JP2005037397A - Ultrasonic gas flowmeter - Google Patents

Ultrasonic gas flowmeter Download PDF

Info

Publication number
JP2005037397A
JP2005037397A JP2004208932A JP2004208932A JP2005037397A JP 2005037397 A JP2005037397 A JP 2005037397A JP 2004208932 A JP2004208932 A JP 2004208932A JP 2004208932 A JP2004208932 A JP 2004208932A JP 2005037397 A JP2005037397 A JP 2005037397A
Authority
JP
Japan
Prior art keywords
gas
temperature
flow
sound
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208932A
Other languages
Japanese (ja)
Other versions
JP4361843B2 (en
Inventor
Mario Kupnik
マリオ・クプニク
Andreas Schroeder
アンドレアス・シュレーダー
Michael Wiesinger
ミヒヤエル・ヴィージンガー
Klaus-Christoph Harms
クラウス−クリストフ・ハルムス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of JP2005037397A publication Critical patent/JP2005037397A/en
Application granted granted Critical
Publication of JP4361843B2 publication Critical patent/JP4361843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic gas flowmeter provided with an essentially improved output, by taking reduction and study of temperature stability and an original temperature shape into account. <P>SOLUTION: This ultrasonic gas flowmeter comprises a gas through-flow measuring tube provided with a transmission sound converter and a reception sound converter, and a transmission and reception evaluating electronic part. Sound converters 7, 8, 9, 10 are formed as capacitive electro-acoustic type ultrasonic converters to constitute a sensor provided with improved output ability, in particular, the reduction and the study of the temperature stability and the temperature shape, and a device is provided to comparison-regulate the gas temperature shape and to minimize an influence of the temperature shape in flow measurement. Accurate and sure detection for gas, in particular, a volume flow or a mass flow in a highly dynamic flow is attained for a method for detecting the gas through-flow to detect a gas flow detected by two acoustic signals between a transmitter having high time-serial resolution of an average flow velocity and the flowing gas in an operation time, and a receiver. An assumed value for a flow rate is thereby evaluated after determining the operation time (35), and the assumed value is corrected based on at least a characteristic temperature of the gas and a temperature of a wall of the measuring tube (36). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、少なくとも一つの送信変換器と一つの受信変換器と一つの送信、受信、評価電子部を包含する超音波ガス流量計、並びに内燃機関の排ガスを測定する装置、並びにガスの貫流を検出する方法に関し、この場合に平均流れ速度とそれにより流れるガス量とは運転時間からより高い時間的解像度を備える送信器と受信器の間の二つの音信号により確認される。   The present invention relates to an ultrasonic gas flow meter including at least one transmission converter, one reception converter and one transmission, reception and evaluation electronics, an apparatus for measuring exhaust gas from an internal combustion engine, and a gas flow-through. Regarding the method of detection, in this case the average flow velocity and thereby the amount of gas flowing is ascertained by two sound signals between the transmitter and the receiver with a higher temporal resolution from the operating time.

そのような超音波ガス流量計は流体とガス用として知られており、種々の本と専門物品のテーマである。超音波ガス流量計は所謂、連行効果を利用し、即ち流体の音信号の伝播速度と方向は音送信器の配向と(静止)媒体の音速度とによるばかりではなく、なかんずく流体媒体の流速にも依存している。少なくとも二つの運転時間が少なくとも二つの測定レーン(Messpfaden) に沿って測定されるならば、その少なくとも一方が流れ方向と平行に或いは斜めに上流に或いは下流に向けられねばならない。他方の測定レーンに対する延伸部は交差され、平行移動される、或いは平行に収れんされる。   Such ultrasonic gas flowmeters are known for fluids and gases and are the subject of various books and specialty articles. Ultrasonic gas flowmeters use a so-called entrainment effect, that is, the propagation speed and direction of the sound signal of the fluid not only depends on the orientation of the sound transmitter and the sound speed of the (stationary) medium, but above all on the flow speed of the fluid medium. Also depends. If at least two operating times are measured along at least two measuring lanes (Messpfaden), at least one of them must be directed upstream or downstream in parallel or diagonally to the flow direction. The extensions for the other measurement lane are crossed and translated or converged in parallel.

流れる媒体の領域における送信された音の特徴の少なくとも二つの運転時間は音特徴の送信時点と受信時点との間の少なくとも二つの測定された時間差から求められる。運転時間から平均的流速が求められ得て、その平均的流速は貫流される管の既知の横断面により求められた容積流を与える。   At least two operating times of the transmitted sound feature in the region of the flowing medium are determined from at least two measured time differences between the transmission time and reception time of the sound feature. From the operating time, an average flow rate can be determined, which gives a volumetric flow determined by a known cross-section of the tube through which it flows.

流れるガスの質量流は、ガスの濃度が知られるならば、容積流から算出され得る。しかし、これは特に重なった圧力脈動と強力な温度変動を伴う脈動するガス流では一般に知られていない。送信された音特徴の少なくとも二つの運転時間から静止ガスの音速度に近似する音の有効的伝播速度を求めて、同時に運転時間を測定するために現実のガス圧と場合によっては追加的に現実のガス温度とを測定し、評価の際にそれらを考慮に入れることが可能である。   The mass flow of the flowing gas can be calculated from the volumetric flow if the concentration of the gas is known. However, this is not generally known, especially with pulsating gas flows with overlapping pressure pulsations and strong temperature fluctuations. The effective propagation speed of the sound that approximates the sound speed of the stationary gas is determined from at least two operating times of the transmitted sound feature and at the same time the actual gas pressure and possibly additional realities to measure the operating time. It is possible to measure the gas temperature and take them into account in the evaluation.

しかし、この公知の方法はそのころ制限された用途可能性を有する。と言うのは、理想ガス用の公知の方程式によると、ガス質量流の精確な測定のために、追加的に一定圧力対一定容積における特定熱容量の関係であるガスの断熱係数の知識、或いはモル質量の知識が必要である。これらの値は必要である。けれども、これらの値はいつも公知ではなく、例えば可変に導入される燃焼からの排ガスにおいて時間にわたり一定ではない。   However, this known method has limited application possibilities at that time. This is because, according to known equations for ideal gases, for accurate measurement of gas mass flow, additional knowledge of the adiabatic coefficient of the gas, which is the relationship between a specific pressure and a specific heat capacity at a constant volume, or mole Knowledge of mass is necessary. These values are necessary. However, these values are not always known and are not constant over time, for example in exhaust gases from variably introduced combustion.

その外に、平均的流速と音速の運転時間から得られる値は音波により進行される容積内の流れの時間的且つ立体的経過に依存している。それらの値はそれぞれに音路と時間を介して伝達される値であり、その間に流れるガス量の測定のために、管の横断面にわたり伝達された流速が規準となる。これら両伝達は一般に同じ結果を与えないので、音路において流速と音速の運転時間から伝達される値における流れ形状の影響を最小にするために、費用のかかるシステムが考え出された。例えば運転時間から検出される流速は既に管横断面にわたり伝達される速度に一致するように複数の超音波変換器を位置決めすることが提案されていた。さらに、特に大きな管横断面のために管壁の付近領域における特殊音路が提案されていた。複数の音変換器や音路の適切であるが、しかし費用のかかる配列や評価によって、運転時間から検出される流速は既に管横断面にわたり伝達される速度に一致することが保証されるべきであった。   Besides that, the value obtained from the average flow velocity and the operating time of the sound velocity depends on the temporal and steric course of the flow in the volume which is advanced by the sound waves. Each of these values is a value transmitted through the sound path and time, and the flow rate transmitted over the cross section of the tube is a criterion for measuring the amount of gas flowing between them. Since both these transmissions generally do not give the same result, an expensive system has been devised to minimize the effect of flow shape on the values transmitted from the velocity and speed of operation in the sound path. For example, it has been proposed to position a plurality of ultrasonic transducers such that the flow velocity detected from the operating time matches the velocity already transmitted across the tube cross section. In addition, special sound paths in the vicinity of the tube wall have been proposed, especially for large tube cross sections. Multiple sound transducers and sound paths are appropriate, but expensive arrangements and evaluations should ensure that the flow velocity detected from the operating time is already consistent with the velocity transmitted across the tube cross section. there were.

さらに、媒体内に存在する流れ形状を考慮するために、誤差修正を校正定数の形態に処理され得ることは知られており、そのことは無論、時間的に一定の流れ特性においてのみ有効であるが、しかし非停滞的で且つ脈動式流れにおいては役立たない。   Furthermore, it is known that error correction can be processed in the form of calibration constants to take into account the flow shape present in the medium, which is, of course, only valid for constant flow characteristics in time. However, it is not useful in non-stagnation and pulsating flows.

公知の装置と方法の欠点は、特にそれらがしばしば誤って貫流される管内の音路の直線的経路から出発することにある。   A disadvantage of the known devices and methods is that they start from a straight path of the sound path in the tube, in particular where they are often mis-flowed.

しかも公知のように、測定管内の方位的流れはそれぞれの音路や超音波ガス流量計の測定結果において大きな影響を有する。それ故に、そのような旋回速度に対する是正策のために、測定管内の流れ形成する据付けが推薦されている、例えば薄板或いは細管の形態における流れ整流器或いは層発生器が推薦されている。   Moreover, as is well known, the directional flow in the measuring tube has a great influence on the sound path and the measurement result of the ultrasonic gas flowmeter. Therefore, for corrective measures against such swirl speeds, flow forming installations in the measuring tube are recommended, for example flow rectifiers or layer generators in the form of thin plates or thin tubes.

しかし一般に、音の変更する偏流の外に音屈折が軸方向流れ形状に基づき生じることが考慮されていない。測定管に斜めに取り付けられる変換器の前のポケットの付近と超音波変換器ダイアフラムにおいて零の値から出発して、流速は管のおよそ中心で最大速度まで滑らかな拡がりを有し、そして流速に対する局部的音速の依存により流速は局部的音インピーダンスの拡がりを生じ、その勾配は屈折を引き起こす。   However, in general, it is not considered that sound refraction occurs on the basis of the axial flow shape in addition to the drift that changes sound. Starting from a value of zero in the front pocket of the transducer that is mounted obliquely on the measuring tube and in the ultrasonic transducer diaphragm, the flow rate has a smooth spread to the maximum velocity at about the center of the tube and Due to the dependence of the local sound velocity, the flow velocity causes a local sound impedance spread and its gradient causes refraction.

先行技術において同様に考慮されていない流れるガスにおける温度形状の結果としての追加的屈折は特に重要である。特に測定管と媒体の間の温度差において音波の直線的進行から強く偏向する音路と成り得る。   The additional refraction as a result of the temperature shape in the flowing gas, which is likewise not considered in the prior art, is particularly important. In particular, it can be a sound path that strongly deviates from the linear progression of sound waves in the temperature difference between the measuring tube and the medium.

極端な場合に、送信器と受信器の一列の整合の際に送信器から発射された音は、音が主としてもはや受信器に入力されず、それで運転時間の測定はもはや出来ないように強力に偏向屈折されることが生じ得る。この場合は例えば内燃機関の排ガス量測定において観測され得る。空運転から全負荷までの突然の負荷変換において、流れる排ガスと管の間で例えば300℃の温度差と高流速になり、それは極端な流れと温度形状を形成し、直線的伝播の音を偏向するために、管寸法に依存して、数cmまでに導かれる。   In extreme cases, the sound emitted from the transmitter during the alignment of the transmitter and receiver is so powerful that the sound is no longer mainly input to the receiver, so that the operating time can no longer be measured. It can occur that it is deflected and refracted. In this case, it can be observed, for example, in measuring the amount of exhaust gas from an internal combustion engine. In sudden load conversion from idling to full load, for example, the temperature difference between the flowing exhaust gas and the pipe is 300 ° C and high flow velocity, which forms extreme flow and temperature shape, deflecting the sound of linear propagation Depending on the tube dimensions, it is guided up to several centimeters.

非静止温度形状を備える非静止ガス流における音の偏流と屈折は、受信器には最大検出可能な振幅の瞬間的流れ特性に依存する一部が入力されて測定されることを奏する。さらに、局部的渦流とキャビテーション効果に到るまでの圧力減少によって、音伝達が極めて歪曲され減衰され得る。この激しく弱まる流れは両受信信号の振幅と信号形状の強力な影響をまねき、それから評価方法、音変換器と全配置に関する高い要件を生じる。この結果によって流量計の利用可能な測定範囲は明確に制限され、データ評価は困難になる。さらに、エンジン試験スタンドにおける流量計の設置はEMV(電磁互換性)に関してセンサー電子部の困難な環境を意味する。従来のシステムと評価方法、例えば記憶された基準信号による交差修正(欧州特許出願公開第0797105号明細書「特許文献1」)或いは如何なる閾値応答が使用される方法は(ドイツ特許出願公開第19636945号明細書「特許文献2」)、あらゆるこれら要件を満足し得ない。   Sound drift and refraction in a non-stationary gas flow with a non-stationary temperature shape is measured by inputting a part depending on the instantaneous flow characteristics of the maximum detectable amplitude to the receiver. Furthermore, the sound transmission can be very distorted and attenuated by the local eddy currents and the pressure reduction to the cavitation effect. This severely weakening flow leads to a strong influence of the amplitude and signal shape of both received signals, which in turn leads to high requirements on the evaluation method, sound transducer and overall arrangement. This result clearly limits the available measurement range of the flow meter and makes data evaluation difficult. Furthermore, the installation of a flow meter in the engine test stand represents a difficult environment for sensor electronics with respect to EMV (electromagnetic compatibility). Conventional systems and evaluation methods, for example cross-correction with stored reference signals (European Patent Application Publication No. 0797105 “Patent Document 1”) or any threshold response method used (German Patent Application Publication No. 196336945). The specification “Patent Document 2”) cannot satisfy all these requirements.

排ガス管における測定すべき流速は、特にエンジンの大きさに無関係に排ガス列にて測定管用の通常の標準直径が使用すべきである時に大きな値範囲を包含し得る。測定範囲の最大化に関して、変換器の特殊な機械的整合に適切な修正角を備える提案が存在する(K.S.Mylvaganam著,"突発ガスを監視する広範囲超音波ガス流量計”、超音波、フェロ電気と周波数制御におけるIEEE処理、36巻、144頁ー149頁、1989年「非特許文献1」)。けれども、これは測定管用のより高い仕上げ技術的費用を必要とし、種々の流速と種々の温度形状に関する永続的適用を可能としない。   The flow velocity to be measured in the exhaust pipe can include a large range of values, especially when the normal standard diameter for the measuring pipe is to be used in the exhaust line, irrespective of the size of the engine. With regard to maximizing the measuring range, there are proposals with appropriate correction angles for the special mechanical alignment of the transducer (by KSMylvaganam, "Wide range ultrasonic gas flow meter for monitoring sudden gas", ultrasonic, ferroelectric) And IEEE processing in frequency control, 36, 144-149, 1989 “Non-Patent Document 1”). However, this requires higher finishing technical costs for the measuring tube and does not allow permanent application for different flow rates and different temperature shapes.

排ガス温度は内燃機関の運転状態と流量計の位置に応じて排ガス列にて−40℃(例えば空調室におけるエンジンの冷間開始では)からおよそ1000℃までの値となり得る。現行装置(例えばSick AG から)は、圧電セラミック超音波変換器の使用のために例えば最大許容排ガス温度(200℃)に強力に制限されている。   The exhaust gas temperature can be a value from −40 ° C. (for example, when the engine starts cold in the air-conditioning room) to approximately 1000 ° C. in the exhaust gas train depending on the operating state of the internal combustion engine and the position of the flow meter. Current equipment (eg from Sick AG) is strongly limited to the maximum allowable exhaust gas temperature (200 ° C.), for example, due to the use of piezoceramic ultrasonic transducers.

内燃機関の排ガス温度は例えば牽引運転における全負荷にてエンジン運転の負荷変更にて迅速且つ強力に変更できると言う事実が重要である。流れ特性のこの大きく迅速な変更に基づき、寄生的音信号を伴う本来の受信信号の予測できない屈折と重なりを生じ得て、それは通例の評価方法の使用の際に誤った成果を導いた。   The fact that the exhaust gas temperature of the internal combustion engine can be changed quickly and powerfully by changing the load of the engine operation, for example, at the full load in the traction operation is important. Based on this large and rapid change in flow characteristics, unpredictable refraction and overlap of the original received signal with parasitic sound signals can occur, which has led to false results when using conventional evaluation methods.

公知の超音波ガス流量計は、排ガス流れにて圧力と流速のかなり程度に存在する脈動を十分に正確に検出する困難性を有する。走査定理に基づき、即ち測定事実(アリアジング)を回避するために、走査周波数が高周波数で信号に存在する信号成分の周波数と同じ高さの少なくとも二倍であるように測定すべき信号を高周波数で走査することが必要である。それ故に、排ガス流量計は適切で高い測定繰返し率を有しなければならない。例えば、乗用自動車のエンジンのために、排ガス列における質量流量計の位置に応じて少なくとも3キロヘルツの繰返し周波数から出発する。市場に存在する装置(例えばSick AG )は最大で30ヘルツの測定繰返し周波数で作動する。   Known ultrasonic gas flowmeters have the difficulty of detecting pulsations present in the exhaust gas flow at a considerable degree of pressure and flow velocity with sufficient accuracy. Based on the scanning theorem, ie to avoid measurement facts (aliasing), the signal to be measured should be high so that the scanning frequency is at least twice as high as the frequency of the signal component present in the signal at high frequencies. It is necessary to scan at a frequency. Therefore, the exhaust gas flow meter must have a suitable and high measurement repetition rate. For example, for passenger car engines, start from a repetition frequency of at least 3 kilohertz, depending on the position of the mass flow meter in the exhaust gas train. Devices on the market (eg Sick AG) operate at a measurement repetition frequency of up to 30 Hertz.

排ガス管を支配する特別な条件に基づいて、排ガス量センサーに使用される評価方法はさらに検出された貫流値の信頼性制御の適切な可能性を所持する。   Based on the special conditions governing the exhaust pipe, the evaluation method used for the exhaust gas sensor further possesses the appropriate possibility of reliable control of the detected flow-through value.

ガス用超音波流量計における根本的改良は、容積式超音波変換器の採用を意味し、その採用は全く一般的に既に提案されている(I.J.O'Sullivian とW.M.D.Wright著,"静電変換器を使用するガス流の超音波測定"Elsevier Ultrasonics,40巻、407 頁ー411 頁、2002年「非特許文献2」) けれども、上記問題のほとんどは解決され得ることは公知である。特に、内燃機関の排気ガス列に適した評価方法、変換器と要件は使用上には知られていない。   The fundamental improvement in gas ultrasonic flowmeters means the adoption of positive displacement ultrasonic transducers, which have already been proposed in general (IJO'Sullivian and WMDWright, “Electrostatic Conversion”). However, it is known that most of the above problems can be solved. Elsevier Ultrasonics, Vol. 40, pp. 407-411, 2002 “Non-Patent Document 2”) In particular, evaluation methods, converters and requirements suitable for the exhaust gas train of an internal combustion engine are not known in use.

ガス用超音波送信受信変換器における一般的困難性は、十分な音エネルギーを媒体に送り、受信する音エネルギーから十分に強力な電気的受信信号を得ることである。従来は、変換器として実際的に独占的圧電式超音波変換器が採用され、ソリッドステート材料から成る簡単な構造で優れている。その際に、ソリッドステートはガスよりおよそ100,000倍高い特殊波抵抗を有するから、一方でガス媒体の音波抵抗と他方で音変換材料における大きな差異が障害となる。それは、限界面における殆どの音エネルギーが変換器からガス媒体まで反射されてほんの僅かな割合が伝播されることを意味する。それ故に、大きな周波数範囲においてこの変換器は極めて僅かな感度を有し、送信と受信をする。   A common difficulty in an ultrasonic transmission / reception transducer for gas is to send sufficient sound energy to the medium and obtain a sufficiently strong electrical reception signal from the received sound energy. Conventionally, a practically exclusive piezoelectric ultrasonic transducer has been adopted as the transducer, which excels with a simple structure made of solid-state material. In so doing, the solid state has a special wave resistance approximately 100,000 times higher than that of the gas, so that the large difference in the acoustic resistance of the gas medium on the one hand and the sound conversion material on the other hand becomes an obstacle. That means that most of the sound energy at the critical surface is reflected from the transducer to the gas medium and propagates only a small percentage. Therefore, in the large frequency range, this transducer has very little sensitivity and transmits and receives.

同じ特性は、圧電式音変換器が特徴的固有周波数を備えるソリッドステート音響共振よりとても良く、或いは狭いバンド状周波数特性を備える比較的高い振動品質である結果を有する。この事実は十分に高い感度を達成するために達成されて利用される:その固有周波数或いは共振周波数の範囲において、即ち共振発生(Resonanzueberbehoehung) に基づき受け入れ得る高感度が生じ、この狭いバンド状周波数範囲から離れているにもかかわらず、感度が十分に使用できない僅かな値に下降する。より高い品質の共振体の周波数特性と自然に変換器の長い出入り振動行動と接続されており、それは更に精確な運転時間測定を困難にし、それ故に貫流測定における不正確性と僅かな走査率を導く。   The same characteristics have the result that piezoelectric sound transducers are much better than solid-state acoustic resonances with characteristic natural frequencies, or relatively high vibration quality with narrow band-like frequency characteristics. This fact is achieved and used to achieve a sufficiently high sensitivity: this narrow band-like frequency range results in an acceptable high sensitivity in the range of its natural or resonant frequency, i.e. on the basis of resonance generation (Resonanzueberbehoehung). Despite being far from the sensitivity, the sensitivity drops to a slight value that cannot be fully used. Coupled with the higher quality resonator frequency characteristics and naturally the transducer's long in-and-out vibration behavior, it makes accurate operating time measurement more difficult, thus reducing inaccuracy and low scan rate in flow-through measurement. Lead.

この状況を改良するために、種々の企てが知られていた。圧電変換器におけるバックエコーを音吸収層、所謂裏当て層によって減衰して、バンド幅を例えば増加させて、無論、感度の費用で行われることを試みられている。変換器の前面においてもガス媒体の波抵抗に関して所謂インピーダンス適合する層が適当な成果を伴って配置されていた。例えば圧電ロッドが合成樹脂重合体マトリックスに埋め込まれるので、変換器要素自体は合成物として構成されているので、この結合要素の波抵抗が下降され、同時に経済的な振動モードが達成される。長い入出力振動過程にもかかわらず正確な運転時間測定を達成するために信号分析方法を開発していた。しかし、あらゆる労力にもかかわらず、超音波貫流測定の出力能力は実質的に採用された音変換器、特に圧電式超音波変換器の狭バンド性によって制限されたままである。   Various attempts have been made to improve this situation. Attempts have been made to reduce the back echo in the piezoelectric transducer by a sound absorbing layer, so-called backing layer, and increase the bandwidth, for example, at a cost of sensitivity. A so-called impedance matching layer with respect to the wave resistance of the gas medium was also arranged with suitable results on the front face of the transducer. For example, since the piezoelectric rod is embedded in a synthetic resin polymer matrix, the transducer element itself is constructed as a composite, so that the wave resistance of this coupling element is lowered and at the same time an economical vibration mode is achieved. A signal analysis method was developed to achieve accurate operation time measurement despite long input / output vibration process. However, despite all the effort, the output capability of ultrasonic flow-through measurements remains limited by the narrow band nature of the sound transducers employed, particularly piezoelectric ultrasonic transducers.

この変換器の別の欠点は、その限定された温度安定性にある。高圧電感度をもつ圧電材料、例えば通常に採用されたPZT−ピエゾセラミックは、材料に応じておよそ250℃から350℃までの値を有する所謂キューリ温度における圧電式特性を失う。そして高温度安定性をもつ公知の圧電材料は音変換器としての採用のためにほとんど申し分のない感度を有する。   Another disadvantage of this transducer is its limited temperature stability. Piezoelectric materials with high piezoelectric sensitivity, such as commonly employed PZT-piezoceramics, lose their piezoelectric properties at the so-called Curie temperature with values ranging from approximately 250 ° C. to 350 ° C., depending on the material. And known piezoelectric materials with high temperature stability have almost perfect sensitivity for adoption as sound transducers.

通例の容量式超音波変換器は所望の温度安定性を有しない。電気伝導基体の上に張られた金属被膜ダイアフラムは同時に電気容量の絶縁層を形成し、誘電性ダイアフラム材料として通常に使用される合成樹脂或いは窒化シリコンは排ガス量測定の温度要件を満足し得ない(D.A.Hutchis, D.W.Schindel, A.G.Bashford,とW.M.D.Wright著,"超音波静電変換における進歩,"Elsevier Ultrasonics,36 巻、1998年「非特許文献3」)。永久に極性化された誘電性ダイアフラム、例えば収納された充電担体(電子)をもつテフロン系重合体ダイアフラムを有する所謂電気変換器は、十分な温度安定性を有しない。   Conventional capacitive ultrasonic transducers do not have the desired temperature stability. A metal-coated diaphragm stretched over an electrically conductive substrate forms an insulating layer at the same time, and a synthetic resin or silicon nitride normally used as a dielectric diaphragm material cannot meet the temperature requirement for exhaust gas measurement. (DAHutchis, DWSchindel, AGBashford, and WMDWright, "Advances in Ultrasonic Electrostatic Conversion," Elsevier Ultrasonics, Vol. 36, 1998 "Non-Patent Document 3"). So-called electrical converters having a permanently polarized dielectric diaphragm, for example a Teflon polymer diaphragm with a stored charge carrier (electrons), do not have sufficient temperature stability.

斜め放射をもつ通例の超音波流量計における特別の欠点は、管壁に対する変換器の普通の変換器にて必要な斜め位置である。それにより生じるくぼみ或いはポケットは、運転時間の評価の際に考慮されなければならない超音波の先行時間を引き起こす。さらに、くぼみや流れにおいて流れ渦が誘導され、この渦は測定値の誤りを奏し得る。その外に、渦は流れと一緒に輸送される粒子の堆積の問題を増加する。変換器ダイアフラム上に堆積する粒子は変換器の伝播特性を大きく変更され得る。是正策に対する公知になった提案、例えばくぼみに張られたスクリーンは、超音波のために透過性であり、流れのために不透過性であり、或いは新鮮な空気によるくぼみの洗浄は、問題を十分には解決され得ない。   A particular disadvantage of conventional ultrasonic flowmeters with oblique radiation is the oblique position required in the normal transducer of the transducer relative to the tube wall. The resulting indentation or pocket causes an ultrasonic lead time that must be taken into account in the evaluation of the operating time. In addition, flow vortices are induced in the indentations and flows, which can cause measurement errors. In addition, vortices increase the problem of depositing particles that are transported with the flow. Particles deposited on the transducer diaphragm can greatly alter the propagation characteristics of the transducer. Known proposals for corrective measures, such as screens placed in the indentations, are permeable for ultrasound, impervious for flow, or cleaning the indentations with fresh air is problematic. It cannot be solved sufficiently.

容量式超音波変換器の使用は利点をもたらさない。回路の改良は、変換器の電気且つ機械的運転点を実質的に決定する偏心電圧に関して望まれている。例えば100から200ボルトまでの必要な偏心電圧は通常には高オーム電気抵抗を介して変換器容量に計画される。生じる静電力は、一方では構造を付与された裏板上にダイアフラム箔の平らな載置を奏し、他方では直線変換器特性、即ち電気送信信号或いは音響受信信号の振幅とほぼ無関係に変換器感度を奏する。しかし、偏心電圧は通常の圧電セラミック変換器或いは電気変換器において好ましい回路概念、直接に質量電圧に関連した電気メーター或いは荷電倍増器の簡単な使用を阻止する。   The use of a capacitive ultrasonic transducer does not provide any advantage. Improvements in the circuit are desirable with respect to eccentric voltages that substantially determine the electrical and mechanical operating points of the transducer. The required eccentric voltage, for example from 100 to 200 volts, is usually planned for the converter capacity via a high ohm electrical resistance. The resulting electrostatic force, on the one hand, results in a flat placement of the diaphragm foil on the structured back plate, and on the other hand, the linear transducer characteristics, i.e. the transducer sensitivity almost independent of the amplitude of the electrical transmission signal or acoustic reception signal. Play. However, the eccentric voltage prevents the preferred circuit concept in a normal piezoceramic or electrical converter, the simple use of an electric meter or charge multiplier directly related to the mass voltage.

受信増幅器として達成可能なSNR(英語の:信号対騒音の比、ドイツ語の:信号対騒音の比)に関して充電増幅器と電位計増幅器は両方が好ましく且つほぼ同じ値である。しかし電位計回路と反対に、充電増幅器は、特に光学データ伝達のような高周波数使用にてフォトダイオード或いは超音波により好ましく利用すべきであるより高いバンド幅を可能とする。高バンド幅は、変換器と結合ケーブルの渦流容量性が充電増幅器概念において信号電圧と積み替えられないと言う事実から生じる。演算増幅器は、即ち反転入力部には仮電圧零点を発生するので、変換器と存在する寄生成分に関する電圧は消える程度の僅かなままで残っている。   Both the charge amplifier and the electrometer amplifier are preferred and have approximately the same value for the SNR (English: signal to noise ratio, German: signal to noise ratio) achievable as a receiving amplifier. However, contrary to electrometer circuits, charge amplifiers allow higher bandwidths that should preferably be utilized with photodiodes or ultrasound, especially at high frequency uses such as optical data transmission. The high bandwidth stems from the fact that the eddy current capacities of the transducer and coupling cable are not transposed with the signal voltage in the charge amplifier concept. Since the operational amplifier generates a tentative voltage zero at the inverting input, the voltage associated with the converter and the parasitic components present remains as small as possible.

しかし容量式超音波変換器にて必要な電気偏心電圧によって充電増幅器は通常の形態において不可能である。妥協解決策において従来は電気与圧変換器は質量電圧に対して作動する充電増幅器と電圧一定な結合コンデンサーによって連結される。しかしそれによって容量式超音波変換器の純粋な充電増幅器運転があらゆる利点を備えるのはもはや不可能である。変換器は演算増幅器の仮想零点に直接にもはや位置せず、それは達成可能なバンド幅を減少する。極めて大きな結合コンデンサーは変換器を過大に負荷されるが、しかし余裕のない寸法を与えられた変換器では変換器容量の製造条件的変動に基づいて変換器+増幅器の全感度或いはそのグループ運転時間を過小に定義される。二つの受信路における運転時間決定による超音波貫流測定の場合には、各非対称性がグループ運転時間に基づき直接に時間誤差を導き、それは極めて問題として評価すべきであるから、続いてそれぞれ二つの増幅器は校正されなければならない。最終的装置構成における両結合ケーブルの複雑な対称性は困難で費用がかかるから、結合ケーブルにも同じことが適用される。   However, due to the electrical eccentricity voltage required in capacitive ultrasonic transducers, charge amplifiers are not possible in the normal form. In a compromise solution, conventionally, an electric pressure transducer is connected by a charge amplifier operating with respect to mass voltage and a constant voltage coupling capacitor. However, it is no longer possible for pure charge amplifier operation of capacitive ultrasonic transducers to have all the advantages. The converter is no longer located directly at the virtual zero of the operational amplifier, which reduces the achievable bandwidth. A very large coupling capacitor overloads the converter, but for a converter with a marginal size, the total sensitivity of the converter + amplifier or its group operating time based on manufacturing condition variations of the converter capacity Is defined too small. In the case of ultrasonic flow-through measurement with operating time determination in two receiving channels, each asymmetry directly leads to a time error based on the group operating time, which should be evaluated as a very serious problem, so each The amplifier must be calibrated. The same applies to the coupling cable because the complex symmetry of both coupling cables in the final device configuration is difficult and expensive.

そのための考慮できる代用物として、電気インピーダンス変換は直接にハウジング内の変換器に挙げるべきである。しかし、これは、スペース欠乏のために且つ測定すべき燃焼ガスの高温度を考慮して除去すべきである。   As a possible surrogate for that, the electrical impedance transformation should be listed directly on the transducer in the housing. However, this should be removed due to lack of space and taking into account the high temperature of the combustion gas to be measured.

先行技術の上記欠点は、内燃機関の排ガス流れの測定において特別な意義があり、排ガス列内(例えばPCT/AT01/00371に対する国際特許出願公開第02/42730号明細書「特許文献3」を参照)に、特に激しく強い脈動する範囲にガス流量計を備える好ましい測定技術的装置の実現化を阻止する。自由に使えるガス流量計により例えば噴出ガス(内燃機関のクランクハウジングからの漏れガス)の測定のようにモータ駆動式測定技術の個別使用は、確かにカバーされるけれども、特にエンジンと駆動列の検査台並びに車両ローラ検査台に或いは道路上の車両における排ガス分析する可能な用途を狭く限定されている。
欧州特許出願公開第0797105号明細書 ドイツ特許出願公開第19636945号明細書 国際特許出願公開第02/42730号明細書 K.S.Mylvaganam著,"突発ガスを監視する広範囲超音波ガス流量計”、超音波、フェロ電気と周波数制御におけるIEEE処理、36巻、144頁ー149頁、1989年発行 I.J.O'Sullivian とW.M.D.Wright共著,"静電変換器を使用するガス流の超音波測定"Elsevier Ultrasonics,40巻、407 頁ー411 頁、2002年発行 D.A.Hutchis, D.W.Schindel, A.G.Bashford,とW.M.D.Wright著,"超音波静電変換における進歩,"Elsevier Ultrasonics,36 巻、1998年発行
The above disadvantages of the prior art have particular significance in the measurement of exhaust gas flow in internal combustion engines, see in the exhaust gas train (see, for example, International Patent Application Publication No. 02/42730, “Patent Document 3” for PCT / AT01 / 00371) In particular, it prevents the realization of a preferred measurement technical device with a gas flow meter in a particularly intense and pulsating range. The individual use of motor-driven measurement techniques, such as measuring the blown gas (leakage gas from the crank housing of an internal combustion engine), for example, with a freely available gas flow meter is certainly covered, but in particular engine and drive train inspection. Possible applications of exhaust gas analysis on platforms and vehicle roller inspection tables or on vehicles on the road are narrowly limited.
European Patent Application No. 0797105 Specification German Patent Application No. 19636945 International Patent Application Publication No. 02/42730 KSMylvaganam, "Wide range ultrasonic gas flowmeter for monitoring sudden gas", IEEE treatment in ultrasonic, ferroelectricity and frequency control, 36, 144-149, 1989 IJO'Sullivian and WMDWright, "Ultrasonic measurement of gas flow using electrostatic transducers" Elsevier Ultrasonics, 40, 407-411, 2002 DAHutchis, DWSchindel, AGBashford, and WMDWright, "Advances in Ultrasonic Electrostatic Conversion," Elsevier Ultrasonics, Volume 36, 1998

本発明の課題は、前記困難性を克服し、特に温度安定性と現在の温度形状の減少と考察を考慮して、実質的に改良された出力を備える超音波ガス流量計を提供することである。   The object of the present invention is to provide an ultrasonic gas flowmeter with a substantially improved output, overcoming the difficulties described above, especially considering temperature stability and current temperature shape reduction and consideration. is there.

本発明の別の課題は、ガスの容積流或いは質量流、特に高い動的流れの正確且つ確実に検出する評価方法の改良である。   Another object of the present invention is to improve an evaluation method for accurately and reliably detecting a gas volume flow or mass flow, particularly a high dynamic flow.

この課題は、この発明によると、音変換器が音を発生して並びに容積式超音波変換器として時間的過渡音信号を受信するように実施され、流れのガス温度形状を比較基準化して流れ測定における温度形状の影響を最小化する装置が設けられていることによって、解決される。   This problem is implemented according to the present invention so that the sound transducer generates sound and receives a temporal transient sound signal as a positive displacement ultrasonic transducer, and the flow gas temperature shape is compared and standardized. This is solved by providing a device that minimizes the effect of temperature shape on the measurement.

多くの用途のために必要な高温度安定な実施態様を得るために、この発明によると、通常の高弾性で少なくとも片面の金属被覆された絶縁ダイアフラム箔の代わりに、例えばチタン材料から成る金属ダイアフラムが使用される。   In order to obtain the high temperature stable embodiments required for many applications, according to the present invention, a metal diaphragm made of, for example, a titanium material, instead of the usual highly elastic and at least one-side metal-coated insulating diaphragm foil Is used.

ダイアフラム材料の貫通電気伝導性は無論容積式変換器の構成を更に難しくする。変換器を形成するコンデンサーの第二電極用の電気伝導性材料を通常に簡単に用意する代わりに、絶縁層を特に配慮することが必要である。そのために、絶縁層を備える電極或いは裏板が用いられ、その絶縁層は好ましくはドーピングされる半導体とその上に位置する絶縁層とから成り、その絶縁層が例えば塗布され、そこにダイアフラムを特に直接に載置する。   The through electrical conductivity of the diaphragm material naturally makes the construction of the positive displacement transducer more difficult. Instead of usually simply preparing an electrically conductive material for the second electrode of the capacitor forming the converter, special consideration must be given to the insulating layer. For this purpose, an electrode or a back plate with an insulating layer is used, which insulating layer preferably consists of a doped semiconductor and an insulating layer located thereon, which is coated, for example, with a diaphragm in particular. Place directly.

この場合に、絶縁層はその熱膨張係数に関して裏板の基礎材料(ドーピングされる半導体)に一致していることに、注意すべきある。それ故に、それは、絶縁層が熱作用下の第二電極或いは裏板の材料の反応によって製造過程中の周囲大気で生じる材料によって形成される時に特に好ましい。例えば高ドーピングされる珪素基礎材料は炉内でおよそ24時間にほぼ1000℃における酸素大気で処理され得る。その際におよそ1.5μmの酸化珪素層が必要とされる絶縁の要求を満たすように生じる。スパッタリング或いはCVD技術によって塗布された層に対してこの種の材料から外方に成長する層は意義のある高い熱的且つ機械的負荷能力を有する。   In this case, it should be noted that the insulating layer corresponds to the basic material of the backing (semiconductor to be doped) with regard to its coefficient of thermal expansion. Therefore, it is particularly preferred when the insulating layer is formed by a material that occurs in the ambient atmosphere during the manufacturing process by the reaction of the material of the second electrode or backing plate under the action of heat. For example, a highly doped silicon base material can be treated in an oxygen atmosphere at approximately 1000 ° C. in a furnace for approximately 24 hours. In this case, a silicon oxide layer of approximately 1.5 μm is produced so as to satisfy the required insulation requirements. Layers grown out of this type of material relative to layers applied by sputtering or CVD techniques have a significant high thermal and mechanical loading capability.

周波数行動、即ちこのように構成された高温度超音波変換器の感度は、絶縁層とその上に直接に載置するダイアフラムとの間に生じる共振容積によって影響される。そのために第二電極或いは裏板は、およそ自然の表面粗さに基づいて生じる空気影響が用いられ得る構成体を備えている。   The frequency behavior, i.e. the sensitivity of the thus constructed high temperature ultrasonic transducer, is influenced by the resonant volume generated between the insulating layer and the diaphragm directly mounted thereon. For this purpose, the second electrode or the back plate is provided with a structure that can be used for the air effects that occur on the basis of the natural surface roughness.

他の実施態様によると、第二電極或いは裏板は、不連続合成構造、特にエッチングされる構造から成る構成体を備えている。100から600キロヘルツまでの注意を引く周波数範囲に対して80から120μmまでの特性的幅を備える直線状或いは蜂巣状構造が特に好ましいものとして証明されている。さらに、超音波変換器の構造深さと感度の間の直接依存性が生じる。およそ0.4μmの構造深さにより、必要とされた用途にとって特に良好な成果が達成され得る。この構造が、絶縁層の製造前並びに絶縁層の製造後に未加工裏板において製造され得ることに注目すべきである。それはドーピングされる半導体並びに絶縁層である。この場合に編成されていない範囲(結合要素)とダイアフラムとの間に充電される電極間の大きな間隔が調整されるから、この構成を絶縁の製造後に行われるときよりも、それで変換器の静的容量はより小さい。比較的小さい構造の製造はこの発明によると化学的エッチング方法により平版刷りの通例の方法の使用の下で行われる。即ち、全裏板はまず最初に感光性ラック(大抵はスピンナーによって)によって被覆され、それからラック製造業者の製造規則に一致して照明マークの助けを借りて照明される。現像浴内のラックの現像によってラックに応じてラックの照明される或いは照明されない表面が開放される。それからエッチング浴内で開放された表面に関する構造は深くエッチングされ得る。この際にエッチング深さはエッチング時間によって確認され得る。   According to another embodiment, the second electrode or backing plate comprises a structure consisting of a discontinuous composite structure, in particular an etched structure. A linear or honeycomb structure with a characteristic width of 80 to 120 μm for a frequency range of attention from 100 to 600 kHz has proved to be particularly preferred. Furthermore, a direct dependency between the structural depth and sensitivity of the ultrasonic transducer occurs. With a structural depth of approximately 0.4 μm, particularly good results can be achieved for the required application. It should be noted that this structure can be manufactured in a green backing before manufacturing the insulating layer and after manufacturing the insulating layer. It is a semiconductor to be doped as well as an insulating layer. In this case, the large spacing between the electrodes charged between the unknitted area (the coupling element) and the diaphragm is adjusted, so that this configuration is more effective than when done after the manufacture of the insulation. The capacity is smaller. The production of relatively small structures is carried out according to the invention by the chemical etching method using the usual method of lithographic printing. That is, the entire back plate is first covered with a photosensitive rack (usually by a spinner) and then illuminated with the help of illumination marks in accordance with the rack manufacturer's manufacturing rules. Development of the rack in the developer bath opens the illuminated or unilluminated surface of the rack depending on the rack. Then the structure on the open surface in the etching bath can be etched deeply. At this time, the etching depth can be confirmed by the etching time.

好ましくは変換器は直線的或いは平面的配列で複数の別々の装着可能或いは解読可能範囲を有する。それにより、超音波走路の範囲に流れの追加的渦を生じ得る変換器収容部の袋孔の除去が可能である。特に、この所謂配列変換器は上記技術によって製造される。その変換器は音放出或いは音受信用の表面に対して角度を有して配向した特性を可能とする利点を有する。それによって、管の斜め通過音にも測定管に超音波変換器の壁適切な取付けが可能である。配列変換器の個別の範囲は送信器としての使用の際に電気送信信号との時間的不連続間隔に装着される。受信器としての使用の際に個別の受信信号は時間的にずれて評価される。両運転モードで、時間的間隔の変動によって変換器の角度特性は影響され得て、それにより好ましい偏流現象並びに屈折現象が阻止しようとされ得る。   Preferably, the transducer has a plurality of separate mountable or decodable ranges in a linear or planar arrangement. Thereby, it is possible to remove the pouch holes in the transducer housing that can cause additional flow vortices in the area of the ultrasonic track. In particular, this so-called array transducer is manufactured by the above technique. The transducer has the advantage of allowing a characteristic oriented at an angle to the surface for sound emission or reception. As a result, it is possible to appropriately attach the wall of the ultrasonic transducer to the measurement tube even for the oblique passage sound of the tube. The individual ranges of the array transducer are mounted in a time discontinuous interval with the electrical transmission signal when used as a transmitter. When used as a receiver, individual received signals are evaluated with a time lag. In both modes of operation, the angular characteristics of the transducer can be influenced by variations in the time interval, thereby trying to prevent favorable drift phenomena as well as refraction phenomena.

この種の変換器の構成は上記過程と類似に行われる:例えば酸化アルミニユーム(AL2 3 )或いはサファイアのような絶縁性をもつ高温度安定材料(基体)には、スパッタリング或いは蒸着によって例えばプラチナから成る電極の均一な構造が製造される。それで、例えば平らで曲り角のある送信或いは受信特性にとっておよそ100−600キロヘルツの周波数範囲内でストリップ構造は幅1mmのストリップから0.5mmの間隔に基体にて塗布される。第二段階で表面に絶縁層は、個別の電極ストリップの別の装着性が接着により可能であるように塗布されている。それから、絶縁層は上記のように、平版刷りやエッチング技術によって構成される。この構造の上に、通例の容積式超音波変換器において変換器ハウジングによって保持され、金属性ダイアフラムが載置する。この種の変換器によって実現される調整可能な放出角度によって音屈折と音偏流の効果は温度或いは流れ形状によって阻止しようとされ得る。 The construction of this type of transducer is carried out analogously to the above process: for example high temperature stable materials (substrates) with insulating properties such as aluminum oxide (AL 2 O 3 ) or sapphire, for example platinum by sputtering or vapor deposition. A uniform structure of the electrode is produced. Thus, for example, for a flat and curved transmission or reception characteristic, the strip structure is applied to the substrate at 0.5 mm intervals from a 1 mm wide strip within a frequency range of approximately 100-600 kilohertz. In the second stage, an insulating layer is applied to the surface so that another attachment of individual electrode strips is possible by gluing. Then, the insulating layer is constituted by lithographic printing or etching technique as described above. On top of this structure, a metallic diaphragm rests in a conventional positive displacement ultrasonic transducer held by a transducer housing. With the adjustable emission angle realized by this type of transducer, the effects of sound refraction and sound drift can be prevented by temperature or flow shape.

別の可能性は、送信器と受信器の間の間隔を流れ方向において変更可能に構成するために上記効果を阻止する。これは例えばこの発明による実施態様により、少なくとも一つの音変換器、特に受信変換器が移動自在に承支されていることによって達成できる。そこで、例えば50mmの管直径ではおよそ10mmの下流への吹き出しを生じる30m/sの流速にて、正確にこの距離だけ移動され、それにより流れなしと同じ伝播行動を保証する。   Another possibility precludes the above effect to configure the spacing between transmitter and receiver to be variable in the flow direction. This can be achieved, for example, by means of an embodiment according to the invention in which at least one sound transducer, in particular a receiving transducer, is movably supported. So, for example, with a tube diameter of 50 mm, it is moved exactly this distance at a flow rate of 30 m / s which produces a blowout downstream of approximately 10 mm, thereby ensuring the same propagation behavior as no flow.

同様に効果的に、一つ或いは複数の変換器の回転可能な軸受は、送信器の音ビームがより高流速でも、或いは管壁と流れガスとの間の高温度差でも、最大音レベルにより直接に受信器表面に生じるように、音放射において適切な行動角度を意図し得ることを導く。このために、変換器は、変換器の回転によって音放出の入力角或いは出力角が管軸線に対して変更され得るように支承されて取り付けられる。   Efficiently, the rotatable bearings of one or more transducers can be adjusted to the maximum sound level even when the transmitter sound beam is at a higher flow rate or at a higher temperature difference between the tube wall and the flow gas. It leads that an appropriate action angle in sound emission can be intended to occur directly on the receiver surface. For this purpose, the transducer is mounted and mounted so that the input angle or output angle of sound emission can be changed with respect to the tube axis by rotation of the transducer.

さらに、この発明によると、管壁と流れガスとの間の高温度差は、測定管の壁用の、同様に音変換器用の加熱装置によって減少されるか或いは回避される。このために、公知の調整機構によって管温度を出来るだけ流れるガスの現実の温度に適合することが意図される。   Furthermore, according to the invention, the high temperature difference between the tube wall and the flow gas is reduced or avoided by means of a heating device for the wall of the measuring tube as well as for the sound transducer. For this purpose, it is intended to adapt the tube temperature to the actual temperature of the flowing gas as much as possible by means of a known adjustment mechanism.

このために特に、測定管を僅かな特定熱容量をもつ材料から、特に熱的絶縁材料から仕上げること及び/又はこの種の材料からの被覆を備えること及び/又はこの種の材料から成る被覆により包囲することが推薦されている。これは、理想の場合に測定ガス側菅壁の温度がいつも自動的にガス温度に追従し、加熱費用なしに又はほんの僅かな加熱費用で行われることをまねく。   For this purpose, in particular, the measuring tube is finished from a material with a small specific heat capacity, in particular from a thermally insulating material and / or provided with a coating from such a material and / or surrounded by a coating made of such a material. It is recommended to do. This means that, in the ideal case, the temperature of the measuring gas side wall always follows the gas temperature automatically and can be done without heating costs or at a slight heating cost.

追加的に、時間的な高過渡過程のために、高過渡過程が例えば内燃機関の排ガスにて負荷変更中に生じるように、温度及び/又は流れ形状を形成する据付けを測定菅に取付けるか又は一体化することが好ましい。これは温度形状並びに流れ形状の比較基準化をまねく。この発明によると、管束が流れの積層化に使用される如く、管束の格子や部分が設けられ、一方では一般に乱流される流れの出来るだけ均一な貫流混合とそれによるガス温度とを保証して、他方では均一且つ旋回なしの流れ形状を得る。変換器収容部に設けられた袋孔の範囲で温度限界層の分離を阻止するために、さらに、音伝播は妨害せず、測定管により加熱できる格子が設けられ、格子は袋孔を束に管壁に継続して閉鎖する。   In addition, due to the high transient process in time, an installation that forms the temperature and / or flow shape is attached to the measuring rod so that the high transient process occurs during a load change, for example in the exhaust gas of an internal combustion engine, or It is preferable to integrate them. This leads to a comparative standardization of the temperature shape as well as the flow shape. According to the present invention, the tube bundle grids and portions are provided so that the tube bundle is used for flow lamination, while generally ensuring as uniform through-flow mixing of the turbulent flow and the resulting gas temperature. On the other hand, a uniform and swirling flow shape is obtained. In order to prevent separation of the temperature limit layer in the range of the bag hole provided in the converter housing, a grating that can be heated by a measuring tube without disturbing sound propagation is provided. Continue to close to the tube wall.

流れるガスの温度形状を最小化する純機械的処置の外に、特に好ましくは、追加物理的パラメータに依存して流れ測定の成果に関する追加算出修正を行うことがわかった。そこで、音路の温度形状によって惹起された変更は流れと音速算出の評価における追加修正要因によって考慮されることが示されている。その際に特に好ましいものとしてこれら修正要因を管温度とガスの特性温度に依存して変更することがわかっていた。このために、この発明によると、測定管の壁の温度を測定する温度センサーが設けられ、評価電子部と接続されている。   In addition to pure mechanical measures that minimize the temperature profile of the flowing gas, it has been found to be particularly preferable to make additional calculation corrections on the results of the flow measurement depending on the additional physical parameters. Thus, it has been shown that changes caused by the temperature shape of the sound path are taken into account by additional correction factors in the evaluation of flow and sound speed calculations. In this case, it has been found that it is particularly preferable to change these correction factors depending on the tube temperature and the characteristic temperature of the gas. For this purpose, according to the present invention, a temperature sensor for measuring the temperature of the wall of the measuring tube is provided and connected to the evaluation electronic unit.

この発明の装置の他の実施態様には、流れの温度を測定する別の温度センサーが設けられ、評価電子部と接続されている。   Another embodiment of the device of the invention is provided with a separate temperature sensor for measuring the temperature of the flow and connected to the evaluation electronics.

さらに、測定結果として質量流或いは一定温度に規定される容量貫流に関する指示が発生されるならば、ガス流量計の測定成果の軽視すべきでないガス構成の依存性を示す。それ故に、この発明によると、ガス構成を検出する装置が設けられ、特に所謂空気数λを決定するラムダゾンデが設けられている。特に検査台上に排ガス質量流の測定の際に、特に好ましいものとして、パラメータ的に空気数λに依存するガス構成をラムダゾンデによって検出することがわかった。   Furthermore, if an indication regarding the mass flow or the capacity flow defined as a constant temperature is generated as a measurement result, it indicates the dependence of the gas flow meter measurement results on the gas configuration that should not be neglected. Therefore, according to the present invention, a device for detecting the gas composition is provided, in particular a so-called lambda sonde for determining the air number λ. In particular, when measuring the exhaust gas mass flow on the inspection table, it has been found that a gas configuration depending on the number of air λ as a parameter is detected by a lambda sonde as a particularly preferable one.

その際に、ガス構成の考察は直接に貫流の評価において行われる(即ち本来の流量計に無関係に)並びに発明により設けられる如く、流量計自体の評価電子部で行われる。そのために適切なデータラインとデータインターフェイスが設けられ、それらによりガス構成に関する情報が伝達される。   In doing so, gas composition considerations are made directly in the flow through evaluation (ie, independent of the original flow meter) and as provided by the invention, in the evaluation electronics of the flow meter itself. For this purpose, appropriate data lines and data interfaces are provided, which convey information about the gas configuration.

超音波による貫流の正しく高動的評価のために、まず第一に大きな信号騒音間隔の出来るだけ中断されない一次信号が必要である。そのために容量性変換器と信号のアナログ一次処理は責任がある。容量式超音波変換器用の増幅器回路における非対称とバンド幅に関する前記問題を回避するために、この発明によると、受信電子部がアナログ増幅器として構成され、少なくとも一次増幅器段の基準電位が変換器の電位水準に、即ちバイアス電圧に上昇されている。それによって通常に使用される結合コンデンサーは避けられ得て、信号検出用変換増幅器の伝播バンド幅を意義をもって降下させ、他方では超音波変換器を容量的に負荷される。その際に、連結コンデンサーは増幅器回路の入力部における現実の零点を考慮して変換器と平行に位置する容量性負荷を意味する。   For a correct and highly dynamic assessment of ultrasonic flow through, firstly, a primary signal that is as uninterrupted as possible with a large signal noise interval is required. To that end, it is responsible for the capacitive transducer and the analog primary processing of the signal. In order to avoid the above-mentioned problems regarding asymmetry and bandwidth in an amplifier circuit for a capacitive ultrasonic transducer, according to the invention, the receiving electronics are configured as an analog amplifier, and at least the reference potential of the primary amplifier stage is the potential of the transducer. The level is raised to the bias voltage. Thereby, commonly used coupling capacitors can be avoided, which significantly lowers the propagation bandwidth of the signal detection conversion amplifier, while capacitively loading the ultrasonic transducer. In this case, the connected capacitor means a capacitive load located in parallel with the converter in consideration of the actual zero point at the input of the amplifier circuit.

別の特に好ましい実施態様では、増幅器回路の反転入力部は直接に容量式変換器と接続されている。   In another particularly preferred embodiment, the inverting input of the amplifier circuit is directly connected to the capacitive converter.

変換器の絶縁体の破壊の発生において増幅器を保護するために、上記実施態様では、容量式変換器と基準電位がコンデンサーを介して増幅器回路の反転入力部と接続しているが、しかしこの実施態様では通常の結合コンデンサーとしてではなく、むしろ純粋な保護として働く、と言うのはこの容量の両側面にて同じ電圧、即ちバイアス電圧が当接するからである。この容量の大きさはこの場合に極めて大きく選択され得る、例えば100nFに選択され得る、と言うのはこの場合に変換器はバイアス電圧源の内部抵抗と容量の直列回路により負荷されているからである。しかし、内部抵抗は標準の場合で変換器の負荷がほぼ軽視され得るほどに高い。   In order to protect the amplifier in the event of breakdown of the converter insulation, in the above embodiment the capacitive converter and the reference potential are connected via a capacitor to the inverting input of the amplifier circuit, but this implementation The embodiment acts as a pure protection rather than as a normal coupling capacitor, because the same voltage, ie the bias voltage, abuts on both sides of this capacitance. The magnitude of this capacitance can be chosen very large in this case, for example 100 nF, because in this case the converter is loaded by a series circuit of the internal resistance and capacitance of the bias voltage source. is there. However, the internal resistance is so high that the load on the transducer can be neglected in the standard case.

容量式超音波変換器の容量はバイアス電圧の結合抵抗によりRC−素子とバイアス電圧の障害に対するローパスフィルタとを意味する。同じ電圧、即ちバイアス電圧が増幅器の非反転入力部に当接する(事情によっては上記容量によって変換器電位から分離される)から、増幅器回路の非反転入力部に同様に基準電位がRC−素子を介して当接することによって、増幅器の非反転入力部に障害を抑圧することが好ましく、且つこの発明により設けられている。   The capacitance of the capacitive ultrasonic transducer means an RC-element and a low-pass filter with respect to a bias voltage failure due to a bias voltage coupling resistance. Since the same voltage, that is, the bias voltage is in contact with the non-inverting input of the amplifier (in some circumstances, it is separated from the converter potential by the capacitor), the reference potential is similarly applied to the RC-element at the non-inverting input of the amplifier circuit. It is preferable to suppress a failure in the non-inverting input portion of the amplifier by contacting with each other, and this invention is provided.

好ましくは、特殊実施態様には、このRC−素子の時定数がおよそ基準電位の変換器容量と結合抵抗から形成されるフィルタの時定数と同じ大きさであることが設けられる。   Preferably, the special embodiment is provided that the time constant of this RC-element is approximately the same as the time constant of the filter formed from the converter capacitance of the reference potential and the coupling resistance.

例えば300−400キロヘルツの利用される周波数範囲の外部の邪魔する信号割合を抑圧するために、一次増幅器回路にこの発明の別のフィルタが後方接続され、特にハイパスフィルタが、あらゆる場合に次のバンドパスフィルタと場合によっては少なくとも一つの分離コンデンサーとを備える第二増幅器段が後方接続される。この際にバイアス電圧から利用信号の分離は電圧安定な結合コンデンサーによって任意にこの回路の前、中、後で行われる。   In order to suppress the disturbing signal rate outside the frequency range used, for example 300-400 kHz, another filter of the invention is connected back to the primary amplifier circuit, in particular the high-pass filter in the next band A second amplifier stage comprising a pass filter and possibly at least one isolation capacitor is connected backwards. In this case, the separation of the utilization signal from the bias voltage is optionally performed before, during and after this circuit by a voltage stable coupling capacitor.

この発明によると、内燃機関からの排ガス流を測定する装置は、内燃機関の排ガス列には前記パラグラフのひとつによるガス流量計が据え付けられていることを特徴とする。脈動して多くの運転状態で非常に熱い排ガスのために、貫流の正確で高動的測定が実施されることによって、それは検査台或いは仕事場或いは通常の運転にある車両における車中で静止する。個別シリンダの流出室内での直接の使用は触媒の前と後の据付け並びに音減衰器と排ガス列の端部との間と同様に考慮できる。   According to the present invention, an apparatus for measuring an exhaust gas flow from an internal combustion engine is characterized in that a gas flow meter according to one of the above paragraphs is installed in an exhaust gas column of the internal combustion engine. Due to the pulsating and very hot exhaust gases in many driving conditions, an accurate and highly dynamic measurement of the flow-through is carried out so that it rests in the vehicle on the examination table or in the workplace or in vehicles in normal operation. Direct use of the individual cylinders in the outlet chamber can be considered as well as before and after the catalyst installation and between the sound attenuator and the end of the exhaust gas train.

好ましい実施態様によると、さらにガス流量計は排ガス内の有害材料成分を決定するガス取り出しの起こり得る箇所の直接付近に設けられることが意図されている。   According to a preferred embodiment, it is further intended that the gas flow meter is provided in the immediate vicinity of where gas removal may occur, which determines harmful material components in the exhaust gas.

勿論、測定が必要とされること及び/又は据付け箇所がより好都合であるならば、ガス流量計は内燃機関の排ガスの部分流により貫流される導管部分に設置され得る。   Of course, if a measurement is required and / or the installation location is more convenient, the gas flow meter can be installed in a conduit section that is flowed by a partial flow of exhaust gas of the internal combustion engine.

内燃機関の出来るだけ完全な状態を得るために、最も好都合な場合にすべてのガス流を監視し、そのために好ましくは、ガス流量計が内燃機関の排ガスを希釈化するガス流により貫流される導管部分に設置されることが意図され得る。   In order to obtain as complete a state of the internal combustion engine as possible, all gas flows are monitored in the most convenient case, and for that purpose preferably a gas flow meter is passed through by the gas flow diluting the exhaust gas of the internal combustion engine It can be intended to be installed in a part.

容量性音変換器を備えるガス貫流測定を装置的観点からばかり改良するのではなく、最初に記載された評価方法を改良するために、この発明によると、運転時間の決定後に貫流の仮定値が評価される、そしてこれは少なくともガスの特徴的温度と管壁の温度によって訂正されることが意図される。   In order to improve the initially described evaluation method, rather than just improving the gas flow-through measurement with capacitive sound transducers from an instrumental point of view, according to the invention, the flow-through assumption is determined after the operating time has been determined. It is intended to be evaluated and corrected at least by the characteristic temperature of the gas and the temperature of the tube wall.

流れ形状に依存する定数k1 を考慮して、流れ方向t+ の運転時間、流れ方向t= に対する運転時間、並びに管幾何学に依存する二つの定数k2 とk3 はまず最初に流速vの見積り値と音速cが求められる: Considering the constant k 1 which depends on the flow shape, the two constants k 2 and k 3 which depend on the operating time in the flow direction t + , the operating time with respect to the flow direction t = and the pipe geometry are first the flow velocity v Is estimated and the speed of sound c is determined:

Figure 2005037397
Figure 2005037397

Figure 2005037397
容積貫流V&の第一仮定値を測定管の横断面積Aによる掛算によって方程式EQ1から求める:
Figure 2005037397
A first hypothetical value for the volumetric flow-through V & is obtained from equation EQ1 by multiplication by the cross-sectional area A of the measuring tube:

Figure 2005037397
この仮定値は特徴的温度TC 並びに管壁の温度TW に依存して関数f1 (TC ,TW )によって訂正される:
Figure 2005037397
This assumption is corrected by the function f 1 (T C , T W ) depending on the characteristic temperature T C and the tube wall temperature T W :

Figure 2005037397
現実の質量流の値に関して興味があるならば、これは公称密度による掛算によって方程式EQ4から算出され得る。
Figure 2005037397
If interested in actual mass flow values, this can be calculated from equation EQ4 by multiplication by nominal density.

追加的に方法の別の改良された実施態様において、この仮定値を求めるために、測定管内の現実の圧力の値が特に正確に運転時間測定の箇所にて考慮に入れられることが意図されている。それによって流れ媒体の急な密度変更が算出において影響され得る。
そのために現実の密度ρは運転時間により算出された音速c(EQ2)、特殊熱容量kと現実の圧力pから求められる:
In addition, in another refined embodiment of the method, it is intended that the actual pressure value in the measuring tube is taken into account particularly precisely at the point of operation time measurement in order to determine this hypothetical value. Yes. Thereby a sudden density change of the flow medium can be influenced in the calculation.
For this purpose, the actual density ρ is determined from the sound speed c (EQ2) calculated from the operating time, the special heat capacity k and the actual pressure p:

Figure 2005037397
Figure 2005037397

別の特別実施態様において、仮定値はガスの特徴的温度の温度係数と測定管の壁の温度とに依存して訂正される。
そこで、式の関数f1 (TC ,TW )の機能的関係が特に好ましいものとして証明された:
In another special embodiment, the assumed value is corrected depending on the temperature coefficient of the characteristic temperature of the gas and the temperature of the wall of the measuring tube.
Thus, the functional relationship of the function f 1 (T C , T W ) in the equation proved to be particularly favorable:

Figure 2005037397
その際にk4 は経験的に或いは理論的仮定に基づいて流れ形状と温度形状によって求められる定数である。
Figure 2005037397
In this case, k 4 is a constant determined by the flow shape and the temperature shape empirically or based on theoretical assumptions.

その際に挙げられた温度を求めるために、この発明によると、管壁の温度或いは測定管内のガスの温度或いは両温度も測定されることが意図され得る。そのために、通例の温度センサーが設置され得る。   In order to determine the temperature mentioned in this case, according to the invention it can be intended that the temperature of the tube wall or the temperature of the gas in the measuring tube or both temperatures are also measured. For this purpose, a customary temperature sensor can be installed.

その際に無論、特にガス温度の測定において温度センサーのゆっくりとした反応時間となる欠点があり、その反応時間は極めて短い時間間隔で例えば二三ミリセカンドに変更できる。それ故に、この発明によると、ガスの特徴的温度は運転時間と音速の仮定値とから測定管内の温度形状の物理的モデルに基づいて検出されることが意図されている。   In this case, of course, there is a disadvantage that the temperature sensor has a slow reaction time particularly in the measurement of gas temperature, and the reaction time can be changed to, for example, a few milliseconds in a very short time interval. Therefore, according to the present invention, it is intended that the characteristic temperature of the gas is detected based on a physical model of the temperature shape in the measuring tube from the operating time and the assumed value of sound velocity.

さらに、この発明によると、ガスの特徴的温度を測定管の壁の温度を考慮してさらに明確にすることが、意図されている。
運転時間の測定によって検出された音速cは管横断面にわたる場所に依存する音速c〜(r) (rは半径方向対称管の管半径、Rは管半径)の平均値を意味する:
Furthermore, according to the invention, it is intended to further clarify the characteristic temperature of the gas in view of the temperature of the wall of the measuring tube.
The speed of sound c detected by measuring the operating time means the average value of the speed of sound c to (r) (r is the radius of the radially symmetric tube and R is the radius of the tube) depending on the location across the tube cross section:

Figure 2005037397
さらに、局部的音速の次の表示形態の理想的ガス等式に一致して求められる:
Figure 2005037397
Furthermore, it is determined in accordance with the ideal gas equation of the following display form of local sound velocity:

Figure 2005037397
この場合にf2 (r) は温度形状の形状を示し、Mはガスのモル質量を示し、Rは理想的ガス定数を示す。
方程式EQ7とEQ8からガスの特徴的温度が求められ得る。
Figure 2005037397
In this case, f 2 (r) indicates the shape of the temperature shape, M indicates the molar mass of the gas, and R indicates the ideal gas constant.
The characteristic temperature of the gas can be determined from equations EQ7 and EQ8.

既に言及されたように、ガス内の温度変更が極めて迅速に行われるので、温度の測定値と運転時間の測定値が同じ容積のために有効性を有するように、温度測定を実施することが好ましい。それは温度測定と運転時間測定の時点の選択の際に配置の幾何学的形状と流速とが考慮されることによって達成され得る。   As already mentioned, the temperature change in the gas takes place very quickly so that the temperature measurement can be performed so that the temperature measurement and the operating time measurement are valid for the same volume. preferable. It can be achieved by taking into account the geometry of the arrangement and the flow rate in the selection of the time points for temperature measurement and operating time measurement.

この方法の特別な実施態様では、流れるガス量の仮定値の算出の際に、断熱係数k、即ち一定圧力と容積における特殊熱容量の比の公称値がガス量の算出のために採用されるかぎり、媒体のガス構成を考慮することが意図されている。   In a special embodiment of this method, in calculating the assumed value of the flowing gas volume, the adiabatic coefficient k, i.e. the nominal value of the ratio of the special heat capacity at constant pressure and volume, is employed for the calculation of the gas volume. It is intended to take into account the gas composition of the medium.

さらに、この公称値をガスの特徴的温度に一致して訂正することが意図されており、即ち方程式EQ8とEQ5においてガスの構成に一致して温度依存型断熱係数k(TC )が採用されている。 Furthermore, it is intended to correct this nominal value in accordance with the characteristic temperature of the gas, ie a temperature-dependent adiabatic coefficient k (T C ) is adopted in equations EQ8 and EQ5 in accordance with the gas composition. ing.

寄生反射信号を考慮し且つ超音波運転時間を精密に検出するために、この発明によると、超音波信号の送信時点と運転時間の仮定値とに依存して期待時間窓が求められる。次に、この時間窓において受信信号の正確な到達時点後に探索が行われる。   In order to accurately detect the ultrasonic operation time in consideration of the parasitic reflection signal, according to the present invention, the expected time window is obtained depending on the transmission time of the ultrasonic signal and the assumed value of the operation time. A search is then performed after the correct arrival time of the received signal in this time window.

さらに、送信時点のシリーズ、即ち測定繰返し率を見積った運転時間に依存して適合することが意図されており、それにより予測的に期待時間窓内の寄生反射信号が本来の利用信号の前に位置しないことが達成され得る。   Furthermore, it is intended to be adapted depending on the series at the time of transmission, i.e. the operating time at which the measurement repetition rate is estimated, so that the parasitic reflection signal within the expected time window is predicted before the original utilization signal. It can be achieved that it is not located.

運転時間の仮定値として簡単な形式で第一の方法態様により前記測定の運転時間が考慮に入れられ得る。   The operating time of the measurement can be taken into account according to the first method embodiment in a simple form as an assumed value of the operating time.

検出には僅かな費用であるけれども、大きな精度を備えている他の方法態様は、仮定値として前記貫流測定の成果に依存してモデル的に形成された計算値が考慮に入れられるように意図されている。   Other method aspects with great accuracy, although at a low cost for detection, are intended to take into account the calculated values modeled as a hypothetical value depending on the results of the flow-through measurement. Has been.

この方法の別の好ましい実施態様では、運転時間を求めるためにまず最初に受信信号の開始用の算出時点が確認され、正確な開始が複雑な値に図示された受信信号の位相情報の分析によって確認されることが意図されている。   In another preferred embodiment of this method, the calculation time for the start of the received signal is first confirmed in order to determine the operating time, and by analyzing the phase information of the received signal, the exact start is illustrated in a complex value. It is intended to be confirmed.

複雑な値の受信信号を求めるために、例えば理想的受信信号のヒルバート変換が利用され得る。   In order to obtain a complex value of the received signal, for example, the Hilbert transform of an ideal received signal can be used.

実際の受信信号の評価方法の特に好ましい実施態様において受信信号の複雑な値の表示の現実の位相位置が求められ、連続的変更の範囲における任意の時点で受信信号の開始のために算出時点の位相位置が確認される。   In a particularly preferred embodiment of the method for evaluating the actual received signal, the actual phase position of the display of complex values of the received signal is determined and calculated at the start of the received signal at any point in the range of continuous change. The phase position is confirmed.

好ましくは、その際に受信信号の開始の算出時点のために最大振幅の発生の時点が考慮に入れられ得る。この種の方法により到達時点は送信信号の半期間(±T/2)の少なくとも不確実性を伴って確認され得る。   Preferably, the time of occurrence of the maximum amplitude can then be taken into account for the calculation time of the start of the received signal. With this type of method, the arrival time can be ascertained with at least uncertainty in the half-period (± T / 2) of the transmitted signal.

精度を向上するために、さらに、受信信号の開始の算出時点から出発して受信信号の正確な開始は最初に惹起した位相位置に基づき求められ得る。
特にその際に受信信号の第一零通過が一定の音特性の到達時点として定義される。
In order to improve the accuracy, further, starting from the calculation time of the start of the received signal, the exact start of the received signal can be determined based on the phase position initially caused.
In particular, the first zero passage of the received signal is defined as the arrival time of a certain sound characteristic.

次に、この発明は、この発明の好ましい実施例の若干の例示に基づいて説明される:
その際に、図1はこの発明のガス流量計を概略的に示し、図2と2aはこの発明の容量式超音波変換器の全体図と詳細図を示し、図3は配列構成にて容積式超音波変換器を示し、図4は容量式超音波変換器の一次信号用のこの発明の増幅器回路を概略的に示し、図5はブロック線図形態で評価方法の表示であり、図6は送信器と受信器対の送信と受信信号の表示並びに受信信号の付属位相信号を示す。
The invention will now be described on the basis of some exemplifications of preferred embodiments of the invention:
In this case, FIG. 1 schematically shows the gas flow meter of the present invention, FIGS. 2 and 2a show an overall view and a detailed view of the capacitive ultrasonic transducer of the present invention, and FIG. FIG. 4 schematically shows an amplifier circuit of the present invention for a primary signal of a capacitive ultrasonic transducer, FIG. 5 is a display of the evaluation method in block diagram form, and FIG. Indicates the transmission and reception signal display of the transmitter and receiver pair and the associated phase signal of the reception signal.

図1のこの発明のガス流量計装置の縦断面表示は測定管を示し、その測定管を通してガスが流れて、そのガスの容量と質量が求められる。測定管1は加熱要素2を有し、その要素の助けによって測定管1の温度は評価電子部3を介して制御されて加熱制御電子部4の中間回路によって加熱され得る。測定管1は好ましくは少なくとも運転時間測定箇所前(管の主な貫流方向に関連して)に追加的に流れ形状と温度形状形成据付け部5を備えている。この据付け部5は測定管1より僅か小さい直径をもつ管の束或いは案内薄板として形成され得る。   The vertical cross-sectional display of the gas flowmeter device of the present invention in FIG. 1 shows a measuring tube, and gas flows through the measuring tube, and the volume and mass of the gas are obtained. The measuring tube 1 has a heating element 2, with the help of that element the temperature of the measuring tube 1 can be controlled via the evaluation electronics 3 and heated by the intermediate circuit of the heating control electronics 4. The measuring tube 1 is preferably additionally provided with a flow shape and temperature shape forming installation 5 at least before the operating time measurement point (in relation to the main flow direction of the tube). This mounting part 5 can be formed as a bundle of tubes or guide lamina having a slightly smaller diameter than the measuring tube 1.

音透過性で測定管1の壁を束にして閉鎖するカバー6によって、例えば格子などにより閉鎖され得る測定管1のポッケト或いは管接続部において、送信変換器7と8並びに受信変換器9と10が組付けられ、容量式超音波変換器として形成されている。測定管1の壁用の加熱要素2を介して或いは固有の別の加熱要素を介して容量式変換器7−10及びカバー6が加熱され得る。   Transmitting transducers 7 and 8 and receiving transducers 9 and 10 at a pocket or tube connection of the measuring tube 1 which can be closed by a cover 6 which is sound permeable and closes the walls of the measuring tube 1 in bundles, for example. Are assembled to form a capacitive ultrasonic transducer. The capacitive transducer 7-10 and the cover 6 can be heated via the heating element 2 for the wall of the measuring tube 1 or via a separate separate heating element.

超音波変換器7−10は特に受信変換器9と10のみがあらゆる場合に測定管1の縦方向に移動可能な挿入部に支承されて、その挿入部は例えばステップモータを備えるスピンドルによって調整できる。それで、移動は運転に適合して評価電子部3によって制御されて実施され得る。変換器7−10の長手方向調整は予め定義された不連続工程で行われる。   The ultrasonic transducer 7-10 is supported by an insertion part which is movable in the longitudinal direction of the measuring tube 1 in all cases, in particular only the reception transducers 9 and 10, which insertion part can be adjusted, for example, by a spindle with a step motor. . The movement can then be carried out under the control of the evaluation electronics 3 adapted to the driving. The longitudinal adjustment of the transducer 7-10 is performed in a predefined discontinuous process.

しかし、変換器7−10は測定管1内或いは傍で回転可能に支承され得て、好ましくは通常に測定管1の縦軸線に且つ測定管1の壁に正接線と平行にそれぞれの変換器7−10の据付け箇所に配向した軸線を中心に回転可能に支承され得る。この種の配列によっても音信号の偏流現象を阻止しようとし、屈折効果も考慮され得る。   However, the transducers 7-10 can be mounted so as to be able to rotate in or near the measuring tube 1 and are preferably arranged in parallel to the longitudinal axis of the measuring tube 1 and parallel to the tangent to the wall of the measuring tube 1, respectively. It can be supported so as to be rotatable about an axis oriented at 7-10 installation points. This kind of arrangement also tries to prevent the drift phenomenon of the sound signal, and the refraction effect can also be considered.

さらに図1には受信電子部11が概略的に図示され、その電子部は受信信号の増幅とアナログ一次処理を行う。受信電子部は送信信号発生と加熱の制御電子部4を制御する評価電子部3と接続している。追加的入力信号として評価電子部3に、ガス温度用の少なくとも一つの温度センサー12と菅壁温度用の一つの温度センサー13との結果並びに好ましくは一つの圧力センサー14の値を使用させる。同様にガス流の算出に適しているガス構成のあらゆる場合を考察するために、好ましくは一つのラムダゾンデ15が存在し得て、そのラムダゾンデは伝送ラインを介して現実の空気数の情報を評価電子部3に転送する。そのための代用として、データ伝送ライン16(点線で図示された)を介してガス構成に関する情報が排ガス分析装置から評価電子部3に転送され得る。   Further, FIG. 1 schematically shows a reception electronic unit 11, which performs amplification and primary analog processing of a reception signal. The receiving electronic part is connected to an evaluation electronic part 3 that controls the control electronic part 4 for generating and heating the transmission signal. As an additional input signal, the evaluation electronics 3 is made to use the result of at least one temperature sensor 12 for gas temperature and one temperature sensor 13 for wall temperature and preferably the value of one pressure sensor 14. Similarly, in order to consider all cases of gas configurations suitable for gas flow calculation, there may preferably be one lambda sonde 15 which evaluates the actual air number information via the transmission line. Transfer to part 3. As an alternative for this, information about the gas configuration can be transferred from the exhaust gas analyzer to the evaluation electronics 3 via a data transmission line 16 (illustrated by a dotted line).

図2は図1のガス流量計装置に採用するこの発明の容量式超音波変換器を示し、図2aはこの超音波変換器の前端の詳細拡大部であり、それを介して音信号がガスに導入される。変換器本体17には金属性ダイアフラム18が一つの電極として並びに裏板19が音変換器の実際の作動部材の第二電極として据付けられている。図2aの詳細図には、裏板19の構成は規則的な隆起部20の形状に認識でき、その隆起部は好ましくは裏板19の絶縁層21にエッチングされているので、両電極、即ちダイアフラム18とドーピング処理した裏板19の間に一定間隔が保証されている。   FIG. 2 shows the capacitive ultrasonic transducer of the present invention employed in the gas flow meter apparatus of FIG. 1, and FIG. 2a is a detailed enlarged portion of the front end of the ultrasonic transducer, through which the sound signal is gas. To be introduced. The transducer main body 17 is provided with a metallic diaphragm 18 as one electrode and a back plate 19 as a second electrode of an actual operating member of the sound transducer. In the detailed view of FIG. 2a, the configuration of the back plate 19 can be recognized as a regular ridge 20 shape, which is preferably etched into the insulating layer 21 of the back plate 19, so that both electrodes, A fixed distance is guaranteed between the diaphragm 18 and the doped back plate 19.

図2aの場合に構成20は絶縁層21の製造後に形成されていた。その際に裏板19はまず最初に酸化され、その後に構成が絶縁層21にエッチングにより形成される。しかしまず最初に裏板19の構成20を形成し、その後に絶縁層21の製造を行う。そのために、担体材料はまず最初にエッチングされ、次に酸化される。   In the case of FIG. 2 a, the structure 20 was formed after the insulating layer 21 was manufactured. At that time, the back plate 19 is first oxidized, and then the structure is formed in the insulating layer 21 by etching. However, first, the structure 20 of the back plate 19 is formed, and then the insulating layer 21 is manufactured. For this purpose, the carrier material is first etched and then oxidized.

図3はこの発明の容量式配列変換器の概略構成を横断面で示す。図2と図2aと同じ形式で、変換器の本体22には金属性ダイアフラム23並びに裏板24が第一と第二電極として据付けられている。その際に裏板24は絶縁基礎材料25の基体、個別に接触でき且つ基体に個別に装着できる電極26と絶縁層27から構成される。電極が例えば蒸着されるか或いはスパッタリングされている基体25は例えばセラミック、サファイア或いは酸化窒素から成り得る。   FIG. 3 is a cross-sectional view showing a schematic configuration of the capacitive array converter of the present invention. In the same manner as in FIGS. 2 and 2a, the transducer body 22 is provided with a metallic diaphragm 23 and a back plate 24 as first and second electrodes. In this case, the back plate 24 is composed of a base of an insulating base material 25, an electrode 26 and an insulating layer 27 that can be individually contacted and can be individually attached to the base. The substrate 25 on which the electrodes are deposited or sputtered, for example, can consist of ceramic, sapphire or nitric oxide, for example.

高温度安定配列変換器は、図3に図示される如く、実質的に二つの利点を有する。最初に、菅内壁と適切にできる据付けによって測定菅1内のポケット或いはくぼみはもはや必要なく、第二に送信運転或いは受信運転用の音束の方向は簡単に個別の変換器領域の適切な電子制御によって運転中に調整され、ガス流への音放出の偏流を考慮に入れるように、適切に再調整される。   The high temperature stable array transducer has substantially two advantages, as illustrated in FIG. First, the pockets or indentations in the measuring rod 1 are no longer necessary due to the appropriate installation of the inner wall of the rod, and secondly the direction of the sound bundle for the transmission or reception operation is simply determined by the appropriate electronics in the individual transducer area. It is adjusted during operation by control and readjusted appropriately to take into account the drift of sound emission into the gas stream.

図4は特に評価電子部3に一体化されるか或いはこれに接続された受信増幅器の構成を概略的に示す。図には容量式受信超音波変換器9或いは10の補助回路線図28が点線で縁取りされて図示されている。結合抵抗29を介してバイアス電圧VBが接続されている。変換器が次の増幅器30とコンデンサー31を介して接続され、そのコンデンサーは例えば変換器絶縁体の破壊の場合に増幅器回路を保護するために用いられる。同様に、RC−部材32を介して逆にされていない入力部における増幅器30に、バイアス電圧VBが接続される。演算増幅器30の入力部に対称的関係を造るために、RC−素子32の時定数は好ましくは接続される超音波変換器の各々とおよそ同じ大きさであり、即ちRC−素子32の抵抗が逆にされた入力部におけるバイアス抵抗と一致し、RC−素子32の容量が変換器9或いは10の容量と一致する。これは、およそ同じ限界周波数により演算増幅器30の非反転入力部には、事情によっては同電圧に存在する障害の低パスフィルタが生じる利点をもたらし、並びにこれは反転入力部のためにバイアス抵抗と容量式変換器自体とによる場合である。   FIG. 4 schematically shows the structure of a receiving amplifier which is integrated in or connected to the evaluation electronics 3 in particular. In the figure, an auxiliary circuit diagram 28 of the capacitive receiving ultrasonic transducer 9 or 10 is shown with a dotted line. A bias voltage VB is connected via a coupling resistor 29. A converter is connected to the next amplifier 30 via a capacitor 31, which is used, for example, to protect the amplifier circuit in case of breakdown of the converter insulator. Similarly, a bias voltage VB is connected to the amplifier 30 at the input that is not reversed via the RC-member 32. In order to create a symmetrical relationship at the input of the operational amplifier 30, the time constant of the RC-element 32 is preferably about the same as each of the connected ultrasonic transducers, ie the resistance of the RC-element 32 is The capacitance of the RC-element 32 matches the capacitance of the converter 9 or 10 with the bias resistance at the reversed input. This provides the advantage that the non-inverting input of the operational amplifier 30 due to approximately the same critical frequency results in a faulty low-pass filter present in the same voltage in some circumstances, as well as a bias resistor for the inverting input. This is the case with the capacitive converter itself.

増幅器30の供給は対称的にバイアス電圧電位を中心に行われる。一つの別の結合コンデンサー33ともはやバイアス電圧電位には位置しない好ましく相互接続されたフィルタ回路34とを介して受信超音波変換器9或いは10の受信信号が別の処理部に供給される。必要な全増幅(80dBまで)を達成するために、特にフィルタ回路34下で、第二増幅器が接続され得る。そのために、電子メーター倍増器が提供される。受信電子部の全増幅の調整(AGC,自動利得制御)は目的に適ってこの第二段で行われる。第一段における増幅の変更はつまり周波数伝播行動に強く影響され得る。   The amplifier 30 is supplied symmetrically around the bias voltage potential. The reception signal of the reception ultrasonic transducer 9 or 10 is supplied to another processing section via one separate coupling capacitor 33 and a preferably interconnected filter circuit 34 which is no longer at the bias voltage potential. In order to achieve the necessary total amplification (up to 80 dB), a second amplifier can be connected, especially under the filter circuit 34. To that end, an electronic meter multiplier is provided. Adjustment of the total amplification (AGC, automatic gain control) of the reception electronics is performed in this second stage according to the purpose. The change in amplification in the first stage can thus be strongly influenced by frequency propagation behavior.

図5はこの発明の評価方法を概略的にブロック表示で示す;第一段35において入力値t+とt−から測定すべきガスの流れ方向とその方向の反対における超音波の運転時間に流速v’と音速c’の仮定値は通例の公式により算出される。第二段36において入力値{L}及び/又は測定管1の壁の温度TW及び/又はガスの特徴的温度TGによって符号化された幾何学的特性を考慮して流速vと音速cの値の改良された算出が求められる。簡単だが、唯一ではない測定管1における条件のモデルにより、貫流の仮定値の修正は流速の直線的修正要因によって行われ、その修正要因は最も簡単なモデルで直線的にガスの特徴的温度と測定管の壁の温度との公称温度差に依存する。   FIG. 5 schematically shows the evaluation method according to the invention in block representation; in the first stage 35, the flow velocity v at the operating time of the ultrasonic wave in the direction opposite to the gas flow direction to be measured from the input values t + and t- Assumed values of 'and sound speed c' are calculated according to the usual formula. The values of flow velocity v and sound velocity c in the second stage 36 taking into account the geometric values encoded by the input value {L} and / or the wall temperature TW of the measuring tube 1 and / or the characteristic temperature TG of the gas. Improved calculations are required. Due to the simple but not the only model of conditions in the measuring tube 1, the correction of the flow through assumption is made by a linear correction factor of the flow velocity, which is the simplest model and is linear with the characteristic temperature of the gas. Depends on the nominal temperature difference from the temperature of the measuring tube wall.

ガスの特徴的温度を測定によって求められ得るばかりでなく、材料量の考慮下の音速からも求められ得ることを示すために、点線で代用的算出過程36aが図示されている。最終段37において入力値κ(カッパ)、断熱係数、事情によってはときどきガスの特徴的温度、空気数λ(ラムダ)並びに現実の圧力pによって流れるガス質量M或いは流れるガス容量Vが求められる。   In order to show that the characteristic temperature of the gas can be determined not only by measurement, but also from the speed of sound in consideration of the amount of material, a substitute calculation process 36a is shown in dotted lines. In the final stage 37, the input value κ (kappa), the adiabatic coefficient, the gas characteristic temperature, the air number λ (lambda), and the gas mass M flowing or the gas volume V flowing depending on the actual pressure p are sometimes obtained depending on circumstances.

音過渡時間からガス貫流の検出の際に好ましくは測定管1における理論的平均音速に関して容認性制御が意図されている。ガスのモル質量、自在ガス定数とガスの温度依存断熱係数によってガス温度TGと音速cの間の公知の関係が生じ、その音速は容認性検査のために利用され得る。モル質量の値を検出するために、例えばラムダゾンデ12或いは他の分析器によってガスの関係が求められる。これはさらに温度依存型断熱係数κ(T) の算出のために必要とされ、温度Tの依存性は特に流れるガス質量M或いは流れるガス容量Vの検出の際に無視され得ない。   In the detection of gas flow from the sound transient time, an acceptable control is preferably intended with respect to the theoretical mean sound velocity in the measuring tube 1. A known relationship between the gas temperature TG and the speed of sound c results from the molar mass of the gas, the universal gas constant and the temperature-dependent adiabatic coefficient of the gas, which speed of sound can be used for acceptability testing. In order to detect the value of the molar mass, the gas relationship is determined, for example, by the lambda sonde 12 or other analyzer. This is further required for the calculation of the temperature-dependent adiabatic coefficient κ (T), and the dependence of the temperature T cannot be ignored especially when detecting the flowing gas mass M or flowing gas volume V.

次に、超音波信号の到達時点のこの発明の正確な検出は、図6を参照しながら説明される。その際に図6において互いに同じ時間軸により三つの信号が図示されている。最も上には、ここで三つの波長特性のブラシの形状で存在する送信信号Sを認識である。図6の中心には、実際の受信信号が図示されている。利用信号38並びに寄生的反射信号39が認識でき、この利用信号は送信器から放出される音パルスの直接受信によって受信器にて生じ、この反射信号39は送信器7と8及び受信器9と10の間の数倍の反射に基づく。これらは媒体の有効的音速に依存して送信器/受信器の区間の数回で奇数の通過後に遅れて受信器に到達する。それ故に、図に示された寄生的反射信号は表示で示された送信パルス(ブラシ)の前にある送信パルスに由来する。   Next, the accurate detection of the present invention at the time of arrival of the ultrasonic signal will be described with reference to FIG. In this case, three signals are shown in FIG. 6 along the same time axis. At the top, the transmission signal S existing in the shape of a brush having three wavelength characteristics is recognized. The actual received signal is shown in the center of FIG. A utilization signal 38 as well as a parasitic reflection signal 39 can be recognized, and this utilization signal is generated at the receiver by direct reception of sound pulses emitted from the transmitter, and this reflection signal 39 is transmitted to the transmitters 7 and 8 and the receiver 9. Based on several times the reflection between 10. They arrive at the receiver after an odd number of passes several times in the transmitter / receiver interval depending on the effective sound speed of the medium. Therefore, the parasitic reflection signal shown in the figure is derived from the transmitted pulse preceding the transmitted pulse (brush) shown in the display.

最下信号φEは例えばヒルバート変換或いは同様なくりこみ積分を介して複雑に図示される受信信号の位相位置を示す。実際の利用信号が寄生的反射と同様に存在する領域には、位相位置の連続変更を認識できる。変換器へのパルスの到達の際に位相は比較的均一な勾配で回転し始める。この勾配は受信信号の信号周波数に依存する。受信信号Eの第一変位では、第一変位が位相騒音からパルスまでの移行を形成するから、位相は全振幅にわたりもはや完全には回転しない。変位が最大値を有するところで、位相が零ラインと交差する。パルスの到達前に、位相騒音を観察すべきである。   The lowest signal φE indicates the phase position of the received signal illustrated in a complicated manner through, for example, Hilbert transform or similar renormalization integration. In the region where the actual use signal exists in the same manner as the parasitic reflection, it is possible to recognize the continuous change of the phase position. Upon arrival of the pulse at the transducer, the phase begins to rotate with a relatively uniform gradient. This gradient depends on the signal frequency of the received signal. At the first displacement of the received signal E, the phase no longer rotates completely over the full amplitude because the first displacement forms a transition from phase noise to pulse. Where the displacement has a maximum value, the phase intersects the zero line. The phase noise should be observed before the pulse arrives.

超音波信号の運転時間の第一仮定値t1から期待時間窓T±がこの仮定値t1を中心に定義される。この時間窓内で運転時間tLの改良された仮定値が探索される。そのために、受信信号Eの最大振幅値が改良された仮定値t2として求められる。この値から、送信時点の方向において各時点t3が求められ、この時点にて位相位置の連続変更が終了する。この新たな仮定値t3から正の時間方向において時点t4が求められ、この時点は受信信号の第一零通過を求める。この対象的に半期間だけ受信信号の実際の到達時点まで移動される時点は計算的に訂正され、それ以上の処理の運転時間として考慮に入れられる。   From the first assumed value t1 of the operating time of the ultrasonic signal, an expected time window T ± is defined around this assumed value t1. Within this time window, an improved hypothesized value of the operating time tL is searched. For this purpose, the maximum amplitude value of the reception signal E is obtained as an improved assumed value t2. From this value, each time point t3 is obtained in the direction of the transmission time point, and the continuous change of the phase position ends at this time point. From this new assumed value t3, a time point t4 is obtained in the positive time direction, and at this time point, the first zero passage of the received signal is obtained. This point in time, which is shifted to the actual arrival point of the received signal for half a period, is corrected computationally and taken into account as the operating time for further processing.

上述の如く、受信信号は利用信号と寄生的反射信号の重なりから構成される。その際に関連した受信信号間の時間的間隔は、同じ送信パルスから生じる信号間であり、流れ方向とその方向と反対において平均運転時間の偶数倍である。しかし、この平均運転時間は主として媒体の現実の音速によって求められ、それにより現実の温度から広範囲に求められる。   As described above, the received signal is composed of an overlap of the utilization signal and the parasitic reflection signal. The time interval between the received signals associated therewith is between signals originating from the same transmission pulse and is an even multiple of the average operating time in the flow direction and opposite to that direction. However, this average operating time is mainly determined by the actual sound speed of the medium, and is thus determined over a wide range from the actual temperature.

多くの用途範囲のために、ガスの温度は広範囲に迅速に降下され得る。これは必然的に厳しい問題を生じ、反射される信号が例えば信号形状と位相のような特性に関して実際の受信信号と極めて類似であるから、時間的に正確な評価を難しくし且つ誤差測定をまねき得る期待時間窓の範囲において利用信号と反射信号の干渉的重なりを生じる。   For many application ranges, the temperature of the gas can be dropped quickly over a wide range. This inevitably causes severe problems, since the reflected signal is very similar to the actual received signal in terms of characteristics such as signal shape and phase, making it difficult to evaluate accurately in time and leading to error measurements. Interference overlap between the utilization signal and the reflected signal occurs in the range of the expected time window to be obtained.

この問題のこの発明により提案された解決策は、測定繰返し率に影響を与えることにあるので、受信信号Eと第一或いは第二反射の間の重なりは回避され得る。音速の仮定値によって最適測定繰返し率は算出され得て、測定繰返し率では第一反射とそれによる第二反射とは自由選択可能な時間的安全間隔を備えるいつも実際の受信信号の後に存在する。この安全期間は意義のあるものとして出来るだけ短時間に選定されるので、高測定繰返し率が可能とされ、受信信号の前の範囲は第二と別の反射に関して”きれいに”保持されている。さらに、送信信号の期間に依存してこの安全間隔をつくるのは意義がある。   Since the solution proposed by this invention of this problem is to influence the measurement repetition rate, an overlap between the received signal E and the first or second reflection can be avoided. The optimum measurement repetition rate can be calculated according to the assumed value of sound velocity, where the first reflection and the resulting second reflection are always present after the actual received signal with a freely selectable time safety interval. Since this safe period is selected as short as possible, a high measurement repetition rate is possible, and the previous range of the received signal is kept “clean” with respect to another reflection from the second. Furthermore, it is meaningful to create this safety interval depending on the period of the transmission signal.

好ましくは、受信信号Eと第一両反射のために次の受信信号Eに対して十分な時間的間隔が存在する限り、受信信号は互いに重なり合っている。それによって必要に応じて測定繰返し率が上昇され得る。   Preferably, the received signals overlap each other as long as there is a sufficient time interval for the received signal E and the next received signal E due to the first both reflections. Thereby, the measurement repetition rate can be increased as required.

測定繰返し率が適切に調整されるべきならば、適切な時間マークが算出された質量流量値と一緒に記憶されなければならなく、質量流量の経過を時間にわたり再構築し得る。   If the measurement repetition rate is to be adjusted appropriately, an appropriate time mark must be stored with the calculated mass flow value and the mass flow history can be reconstructed over time.

この発明のガス流量計を概略的に示す。1 schematically shows a gas flow meter of the present invention. この発明の容量式超音波変換器の全体図と詳細図を示す。The whole figure and detailed drawing of the capacity type ultrasonic transducer of this invention are shown. 配列構成にて容量式超音波変換器を示す。The capacitive ultrasonic transducer is shown in an array configuration. 容量式超音波変換器の一次信号用のこの発明の増幅器回路を概略的に示す。1 schematically shows an amplifier circuit of the invention for the primary signal of a capacitive ultrasonic transducer. ブロック線図形態で評価方法の表示である。It is a display of the evaluation method in a block diagram form. 送信器と受信器対の送信と受信信号の表示並びに受信信号の付属位相信号を示す。The transmission and reception signal display of the transmitter and receiver pair and the associated phase signal of the reception signal are shown.

符号の説明Explanation of symbols

1.....測定管
2.....加熱要素
3.....評価電子部
4.....加熱制御電子部
5.....据付け部
6.....カバー
7−10...変換器
11....受信電子部
12,13...温度センサー
14....圧力センサー
15....ラムダゾンデ
16....データ伝送ライン
17....変換器本体
18....金属性ダイアフラム
19....裏板
20....構成
21....絶縁層
22....変換器本体
23....金属性ダイアフラム23
24....裏板
25....絶縁基礎材料基体
26....電極
27....絶縁層
28....補助回路線図
29....結合抵抗
30....増幅器
31....コンデンサー
32....RC−素子
33....結合コンデンサー
34....フィルタ回路
35,36,37...段
1. . . . . Measuring tube . . . . 2. heating element . . . . Evaluation electronics section 4. . . . . 4. Heating control electronics . . . . Installation section 6. . . . . Cover 7-10. . . Converter 11. . . . Receiving electronic unit 12,13. . . Temperature sensor 14. . . . pressure sensor
15. . . . Lambdasonde 16. . . . Data transmission line 17. . . . Converter body 18. . . . Metal diaphragm 19. . . . Back plate 20. . . . Configuration 21. . . . Insulating layer 22. . . . Converter body 23. . . . Metallic diaphragm 23
24. . . . Back plate 25. . . . Insulating base material substrate 26. . . . Electrode 27. . . . Insulating layer 28. . . . Auxiliary circuit diagram 29. . . . Coupling resistance 30. . . . Amplifier 31. . . . Capacitor 32. . . . RC-element 33. . . . Coupling capacitor 34. . . . Filter circuit 35, 36, 37. . . Step

Claims (46)

ガス貫流測定管と、少なくとも一つの送信音変換器と一つの受信音変換器並びに送信受信評価電子部とから成る稼働時間方法に基づく超音波ガス流量計において、音変換器(7,8,9,10)は容量電音式超音波変換器として時間的過渡音信号を音発生し且つ受信するように形成され、流れのガス温度形状を比較調節し且つ流れ測定における温度形状の影響を最小化する装置が設けられることを特徴とする超音波ガス流量計。   In an ultrasonic gas flowmeter based on an operating time method comprising a gas flow-through measuring tube, at least one transmission sound converter, one reception sound converter, and transmission reception evaluation electronics, a sound converter (7, 8, 9 , 10) is a capacitive electro-acoustic ultrasonic transducer designed to generate and receive temporally transient sound signals, comparatively adjust the flow gas temperature shape and minimize the influence of the temperature shape on the flow measurement An ultrasonic gas flowmeter is provided. 変換器(7,8,9,10)は、例えばチタン材料から成る金属ダイアフラム(18,23)を有することを特徴とする請求項1に記載のガス流量計。   Gas flow meter according to claim 1, characterized in that the converter (7, 8, 9, 10) comprises a metal diaphragm (18, 23), for example made of titanium material. 裏板(19,24)はドーピング処理した半導体とその上に重ねる絶縁層(21,27)とから成り、その絶縁層が例えば塗布される箇所にダイアフラム(18)が特に直接に載置されることを特徴とする請求項2に記載のガス流量計。   The back plate (19, 24) is composed of a doped semiconductor and an insulating layer (21, 27) overlaid thereon, and the diaphragm (18) is particularly directly placed at a location where the insulating layer is applied, for example. The gas flowmeter according to claim 2, wherein: 絶縁層(21,27)は第二電極、即ち裏板(19,24)の材料の反応により製造処理中に周囲大気による熱作用下で生じる材料によって形成されていることを特徴とする請求項3に記載のガス流量計。   Insulating layer (21, 27) is formed by a material generated under the action of heat by the ambient atmosphere during the manufacturing process by reaction of the material of the second electrode, ie the back plate (19, 24). 3. The gas flow meter according to 3. 第二電極、即ち裏板(19,24)は一つの構成(20)を備えていることを特徴とする請求項3或いは請求項4に記載のガス流量計。   Gas flow meter according to claim 3 or 4, characterized in that the second electrode, i.e. the back plate (19, 24) comprises one configuration (20). 一つの構成(20)を備える第二電極、即ち裏板(19,24)は不連続合成構造、好ましくは腐食された構成を備えていることを特徴とする請求項5に記載のガス流量計。   6. Gas flow meter according to claim 5, characterized in that the second electrode with one configuration (20), i.e. the back plate (19, 24), has a discontinuous synthetic structure, preferably a corroded configuration. . 変換器(7,8,9,10)は、直線的或いは平面的配列で複数の別々に装着可能な領域(26)を有することを特徴とする請求項1乃至請求項6のいずれか一項に記載のガス流量計。   7. The transducer (7, 8, 9, 10) has a plurality of separately mountable regions (26) in a linear or planar arrangement. The gas flowmeter described in 1. 少なくとも一つの音変換器(7,8,9,10)、特に受信変換器(9,10)は移動自在に支承されていることを特徴とする請求項1乃至請求項7のいずれか一項に記載のガス流量計。   8. The at least one sound transducer (7, 8, 9, 10), in particular the receiving transducer (9, 10), is movably supported. The gas flowmeter described in 1. 一つ或いは複数の音変換器(7,8,9,10)は、回転可能に支承されていることを特徴とする請求項1乃至請求項8のいずれか一項に記載のガス流量計。   The gas flowmeter according to any one of claims 1 to 8, wherein one or a plurality of sound transducers (7, 8, 9, 10) are rotatably supported. 測定管(1)の壁用加熱装置(2)は場合によっては音変換器(7,8,9,10)にも備えられることを特徴とする請求項1乃至請求項9のいずれか一項に記載のガス流量計。   10. The heating device (2) for the wall of the measuring tube (1) is also provided in the sound converter (7, 8, 9, 10) as the case may be, according to any one of the preceding claims. The gas flowmeter described in 1. 測定管(1)は僅かな特定熱容量をもつ材料、特に熱絶縁材料から製造されること及び/又はこの種の材料製の被膜を備えていること及び/又はこの種の材料製の被覆により包囲されることを特徴とする請求項1乃至請求項10のいずれか一項に記載のガス流量計。   The measuring tube (1) is manufactured from a material with a small specific heat capacity, in particular a heat insulating material and / or provided with a coating of this kind of material and / or surrounded by a coating of this kind of material The gas flow meter according to any one of claims 1 to 10, wherein the gas flow meter is provided. 温度及び/又は流れ形状を形成する取付け部(5,6)は測定管(1)に据付けられているか、或いは一体化されていることを特徴とする請求項1乃至請求項11のいずれか一項に記載のガス流量計。   12. The mounting part (5, 6) forming the temperature and / or the flow shape is installed in or integrated with the measuring tube (1). The gas flowmeter according to item. 少なくとも一つの温度センサー(13)が測定管(1)の壁の温度の測定のために設けられ、そして評価電子部(3)と接続されていることを特徴とする請求項1乃至請求項12のいずれか一項に記載のガス流量計。   13. At least one temperature sensor (13) is provided for measuring the temperature of the wall of the measuring tube (1) and is connected to the evaluation electronics (3). The gas flowmeter according to any one of the above. 少なくとも一つの温度センサー(12)が流れの温度の測定のために設けられ、評価電子部(3)と接続されていることを特徴とする請求項1乃至請求項13のいずれか一項に記載のガス流量計。   14. At least one temperature sensor (12) is provided for measuring the temperature of the flow and is connected to the evaluation electronics (3). Gas flow meter. ガス組成を検出する装置、特にラムダゾンデ(15)が設けられていることを特徴とする請求項1乃至請求項14のいずれか一項に記載のガス流量計。   15. A gas flow meter according to claim 1, wherein a device for detecting the gas composition, in particular a lambda sonde (15), is provided. データ導線(16)とデータインターフェイスが設けられ、それらを介して流れのガス組成に関する情報が伝達されることを特徴とする請求項1乃至請求項15のいずれか一項に記載のガス流量計。   16. A gas flowmeter according to any one of the preceding claims, characterized in that a data lead (16) and a data interface are provided, through which information about the gas composition of the flow is communicated. 受信電子部(11)はアナログ増幅器として構成されていて、少なくとも一次増幅器段(30)の基準電位は変換器(9,10)の電位水準、即ちバイアス電圧に上昇されることを特徴とする請求項1乃至請求項16のいずれか一項に記載のガス流量計。   The receiving electronics (11) is configured as an analog amplifier, and at least the reference potential of the primary amplifier stage (30) is raised to the potential level of the converter (9, 10), ie the bias voltage. The gas flowmeter according to any one of claims 1 to 16. 増幅回路(30)の反転入力部は直接に容量式変換器(9,10)と接続されていることを特徴とする請求項17に記載のガス流量計。   18. A gas flow meter according to claim 17, wherein the inverting input of the amplifier circuit (30) is directly connected to the capacitive converter (9, 10). 容量式変換器(9,10)と基準電位はコンデンサ(31)を介して増幅回路(30)の反転入力部と接続されていることを特徴とする請求項17或いは請求項18に記載のガス流量計。   19. Gas according to claim 17 or 18, characterized in that the capacitive converter (9, 10) and the reference potential are connected to the inverting input of the amplifier circuit (30) via a capacitor (31). Flowmeter. 増幅回路(30)の非反転入力部には同様に基準電位がRC−素子(32)を介して当接していることを特徴とする請求項17乃至請求項19のいずれか一項に記載のガス流量計。   20. The non-inverting input part of the amplifier circuit (30) is similarly in contact with a reference potential via an RC-element (32), as claimed in any one of claims 17 to 19. Gas flow meter. RC−素子(32)の時定数は変換器容量と基準電位の連結抵抗(31)から形成されたフイルタの時定数とほぼ同じ大きさであることを特徴とする請求項20に記載のガス流量計。   21. Gas flow rate according to claim 20, characterized in that the time constant of the RC element (32) is approximately the same as the time constant of the filter formed from the converter capacitance and the reference resistance coupling resistor (31). Total. 一次増幅段(30)は別のフイルタ(34)の後に接続されていて、特に高域フイルタ、場合によっては第二増幅段は次のバンドパスフイルタと事情によっては少なくとも一つの分離コンデンサの後に接続されていることを特徴とする請求項17乃至請求項21のいずれか一項に記載のガス流量計。   The primary amplification stage (30) is connected after another filter (34), in particular the high-pass filter, in some cases the second amplification stage is connected after the next bandpass filter and possibly at least one isolation capacitor. The gas flow meter according to any one of claims 17 to 21, wherein the gas flow meter is provided. 内燃機関の排気ガス列には請求項1乃至請求項22のいずれか一項に記載のガス流量計が据付けられていることを特徴とする内燃機関の排気ガス流を測定する装置。   An apparatus for measuring an exhaust gas flow of an internal combustion engine, wherein the gas flow meter according to any one of claims 1 to 22 is installed in an exhaust gas train of the internal combustion engine. ガス流量計は排ガス内の有害物質成分を決定するガス取出し部の抵抗力のない箇所のすぐ付近に設けられていることを特徴とする請求項23に記載の装置。   24. The apparatus according to claim 23, wherein the gas flow meter is provided in the immediate vicinity of a portion having no resistance of the gas extraction portion that determines the harmful substance component in the exhaust gas. ガス流量計は、内燃機関の排ガスの部分流により貫流される導管部分内に挿入されていることを特徴とする請求項23或いは請求項24に記載の装置。   25. An apparatus according to claim 23 or claim 24, wherein the gas flow meter is inserted into a conduit portion that is flowed by a partial flow of exhaust gas of the internal combustion engine. ガス流量計は、内燃機関の排ガスを希釈するガス流により貫流される導管部分内に挿入されていることを特徴とする請求項23或いは請求項24に記載の装置。   25. An apparatus according to claim 23 or claim 24, wherein the gas flow meter is inserted into a conduit portion that is flowed by a gas flow that dilutes the exhaust gas of the internal combustion engine. 平均流速とそれからの流れるガス量とが運転時間から高い時間的解像度をもつ送信器と受信器の間の二つの音信号により検出されるガス流量を検出する方法において、運転時間の決定後に流量用の仮定値が評価され(35)、この仮定値は少なくともガスの特性的温度と測定管の壁の温度によって修正される(36)ことを特徴とする方法。   In the method of detecting the gas flow rate detected by the two sound signals between the transmitter and the receiver having an average flow velocity and the amount of gas flowing from the operating time with high temporal resolution, the flow rate is determined after the operating time is determined. The assumption is evaluated (35), which is corrected by at least the characteristic temperature of the gas and the temperature of the wall of the measuring tube (36). 流量の仮定値を決定するために、測定管の現実の圧力値、特に正確に運転測定の箇所に関係されることを特徴とする請求項27に記載の方法。   28. The method according to claim 27, characterized in that, in order to determine the assumed value of the flow rate, it is related to the actual pressure value of the measuring tube, in particular precisely to the location of the operational measurement. 仮定値はガスの特性的温度と測定管の壁の温度に依存して修正されることを特徴とする請求項27或いは請求項28に記載の方法。   29. A method according to claim 27 or claim 28, wherein the assumed value is modified depending on the characteristic temperature of the gas and the temperature of the wall of the measuring tube. 測定管の壁の温度が測定されることを特徴とする請求項27乃至請求項29のいずれか一項に記載の方法。   30. A method according to any one of claims 27 to 29, wherein the temperature of the wall of the measuring tube is measured. 測定管内のガスの温度が測定されることを特徴とする請求項27乃至請求項30のいずれか一項に記載の方法。   The method according to any one of claims 27 to 30, wherein the temperature of the gas in the measuring tube is measured. ガスの特性的温度は、運転時間とそれによる測定管内の温度形状の物理的モデルに基づく音速度用の仮定値とから検出されることを特徴とする請求項27乃至請求項31のいずれか一項に記載の方法。   32. The gas characteristic temperature is detected from an operating time and a hypothetical value for sound speed based on a physical model of a temperature shape in the measuring tube, thereby detecting the characteristic temperature of the gas. The method according to item. ガスの特性的温度は、測定管の壁の温度の考慮によって精確に表現されることを特徴とする請求項32に記載の方法。   The method according to claim 32, wherein the characteristic temperature of the gas is accurately expressed by considering the temperature of the wall of the measuring tube. 温度測定と運転時間測定用の時点の選択の際に装置の幾何学形状と流速が考慮されることを特徴とする請求項27或いは請求項33に記載の方法。   34. A method according to claim 27 or claim 33, wherein the geometry of the device and the flow rate are taken into account when selecting the time points for temperature measurement and operating time measurement. ガス量(37)の仮定値の修正の際のガス組成を考慮するために、ガス量の算出用の断熱係数の公称値が採用されることを特徴とする請求項27乃至請求項34のいずれか一項に記載の方法。   35. The nominal value of the adiabatic coefficient for calculating the gas quantity is taken into account in order to take into account the gas composition when correcting the assumed value of the gas quantity (37). The method according to claim 1. 断熱係数の公称値はガスの特性的温度に一致して修正されることを特徴とする請求項35に記載の方法。   36. The method according to claim 35, wherein the nominal value of the adiabatic coefficient is modified in accordance with the characteristic temperature of the gas. 超音波信号の送信時点と運転時間の仮定値とに依存して、受信信号の到着時点用の期待時間窓が求められることを特徴とする請求項27乃至請求項36のいずれか一項に記載の方法。   37. The expected time window for the arrival time of the received signal is determined depending on the transmission time of the ultrasonic signal and the assumed value of the operation time. the method of. 送信時点の連続性、即ち測定反復率は仮定された運転時間に依存して適合されることを特徴とする請求項27乃至請求項37のいずれか一項に記載の方法。   38. A method according to any one of claims 27 to 37, wherein the continuity at the time of transmission, i.e. the measurement repetition rate, is adapted depending on the assumed operating time. 運転時間の仮定値として予め行った測定の運転時間が使用されることを特徴とする請求項37或いは請求項38に記載の方法。   39. A method according to claim 37 or claim 38, characterized in that an operating time of a previously measured measurement is used as an assumed value of operating time. 運転時間の仮定値として予め行った流量測定の結果に依存してモデル的に形成された計算値が使用されることを特徴とする請求項37或いは請求項38に記載の方法。   39. A method according to claim 37 or 38, characterized in that a calculated value modeled in dependence on the result of a flow measurement performed in advance is used as the assumed value of the operating time. 運転時間を求めるために、まず最初に受信信号の開始用の仮定時点が確認され、精密開始は複雑な値に図示された受信信号の位相情報の分析によって確認されることを特徴とする請求項37乃至請求項40のいずれか一項に記載の方法。   In order to determine the operating time, first a hypothetical time point for the start of the received signal is first confirmed, and the precise start is confirmed by analysis of the phase information of the received signal illustrated in a complex value. 41. A method according to any one of claims 37 to 40. 複雑な受信信号は実際の受信信号のヒルバート変換によって求められることを特徴とする請求項41に記載の方法。   42. The method of claim 41, wherein the complex received signal is determined by a Hilbert transform of the actual received signal. 現実の受信信号のために受信信号の複雑な表示の現実の位相位置が求められ、位相位置の連続変更の領域における任意の時点で受信信号の開始用の仮定時点が確認されることを特徴とする請求項41に記載の方法。   The actual phase position of the complex representation of the received signal is determined for the actual received signal, and the assumed time point for the start of the received signal is confirmed at any point in the region of continuous change of the phase position. 42. The method of claim 41. 受信信号の開始の仮定時点のために最大振幅の発生時点が使用されることを特徴とする請求項41に記載の方法。   42. The method according to claim 41, wherein a point of occurrence of maximum amplitude is used for a hypothetical point in time of the start of the received signal. 受信信号の開始用の仮定時点から出発して受信信号の精密な開始は最初に生じた位相位置に基づいて求められることを特徴とする請求項41に記載の方法。   42. The method according to claim 41, characterized in that starting from a hypothetical point in time for the start of the received signal, the precise start of the received signal is determined based on the initial phase position. 受信信号の第一零通過は求める信号特徴の到着時点として定義されていることを特徴とする請求項45に記載の方法。   The method of claim 45, wherein the first zero pass of the received signal is defined as the arrival time of the desired signal feature.
JP2004208932A 2003-07-16 2004-07-15 Ultrasonic gas flow meter Expired - Fee Related JP4361843B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0050703U AT6511U3 (en) 2003-07-16 2003-07-16 ULTRASONIC GAS FLOW SENSOR AND DEVICE FOR MEASURING EXHAUST GAS FLOWS FROM COMBUSTION ENGINES AND A METHOD FOR DETERMINING THE FLOW OF GASES

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008279029A Division JP2009020127A (en) 2003-07-16 2008-10-30 Method of detecting cross-flow gas using ultrasonic gas flowmeter

Publications (2)

Publication Number Publication Date
JP2005037397A true JP2005037397A (en) 2005-02-10
JP4361843B2 JP4361843B2 (en) 2009-11-11

Family

ID=28679309

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004208932A Expired - Fee Related JP4361843B2 (en) 2003-07-16 2004-07-15 Ultrasonic gas flow meter
JP2008279029A Pending JP2009020127A (en) 2003-07-16 2008-10-30 Method of detecting cross-flow gas using ultrasonic gas flowmeter

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008279029A Pending JP2009020127A (en) 2003-07-16 2008-10-30 Method of detecting cross-flow gas using ultrasonic gas flowmeter

Country Status (5)

Country Link
US (1) US7093502B2 (en)
EP (1) EP1498700A3 (en)
JP (2) JP4361843B2 (en)
CN (2) CN1325881C (en)
AT (1) AT6511U3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432661A (en) * 2021-06-25 2021-09-24 河北凯森石化工程有限责任公司 Method, device and medium for monitoring flow data

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426332B (en) * 2003-12-24 2007-07-11 Shell Int Research Method of determining a fluid flow inflow profile of a wellbore
US20100116059A1 (en) * 2004-07-26 2010-05-13 Spider Technologies Security Ltd. Vibration sensor having a single virtual center of mass
UA90277C2 (en) * 2004-07-26 2010-04-26 Спайдер Текнолоджиз Секьюрити Лтд Vibration detector
US20060042236A1 (en) * 2004-09-01 2006-03-02 Kabasin Daniel F Method and apparatus for controlling exhaust gas flow rate
US20060059987A1 (en) * 2004-09-21 2006-03-23 Waukee Engineering Company, Inc. Systems and methods for sensing and/or measuring flow rate of gases based upon mass flow conditions
DE102005028723A1 (en) * 2005-06-20 2006-12-28 Endress + Hauser Flowtec Ag Magnetically inductive flowmeter has first measuring electrode which is produced from first material and second measuring electrode from second material that is different from first material
GB0516752D0 (en) * 2005-08-13 2005-09-21 Flownetix Ltd A method for ultra low power transit time ultrasonic flow measurement
AU2006281290B2 (en) * 2005-08-13 2011-03-31 Flownetix Limited Low power ultrasonic flow measurement
DE102005038599A1 (en) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Ultrasonic measuring unit with integrated moisture detection
DE102005044880C5 (en) * 2005-09-20 2017-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasonic transducer for use at high and / or low temperatures
DE102005051669B3 (en) * 2005-10-28 2007-04-26 Mib Gmbh Messtechnik Und Industrieberatung Flow measurement method
EP1960869A1 (en) * 2005-12-15 2008-08-27 International Business Machines Corporation Method and system for assisting a software developer in creating source code for a computer program
JP4952164B2 (en) * 2006-09-20 2012-06-13 株式会社デンソー Flow measuring element, mass flow meter
KR101267932B1 (en) * 2006-10-25 2013-05-27 파나소닉 주식회사 Flowmeter and its program
JP4929975B2 (en) * 2006-10-25 2012-05-09 パナソニック株式会社 Flow measuring device
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
US9140593B2 (en) 2008-04-22 2015-09-22 Cameron International Corporation Smooth bore, chordal transit-time ultrasonic meter and method
BRPI0915515A2 (en) * 2008-06-25 2016-01-26 Pure Technologies Ltd apparatus and method for locating an object in a duct
EP2221613A1 (en) * 2009-02-19 2010-08-25 Electrolux Home Products Corporation N.V. An apparatus and a method for estimating the air humidity within an oven cavity
EP2278280B1 (en) * 2009-07-23 2019-09-04 Elster NV/SA Device and method for determining a flow characteristic of a fluid in a conduit
US7841243B1 (en) * 2009-11-28 2010-11-30 Murray F Feller Speed of sound and pipe size detector
JP5682156B2 (en) * 2010-06-24 2015-03-11 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
JP2012021899A (en) * 2010-07-15 2012-02-02 Panasonic Corp Ultrasonic flow rate measuring unit and ultrasonic flowmeter using the same
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
EP2444781A1 (en) * 2010-10-19 2012-04-25 SICK Engineering GmbH Ultrasonic measurement of flow velocity
US8544343B2 (en) * 2010-11-19 2013-10-01 Cameron International Corporation Chordal gas flowmeter with transducers installed outside the pressure boundary
US8534138B2 (en) 2010-11-19 2013-09-17 Cameron International Corporation Chordal gas flowmeter with transducers installed outside the pressure boundary, housing and method
US20140019077A1 (en) * 2011-03-28 2014-01-16 Avl Test Systems, Inc. Deconvolution method for emissions measurement
AT509641B1 (en) * 2011-06-24 2012-08-15 Avl List Gmbh METHOD FOR DETERMINING FLUX FLOW AFTER ULTRASONIC TIME METHOD
US9240002B2 (en) 2011-08-19 2016-01-19 Hospira, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US9316517B2 (en) * 2011-09-23 2016-04-19 Daniel Measurement And Control, Inc. System and method for combining co-located flowmeters
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
DE102011090079A1 (en) * 2011-12-29 2013-07-04 Endress + Hauser Flowtec Ag Ultrasonic transducer for an ultrasonic flowmeter
RU2585308C2 (en) * 2012-02-07 2016-05-27 Закрытое Акционерное Общество "Когерент" Method of transmitting signals through controlled medium
ES2741725T3 (en) 2012-03-30 2020-02-12 Icu Medical Inc Air detection system and method to detect air in a pump of an infusion system
WO2013165314A1 (en) * 2012-05-04 2013-11-07 Dhi Water & Environment (S) Pte Ltd A flow meter system
WO2014022513A1 (en) 2012-07-31 2014-02-06 Hospira, Inc. Patient care system for critical medications
CN102853870B (en) * 2012-09-24 2018-07-27 中国石油化工股份有限公司 The detection method and device of pulverized coal mass flow in a kind of coal dust transmission process
DE102012217274A1 (en) * 2012-09-25 2014-03-27 Siemens Aktiengesellschaft Device for determining properties of a medium flowing through a cross-sectional area
EP2738372B1 (en) * 2012-11-29 2018-02-28 Ansaldo Energia Switzerland AG Gas turbine temperature measurement
AU2014268355B2 (en) 2013-05-24 2018-06-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
AU2014274146B2 (en) 2013-05-29 2019-01-24 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
WO2014194065A1 (en) 2013-05-29 2014-12-04 Hospira, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
EP2813824B1 (en) * 2013-06-12 2019-04-17 Itron GmbH Gas meter and particle trap
US9335194B2 (en) 2013-09-16 2016-05-10 Agena A/S System or a method for measuring flow of fluid or gas
ES2776363T3 (en) 2014-02-28 2020-07-30 Icu Medical Inc Infusion set and method using dual wavelength in-line optical air detection
US9746360B2 (en) 2014-03-13 2017-08-29 Siemens Energy, Inc. Nonintrusive performance measurement of a gas turbine engine in real time
US9927325B2 (en) * 2014-03-13 2018-03-27 Siemens Energy, Inc. Method and system for determining distribution of temperature and velocity in a gas turbine engine
US9752959B2 (en) 2014-03-13 2017-09-05 Siemens Energy, Inc. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor
CN103913203B (en) * 2014-04-14 2017-01-25 姜跃炜 Ultrasonic water meter coefficient processing method
AU2015266706B2 (en) 2014-05-29 2020-01-30 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
DE102014009581A1 (en) * 2014-07-01 2016-01-07 Krohne Messtechnik Gmbh Ultrasonic flowmeter and method for operating an ultrasonic flowmeter
MX370819B (en) * 2014-08-14 2020-01-08 Reliance Worldwide Corp Devices and system for channeling and automatic monitoring of fluid flow in fluid distribution systems.
AU2015301406B2 (en) 2014-08-14 2020-07-16 Reliance Worldwide Corporation Methods and apparatus for fluid flow monitoring and leak detection
CN105444826A (en) * 2014-08-18 2016-03-30 上海中核维思仪器仪表有限公司 Measurement device and measurement method for flue gas emission amount using gas ultrasonic technology
AU2014405569C1 (en) * 2014-09-04 2019-06-20 Micro Motion, Inc. Differential flowmeter tool
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US9506790B2 (en) * 2015-03-24 2016-11-29 Daniel Measurement And Control, Inc. Transducer mini-horn array for ultrasonic flow meter
CA2981860C (en) * 2015-04-12 2020-12-08 Metek Meteorologische Messtechnik Gmbh Ultrasonic anemometer and method for determination of at least one component of a wind velocity vector or the velocity of sound in the atmosphere
FR3035497B1 (en) * 2015-04-21 2018-09-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives SYSTEM AND METHOD FOR MEASURING FLUID FLOW BY ACOUSTIC WAVE PROCESSING
JP6491949B2 (en) * 2015-05-14 2019-03-27 株式会社キーエンス Ultrasonic flow switch
DE102015219333B3 (en) * 2015-10-07 2016-12-15 Continental Automotive Gmbh Method for detecting a useful signal
JP6330789B2 (en) * 2015-11-18 2018-05-30 トヨタ自動車株式会社 Position measuring device
GB2547284B (en) * 2016-02-15 2019-11-06 Ft Tech Uk Ltd Acoustic resonator sensor for determining temperature
CN107131905B (en) * 2016-02-26 2021-07-27 高准公司 Testing two or more metering assemblies
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
CA3027176A1 (en) 2016-06-10 2017-12-14 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11821770B2 (en) 2016-07-18 2023-11-21 Vaughn Realty Ventures LLC Water metering system
EP3974781A1 (en) 2016-07-18 2022-03-30 Vaughn Realty Ventures LLC Water metering system
CN106292362A (en) * 2016-08-18 2017-01-04 常益民 A kind of oil pumper sky takes out ultrasonic sensing controller
CN107505016B (en) * 2017-09-13 2022-02-08 湖北锐意自控系统有限公司 Gas flow metering gas chamber and gas flow meter
USD845805S1 (en) 2017-10-13 2019-04-16 Great Plains Industries, Inc. Tee housing for ultrasonic sensor module
USD845804S1 (en) 2017-10-13 2019-04-16 Great Plains Industries, Inc. Insertion ultrasonic flow meter
USD845806S1 (en) 2017-10-14 2019-04-16 Great Plains Industries, Inc. Saddle fitting for ultrasonic sensor module
US10823597B2 (en) * 2017-12-14 2020-11-03 Arad Ltd. Ultrasonic water meter including a metallic outer body and polymeric inner lining sleeve
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
EP3521773B1 (en) 2018-02-06 2021-09-29 SICK Engineering GmbH Ultrasound flow meter and method of determining a flow speed
CN108195435A (en) * 2018-03-28 2018-06-22 上海中核维思仪器仪表有限公司 Superposing type Commercial ultrasound wave flowmeter runner
AU2019302674B2 (en) 2018-07-12 2023-08-10 Abilene Christian University Apparatus, systems, and methods for non-invasive measurement of flow in a high temperature pipe
US11619527B2 (en) 2018-10-01 2023-04-04 Micro Motion, Inc. Ultrasonic transducer with a sealed 3D-printed mini-horn array
US11125770B2 (en) * 2018-12-06 2021-09-21 Rosemount Aerospace Inc. Acoustic air data sensor and system
CN109696217B (en) * 2018-12-20 2021-06-22 金卡智能集团股份有限公司 Method for adjusting metering data of ultrasonic gas meter
CN110006509B (en) * 2019-02-02 2023-04-18 四川大学 Self-circulation tank body experiment platform for acoustic flow measurement based on dynamic grid
JP6973423B2 (en) * 2019-02-05 2021-11-24 オムロン株式会社 Flow measuring device
EP3751238A4 (en) * 2019-03-15 2021-09-15 Shenzhen Goodix Technology Co., Ltd. Correction circuit and related signal processing circuit, and chip
CN110515082B (en) * 2019-09-06 2023-04-14 长春工程学院 Automatic range finding system based on ultrasonic wave
FR3103857A1 (en) * 2019-11-28 2021-06-04 Faurecia Systemes D'echappement Exhaust gas routing device, in particular for a recirculation line
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
CN111323101B (en) * 2020-03-24 2022-01-04 成都千嘉科技有限公司 Self-adaptive automatic calibration method for ultrasonic meter
CN111665877B (en) * 2020-06-18 2023-04-14 北京七星华创流量计有限公司 Pressure control method and device and photovoltaic equipment
WO2022020184A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
CN111896062B (en) * 2020-07-24 2022-09-20 北京瑞德联数据科技有限公司 Ultrasonic flow measurement device, ultrasonic flow measurement equipment and storage medium
CN114101013B (en) * 2020-08-31 2023-02-24 广东美的生活电器制造有限公司 Manufacturing method of vibrator, ultrasonic wave generating device and beverage machine
FR3115877B1 (en) 2020-10-29 2023-07-21 Electricfil Automotive Method for determining the flow velocity of a fluid in a pipe
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
CN112697443B (en) * 2020-12-08 2022-11-25 西华大学 Experimental device and method for simulating transient change of exhaust flow under engine starting and accelerating conditions
CN112525276A (en) * 2020-12-14 2021-03-19 北京化工大学 Outer ultrasonic flowmeter installation error analogue means that presss from both sides based on laser light path
RU207419U1 (en) * 2021-01-11 2021-10-28 Акционерное общество Омское производственное объединение "Радиозавод им. А.С. Попова" (РЕЛЕРО) ULTRASONIC GAS FLOW SENSOR
US20220326059A1 (en) * 2021-04-13 2022-10-13 Aramco Services Company Wet gas holdup gas fraction and flow meter
FR3122253A1 (en) * 2021-04-23 2022-10-28 Faurecia Systemes D'echappement Device for measuring the mass flow of a gas
CN113998126B (en) * 2021-12-03 2023-10-20 江西洪都航空工业集团有限责任公司 Piston engine air cooling device for folding unmanned aerial vehicle
CN114877954B (en) * 2022-07-12 2022-09-23 杭州春来科技有限公司 Fixed pollution source measuring method and system
CN116124234B (en) * 2023-02-24 2023-07-18 宁波力擎超声科技有限公司 Ultrasonic flowmeter for gas
CN117606578A (en) * 2023-11-23 2024-02-27 深圳医和家智慧医疗科技有限公司 Intelligent gas flow monitoring method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906791A (en) * 1973-10-01 1975-09-23 Panametrics Area averaging ultrasonic flowmeters
US4425804A (en) * 1981-10-29 1984-01-17 The Perkin-Elmer Corp. Ultrasonic air flow transducer for high humidity environments
JPS61239119A (en) * 1985-04-17 1986-10-24 Hitachi Ltd Air flow rate detector
FR2617592A1 (en) * 1987-07-02 1989-01-06 Hydrologic Sa Method intended for measuring flow rates of fluids in a pipe
EP0378651B1 (en) * 1988-07-08 1993-10-13 Endress + Hauser Flowtec AG Process and arrangement for flow measurement by means of ultrasonic waves
DE4010148A1 (en) * 1990-03-29 1991-10-02 Siemens Ag IMPROVEMENT FOR AN ULTRASONIC GAS / LIQUID FLOW METER
DE4318690A1 (en) * 1993-06-04 1995-01-05 Ndd Medizintechnik Gmbh Method for measuring the molar mass of gases or gas mixtures and device for carrying out this method
US5495872A (en) * 1994-01-31 1996-03-05 Integrity Measurement Partners Flow conditioner for more accurate measurement of fluid flow
DE19611233A1 (en) 1996-03-21 1997-09-25 Siemens Ag Procedure for measuring the transit time of an electrical, electromagnetic or acoustic signal
DE19648784C2 (en) * 1996-05-28 1998-04-09 Krohne Ag Ultrasonic flow meter
DE19636945A1 (en) 1996-09-11 1998-03-12 Siemens Ag Method and device for measuring the transit time difference of an electrical, electromagnetic or acoustic signal
FR2781048B1 (en) 1998-07-10 2000-09-15 Faure Herman CROSS MEASUREMENTS OF THE ACOUSTIC SIGNALS OF A FLOWMETER
JP2000088621A (en) * 1998-09-11 2000-03-31 Mitsubishi Electric Corp Ultrasonic measuring apparatus
CN100392361C (en) * 1998-09-11 2008-06-04 松下电器产业株式会社 Flow measurer
JP2001183200A (en) * 1999-12-28 2001-07-06 Tokimec Inc Flowmeter and flow-rate measuring method
US6854338B2 (en) * 2000-07-14 2005-02-15 The Board Of Trustees Of The Leland Stanford Junior University Fluidic device with integrated capacitive micromachined ultrasonic transducers
EP1322951A2 (en) * 2000-09-20 2003-07-02 Molecular Reflections Microfabricated ultrasound array for use as resonant sensors
JP4031986B2 (en) 2000-11-22 2008-01-09 アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for supplying conditioned combustion gas to an internal combustion engine, apparatus for carrying out the method, method for measuring the amount of harmful substances in the exhaust gas of an internal combustion engine, and apparatus for carrying out the method
CN1279334C (en) * 2001-11-13 2006-10-11 大西一正 Method of measuring flow of fluid moving in pipe or groove-like flow passage
US6958255B2 (en) * 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
DE102005051669B3 (en) * 2005-10-28 2007-04-26 Mib Gmbh Messtechnik Und Industrieberatung Flow measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432661A (en) * 2021-06-25 2021-09-24 河北凯森石化工程有限责任公司 Method, device and medium for monitoring flow data

Also Published As

Publication number Publication date
EP1498700A3 (en) 2005-08-17
CN1325881C (en) 2007-07-11
CN101078640B (en) 2011-04-06
CN1576803A (en) 2005-02-09
AT6511U3 (en) 2004-09-27
JP2009020127A (en) 2009-01-29
US20050066744A1 (en) 2005-03-31
AT6511U2 (en) 2003-11-25
EP1498700A2 (en) 2005-01-19
JP4361843B2 (en) 2009-11-11
CN101078640A (en) 2007-11-28
US7093502B2 (en) 2006-08-22

Similar Documents

Publication Publication Date Title
JP4361843B2 (en) Ultrasonic gas flow meter
JP4662996B2 (en) Ultrasonic flow meter with pressure sensor
KR101810724B1 (en) Multiphase fluid characterization system
Garbini et al. Measurement of fluid turbulence based on pulsed ultrasound techniques. Part 2. Experimental investigation
US9354094B2 (en) Apparatus and method for noninvasive particle detection using doppler spectroscopy
JP2004271496A (en) Ultrasonic flow measuring method
WO2014021846A1 (en) Indirect transducer temperature measurement
US6595071B1 (en) Estimation of error angle in ultrasound flow measurement
US20060016243A1 (en) Acoustic flowmeter calibration method
US6901812B2 (en) Single-body dual-chip Orthogonal sensing transit-time flow device
JP2002520582A (en) Signal crossing measurement in acoustic flowmeter
CN111060600A (en) Sound beam focusing time delay control method for ultrasonic phased array imaging in pipeline
Gao et al. A miniaturized transit-time ultrasonic flowmeter based on ScAlN piezoelectric micromachined ultrasonic transducers for small-diameter applications
US6595070B1 (en) Acoustic flow meters
EP1439377A2 (en) Ultrasound flow meter using a parabolic reflecting surface
US6854339B2 (en) Single-body dual-chip orthogonal sensing transit-time flow device using a parabolic reflecting surface
CN111220709B (en) Sound beam deflection time delay control method for ultrasonic phased array imaging in pipeline
US6308570B1 (en) Method and apparatus for ultrasonic characterization through the thickness direction of a moving web
US8122754B2 (en) Meter proving method and system
Kupnik et al. PS-16 adaptive asymmetric double-path ultrasonic transit-time gas flowmeter
Schroder et al. A capacitance ultrasonic transducer with micromachined backplate for fast flow measurements in hot pulsating gases
KR102631133B1 (en) Device and method for ultrasonic gas meter flow measurement
JP2853508B2 (en) Gas flow meter
Kumar et al. Design and Testing of Ultrasonic Transit Time Flowmeter
Schröder et al. A capacitance ultrasonic transducer for fast flow-measurements in hot pulsating gases

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090813

R150 Certificate of patent or registration of utility model

Ref document number: 4361843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees