JP2005039033A - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP2005039033A
JP2005039033A JP2003274020A JP2003274020A JP2005039033A JP 2005039033 A JP2005039033 A JP 2005039033A JP 2003274020 A JP2003274020 A JP 2003274020A JP 2003274020 A JP2003274020 A JP 2003274020A JP 2005039033 A JP2005039033 A JP 2005039033A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
weight
acid
ammonium salt
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274020A
Other languages
Japanese (ja)
Inventor
Yasuo Hirata
康夫 平田
Seitaro Onoe
清太朗 尾上
Akihiro Matsuda
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2003274020A priority Critical patent/JP2005039033A/en
Publication of JP2005039033A publication Critical patent/JP2005039033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic capacitor in which the elctrolytic solution does not freeze nor separate out the electrolyte at low temperatures even though the amount of purified water is increased, a low specific resistance is realized, and no hydration reaction of an electrode foil is conducted at high temperatures. <P>SOLUTION: The time for measuring the increase of the breakdown voltage when testing a deterioration of an anode foil of the electrolytic capacitor in a boiled purified water after 60-minute immersed in the purified water of not less than 95°C is not more than 5 sec. The elctrolytic solution for driving comprises a mixed solvent of the purified water and 15.0 to 18.0 % ethylene glycol by weight disolved by adipic acid or its ammonium salt, formic acid or its ammonium salt, nitro compound, mannitol, orthophosphoric acid, citric acid or their ammonium salt. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低ESR(等価直列抵抗)で、低温特性の改善、および高温下での高信頼性を実現した電解コンデンサに関するものである。   The present invention relates to an electrolytic capacitor that achieves low ESR (equivalent series resistance), improved low-temperature characteristics, and high reliability at high temperatures.

アルミニウム電解コンデンサは、高純度アルミニウム箔の表面をエッチングし、酸化アルミニウム(誘電体皮膜)を陽極酸化により形成した陽極箔と、エッチングした陰極箔とを、セパレータ(電解紙)を介して巻回したコンデンサ素子に駆動用電解液(以下、電解液と称す)を含浸し、アルミニウムケースに格納し、封口体で密閉したものである。   The aluminum electrolytic capacitor was obtained by etching the surface of a high-purity aluminum foil, and winding the anode foil formed by anodizing aluminum oxide (dielectric film) and the etched cathode foil via a separator (electrolytic paper). A capacitor element is impregnated with a driving electrolyte (hereinafter referred to as electrolyte), stored in an aluminum case, and sealed with a sealing body.

上記のアルミニウム電解コンデンサに要求される特性として、低ESRがある。低ESRを実現するためには、電解液の低比抵抗化が必要である。
そこで、低比抵抗化を図るために、電解液中の純水量を増加させ、エチレングリコール量を低減する方法が提案されている(例えば、特許文献1、2参照)。
特許第3366267号(第1−10頁) 特許第3366268号(第1−21頁)
A characteristic required for the aluminum electrolytic capacitor is low ESR. In order to realize low ESR, it is necessary to reduce the specific resistance of the electrolyte.
Therefore, in order to reduce the specific resistance, a method of increasing the amount of pure water in the electrolytic solution and reducing the amount of ethylene glycol has been proposed (see, for example, Patent Documents 1 and 2).
Japanese Patent No. 3366267 (page 1-10) Japanese Patent No. 3366268 (page 1-21)

近年、電解コンデンサの低ESR化のために、電解液の比抵抗を20Ω・cm未満にすることが求められている。
しかし、電解液中の純水量を増加すると、低温条件下で、凍結または析出が発生するという問題があり、また、高温条件下で、電極箔が電解液中の純水と水和反応を起こすという問題があった。
以上の問題に鑑みて、本発明の課題は、低温条件下での凍結または析出が発生しない低比抵抗の電解液であって、かつ高温条件下で安定した電気特性を示す電解コンデンサを提供することにある。
In recent years, in order to reduce the ESR of electrolytic capacitors, it has been demanded that the specific resistance of the electrolytic solution be less than 20 Ω · cm.
However, when the amount of pure water in the electrolyte is increased, there is a problem that freezing or precipitation occurs under low temperature conditions, and the electrode foil causes a hydration reaction with pure water in the electrolyte under high temperature conditions. There was a problem.
In view of the above problems, an object of the present invention is to provide an electrolytic capacitor having a low specific resistance that does not cause freezing or precipitation under low temperature conditions and exhibiting stable electrical characteristics under high temperature conditions. There is.

本発明は、上記課題を解決するため各種検討した結果、見出されたものであり、電解液の低比抵抗化を図りながら、低温条件下での凍結または析出を抑え、かつ高温条件下において、電極箔が電解液中の水分と水和反応を起こすのを抑え、電解コンデンサの特性の安定化を図ったものである。   The present invention has been found as a result of various studies to solve the above-mentioned problems, and has been found to suppress freezing or precipitation under low temperature conditions while reducing the specific resistance of the electrolyte, and under high temperature conditions. The electrode foil is prevented from causing a hydration reaction with moisture in the electrolytic solution, and the characteristics of the electrolytic capacitor are stabilized.

すなわち、化成皮膜を形成した陽極箔と、陰極箔とをセパレータを介して巻回したコンデンサ素子に駆動用電解液を含浸したコンデンサ素子をアルミニウムケースに格納した電解コンデンサにおいて、
上記陽極箔は、95℃以上の純水中に60分間の浸漬後の耐電圧の上昇時間を測定する純水ボイル劣化試験が5秒以下であり、
上記駆動用電解液は、純水とエチレングリコール15.0〜18.0重量%とからなる混合溶媒に、アジピン酸若しくはそのアンモニウム塩、およびギ酸若しくはそのアンモニウム塩と、ニトロ化合物と、マンニットと、オルトリン酸と、クエン酸またはそのアンモニウム塩とを溶解してなることを特徴とする電解コンデンサである。
That is, in an electrolytic capacitor in which a capacitor element impregnated with a driving electrolyte is stored in an aluminum case in a capacitor element in which an anode foil formed with a chemical conversion film and a cathode foil are wound through a separator,
The anode foil has a pure water boil deterioration test for measuring a rise time of a withstand voltage after immersion for 60 minutes in pure water at 95 ° C. or higher for 5 seconds or less,
The driving electrolyte includes a mixed solvent composed of pure water and 15.0 to 18.0% by weight of ethylene glycol, adipic acid or an ammonium salt thereof, formic acid or an ammonium salt thereof, a nitro compound, mannitol, An electrolytic capacitor obtained by dissolving orthophosphoric acid and citric acid or an ammonium salt thereof.

また、上記のニトロ化合物が、ニトロ安息香酸、ジニトロ安息香酸若しくはそれらのアンモニウム塩、またはニトロフェノール、ニトロアセトフェノン、ニトロアニソールであることを特徴とする電解コンデンサである。   The electrolytic capacitor is characterized in that the nitro compound is nitrobenzoic acid, dinitrobenzoic acid or an ammonium salt thereof, nitrophenol, nitroacetophenone, or nitroanisole.

さらに、上記の駆動用電解液の30℃における比抵抗が20Ω・cm未満であることを特徴とする電解コンデンサである。   Furthermore, a specific resistance at 30 ° C. of the driving electrolyte is less than 20 Ω · cm.

そして、上記のアジピン酸若しくはそのアンモニウム塩の溶解量が9.0〜11.0重量%であることを特徴とする電解コンデンサである。   And the amount of dissolution of said adipic acid or its ammonium salt is 9.0-11.0 weight%, It is an electrolytic capacitor characterized by the above-mentioned.

また、上記のギ酸若しくはそのアンモニウム塩の溶解量が10.0〜12.0重量%であることを特徴とする電解コンデンサである。   The electrolytic capacitor is characterized in that the amount of the formic acid or its ammonium salt is 10.0 to 12.0% by weight.

さらに、上記のニトロ化合物の溶解量が0.5〜0.8重量%であることを特徴とする電解コンデンサである。   Further, the electrolytic capacitor is characterized in that the amount of the nitro compound dissolved is 0.5 to 0.8% by weight.

そして、上記のマンニットの溶解量が3.0〜5.0重量%であることを特徴とする電解コンデンサである。   And it is an electrolytic capacitor characterized by the amount of dissolution of said mannit being 3.0 to 5.0 weight%.

また、上記のオルトリン酸の溶解量が0.3〜0.5重量%であることを特徴とする電解コンデンサである。   Further, the electrolytic capacitor is characterized in that the amount of the orthophosphoric acid dissolved is 0.3 to 0.5% by weight.

さらに、上記のクエン酸またはそのアンモニウム塩の溶解量が0.1〜0.3重量%であることを特徴とする電解コンデンサである。   Furthermore, the electrolytic capacitor is characterized in that the amount of the citric acid or its ammonium salt dissolved is 0.1 to 0.3% by weight.

本発明によれば、電解液中の水分と水和反応を起こしにくい電極箔と上記電解液とを使用することにより、電解液中の純水量を増加した場合でも、低温条件下において凍結または電解質の析出が発生することなく、低比抵抗化(30℃で20Ω・cm未満)を実現することができ、かつ、高温電圧印加という条件下において、電解コンデンサの低温特性の改善と同時に高温信頼性の向上をも図ることができる。   According to the present invention, even when the amount of pure water in the electrolytic solution is increased by using an electrode foil that hardly causes a hydration reaction with moisture in the electrolytic solution and the electrolytic solution, the frozen or electrolytic solution is obtained under low temperature conditions. It is possible to achieve a low specific resistance (less than 20 Ω · cm at 30 ° C) without causing precipitation, and at the same time as improving the low temperature characteristics of the electrolytic capacitor under the condition of applying high temperature voltage, high temperature reliability Can also be improved.

本発明による電解コンデンサに用いる陽極箔は、95℃以上の純水中に60分間浸漬後の耐電圧の上昇時間を測定する純水ボイル劣化試験が5秒以下である。具体的には、アルミニウム箔をエッチングし、45〜65℃でリン酸水溶液でケミカル洗浄後、水洗し、常温で上記リン酸水溶液より低濃度のリン酸水溶液に浸漬後、水洗せずに320〜380℃で熱処理したエッチング箔を、アジピン酸アンモニウム水溶液中で化成することで得られる。また、リン酸水溶液によるケミカル洗浄とリン酸浸漬処理を行わず、40〜60℃の純水または弱アルカリ水溶液に浸漬し、擬似ベーマイト皮膜処理を行ったエッチング箔を用いる場合は、リン酸アンモニウム水溶液による化成、前段:アジピン酸アンモニウム水溶液、後段:リン酸アンモニウム水溶液による複合化成、または、アジピン酸アンモニウム水溶液による化成で、途中のリン酸デポラリゼーションを3分以上、その次工程の修復化成を4分以上とする化成を行うことで、純水ボイル劣化試験5秒以下の陽極箔が得られる。
電解液は、純水とエチレングリコール15.0〜18.0重量%とからなる混合溶媒にアジピン酸若しくはそのアンモニウム塩、およびギ酸若しくはそのアンモニウム塩と、ニトロ化合物としてパラニトロ安息香酸またはそのアンモニウム塩と、マンニットと、オルトリン酸と、クエン酸またはそのアンモニウム塩とを溶解してなることを特徴とする。
上記の電解液の30℃における比抵抗が20Ω・cm未満となるよう、上記混合溶媒に、アジピン酸若しくはそのアンモニウム塩9.0〜11.0重量%、およびギ酸若しくはそのアンモニウム塩10.0〜12.0重量%と、パラニトロ安息香酸またはその塩0.5〜0.8重量%と、マンニット3.0〜5.0重量%と、オルトリン酸0.3〜0.5重量%と、クエン酸またはそのアンモニウム塩0.1〜0.3重量%とを溶解し、電解液を調合する。
The anode foil used for the electrolytic capacitor according to the present invention has a pure water boil deterioration test for measuring the rise time of the withstand voltage after being immersed in pure water at 95 ° C. or higher for 60 minutes for 5 seconds or less. Specifically, the aluminum foil was etched, chemically washed with a phosphoric acid aqueous solution at 45 to 65 ° C., washed with water, immersed in a phosphoric acid aqueous solution having a lower concentration than the above phosphoric acid aqueous solution at room temperature, and then washed with water 320 to It can be obtained by chemical conversion of an etching foil heat-treated at 380 ° C. in an aqueous solution of ammonium adipate. In addition, when an etching foil immersed in pure water or weak alkaline aqueous solution at 40 to 60 ° C. and subjected to pseudo boehmite coating treatment without using chemical cleaning with phosphoric acid aqueous solution and phosphoric acid immersion treatment is used, an aqueous ammonium phosphate solution The former stage: ammonium adipate aqueous solution, the latter part: complex formation with ammonium phosphate aqueous solution, or the formation with ammonium adipate aqueous solution, the depolarization on the way is 3 minutes or more, and the repair process of the next process is 4 By performing the chemical conversion for at least 5 minutes, an anode foil having a pure water boil deterioration test of 5 seconds or less can be obtained.
An electrolytic solution is a mixture of pure water and ethylene glycol 15.0 to 18.0% by weight, adipic acid or its ammonium salt, formic acid or its ammonium salt, and paranitrobenzoic acid or its ammonium salt as a nitro compound. It is characterized by dissolving mannitol, orthophosphoric acid and citric acid or its ammonium salt.
In the mixed solvent, 9.0 to 11.0% by weight of adipic acid or an ammonium salt thereof and formic acid or an ammonium salt thereof 10.0 to so that the specific resistance at 30 ° C. of the electrolytic solution is less than 20 Ω · cm. 12.0% by weight, paranitrobenzoic acid or its salt 0.5-0.8% by weight, mannitol 3.0-5.0% by weight, orthophosphoric acid 0.3-0.5% by weight, Dissolve citric acid or its ammonium salt 0.1 to 0.3% by weight, and prepare an electrolyte solution.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

〔実施例〕
表1、2の組成で実施例1〜43の電解液を調合し、30℃における電解液の比抵抗を測定した。また、−25℃における状態を観察した。その結果を表1、2に示す。
〔Example〕
The electrolyte solutions of Examples 1 to 43 were prepared with the compositions shown in Tables 1 and 2, and the specific resistance of the electrolyte solution at 30 ° C. was measured. Moreover, the state in -25 degreeC was observed. The results are shown in Tables 1 and 2.

(従来例)
純水、エチレングリコール、アジピン酸二アンモニウムまたはギ酸アンモニウム(亜リン酸添加)、パラニトロ安息香酸アンモニウムからなる従来例の電解液について、実施例と同様、30℃における比抵抗を測定し、−25℃における
状態を観察した。その結果を表2(下欄)に示す。
(Conventional example)
The specific resistance at 30 ° C. was measured in the same manner as in the examples for the electrolytic solution of the conventional example consisting of pure water, ethylene glycol, diammonium adipate or ammonium formate (phosphorous acid added), and ammonium paranitrobenzoate, and −25 ° C. The state in was observed. The results are shown in Table 2 (lower column).

Figure 2005039033
Figure 2005039033

Figure 2005039033
Figure 2005039033

表1、2の電解液のうち、実施例1〜27、33〜35、37〜40、42、43を、下記の処理を行った陽極箔を巻回してなるコンデンサ素子に含浸し、直径10mm、長さ12.5mm、定格電圧6.3V、静電容量1000μFのアルミニウム電解コンデンサを各10個作製した。
[陽極箔の処理]
純水ボイル劣化試験 耐電圧の上昇時間:3秒
塩酸と硫酸の混合溶液中で、交流電解を行う公知のエッチング方法にて、アルミニウム箔をエッチングし、箔表面の塩素分除去と耐水性向上のため、60℃、20重量%リン酸に1分間浸漬し、水洗後、常温で0.1重量%リン酸に30秒間浸漬後、水洗せずに、350℃で熱処理した。
上記のエッチング箔をアジピン酸アンモニウム水溶液中で、耐電圧11Vに化成後、下記のとおり純水ボイル劣化試験(60分間95℃以上)を行い、耐電圧の上昇時間が3秒(n=10の平均)であることを確認した。
[純水ボイル劣化試験]
(1)試験片(サイズ:10mm×50mm)を純水で洗浄した後、95℃以上の純水500mlの入った槽に投入し、60±1分間放置する。
(2)純水1000mlにアジピン酸アンモニウム150gを溶解した溶液を調製し、上記試験片を浸漬して、85±2℃にして1.0±0.1mAの測定電流を流し、電圧の上昇曲線を記録する。
(3)測定電流を流し始めてから耐電圧(11V)の90%の電圧に達するまでの時間を、立上り時間として記録する。
Of the electrolytic solutions in Tables 1 and 2, Examples 1-27, 33-35, 37-40, 42, 43 were impregnated into a capacitor element formed by winding an anode foil subjected to the following treatment, and the diameter was 10 mm. Ten aluminum electrolytic capacitors each having a length of 12.5 mm, a rated voltage of 6.3 V, and a capacitance of 1000 μF were produced.
[Anode foil treatment]
Pure water boil degradation test Withstand voltage rise time: 3 seconds In the mixed solution of hydrochloric acid and sulfuric acid, the aluminum foil is etched by a known etching method in which AC electrolysis is performed, and the chlorine content on the foil surface is removed and water resistance is improved. Therefore, it was immersed in 60 ° C. and 20% by weight phosphoric acid for 1 minute, washed with water, then immersed in 0.1% by weight phosphoric acid at room temperature for 30 seconds, and then heat treated at 350 ° C. without washing with water.
After the above etching foil was converted to a withstand voltage of 11 V in an aqueous solution of ammonium adipate, a pure water boil deterioration test (over 60 minutes at 95 ° C.) was performed as follows, and the withstand voltage rise time was 3 seconds (n = 10 Average).
[Pure water boil deterioration test]
(1) After a test piece (size: 10 mm × 50 mm) is washed with pure water, it is put into a tank containing 500 ml of pure water at 95 ° C. or higher and left for 60 ± 1 minutes.
(2) A solution in which 150 g of ammonium adipate was dissolved in 1000 ml of pure water was prepared, the test piece was immersed, the measurement current of 1.0 ± 0.1 mA was passed at 85 ± 2 ° C., and the voltage rise curve Record.
(3) The time from when the measurement current starts to flow until the voltage reaches 90% of the withstand voltage (11 V) is recorded as the rise time.

上記のコンデンサを、105℃の恒温槽で2000時間、定格電圧印加し、初期値に対する静電容量変化率、tanδ、漏れ電流を測定し、表3の結果を得た。   The rated voltage was applied to the above capacitor in a constant temperature bath at 105 ° C. for 2000 hours, and the capacitance change rate, tan δ, and leakage current with respect to the initial values were measured, and the results shown in Table 3 were obtained.

Figure 2005039033
Figure 2005039033

表3において、電気特性を比較すると、実施例8、12、13、16、20、23、24、27、35、39、42、43では、2000時間後の電気特性が悪化し、弁膨張が発生しているが、その他の実施例では、電気特性が安定しており、弁膨張も小さいことが分かる。   In Table 3, when the electrical characteristics are compared, in Examples 8, 12, 13, 16, 20, 23, 24, 27, 35, 39, 42, and 43, the electrical characteristics after 2000 hours deteriorated and the valve expansion was reduced. It can be seen that in other examples, the electrical characteristics are stable and the valve expansion is small.

表1〜3の結果より、電解液の組成は以下の範囲が適当であることが判明した。
エチレングリコールは、13.0重量%の場合、−25℃で凍結が見られた。また、20.0重量%の場合、比抵抗が高くなるので、低比抵抗用途には不適当である(実施例4)。従って、エチレングリコールは15.0〜18.0重量%の範囲が好ましい。
From the results in Tables 1 to 3, it was found that the following range is appropriate for the composition of the electrolytic solution.
When ethylene glycol was 13.0% by weight, freezing was observed at -25 ° C. Further, in the case of 20.0% by weight, the specific resistance becomes high, so that it is unsuitable for low specific resistance applications (Example 4). Accordingly, ethylene glycol is preferably in the range of 15.0 to 18.0% by weight.

表1記載のとおり、アジピン酸二アンモニウムが8.0重量%の場合、−25℃で凍結が見られた(実施例5)。また、表3記載のとおり、アジピン酸二アンモニウムが12.0重量%の場合、2000時間経過後、電気特性が悪化した(実施例8)。従って、アジピン酸二アンモニウムは9.0〜11.0重量%の範囲が好ましい。   As shown in Table 1, when diammonium adipate was 8.0% by weight, freezing was observed at −25 ° C. (Example 5). As shown in Table 3, when diammonium adipate was 12.0% by weight, the electrical characteristics deteriorated after 2000 hours (Example 8). Accordingly, the diammonium adipate is preferably in the range of 9.0 to 11.0% by weight.

表1記載のとおり、ギ酸アンモニウムが9.0重量%の場合、−25℃で凍結が見られた。また、表3記載のとおり、ギ酸アンモニウムが13.0重量%の場合、2000時間経過後、電気特性が悪化した(実施例12)。従って、ギ酸アンモニウムは10.0〜12.0重量%の範囲が好ましい。   As shown in Table 1, when ammonium formate was 9.0% by weight, freezing was observed at -25 ° C. As shown in Table 3, when ammonium formate was 13.0% by weight, the electrical characteristics deteriorated after 2000 hours (Example 12). Accordingly, the ammonium formate is preferably in the range of 10.0 to 12.0% by weight.

表1記載のとおり、パラニトロ安息香酸アンモニウムが1.0重量%の場合、−25℃で析出が見られた(実施例15)。また、表3記載のとおり、パラニトロ安息香酸アンモニウムが0.3重量%の場合、2000時間経過後、電気特性が悪化した(実施例13)。従って、パラニトロ安息香酸アンモニウムは0.5〜0.8重量%の範囲が好ましい。   As shown in Table 1, when ammonium paranitrobenzoate was 1.0% by weight, precipitation was observed at −25 ° C. (Example 15). As shown in Table 3, when ammonium paranitrobenzoate was 0.3% by weight, the electrical characteristics deteriorated after 2000 hours (Example 13). Therefore, ammonium paranitrobenzoate is preferably in the range of 0.5 to 0.8% by weight.

表1記載のとおり、マンニットが1.0重量%の場合、弁膨張が見られた(実施例16)。また、マンニットが7.0重量%の場合、比抵抗が高くなる(実施例19)ので不適当であり、マンニットは3.0〜5.0重量%の範囲が好ましい。   As shown in Table 1, when mannit was 1.0% by weight, valve expansion was observed (Example 16). Further, when the mannit is 7.0% by weight, the specific resistance becomes high (Example 19), which is inappropriate. The mannit is preferably in the range of 3.0 to 5.0% by weight.

表3記載のとおり、オルトリン酸が0.2重量%の場合、2000時間経過後、電気特性が悪化した(実施例20)。また、0.7重量%の場合も、2000時間経過後、電気特性が悪化した(実施例23)。従って、オルトリン酸は0.3〜0.5重量%の範囲が好ましい。   As shown in Table 3, when orthophosphoric acid was 0.2% by weight, the electrical characteristics deteriorated after 2000 hours (Example 20). Also, in the case of 0.7% by weight, the electrical characteristics deteriorated after 2000 hours (Example 23). Accordingly, orthophosphoric acid is preferably in the range of 0.3 to 0.5% by weight.

表3記載のとおり、クエン酸二アンモニウムが0.05重量%の場合、2000時間経過後、電気特性が悪化した(実施例24)。また、0.5重量%の場合も2000時間経過後、電気特性が悪化した(実施例27)。従って、クエン酸二アンモニウムは0.1〜0.3重量%の範囲が好ましい。   As shown in Table 3, when diammonium citrate was 0.05% by weight, electrical characteristics deteriorated after 2000 hours (Example 24). Also, in the case of 0.5% by weight, the electrical characteristics deteriorated after 2000 hours (Example 27). Accordingly, the diammonium citrate content is preferably in the range of 0.1 to 0.3% by weight.

また、エチレングリコールの下限15.0重量%とし、アジピン酸二アンモニウムとギ酸アンモニウムの量を変えた表2の場合も、アジピン酸二アンモニウムは9.0〜11.0重量%で、かつ、ギ酸アンモニウムの量は10.0〜12.0重量%の範囲が適当である。いずれかが下限を下回ると−25℃での凍結が起こり、いずれかが上限を上回ると、電気特性が悪化する(表3)。
また、上記実施例において、30℃における比抵抗を12Ω・cm未満とすることができたが、水の量を減らし、溶質量を減量したときの変動を考慮して、比抵抗の上限値は20Ω・cm未満となるように設定するものとした。
Further, in the case of Table 2 where the lower limit of ethylene glycol was 15.0% by weight and the amounts of diammonium adipate and ammonium formate were changed, diammonium adipate was 9.0 to 11.0% by weight, and formic acid The amount of ammonium is suitably in the range of 10.0 to 12.0% by weight. If either falls below the lower limit, freezing occurs at −25 ° C., and if any exceeds the upper limit, the electrical characteristics deteriorate (Table 3).
Further, in the above examples, the specific resistance at 30 ° C. could be less than 12 Ω · cm, but considering the fluctuation when the amount of water was reduced and the dissolved mass was reduced, the upper limit value of the specific resistance is It was set to be less than 20 Ω · cm.

上記の結果、電気特性が優れていることが判明した実施例33、34、37、38の電解液について、下記の陽極箔を使用し、純水ボイル劣化試験における耐電圧の上昇時間を3秒、5秒、6秒、8秒に設定したもので、上記と同様、定格電圧6.3V、静電容量1000μFの電解コンデンサを各10個作製し、105℃の恒温槽で定格電圧を2000時間印加し、初期値に対する静電容量変化率、tanδ、漏れ電流を測定し、表4の結果を得た。
[実施例の陽極箔]
純水ボイル劣化試験 耐電圧の上昇時間:3秒、5秒
塩酸と硫酸の混合溶液中で、交流電解を行う公知のエッチング方法にて、アルミニウム箔をエッチングし、箔表面の塩素分除去と耐水性向上のため、60℃、2.0重量%リン酸に1分間浸漬し、水洗後、常温で0.1重量%リン酸に30秒間浸漬後、水洗せずに350℃で熱処理した。
上記のエッチング箔をアジピン酸アンモニウム水溶液中で、耐電圧11Vに化成後、上記した純水ボイル劣化試験を行い、耐電圧の上昇時間が5秒以下であることを確認し、3秒、5秒のものを選択した。
[比較例の陽極箔]
純水ボイル劣化試験 耐電圧の上昇時間:6秒、8秒
上記と同様のエッチング箔を作製し、エッチング箔表面の塩素分を除去するため、60℃、2.5重量%硝酸に1分間浸漬し、水洗後、350℃で熱処理した。
上記のエッチング箔をアジピン酸アンモニウム水溶液中で、耐電圧11Vに化成後、上記した純水ボイル劣化試験を行い、耐電圧の上昇時間が6秒以上であることを確認し、6秒、8秒のものを選択した。
As a result, the electrolytic solutions of Examples 33, 34, 37, and 38 that were found to have excellent electrical characteristics were used with the following anode foil, and the withstand voltage rise time in the pure water boil deterioration test was 3 seconds. 5 seconds, 6 seconds, and 8 seconds. Similarly to the above, 10 electrolytic capacitors each having a rated voltage of 6.3 V and a capacitance of 1000 μF were produced, and the rated voltage was maintained in a constant temperature bath at 105 ° C. for 2000 hours. The change in capacitance, tan δ, and leakage current with respect to the initial values were measured, and the results shown in Table 4 were obtained.
[Anode foil of example]
Pure water boil deterioration test Withstand voltage rise time: 3 seconds, 5 seconds Etching aluminum foil in a mixed solution of hydrochloric acid and sulfuric acid using a known etching method in which AC electrolysis is performed, removing chlorine from the foil surface and water resistance In order to improve the properties, it was immersed in 2.0% by weight phosphoric acid at 60 ° C. for 1 minute, washed with water, then immersed in 0.1% by weight phosphoric acid at room temperature for 30 seconds, and then heat treated at 350 ° C. without washing with water.
The above-described etching foil was converted to a withstand voltage of 11 V in an aqueous solution of ammonium adipate, and then the pure water boil deterioration test was performed to confirm that the withstand voltage increase time was 5 seconds or less. Selected one.
[Anode foil of comparative example]
Pure water boil degradation test Withstand voltage rise time: 6 seconds, 8 seconds An etching foil similar to the above was prepared, and immersed in nitric acid at 60 ° C. and 2.5 wt% nitric acid to remove the chlorine content on the etching foil surface. And washed with water and heat-treated at 350 ° C.
The above-mentioned etching foil was converted to a withstand voltage of 11 V in an aqueous solution of ammonium adipate, and then the pure water boil deterioration test was conducted to confirm that the withstand voltage increase time was 6 seconds or more. 6 seconds, 8 seconds Selected one.

Figure 2005039033
Figure 2005039033

表4の比較から、純水ボイル劣化試験が5秒以下である実施例の陽極箔(60℃ 2.0重量%リン酸浸漬→水洗→常温 0.1重量%リン酸浸漬→水洗なし→熱処理)を使用したものの方が、純水ボイル劣化試験6秒以上である比較例の陽極箔(60℃ 2.5vol重量%硝酸浸漬→水洗→熱処理)を使用したものよりも漏れ電流等の電気特性が安定しており、水和反応を起こしにくいことが分かる。よって、陽極箔は、純水ボイル劣化試験後の耐電圧の上昇時間を5秒以下とすることが必要である。   From the comparison of Table 4, the anode foil of the example whose pure water boil deterioration test is 5 seconds or less (60 ° C. 2.0 wt% phosphoric acid immersion → water washing → normal temperature 0.1 wt% phosphoric acid immersion → no water washing → heat treatment ) Using the anode foil of the comparative example (60 ° C. 2.5 vol% nitric acid immersion → water washing → heat treatment), which has a pure water boil deterioration test of 6 seconds or more. It is understood that the hydration reaction is difficult to occur. Therefore, the anode foil is required to have a withstand voltage rise time of 5 seconds or less after the pure water boil deterioration test.

さらに、耐電圧11Vを超える電圧で、高容量箔が必要な場合は、硝酸ケミカル洗浄と疑似べーマイト処理で対応することができ、このときの化成は、CC化成、CV化成(絞り化成)、リン酸デポラリゼーション(60℃、2段)、修復化成(3段)、リン酸浸漬を順に行い、リン酸デポラリゼーションを3分以上、修復化成を4分以上とすることで純水ボイル劣化試験が5秒以下の陽極箔が得られる。   Furthermore, when a high-capacity foil is required at a voltage exceeding a withstand voltage of 11 V, it can be dealt with by nitric acid chemical cleaning and pseudo-boehmite treatment. At this time, the chemical conversion is CC chemical conversion, CV chemical conversion (squeezing chemical conversion), Pure water boil by performing phosphoric acid depolarization (60 ° C., 2nd stage), restoration conversion (3rd stage), and phosphoric acid immersion in order, and phosphoric acid depolarization for 3 minutes or more and restoration formation for 4 minutes or more. An anode foil whose deterioration test is 5 seconds or less is obtained.

なお、上記実施例では、ニトロ化合物としてパラニトロ安息香酸を用いたが、これ以外に、ジニトロ安息香酸若しくはそのアンモニウム塩、またはニトロフェノール、ニトロアセトフェノン、またはニトロアニソールを使用した場合にも上記と同様の効果を得ることができる。   In the above examples, paranitrobenzoic acid was used as the nitro compound, but dinitrobenzoic acid or its ammonium salt, or nitrophenol, nitroacetophenone, or nitroanisole was used in the same manner as above. An effect can be obtained.

Claims (9)

化成皮膜を形成した陽極箔と、陰極箔とをセパレータを介して巻回したコンデンサ素子に駆動用電解液を含浸したコンデンサ素子をアルミニウムケースに格納した電解コンデンサにおいて、
上記陽極箔は、95℃以上の純水中に60分間浸漬後の耐電圧の上昇時間を測定する純水ボイル劣化試験が5秒以下であり、
上記駆動用電解液は、純水とエチレングリコール15.0〜18.0重量%とからなる混合溶媒に、アジピン酸若しくはそのアンモニウム塩、およびギ酸若しくはそのアンモニウム塩と、ニトロ化合物と、マンニットと、オルトリン酸と、クエン酸またはそのアンモニウム塩とを溶解してなることを特徴とする電解コンデンサ。
In an electrolytic capacitor in which a capacitor element in which a driving electrolyte is impregnated in a capacitor element obtained by winding an anode foil formed with a chemical conversion film and a cathode foil through a separator is stored in an aluminum case,
The anode foil has a pure water boil deterioration test for measuring a rise time of a withstand voltage after being immersed in pure water at 95 ° C. or higher for 60 minutes for 5 seconds or less,
The driving electrolyte includes a mixed solvent composed of pure water and 15.0 to 18.0% by weight of ethylene glycol, adipic acid or an ammonium salt thereof, formic acid or an ammonium salt thereof, a nitro compound, mannitol, An electrolytic capacitor obtained by dissolving orthophosphoric acid and citric acid or an ammonium salt thereof.
.
請求項1記載のニトロ化合物がニトロ安息香酸、ジニトロ安息香酸若しくはそれらのアンモニウム塩、またはニトロフェノール、ニトロアセトフェノン、ニトロアニソールであることを特徴とする電解コンデンサ。   2. The electrolytic capacitor according to claim 1, wherein the nitro compound is nitrobenzoic acid, dinitrobenzoic acid or an ammonium salt thereof, or nitrophenol, nitroacetophenone, or nitroanisole. 請求項1記載の駆動用電解液の30℃における比抵抗が20Ω・cm未満であることを特徴とする電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein a specific resistance at 30 ° C. of the driving electrolyte is less than 20 Ω · cm. 請求項1記載のアジピン酸若しくはそのアンモニウム塩の溶解量が9.0〜11.0重量%であることを特徴とする電解コンデンサ。   2. The electrolytic capacitor according to claim 1, wherein the amount of adipic acid or ammonium salt thereof dissolved is 9.0 to 11.0% by weight. 請求項1記載のギ酸若しくはそのアンモニウム塩の溶解量が10.0〜12.0重量%であることを特徴とする電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the amount of formic acid or its ammonium salt dissolved is 10.0 to 12.0% by weight. 請求項1記載のニトロ化合物の溶解量が0.5〜0.8重量%であることを特徴とする電解コンデンサ。   2. The electrolytic capacitor according to claim 1, wherein the nitro compound is dissolved in an amount of 0.5 to 0.8% by weight. 請求項1記載のマンニットの溶解量が3.0〜5.0重量%であることを特徴とする電解コンデンサ。   2. The electrolytic capacitor according to claim 1, wherein the amount of mannitol dissolved is 3.0 to 5.0% by weight. 請求項1記載のオルトリン酸の溶解量が0.3〜0.5重量%であることを特徴とする電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the amount of orthophosphoric acid dissolved is 0.3 to 0.5% by weight. 請求項1記載のクエン酸またはそのアンモニウム塩の溶解量が0.1〜0.3重量%であることを特徴とする電解コンデンサ。
The electrolytic capacitor according to claim 1, wherein the amount of citric acid or its ammonium salt dissolved is 0.1 to 0.3% by weight.
JP2003274020A 2003-07-14 2003-07-14 Electrolytic capacitor Pending JP2005039033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274020A JP2005039033A (en) 2003-07-14 2003-07-14 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274020A JP2005039033A (en) 2003-07-14 2003-07-14 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2005039033A true JP2005039033A (en) 2005-02-10

Family

ID=34211096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274020A Pending JP2005039033A (en) 2003-07-14 2003-07-14 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2005039033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894673A (en) * 2010-08-03 2010-11-24 何平洲 Aluminum electrolytic capacitor electrolyte and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894673A (en) * 2010-08-03 2010-11-24 何平洲 Aluminum electrolytic capacitor electrolyte and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3623113B2 (en) Electrolytic capacitor
JP5411156B2 (en) Capacitor element manufacturing method
JP2007273839A (en) Method for manufacturing electrode foil for electrolytic capacitor
TW201843357A (en) Chemical conversion liquid, method for chemically converting aluminum-containing base material, chemically converted base material, electrode material for aluminum electrolytic capacitor, and capacitor
JP2005039033A (en) Electrolytic capacitor
JP2663541B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPWO2011118234A1 (en) Electrolytic solution for electrolytic capacitors
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP5387279B2 (en) Electrolytic solution for electrolytic capacitors
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPS5915375B2 (en) Manufacturing method of anode body for aluminum electrolytic capacitor
JP2005019773A (en) Aluminum electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JP3537127B2 (en) Aluminum foil for electrolytic capacitor electrodes
JP4338444B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP2007115947A (en) Electrolyte for driving electrolytic capacitor
JP2005142343A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2011066032A (en) Method of manufacturing electrode foil for electrolytic capacitor
JPH0661104A (en) Treatment method of electrode material for capacitor
JPS622514A (en) Electrolytic capacitor
JP2005175330A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2960153B2 (en) Electrolyte for driving electrolytic capacitors
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP5689635B2 (en) Electrolytic solution for electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Effective date: 20080804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081208

Free format text: JAPANESE INTERMEDIATE CODE: A02