JP4618241B2 - Coaxial probe apparatus - Google Patents

Coaxial probe apparatus Download PDF

Info

Publication number
JP4618241B2
JP4618241B2 JP2006335993A JP2006335993A JP4618241B2 JP 4618241 B2 JP4618241 B2 JP 4618241B2 JP 2006335993 A JP2006335993 A JP 2006335993A JP 2006335993 A JP2006335993 A JP 2006335993A JP 4618241 B2 JP4618241 B2 JP 4618241B2
Authority
JP
Japan
Prior art keywords
dielectric
coaxial probe
portion
characterized
inner conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006335993A
Other languages
Japanese (ja)
Other versions
JP2008142467A (en
Inventor
喜久男 脇野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2006335993A priority Critical patent/JP4618241B2/en
Publication of JP2008142467A publication Critical patent/JP2008142467A/en
Application granted granted Critical
Publication of JP4618241B2 publication Critical patent/JP4618241B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば生体組織内に挿入してマイクロ波により加熱治療を行う際に用いることができる同軸プローブに関するものである。 The present invention relates to a coaxial probe which can be used in performing the heating treatment by microwaves is inserted into such as a biological tissue.

近年、悪性腫瘍等の病気に対する治療方法として電磁波を利用したものが幾つか提案されている。 Recently, those utilizing electromagnetic waves as a treatment for diseases of malignant tumors such as have been proposed. その内の1つにマイクロ波を直接患部に吸収させて、患部の温度を上昇させ凝固させるという凝固療法がある。 And the microwave is absorbed directly into the affected area to one of them, there is a coagulation therapy that coagulate to increase the temperature of the affected area. この方法は、マイクロ波を効率よく放射する同軸プローブを直接患部に射し込み、同軸プローブから放射されるマイクロ波によって患部に発生する誘電熱により患部の組織を凝固壊死させるというものである。 This method, cramping directly affected area a coaxial probe efficiently radiate microwaves, is that coagulate necrosis diseased tissue by dielectric heat generated to the affected area by the microwave radiated from the coaxial probe.

同軸プローブは直径1mm程度又はそれ以下に形成が可能であり、経皮的に患部に挿入する方法や、胸腔鏡または腹腔鏡を利用して患部に挿入する方法がある。 Coaxial probe is capable of forming a diameter of about 1mm or less, percutaneously or how to insert the affected part, there is a method of inserting the affected part by using a thoracoscope or laparoscope. 同軸プローブを用いることにより切開部分を小さくできる、もしくは切開せずに済み、治療時間も比較的短時間であるため悪性腫瘍等を手術により摘出するのに比較して、患者への負担が小さく特に癌の初期治療として有用である。 Possible to reduce the incision by using a coaxial probe, or requires without incision, as compared to removal by surgery malignant tumors such as for the treatment time is relatively short, particularly small burden on the patient it is useful as an initial treatment of cancer.

特許文献1には、MRI装置によるモニタリングを行いながらマイクロ波治療を行う際に、MRI装置により患部と同軸プローブの相対位置がモニタリング可能となるように、先端部に磁性体材料からなるマーカー部材を備えた針状モノポーラ電極装置が開示されている。 Patent Document 1, in performing the microwave treatment while monitoring by the MRI apparatus, such that the relative position of the affected part and the coaxial probe becomes possible monitored by MRI device, the marker member made of a magnetic material at the tip portion needle monopolar electrode device is disclosed which includes. 図Xに針状モノポーラ電極装置100の部分断面図を示す。 Figure X shows a partial cross-sectional view of the needle monopolar electrode device 100. 針状モノポーラ電極装置は外部電極103、絶縁体104、中心電極105、中心導体106、およびマーカー部材107からなり、中心電極105はマーカー部材107を介して中心導体106と電気的に一体化されている。 Needle monopolar electrode device external electrodes 103, insulator 104, a center electrode 105, made from the center conductor 106 and the marker member 107, the center electrode 105 is electrically integrated with the center conductor 106 through the marker member 107 there.

特許文献2には、生体組織にマイクロ波を効率よく吸収させる構造を有する同軸プローブが開示されている。 Patent Document 2, a coaxial probe having a structure to efficiently absorb microwave living tissue is disclosed. この同軸プローブは先端を内導体から外導体にかけて円錐状にして内導体、外導体および内導体と外導体の間に介在する誘電体を露出させた形状を有し、生体組織に対して利用するマイクロ波の反射係数が最も小さくなる形状条件と誘電体の比誘電率の条件が開示されている。 The coaxial probe has a shape to expose the dielectric interposed between the inner conductor, an outer conductor and an inner conductor and an outer conductor tip from the inner conductor by conically toward the outer conductor, utilizing the living tissue conditions of the dielectric constant of the reflection coefficient of the microwave smallest shape condition and the dielectric is disclosed.
特開2004−008243号公報 JP 2004-008243 JP 特開2004−058750号公報 JP 2004-058750 JP

特許文献1記載の針状モノポーラ電極装置では、その先端部において同軸ケーブル部とマイクロ波の放射部がインピーダンス的に不整合となりがちで、伝送されてきた電力の内、数%〜数十%の電力がこの部分で反射される。 Acicular monopolar electrode device described in Patent Document 1, the radiation part of the coaxial cable section and the microwave at its tip tends to the impedance to mismatch of the power that has been transmitted, several% to several tens% of power is reflected by this portion. また、中心電極105と生体組織との間においても電力の反射が起こり、電力が生体組織で効率よく消費されない。 Furthermore, reflection occurs in the power even while the center electrode 105 and the body tissue, not consumed efficiently by the power biological tissue.

特許文献2記載の同軸プローブでは、内導体と外導体の間に介在する誘電体をアルミナとし、先端の形状を所定の形状とすることにより生体組織と同軸プローブとの間での電力反射を非常に小さくすることができる。 The coaxial probe described in Patent Document 2, a dielectric interposed between the inner conductor and the outer conductor and alumina, very power reflection between the living tissue and the coaxial probe by the shape of the tip to a predetermined shape it can be reduced to. この同軸プローブの特性インピーダンスは約23Ωである。 The characteristic impedance of the coaxial probe is about 23Omu. 一般の信号発生器、電力増幅アンプ、同軸伝送ケーブルは通常特性インピーダンスが50Ωとされており、前記同軸プローブと同軸伝送ケーブルを直接接合するとインピーダンスが不整合となり、大部分の電力が反射されることとなる。 General of the signal generator, power amplifier, a coaxial transmission cable is usually characteristic impedance and 50 [Omega, the when directly joined coaxial probe and the coaxial transmission cable impedance becomes inconsistent, that the power of the majority is reflected to become.

一般にマイクロ波凝固療法に用いられる周波数は2.4〜2.45GHzであり、この周波数を増幅できる高周波増幅器は非常に高価である。 Generally frequencies used for microwave coagulation therapy is 2.4~2.45GHz, high frequency amplifier capable of amplifying the frequency is very expensive. また出力する電力の大きさによって価格は高くなる。 The price increases by the magnitude of the output power. 同軸プローブからの電力の反射が大きければ、その分増幅器から大きな電力を供給する必要があり、増幅器の価格がさらに高くなってしまう。 The greater the power reflected from the coaxial probe, it is necessary to supply a large power from the correspondingly amplifier, the price of the amplifier becomes higher. また、大きな反射電力を増幅器に直接戻さないために、高電力のアイソレータが必要となり、全体の設備自体の価格が高くなってしまうという問題点があった。 Further, in order not to return directly a large reflected power to the amplifier, isolator high power is required, there is a problem that the price of the entire facility itself is increased.

更に、同軸プローブと同軸伝送ケーブルのインピーダンスが不整合において反射波が発生し、この反射波と入射波が干渉して無視できない大きさの定在波が存在することとなる。 Moreover, impedance of the coaxial probe and the coaxial transmission cable reflected wave is generated in the inconsistency, the standing wave of the reflected wave sized to incident wave can not be ignored in interference will be present. この定在波の電力はインピーダンス不整合による反射係数の2乗に比例して大きくなり、線路上で不要な発熱を伴い、正常な組織まで壊死させるという問題があった。 Power of the standing wave increases in proportion to the square of the reflection coefficient due to impedance mismatch, with unnecessary heat generation on line, there is a problem of necrosis to normal tissue.

上記問題点を解決するために請求項1記載の発明は、外導体と内導体との間に誘電体を介在させた構造を有する同軸プローブ装置であって、前記同軸プローブ装置は、比誘電率がε 1である第1の誘電体と前記外導体および前記内導体を有する伝送線路部と、比誘電率がε 2である第2の誘電体と前記外導体および前記内導体を有するプローブ部と、単層又は複数層で構成され平均の比誘電率がε 3である第3の誘電体と前記外導体および前記内導体を有するインピーダンス整合部とからなり、前記それぞれの比誘電率は下記の数1の関係を満たし、前記伝送線路部と、前記インピーダンス整合部と、前記プローブ部とは、この順で外導体同士と内導体同士がそれぞれ電気的に接合され、かつ、前記第1の誘電体と前記第3の誘電体、および前記 The invention of claim 1, wherein in order to solve the above problems, there is provided a coaxial probe apparatus having the structure obtained by interposing a dielectric between the outer conductor and the inner conductor, the coaxial probe device, the relative dielectric constant probe portion having but the first dielectric is epsilon 1 and the transmission line portion having said outer conductor and said inner conductor, said outer conductor and said inner conductor dielectric constant of the second dielectric is epsilon 2 If consists of a impedance matching portion having a third of said outer conductor and said inner conductor and the dielectric is a three dielectric constant of average ε is composed of a single layer or plural layers, the dielectric constant of the respective following It satisfies the number one relationship, and the transmission line portion, and the impedance matching section, and the probe unit, in this order inner conductor together with the outer conductor with each other are electrically connected, respectively, and the first said dielectric third dielectric, and the 3の誘電体と前記第2の誘電体は隙間無く接合されており、前記プローブ部は、外部に電力を放射する放射部を有していることを特徴とする。 It said third dielectric second dielectric is no gap junction, the probe unit is characterized by having a radiating portion for radiating the power to the external.

請求項2に記載の発明は、請求項1に記載の同軸プローブ装置において、前記放射部は前記プローブ部の一端に形成されており、該放射部は前記内導体から前記外導体にかけて円錐形状にして前記内導体と前記第2の誘電体を露出する尖端であることを特徴とする。 According to a second aspect of the invention, the coaxial probe according to claim 1, wherein the radiating portion is formed on one end of the probe portion, the radiation portion is conically toward the outer conductor from said inner conductor characterized in that it is a tip to expose the second dielectric and the inner conductor Te.

請求項3に記載の発明は、請求項1から2のいずれかに記載の同軸プローブ装置において、3つの異なる比誘電率の誘電体が連続する任意の部分において、中間層となる誘電体の比誘電率をε m 、両側の誘電体の比誘電率をそれぞれε a 、ε bとしたとき、ε mが下記の数2を満足することを特徴とする。 The invention according to claim 3, in coaxial probe device according to any one of claims 1 to 2, in any portion of dielectric consecutive three different dielectric constant, the ratio of the dielectric to be the middle layer the dielectric constant epsilon m, on both sides of the dielectric of the dielectric constant, respectively epsilon a, when the ε b, ε m is characterized by satisfying the 2 numbers following.

請求項4に記載の発明は、請求項1から3のいずれか1項に記載の同軸プローブ装置において、前記異なる比誘電率の誘電体同士が接合される部分において、前記誘電体の一方は内導体から前記外導体にかけて円錐状の凸部とされ、他方は該凸部に隙間無く嵌合する円錐状の凹部とされていることを特徴とする。 According to a fourth aspect of the invention, the coaxial probe device according to any one of claims 1 to 3, in the portion where the dielectric bodies of the different dielectric constant is joined, the dielectric of one inner is is a conical protrusions from the conductor toward the outer conductor, the other is characterized in that there is a conical recess without clearance fit in the convex portion.

請求項5に記載の発明は、請求項1から4のいずれか1項に記載の同軸プローブ装置において、前記凸部は比誘電率の低い側の誘電体に設けられていることを特徴とする。 The invention of claim 5 provides a coaxial probe device according to any one of claims 1 to 4, wherein the convex portion is characterized in that provided in the dielectric of low dielectric constant side .

請求項6に記載の発明は、請求項1から5のいずれか1項に記載の同軸プローブ装置において、前記第2の誘電体はアルミナであることを特徴とする。 The invention of claim 6 provides a coaxial probe device according to any one of claims 1 to 5, wherein the second dielectric is characterized by an alumina.

請求項7に記載の発明は、請求項1から6のいずれか1項に記載の同軸プローブ装置において、前記第1の誘電体はポリテトラフルオロエチレンであることを特徴とする。 The invention of claim 7 provides a coaxial probe device according to any one of claims 1 to 6, wherein the first dielectric is characterized by a polytetrafluoroethylene.

請求項8に記載の発明は、請求項1から7のいずれか1項に記載の同軸プローブ装置において、前記第3の誘電体はポリフェニレンサルファイドからなることを特徴とする。 The invention of claim 8 provides a coaxial probe device according to any one of claims 1 to 7, wherein the third dielectric is characterized by comprising a polyphenylene sulfide.

請求項9に記載の発明は、請求項1から8のいずれか1項に記載の同軸プローブ装置において、前記伝送線路部は特性インピーダンスが50Ωであることを特徴とする。 The invention of claim 9 provides a coaxial probe device according to any one of claims 1 8, wherein the transmission line section and wherein the characteristic impedance is 50 [Omega.

この発明によれば、マイクロ波凝固療法に用いられる同軸プローブ装置に供給する電力を反射させることなく、効率よく生体組織に吸収させることができる。 According to the invention, it can be absorbed without reflecting the power supplied to the coaxial probe apparatus for use in microwave coagulation therapy, efficiently living tissue. これにより、増幅器の出力を必要以上に大きくする必要がないため、装置自体を安価にすることができる。 Accordingly, since it is unnecessary to increase unnecessarily the output of the amplifier, it can be made inexpensive device itself. インピーダンス不整合部からの反射波と入射波の干渉により発生する定在波が無視できるため不要な発熱による正常組織の破壊を回避できる。 Since the standing wave generated by the interference of the reflected wave and incident wave from the impedance mismatch portion negligible can avoid destruction of normal tissue due to unnecessary heat generation.

第1の実施例を図1に基づいて説明する。 The first embodiment will be described with reference to FIG. 図1は同軸プローブ装置1の部分断面図である。 Figure 1 is a partial cross-sectional view of the coaxial probe device 1. 同軸プローブ装置1は外導体3、内導体2、および外導体3と内導体2の間に挿入された誘電体からなる。 Coaxial probe device 1 includes an outer conductor 3 consists of an inner conductor 2, and the outer conductor 3 is inserted between the inner conductor 2 and the dielectric. 第1の誘電体4は比誘電率が約2.1のポリテトラフルオロエチレン(テフロン:登録商標)で構成されており、第1の誘電体4が存在する部分は伝送線路部として機能する。 The first dielectric 4 is the relative dielectric constant of about 2.1 polytetrafluoroethylene: is composed of (a Teflon), a portion where the first dielectric 4 is present which functions as a transmission line unit. 内導体2の外径は0.48mm、外導体3の内径は1.6mmで、伝送線路部における特性インピーダンスは50Ωとされている。 The outer diameter of the inner conductor 2 is 0.48 mm, an inner diameter of the outer conductor 3 is 1.6 mm, the characteristic impedance in the transmission line unit is a 50 [Omega.

第2の誘電体5は比誘電率が約9.7のアルミナで構成されており、第2の誘電体5が存在する部分はプローブ部として機能する。 The second dielectric 5 is composed of a dielectric constant of about 9.7 of an alumina, a position where the second dielectric 5 is present acts as a probe portion. プローブ部は鋭い先端部Aを有する。 Probe portion has a sharp tip portion A. 先端部Aは内導体の中心を頂点とする円錐形状とされており、第2の誘電体5の一部が外部に露出している。 Tip A is a conical shape with the apex center of the inner conductor, a portion of the second dielectric 5 is exposed to the outside. プローブ部は生体組織の患部に射し込まれるため、内導体2の先端および外導体3は人体にとって無毒である金属でめっきされていることが好ましく、金めっきが好適である。 Since probe unit to be Sashikoma the affected area of ​​the living tissue, the tip and the outer conductor 3 of the inner conductor 2 is preferred to be plated with a metal which is non-toxic to the human body, gold plating is preferable. また、テフロンなどの薄い樹脂被膜で覆われていてもよい。 Further, it may be covered with a thin resin film, such as Teflon. tを約5.3mmとすれば、プローブ部が生体組織(肝臓)に射し込まれているときに電力の反射が極小となり、反射係数Γ<0.1となる。 If the t of about 5.3 mm, the reflected power is minimized when the probe portion is Sashikoma the living tissue (liver), the reflection coefficient gamma <0.1.

第3の誘電体6は比誘電率が約4.5のガラスで構成されている。 Third dielectric 6 is the relative dielectric constant is formed in about 4.5 glass. 第3の誘電体6の比誘電率をε m 、第1の誘電体4の比誘電率をε a 、第2の誘電体5の比誘電率をε bとしたとき、ε mは下記の数2を満足している。 The relative permittivity epsilon m of the third dielectric 6, the first dielectric constant of the dielectric 4 epsilon a, when the relative dielectric constant of the second dielectric 5 was epsilon b, epsilon m is below satisfies the equation (2).

尤も必ずしもこの関係を満たす必要はなく、後述するL1、L2の値を適宜設定することにより第3の誘電体6の比誘電率はある程度の範囲をとることが可能である。 However it is not always necessary to satisfy this relationship, the dielectric constant of the third dielectric 6 by setting the value of which will be described later L1, L2 suitably is able to take a certain range.

第1の誘電体4は第3の誘電体6に向けて錐状の凸部を有しており、この錐状の凸部の高さはL1とされている。 The first dielectric 4 has a cone-shaped convex portion toward the third dielectric 6, the height of the convex portion of the conical is the L1. 一方第3の誘電体6は前記凸部と嵌合する錐状の凹部を有しており、この錐状の凹部の高さはL1とされ、前記凸部と前記凹部は隙間無く組み合わされている。 Whereas third dielectric 6 has a conical recess for mating with the protrusion, the height of the cone-shaped recess is the L1, the concave portion is combined without clearance between the convex portion there. L1は双方の比誘電率により適宜決定される。 L1 is appropriately determined by the dielectric constant of both.

上記と同様に第3の誘電体6は第2の誘電体5に向けて錐状の凸部を有しており、この錐状の凸部の高さはL2とされている。 As in the third dielectric 6 has a conical protrusion toward the second dielectric 5, the height of the convex portion of the conical is the L2. 一方第2の誘電体5は前記凸部と嵌合する錐状の凹部を有しており、この錐状の凹部の高さはL2とされ、前記凸部と前記凹部は隙間無く組み合わされている。 While the second dielectric 5 has a conical recess for mating with the protrusion, the height of the conical recess is a L2, wherein the recess is combined without clearance between the convex portion there. L2は双方の比誘電率により適宜決定される。 L2 is appropriately determined by the dielectric constant of both.

図2、図3、図4、図5はεmをそれぞれ4.0、4.5、5.0、5.5としたときの、L1とL2と同軸プローブ装置1の反射係数の関係を有限要素法を用いてシミュレーションを行った結果を示したものである。 2, 3, 4, 5 when the respective .epsilon.m 4.0,4.5,5.0,5.5, simulated using finite element method the relationship of the reflection coefficient of L1 and L2 and the coaxial probe device 1 and it shows the results. プローブ部は肝臓に差し込まれていると仮定し、計算に用いたパラメータは以下の通りで、一部のパラメータはすでに前述したものの再掲である。 Probe unit is assumed to be plugged into the liver, were as parameters below were used in the calculation, some parameters are already reprinted of the foregoing.
解析周波数(F) :2.45GHz Analysis frequency (F): 2.45GHz
内導体2の外径(r) :0.48mm The outer diameter of the inner conductor 2 (r): 0.48mm
外導体3の内径 (R) :1.60mm The inner diameter of the outer conductor 3 (R): 1.60mm
先端錐状部の高さ(t) :5.2mm Distal conical portion of the height (t): 5.2 mm
テフロンの比誘電率(ε a ) :2.1 Relative dielectric constant of Teflon (ε a): 2.1
テフロンの誘電正接(tanδ a ):1.0E-04 The dielectric loss tangent of the Teflon (tanδ a): 1.0E-04
アルミナの比誘電率(ε b ) :9.7 The dielectric constant of alumina (ε b): 9.7
アルミナの誘電正接(tanδ b ):1.0E-04 The dielectric loss tangent of alumina (tanδ b): 1.0E-04
肝臓の比誘電率(ε r ) :43.0 The relative dielectric constant of the liver (ε r): 43.0
肝臓の誘電正接(tanδ r ) :2.85E-01 The dielectric loss tangent of the liver (tanδ r): 2.85E-01
図2、図3、図4、図5の各々において横軸はL1の寸法を示し、縦軸はL2の寸法を示している。 2, 3, 4, the horizontal axis in each of FIG. 5 shows the dimensions of L1, the vertical axis represents the dimension of L2. 例えば図3においてL1を5、L2を9とすれば、その時の反射係数Γはおよそ0.05(VSWR=1.10)となる。 If for example, in FIG. 3 the L1 5, L2 and 9, the reflection coefficient when the Γ is approximately 0.05 (VSWR = 1.10). このとき供給される電力に対し、反射される電力はわずか0.3%程度しかなく、大部分の電力が生体に放射吸収されていることを表している。 To the power supplied at this time, power reflected is only 0.3% of only rather indicates that the power of the majority is radiated bioresorbable. 従って電力増幅器は必要以上に大きな電力を供給する必要が無く、増幅レベルの大きい電力増幅器を必要としないため設備を安価に構成できる。 Thus the power amplifier is not necessary to supply a large electric power than necessary, can be inexpensively configured equipment requires no large power amplifier amplification level.

図2、図3、図4、図5から、ε mのいずれの条件においてもL1、L2を適宜選択すれば、反射係数を小さくできる領域が有ることが分かる。 2, 3, 4, from 5, when also appropriately selected L1, L2 in any conditions epsilon m, it is understood that the area can be reduced reflection coefficient there. 従って、用いる誘電体の比誘電率に合わせてシミュレーションを実施しL1、L2を最適値に設計することで電力反射の小さい同軸プローブ装置を作成することができる。 Therefore, it is possible to create a power reflection small coaxial probe device by designing the optimum value by the simulation L1, L2 in accordance with the relative permittivity of the dielectric used.

ε a =2.1、ε b =9.7を[数1]に代入すればε m ≒4.5となる。 ε a = 2.1, becomes substituted with epsilon m ≒ 4.5 if the the epsilon b = 9.7 [Equation 1]. 図2〜図5において、特に図4は[数1]を満たした時のシミュレーション結果を表すグラフである。 In Figures 2-5, especially FIG. 4 is a graph showing a simulation result when filled with Equation 1. このとき、反射係数を小さくできる領域がε m =4のグラフと比較して広くなり、L1、L2の設計領域が大きくなる。 At this time, the region can be reduced reflection coefficient becomes wider compared with the graph of ε m = 4, L1, L2 design area of the increases. またε m =5のグラフと比較すれば、反射係数を小さくできる領域は幾分小さいものの、L1とL2が小さい領域において寸法による反射係数の変化が小さいため、ばらつきを抑えた設計が可能となる。 Also in comparison with the graph of epsilon m = 5, although the area can be reduced reflection coefficient rather small, since the change of the reflection coefficient due to dimensional in the region L1 and L2 is small is small, it is possible to design with less variation . 比誘電率が4.5に近い特性を持つものとして比誘電率が4.6のポリフェニレンサルファイド(PPS)がある。 Relative dielectric constant of the dielectric constant as having characteristics close to 4.5 is polyphenylene sulfide 4.6 (PPS). PPSは耐環境性能に優れており、またTanδも0.002程度と非常に小さいため、第3の誘電体として好適である。 PPS has excellent environmental resistance, and because Tanδ is also very small as about 0.002, is suitable as a third dielectric.

次に第2の実施例を図6に基づいて説明する。 It will be described on the basis of the second embodiment in FIG. 図6は図1と同様に同軸プローブ装置1の部分断面図である。 6 is a partial cross-sectional view of the coaxial probe device 1 as in FIG. 図1と同じ部分については同じ番号を付し説明を省略する。 The same parts as FIG. 1 are omitted given the same numbers. 第3の誘電体6は、それぞれ誘電率の異なる第1の層6aと第2の層6bを有する2層構造とされている。 Third dielectric 6 are respectively a first layer 6a having different dielectric constants a two-layer structure having a second layer 6b. 第1の層6aの誘電率をε ma 、第2の層6bの誘電率をε mbとすれば、それぞれの誘電率の関係は、 The dielectric constant of the first layer 6a epsilon ma, if the dielectric constant of the second layer 6b and epsilon mb, the relationship between each of the dielectric constant,

とされていることが好ましい。 It is preferred that there is a. さらに、 further,

とされ。 It is a. また、 Also,

とされていることが好ましい。 It is preferred that there is a. 第2の実施例において第3の誘電体6は第1の層6aと第2の層6bとから成る例を示したが、3層以上の層を有しても構わない。 In a second embodiment the third dielectric 6 an example is shown comprised of a first layer 6a and second layer 6b, it may also have three or more layers.

本発明の第1の実施例を示す同軸プローブ装置の先端付近部分断面図である。 A vicinity of the front end partial cross-sectional view of the coaxial probe apparatus showing a first embodiment of the present invention. 本発明の第1の実施例において、ε m =4.0としたときの、L1とL2と反射係数との関係を表すグラフである。 In a first embodiment of the present invention, when formed into a epsilon m = 4.0, a graph showing the relationship between L1 and L2 and the reflection coefficient. 本発明の第1の実施例において、ε m =4.5としたときの、L1とL2と反射係数との関係を表すグラフである。 In a first embodiment of the present invention, when formed into a epsilon m = 4.5, a graph showing the relationship between L1 and L2 and the reflection coefficient. 本発明の第1の実施例において、ε m =5.0としたときの、L1とL2と反射係数との関係を表すグラフである。 In a first embodiment of the present invention, when formed into a epsilon m = 5.0, a graph showing the relationship between L1 and L2 and the reflection coefficient. 本発明の第1の実施例において、ε m =5.5としたときの、L1とL2と反射係数との関係を表すグラフである。 In a first embodiment of the present invention, when formed into a epsilon m = 5.5, a graph showing the relationship between L1 and L2 and the reflection coefficient. 本発明の第1の実施例を示す同軸プローブ装置の先端付近の部分断面図である。 It is a partial cross-sectional view of the vicinity of the tip of the coaxial probe apparatus showing a first embodiment of the present invention. 従来の針状モノポーラ電極装置の先端付近の部分断面図である。 It is a partial cross-sectional view of the vicinity of the tip of the conventional needle-shaped monopolar electrode device.

2 内部電極 3 外部電極 4 第1の誘電体 5 第2の誘電体 6 第3の誘電体 6a 第3の誘電体の第1の層 6b 第3の誘電体の第2の層 103 外部電極 104 絶縁体 105 中心電極 106 中心導体 107 マーカー部材 Second internal electrode 3 external electrode 4 first dielectric 5 second dielectric 6 third dielectric 6a third dielectric first layer 6b third dielectric second layer 103 external electrode 104 of the insulator 105 center electrode 106 central conductor 107 marker member

Claims (9)

  1. 外導体と内導体との間に誘電体を介在させた構造を有する同軸プローブ装置であって、前記同軸プローブ装置は、 A coaxial probe apparatus having the structure obtained by interposing a dielectric between the outer conductor and the inner conductor, the coaxial probe device,
    比誘電率がε 1である第1の誘電体と前記外導体および前記内導体を有する伝送線路部と、比誘電率がε 2である第2の誘電体と前記外導体および前記内導体を有するプローブ部と、単層又は複数層で構成され平均の比誘電率がε 3である第3の誘電体と前記外導体および前記内導体を有するインピーダンス整合部とからなり、 A transmission line section having a relative dielectric constant has said outer conductor and said inner conductor and the first dielectric is epsilon 1, relative dielectric constant of the second is epsilon 2 dielectric and said outer conductor and said inner conductor consists of a probe portion, and the third dielectric and the outer conductor and the impedance matching unit with the inner conductor relative dielectric constant of the configured average a single layer or plural layers is epsilon 3 having,
    前記それぞれの比誘電率は下記の数1の関係を満たし、 Each of the dielectric constant meets the number 1 of the following relationship,
    前記伝送線路部と、前記インピーダンス整合部と、前記プローブ部とは、この順で外導体同士と内導体同士がそれぞれ電気的に接合され、かつ、前記第1の誘電体と前記第3の誘電体、および前記第3の誘電体と前記第2の誘電体は隙間無く接合されており、 And the transmission line portion, and the impedance matching section, and the probe unit, in this order inner conductor together with the outer conductor with each other are electrically connected, respectively, and the third dielectric and the first dielectric body, and the third dielectric and the second dielectric is no gap junction,
    前記プローブ部は、外部に電力を放射する放射部を有していることを特徴とする同軸プローブ装置。 The probe portion is coaxial probe apparatus being characterized in that a radiation portion that radiates power to the external.
  2. 前記放射部は前記プローブ部の一端に形成されており、該放射部は前記内導体から前記外導体にかけて円錐形状にして前記内導体と前記第2の誘電体を露出する尖端であることを特徴とする請求項1に記載の同軸プローブ装置。 Wherein the radiating portion is formed on one end of the probe portion, the radiation unit is pointed to expose the inner conductor and the second dielectric in the conical shape toward said outer conductor from said inner conductor coaxial probe device according to claim 1,.
  3. 3つの異なる比誘電率の誘電体が連続する任意の部分において、中間層となる誘電体の比誘電率をε m 、両側の誘電体の比誘電率をそれぞれε a 、ε bとしたとき、ε mが下記の数2を満足することを特徴とする請求項1または2に記載の同軸プローブ装置。 In any moiety dielectric three different dielectric constant continues, the relative dielectric constant of the dielectric to be the intermediate layer epsilon m, on both sides of the dielectric of the dielectric constant, respectively epsilon a, when the epsilon b, coaxial probe according to claim 1 or 2 epsilon m is characterized by satisfying the 2 numbers following.
  4. 前記異なる比誘電率の誘電体同士が接合される部分において、 In part the dielectric bodies of the different dielectric constant is joined,
    前記誘電体の一方は内導体から前記外導体にかけて円錐状の凸部とされ、他方は該凸部に隙間無く嵌合する円錐状の凹部とされていることを特徴とする請求項1から3のいずれか1項に記載の同軸プローブ装置。 Said one of the dielectric is a conical projection portion to the outer conductor from the inner conductor and the other of claims 1, characterized in that there is a conical recess without clearance fitted to the convex portion 3 coaxial probe device according to any one of.
  5. 前記凸部は比誘電率の低い側の誘電体に設けられていることを特徴とする請求項1から4のいずれか1項に記載の同軸プローブ装置。 Coaxial probe device according to any one of claims 1 4, characterized in that provided in the dielectric of the convex portion is low relative permittivity side.
  6. 前記第2の誘電体はアルミナであることを特徴とする請求項1から5のいずれか1項に記載の同軸プローブ装置。 It said second dielectric coaxial probe device according to any one of claims 1 to 5, characterized in that the alumina.
  7. 前記第1の誘電体はポリテトラフルオロエチレンであることを特徴とする請求項1から6のいずれか1項に記載の同軸プローブ装置。 The first dielectric coaxial probe device according to any one of claims 1 to 6, characterized in that the polytetrafluoroethylene.
  8. 前記第3の誘電体はポリフェニレンサルファイドからなることを特徴とする請求項1から7のいずれか1項に記載の同軸プローブ装置。 It said third dielectric coaxial probe device according to any one of claims 1 to 7, characterized in that it consists of polyphenylene sulfide.
  9. 前記伝送線路部は特性インピーダンスが50Ωであることを特徴とする請求項1から8のいずれか1項に記載の同軸プローブ装置。 It said transmission line section coaxial probe device according to any one of claims 1 to 8, characterized in that the characteristic impedance is 50 [Omega.
JP2006335993A 2006-12-13 2006-12-13 Coaxial probe apparatus Active JP4618241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335993A JP4618241B2 (en) 2006-12-13 2006-12-13 Coaxial probe apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335993A JP4618241B2 (en) 2006-12-13 2006-12-13 Coaxial probe apparatus

Publications (2)

Publication Number Publication Date
JP2008142467A JP2008142467A (en) 2008-06-26
JP4618241B2 true JP4618241B2 (en) 2011-01-26

Family

ID=39603287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335993A Active JP4618241B2 (en) 2006-12-13 2006-12-13 Coaxial probe apparatus

Country Status (1)

Country Link
JP (1) JP4618241B2 (en)

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US7776035B2 (en) 2004-10-08 2010-08-17 Covidien Ag Cool-tip combined electrode introducer
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US7951144B2 (en) 2007-01-19 2011-05-31 Mahajan Roop L Thermal and electrical conductivity probes and methods of making the same
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
US7998139B2 (en) 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling
US8181995B2 (en) 2007-09-07 2012-05-22 Tyco Healthcare Group Lp Cool tip junction
US7713076B2 (en) 2007-11-27 2010-05-11 Vivant Medical, Inc. Floating connector for microwave surgical device
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US7642451B2 (en) 2008-01-23 2010-01-05 Vivant Medical, Inc. Thermally tuned coaxial cable for microwave antennas
US8435237B2 (en) 2008-01-29 2013-05-07 Covidien Lp Polyp encapsulation system and method
US8353902B2 (en) 2008-01-31 2013-01-15 Vivant Medical, Inc. Articulating ablation device and method
US8221418B2 (en) 2008-02-07 2012-07-17 Tyco Healthcare Group Lp Endoscopic instrument for tissue identification
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US8192427B2 (en) 2008-06-09 2012-06-05 Tyco Healthcare Group Lp Surface ablation process with electrode cooling methods
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US8343149B2 (en) 2008-06-26 2013-01-01 Vivant Medical, Inc. Deployable microwave antenna for treating tissue
AU2015215971B2 (en) * 2008-08-25 2016-11-03 Covidien Lp Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8211098B2 (en) * 2008-08-25 2012-07-03 Vivant Medical, Inc. Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8251987B2 (en) 2008-08-28 2012-08-28 Vivant Medical, Inc. Microwave antenna
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8118808B2 (en) 2009-03-10 2012-02-21 Vivant Medical, Inc. Cooled dielectrically buffered microwave dipole antenna
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8246615B2 (en) 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
US8292881B2 (en) 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
US8552915B2 (en) 2009-06-19 2013-10-08 Covidien Lp Microwave ablation antenna radiation detector
US8323275B2 (en) 2009-06-19 2012-12-04 Vivant Medical, Inc. Laparoscopic port with microwave rectifier
WO2011017168A2 (en) 2009-07-28 2011-02-10 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US8328799B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US8328800B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Directive window ablation antenna with dielectric loading
US8328801B2 (en) 2009-08-17 2012-12-11 Vivant Medical, Inc. Surface ablation antenna with dielectric loading
US8069553B2 (en) 2009-09-09 2011-12-06 Vivant Medical, Inc. Method for constructing a dipole antenna
US8355803B2 (en) 2009-09-16 2013-01-15 Vivant Medical, Inc. Perfused core dielectrically loaded dipole microwave antenna probe
US8394087B2 (en) 2009-09-24 2013-03-12 Vivant Medical, Inc. Optical detection of interrupted fluid flow to ablation probe
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US8382750B2 (en) 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
US8430871B2 (en) 2009-10-28 2013-04-30 Covidien Lp System and method for monitoring ablation size
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US8394092B2 (en) 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US8882759B2 (en) 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US8313486B2 (en) 2010-01-29 2012-11-20 Vivant Medical, Inc. System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US9113927B2 (en) 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
US8491579B2 (en) 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US8968288B2 (en) 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US20110213353A1 (en) 2010-02-26 2011-09-01 Lee Anthony C Tissue Ablation System With Internal And External Radiation Sources
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US8777939B2 (en) 2010-02-26 2014-07-15 Covidien Lp Self-tuning microwave ablation probe
US8728067B2 (en) 2010-03-08 2014-05-20 Covidien Lp Microwave antenna probe having a deployable ground plane
US8672923B2 (en) 2010-03-11 2014-03-18 Covidien Lp Automated probe placement device
US9028474B2 (en) 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US8409188B2 (en) 2010-03-26 2013-04-02 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US10039601B2 (en) 2010-03-26 2018-08-07 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US9867664B2 (en) 2010-05-03 2018-01-16 Covidien Lp System and method of deploying an antenna assembly
CA2800312A1 (en) 2010-05-03 2011-11-10 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9561076B2 (en) 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US8652127B2 (en) 2010-05-26 2014-02-18 Covidien Lp System and method for chemically cooling an ablation antenna
US9377367B2 (en) 2010-06-03 2016-06-28 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US8188435B2 (en) 2010-06-03 2012-05-29 Tyco Healthcare Group Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US9468492B2 (en) 2010-06-03 2016-10-18 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US9241762B2 (en) 2010-06-03 2016-01-26 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US20110319880A1 (en) * 2010-06-25 2011-12-29 Vivant Medical, Inc Microwave Ground Plane Antenna Probe
US8672933B2 (en) 2010-06-30 2014-03-18 Covidien Lp Microwave antenna having a reactively-loaded loop configuration
US8740893B2 (en) 2010-06-30 2014-06-03 Covidien Lp Adjustable tuning of a dielectrically loaded loop antenna
US8974449B2 (en) 2010-07-16 2015-03-10 Covidien Lp Dual antenna assembly with user-controlled phase shifting
US9119647B2 (en) 2010-11-12 2015-09-01 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9028484B2 (en) 2010-11-16 2015-05-12 Covidien Lp Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same
US9055957B2 (en) 2010-12-23 2015-06-16 Covidien Lp Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same
US9770294B2 (en) 2011-01-05 2017-09-26 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9017319B2 (en) 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8932281B2 (en) 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9028476B2 (en) 2011-02-03 2015-05-12 Covidien Lp Dual antenna microwave resection and ablation device, system and method of use
US8974450B2 (en) 2011-02-03 2015-03-10 Covidien Lp System and method for ablation procedure monitoring using electrodes
US9492190B2 (en) 2011-02-09 2016-11-15 Covidien Lp Tissue dissectors
US8317703B2 (en) 2011-02-17 2012-11-27 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same
US8376948B2 (en) 2011-02-17 2013-02-19 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array
US9381059B2 (en) 2011-04-05 2016-07-05 Covidien Lp Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge
US9198724B2 (en) 2011-04-08 2015-12-01 Covidien Lp Microwave tissue dissection and coagulation
US9579150B2 (en) 2011-04-08 2017-02-28 Covidien Lp Microwave ablation instrument with interchangeable antenna probe
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
WO2013022077A1 (en) * 2011-08-10 2013-02-14 国立大学法人 滋賀医科大学 Microwave surgical instrument
US9023025B2 (en) 2011-09-20 2015-05-05 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039693B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9033970B2 (en) 2011-09-20 2015-05-19 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US8920410B2 (en) 2012-05-04 2014-12-30 Covidien Lp Peripheral switching device for microwave energy platforms
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US20130324910A1 (en) 2012-05-31 2013-12-05 Covidien Lp Ablation device with drug delivery component and biopsy tissue-sampling component
JP6236441B2 (en) 2012-06-22 2017-11-22 コビディエン エルピー Microwave temperature measurement for microwave ablation system
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9259269B2 (en) 2012-08-07 2016-02-16 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
JP6363169B2 (en) 2013-03-29 2018-07-25 コビディエン エルピー The method for producing a step-down coaxial microwave ablation applicator and the
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
CN108937827A (en) 2013-09-06 2018-12-07 柯惠有限合伙公司 handle
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US20150250540A1 (en) * 2014-03-10 2015-09-10 Wisconsin Alumni Research Foundation Microwave ablation antenna system
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
GB2545465A (en) * 2015-12-17 2017-06-21 Creo Medical Ltd Electrosurgical probe for delivering microwave energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311334A (en) * 2003-04-10 2004-11-04 Murata Mfg Co Ltd Coaxial cable and antenna device
WO2004112628A1 (en) * 2003-06-23 2004-12-29 Microsulis Limited Radiation applicator for microwave medical treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311334A (en) * 2003-04-10 2004-11-04 Murata Mfg Co Ltd Coaxial cable and antenna device
WO2004112628A1 (en) * 2003-06-23 2004-12-29 Microsulis Limited Radiation applicator for microwave medical treatment

Also Published As

Publication number Publication date
JP2008142467A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
Jossinet et al. A review of parameters for the bioelectrical characterization of breast tissue
US5230349A (en) Electrical heating catheter
US4825880A (en) Implantable helical coil microwave antenna
US9526575B2 (en) Electrosurgical devices with directional radiation pattern
US4271848A (en) Apparatus for electromagnetic radiation of living tissue and the like
US4945912A (en) Catheter with radiofrequency heating applicator
CN103284764B (en) Surgical device
US10045819B2 (en) Frequency identification for microwave ablation probes
US8718787B2 (en) Wireless communication with a medical implant
US5549639A (en) Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof
ES2434851T3 (en) electromagnetic sensors for tissue characterization
US5470352A (en) Balloon angioplasty device
US9276367B2 (en) Method of manurfacturing an electromagnetic energy delivery device
US7156841B2 (en) Electrode arrangement for use in a medical instrument
US8882759B2 (en) Microwave ablation system with dielectric temperature probe
US5026959A (en) Microwave radiator for warming therapy
CA2702275C (en) Surgical antenna
US8073551B2 (en) Coil electrode apparatus for thermal therapy
EP2051617B1 (en) Integrated heating/sensing catheter apparatus for minimally invasive applications
US20060009819A1 (en) Medical electrical device including novel means for reducing high frequency electromagnetic field-induced tissue heating
US6039734A (en) Electrosurgical hand-held battery-operated instrument
US6471696B1 (en) Microwave ablation instrument with a directional radiation pattern
Yang et al. A floating sleeve antenna yields localized hepatic microwave ablation
US20060116672A1 (en) Microwave ablation instrument with insertion probe
US8328799B2 (en) Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150