 2016-04-04 2019-06-13 クレオ・メディカル・リミテッドCreo Medical Limited Electrosurgical probe for delivering RF energy and microwave energy
CN113398491A (en) * 2021-07-14 2021-09-17 武汉博激世纪科技有限公司 Semiconductor laser therapeutic instrument convenient to operate and use
CN113398491B (en) * 2021-07-14 2024-02-02 武汉博激世纪科技有限公司 Semiconductor laser therapeutic instrument convenient to operate and use

Also Published As

Publication number Publication date
JP4438338B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4618241B2 (en) Coaxial probe device
US6706040B2 (en) Invasive therapeutic probe
JP4234432B2 (en) Microwave antenna with miniaturized choke for fever treatment in medicine and surgery
JP4532277B2 (en) Microwave applicator
RU2250118C2 (en) Microwave applicator
Longo et al. A coaxial antenna with miniaturized choke for minimally invasive interstitial heating
US6347251B1 (en) Apparatus and method for microwave hyperthermia and acupuncture
JP2011161224A (en) Electrosurgical device with choke shorted to biological tissue
US7410485B1 (en) Directional microwave applicator and methods
US20100045559A1 (en) Dual-Band Dipole Microwave Ablation Antenna
JP2011041799A (en) Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure, and method of manufacturing the same
JP2010194317A (en) Leaky-wave antenna for medical application
US20100286687A1 (en) Dual Energy Therapy Needle
Hancock et al. The design and development of an integrated multi-functional microwave antenna structure for biological applications
US10492860B2 (en) Microwave ablation antenna system with tapered slot balun
JP4232688B2 (en) Coaxial probe
JP4438338B2 (en) Coaxial probe
US10707581B2 (en) Dipole antenna for microwave ablation
BR112017025884B1 (en) ELECTROSURGICAL INSTRUMENT, MANUFACTURING METHOD AND ELECTROSURGICAL SYSTEM
US9095360B2 (en) Feeding structure for dual slot microwave ablation probe
KR101929354B1 (en) An applicator having dielectric measurement and effecting hyperthermic treatment combination structure
JP2005040307A (en) Coaxial probe
JP2009011788A (en) Circumferential slot array resonator
AU2017219068B2 (en) Dual-band dipole microwave ablation antenna
Sawicki Multiphysics principles of microwave ablation for probe miniaturization and ablation monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees