JP2005037224A - Conveyance device and conveyance method of lens - Google Patents

Conveyance device and conveyance method of lens Download PDF

Info

Publication number
JP2005037224A
JP2005037224A JP2003273995A JP2003273995A JP2005037224A JP 2005037224 A JP2005037224 A JP 2005037224A JP 2003273995 A JP2003273995 A JP 2003273995A JP 2003273995 A JP2003273995 A JP 2003273995A JP 2005037224 A JP2005037224 A JP 2005037224A
Authority
JP
Japan
Prior art keywords
lens
detection end
cradle
transport head
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003273995A
Other languages
Japanese (ja)
Other versions
JP4298416B2 (en
Inventor
Yoshiki Komatsu
義樹 小松
Yasuyuki Yamamoto
康行 山本
Yoshinori Nishi
善則 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2003273995A priority Critical patent/JP4298416B2/en
Publication of JP2005037224A publication Critical patent/JP2005037224A/en
Application granted granted Critical
Publication of JP4298416B2 publication Critical patent/JP4298416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable unmanned continuous operation of a lens processing line without imposing a large economical burden, and to enable undispersed uniform lens measurement, by enabling measurement of an external shape such as the diameter or the roundness of a lens before or after being processed on a processing line of the lens without installing an exclusive measuring device. <P>SOLUTION: This lens conveyance device is equipped with two driving sources (generally servomotors) 15, 16 controlled by an NC device 21 so that a conveyance head 14 can be moved successively on the two-dimensional plane on a work stand. A detection end for lens external shape measurement is provided on the conveyance head 14, and the processed lens or edges of centering plates sandwiching the lens are detected by the detection end 22, to thereby measure the external shape of the lens. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、レンズの加工ラインに設けられるレンズの搬送装置及びレンズの搬送方法に関するもので、レンズ搬送時にレンズの外形の計測を可能にした搬送装置及び搬送方法に関するものである。   The present invention relates to a lens conveyance device and a lens conveyance method provided in a lens processing line, and relates to a conveyance device and a conveyance method that enable measurement of the outer shape of a lens during lens conveyance.

レンズの加工ラインには、レンズの外周加工装置が設けられており、この外周加工装置にレンズを搬入搬出する搬送装置が設けられている。一般的なレンズの加工においては、まずレンズの球面を加工し、その後、その球面によって定まる光軸を基準としてレンズの外周加工を行っている。このレンズの外周加工を行う装置を一般にレンズ芯取機と称している。   A lens processing line is provided with a lens outer periphery processing device, and a conveying device for carrying in and out the lens is provided in the outer periphery processing device. In general lens processing, first, the spherical surface of the lens is processed, and then the outer periphery of the lens is processed with reference to the optical axis determined by the spherical surface. An apparatus for processing the outer periphery of the lens is generally called a lens centering machine.

加工においては、工具の磨耗や機械の熱変形などにより、加工誤差が生ずるのを避けることができない。レンズ芯取機によるレンズの外周加工においても、砥石の磨耗その他の加工条件の変化によって、レンズの直径や真円度に誤差が生じ、当該誤差が許容精度内に収まっているかどうかを検査する必要がある。   In machining, it is unavoidable that machining errors occur due to tool wear or thermal deformation of the machine. Even when processing the outer periphery of a lens using a lens centering machine, it is necessary to inspect whether the error in the lens diameter and roundness is caused by changes in the grinding wheel wear and other processing conditions, and that the error falls within the allowable accuracy. There is.

従来の一般的なレンズ加工ラインにおいては、加工済レンズの人手による抜取り検査が行われていた。即ち、芯取機で外周を加工したレンズを適宜抜き取って、作業者がダイヤルゲージで複数方向の直径を測定し、その測定値からレンズの直径や真円度を求めて、レンズの合否を判定していた。   In a conventional general lens processing line, a sampled inspection of a processed lens is performed manually. In other words, the lens whose outer periphery has been processed with a centering machine is appropriately removed, the operator measures the diameter in multiple directions with a dial gauge, and the lens diameter and roundness are determined from the measured values to determine the pass / fail of the lens. Was.

一方、レンズの外形計測を自動的に行う計測装置も提案されている。
特開昭62−137510号公報
On the other hand, a measuring apparatus that automatically measures the outer shape of a lens has also been proposed.
JP 62-137510 A

加工済レンズを抜取り検査によって人手で検査する従来手段では、レンズを抜き取ってダイヤルゲージを当てるなどの測定作業中にレンズに傷を付けて不良品を発生させる危険があること、レンズの加工及び搬送を自動化してもレンズの検査のための作業員を配置する必要があるために夜間の連続運転が困難であること、人手による計測では作業者の個人差や熟練度によって測定値にばらつきが生ずることなどの問題点があった。   In the conventional means of manually inspecting processed lenses by sampling inspection, there is a risk of scratching the lens and generating defective products during measurement work such as removing the lens and applying a dial gauge, processing and transporting the lens Even if it is automated, it is necessary to arrange a worker for the inspection of the lens, so it is difficult to operate continuously at night, and in manual measurement, the measurement value varies depending on the individual difference and skill level of the worker There was a problem such as.

このような問題は、レンズ加工ラインにレンズの自動計測装置を設けることで解決することができるが、そのような計測装置を新たに設置することは、設備コストの増大を招き、レンズの加工単価を増大させるという問題がある。   Such a problem can be solved by providing an automatic lens measuring device in the lens processing line. However, the installation of such a measuring device causes an increase in equipment costs and a lens processing unit cost. There is a problem of increasing.

またレンズ加工位置でレンズの外形計測を行うと、計測時間中、レンズを加工位置に保持しておく必要があることから、加工サイクル中に計測待ち時間が生じ、加工能率が低下する問題がある。   In addition, when measuring the outer shape of the lens at the lens processing position, it is necessary to hold the lens at the processing position during the measurement time, so there is a problem that a measurement waiting time is generated during the processing cycle and the processing efficiency is lowered. .

この発明は、専用の計測装置を設けることなく、レンズの加工ライン上で加工前又は加工済レンズの直径、真円度などの外形の計測を可能にする技術手段を提供することにより、大きな経済的負担を生ずることなくレンズ加工ラインの無人連続運転を可能にすると共に、よりばらつきのない均一なレンズの計測を可能にすることを課題としている。   The present invention provides a great economic advantage by providing a technical means that enables measurement of an outer shape such as a diameter and roundness of a processed lens before processing or on a lens processing line without providing a dedicated measuring device. It is an object to enable unmanned continuous operation of a lens processing line without causing a burden on the lens and to measure a uniform lens without variation.

この発明は、レンズ加工機の加工位置にレンズの搬入及び/又は搬出を行うレンズ搬送装置にレンズの外形計測機能を持たせることにより、上記課題を解決したものである。レンズ加工機のワーク台(ストッカ)には、多数のレンズが搭載され、レンズ加工機に設けられたレンズ搬送装置は、ワーク台と加工機械の加工位置との間を往復して、ワーク台上のレンズを加工位置に受け渡している。従って、レンズ加工機のレンズ搬送装置は、ワーク台上に並べ置かれたレンズを順次搬送する必要があることから、搬送ヘッド14をワーク台上の二次元平面内で順次移動させることができるように、NC装置21で制御される2個の駆動源(一般的にはサーボモータ)15、16を備えている。   The present invention solves the above-described problems by providing a lens conveyance device that carries in and / or out a lens at a processing position of a lens processing machine to have a lens outer shape measuring function. The work table (stocker) of the lens processing machine is equipped with a large number of lenses, and the lens transport device provided in the lens processing machine reciprocates between the work table and the processing position of the processing machine. The lens is handed over to the processing position. Accordingly, since the lens conveying device of the lens processing machine needs to sequentially convey the lenses arranged on the work table, the conveying head 14 can be moved sequentially in a two-dimensional plane on the work table. In addition, two drive sources (generally servo motors) 15 and 16 controlled by the NC device 21 are provided.

この発明は、レンズ加工機に設けられるレンズ搬送装置が上記のような構造を備えていることに着目してなされたもので、レンズ保持具20を備えた搬送ヘッド14と、当該搬送ヘッドを第1の方向及び当該第1の方向と略直交する第2の方向にそれぞれ移動させる数値制御可能な駆動源15、16と、これらの駆動源を制御する数値制御装置21とを備え、レンズを前記レンズ保持具で保持して第1の位置から第2の位置へと搬送するレンズ搬送装置において、前記搬送ヘッドに所定位置に置かれたレンズないしこれに当接する部材24の縁を好ましくは光ビームで検出する検出端22が装着され、前記数値制御装置は、前記検出端が前記縁を検出したときに前記それぞれの駆動源の位置信号を検出する検出手段と、当該検出された位置信号の複数値からレンズの外形を演算する演算手段とを備えているレンズの搬送装置を提供し、当該レンズ搬送装置によるレンズの搬送時にレンズの外形計測を行うことを可能にしたものである。   The present invention has been made by paying attention to the fact that the lens transport device provided in the lens processing machine has the above-described structure. The transport head 14 having the lens holder 20 and the transport head are the first. 1 and a numerically controllable drive source 15 and 16 for moving in a second direction substantially orthogonal to the first direction, and a numerical control device 21 for controlling these drive sources, and the lens In a lens transport device that is held by a lens holder and transports from the first position to the second position, the lens placed at a predetermined position on the transport head or the edge of the member 24 that contacts the lens is preferably a light beam. The numerical control device is equipped with detection means for detecting a position signal of each of the drive sources when the detection end detects the edge, and the detected position signal. Providing a conveying device of a lens and a calculating means for calculating a contour of the lens from the multivalued, is obtained by allowing to perform morphometric lens during transport of the lens by the lens conveying device.

上記装置により実現されるこの発明のレンズの搬送方法は、請求項2に記載のように、第1の方向及び当該第1の方向と略直交する第2の方向に移動位置決めされる搬送ヘッド14にレンズ保持具20とレンズの縁を検出する検出端22とを装着し、所定の位置に置かれたレンズを他の位置に搬送する際に前記保持具による当該レンズの保持に先立って、前記検出端が前記所定の位置を少なくとも第1の方向及び当該第1の方向と略直交する第2の方向に横切るように搬送ヘッド14を移動させ、その移動時に前記検出端がレンズの縁を検出したときの搬送ヘッド14の二次元座標の座標値を読取り、当該読取った複数の座標値から搬送する直前のレンズの外形を計測するというものである。   According to the lens transport method of the present invention realized by the above apparatus, the transport head 14 is moved and positioned in the first direction and the second direction substantially perpendicular to the first direction. The lens holder 20 and the detection end 22 for detecting the edge of the lens are attached to the lens holder 20, and when the lens placed at a predetermined position is transported to another position, the lens is held by the holder before the lens is held. The transport head 14 is moved so that the detection end crosses the predetermined position at least in the first direction and the second direction substantially orthogonal to the first direction, and the detection end detects the edge of the lens during the movement. In this case, the coordinate values of the two-dimensional coordinates of the transport head 14 are read, and the outer shape of the lens immediately before the transport is measured from the read coordinate values.

また請求項3のレンズの搬送方法は、搬送ヘッド14の移動領域内にレンズを径方向に挟持する芯出し板24を備えた受台23を配置し、搬送ヘッド14にレンズ保持具20と前記芯出し板の縁を検出する検出端22とを装着し、搬送途中のレンズを前記受台上に置き、前記芯出し板でレンズを挟持し、前記検出端が受台上を芯出し板の挟持方向に横切るように搬送ヘッド14を移動させ、その移動時に前記検出端が芯出し板の縁を検出したときの搬送ヘッド14の座標値を読取り、当該読取った複数の座標値から受台上のレンズの外形を計測し、次いで受台23から所望の位置にレンズを搬送するというものである。   According to a third aspect of the present invention, the lens transport method includes disposing a receiving base 23 having a centering plate 24 that clamps the lens in the radial direction in the moving region of the transport head 14. A detection end 22 for detecting the edge of the centering plate is mounted, a lens being transported is placed on the cradle, the lens is sandwiched by the centering plate, and the detection end is placed on the cradle on the centering plate. The transport head 14 is moved so as to cross in the clamping direction, and the coordinate value of the transport head 14 is read when the detection end detects the edge of the centering plate during the movement, and the coordinate value of the transport head 14 is read from the plurality of read coordinate values. The outer shape of the lens is measured, and then the lens is conveyed from the cradle 23 to a desired position.

上記方法によるレンズの外形計測は、レンズの外周を突出させた状態で保持する受台23上で行われる。レンズ芯取機の加工位置に設けられているレンズホルダ5、6は、レンズの外径より小径であるから、当該レンズホルダ上で上記方法によるレンズの外形計測を行うことができるが、計測に時間がかかると、加工サイクルが延び、加工能率が低下する。ワーク台上でレンズの計測を行うことができれば、加工済レンズを直ちにワーク台に搬出して計測を行ってやればよいので、加工サイクルが延びる虞はないが、ワーク台やその上でレンズを保持しているパレットの形状によっては、計測が不可能であったり、レンズの姿勢が安定しないために計測誤差が大きくなったりする。   The lens outer shape measurement by the above method is performed on a cradle 23 that holds the outer periphery of the lens in a protruding state. Since the lens holders 5 and 6 provided at the processing position of the lens centering machine are smaller in diameter than the outer diameter of the lens, the outer shape of the lens can be measured by the above method on the lens holder. If time is taken, a processing cycle will be extended and processing efficiency will fall. If the lens can be measured on the work table, the processed lens can be immediately taken out to the work table and measured, so there is no risk of extending the processing cycle. Depending on the shape of the pallet being held, measurement is impossible or the lens posture is not stable, resulting in a large measurement error.

好ましい1つの方法は、レンズ搬送装置の搬送路の途中にレンズを一時的に保持する受台23を設けておき、加工済レンズを加工終了後直ちに加工位置から搬出して受台23に置き、当該受台上で外形計測を行い、誤差が許容範囲内のものは受台23からワーク台へと搬出し、誤差が許容範囲を小径側(−側)に外れたレンズは、不良品ボックス25に搬出し、大径側(+側)に外れたレンズは、再度加工機械の加工位置に供給して再加工するという方法である。   One preferred method is to provide a cradle 23 for temporarily holding the lens in the middle of the transport path of the lens transport device, and immediately after processing the processed lens, it is unloaded from the processing position and placed on the cradle 23. An external shape is measured on the cradle. If the error is within the allowable range, the lens is carried out from the cradle 23 to the work table. If the error is outside the allowable range on the small diameter side (− side), the defective product box 25 The lens that is unloaded to the large diameter side (+ side) is supplied again to the processing position of the processing machine and reprocessed.

このような一時受台23を設ける構造によれば、レンズ加工機によるレンズの外周加工中にレンズの計測を行うことができるので、加工能率を低下させる虞がなく、また専用の受台23上で計測が行われるため、受台23の形状やレンズの保持手段を計測に最も適したものとすることができる。受台23上へのレンズの搬送は、加工機械にレンズを供給するためのレンズ搬送装置によって行われるので、装置コストの上昇は僅かである。   According to such a structure in which the temporary cradle 23 is provided, since the lens can be measured during the outer periphery processing of the lens by the lens processing machine, there is no possibility of reducing the processing efficiency and the dedicated cradle 23 is provided. Therefore, the shape of the cradle 23 and the lens holding means can be most suitable for measurement. Since the conveyance of the lens onto the cradle 23 is performed by a lens conveyance device for supplying the lens to the processing machine, an increase in the apparatus cost is slight.

計測する際の測定点の数は、レンズに要求される精度によって異なる。真円度の計測が要求されないなら、レンズの外周3点の測定によって外径を計測することができる。またV形辺を設けた芯出し板を介して計測するときは、2点の検出によって外径を計測することができる。レンズの各方向の直径や真円度について高い精度の計測が要求されるときは、測定点を多くとる必要があり、検出端22を複数の方向に走行させて、多数の測定点でレンズの縁の座標を読取る必要がある。   The number of measurement points at the time of measurement varies depending on the accuracy required for the lens. If measurement of roundness is not required, the outer diameter can be measured by measuring three points on the outer periphery of the lens. When measuring through a centering plate provided with a V-shaped side, the outer diameter can be measured by detecting two points. When high-precision measurement is required for the diameter and roundness of each direction of the lens, it is necessary to take a large number of measurement points. The detection end 22 is caused to travel in a plurality of directions, and the lens is measured at a large number of measurement points. The edge coordinates need to be read.

検出端22は、被計測レンズの直径方向に移動させるのが最も好ましいが、移動軌跡自体はそれほど正確である必要はない。レンズの縁を直接検出して計測するときは、検出した各点での二次元座標の検出値が正確であることが重要である。そのためには、検出端22を被計測レンズの縁と直交する方向に移動させながら、レンズの縁を検出したときの二次元座標を読取るようにするのがよい。   The detection end 22 is most preferably moved in the diameter direction of the lens to be measured, but the movement locus itself does not need to be so accurate. When the lens edge is directly detected and measured, it is important that the detected value of the two-dimensional coordinates at each detected point is accurate. For this purpose, it is preferable to read the two-dimensional coordinates when the edge of the lens is detected while moving the detection end 22 in a direction orthogonal to the edge of the lens to be measured.

なお、センサの特性として、検出端22をレンズに向かう方向に移動させたときとレンズから離れる方向に移動させたときとで、計測値に偏差が生ずるような場合には、検出端22の移動方向に応じた補正値を予め求めておいて、読取った座標値の補正を行うか、あるいは、正しく検出される方向に検出端が移動しているときの検出値のみを測定データとするなどの処置を講ずる必要があることは当然である。   As a characteristic of the sensor, when the detection end 22 is moved in the direction toward the lens and when the detection end 22 is moved in the direction away from the lens, there is a deviation in the measured value. The correction value corresponding to the direction is obtained in advance, and the read coordinate value is corrected, or only the detection value when the detection end is moving in the direction correctly detected is used as the measurement data. Of course, it is necessary to take action.

以下、図面を参照してこの発明の実施形態を説明する。図1は、X−Y型のレンズ搬送装置を備えたレンズ芯取機の一例を模式的に示した要部の斜視図である。図中、1はレンズ芯取機の要部、2はレンズ搬送装置の要部である。3はレンズ4の加工位置で、対向端にカップ状のレンズホルダ5、6を装着した上下のワーク軸7、8が上ワーク軸7を上下動可能にして、同一の回転軸線上に設けられている。加工位置3へ搬入されたレンズ4は、上ワーク軸7の下動動作によって上下のレンズホルダ5、6で挟持され、上下のワーク軸7、8の同期回転によって回転駆動され、隣接位置に配置された回転砥石9によって外周4dの研削加工が行われる。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a main part schematically showing an example of a lens centering machine provided with an XY type lens conveyance device. In the figure, 1 is a main part of the lens centering machine, and 2 is a main part of the lens conveying device. Reference numeral 3 denotes a processing position of the lens 4, and upper and lower work shafts 7 and 8 having cup-shaped lens holders 5 and 6 mounted on opposite ends enable the upper work shaft 7 to move up and down, and are provided on the same rotational axis. ing. The lens 4 carried into the processing position 3 is sandwiched between the upper and lower lens holders 5 and 6 by the downward movement of the upper work shaft 7, and is rotationally driven by the synchronous rotation of the upper and lower work shafts 7 and 8. The outer peripheral 4d is ground by the rotating grindstone 9 thus formed.

ワーク加工位置3に隣接して設けられたワーク台10には、多数のレンズ4をマトリクス状に搭載したパレット11が複数個載置されている。ワーク台10の図で右奥側の辺の上方に固定のガイドビーム12が装架されており、このガイドビームに沿って移動自在にアーム13の基端が装着されている。アーム13は、基端をガイドビーム12に支持されて、ワーク加工位置3側へと前方に延び、このアーム13に沿って移動自在に搬送ヘッド14が装着されている。即ち、ガイドビーム12には、その長手方向に沿ってガイドレールと第1サーボモータ15で回転駆動される送りねじとが設けられ、アーム13の基端は、当該送りねじと螺合して、第1サーボモータ15の正逆回転により、ガイドビーム12に沿って平行に往復移動する。一方、アーム13には、その長手方向に沿ってガイドレールと第2サーボモータ16で回転駆動される送りねじとが設けられ、搬送ヘッド14は、当該送りねじに螺合して、第2サーボモータ16の正逆回転により、アーム13に沿って往復移動する。   A plurality of pallets 11 on which a large number of lenses 4 are mounted in a matrix are placed on a work table 10 provided adjacent to the work processing position 3. A fixed guide beam 12 is mounted above the right rear side in the drawing of the work table 10, and a base end of an arm 13 is mounted so as to be movable along the guide beam. The arm 13 is supported at the base end by the guide beam 12, extends forward toward the workpiece machining position 3, and a transport head 14 is mounted along the arm 13 so as to be movable. That is, the guide beam 12 is provided with a guide rail and a feed screw that is rotationally driven by the first servo motor 15 along its longitudinal direction, and the base end of the arm 13 is screwed with the feed screw, The first servo motor 15 reciprocates in parallel along the guide beam 12 by forward and reverse rotation. On the other hand, the arm 13 is provided with a guide rail and a feed screw that is rotationally driven by a second servo motor 16 along the longitudinal direction thereof. The motor 16 reciprocates along the arm 13 by forward and reverse rotation.

搬送ヘッド14の前面(ワーク加工位置3側を向く面)には、2個の昇降シリンダ17が平行に装着されており、各昇降シリンダによって個別に上下動する長短のフィンガ18、19が設けられている。各フィンガ18、19の先端には、レンズ上面を吸着して保持する保持具20が取付けられている。2個の保持具20の一方は加工前レンズの搬送用であり、他方は加工済レンズの搬送用である。フィンガ18、19を長短にして2つのレンズ保持具20をアーム13の長手方向に並べて配置したのは、加工位置3から加工済レンズを取り上げて加工前レンズを載置する動作が、搬送ヘッド14のアーム13に沿う方向の移動のみで行われるようにするためである。   Two lifting cylinders 17 are mounted in parallel on the front surface of the transport head 14 (the surface facing the workpiece machining position 3 side), and long and short fingers 18 and 19 that are individually moved up and down by each lifting cylinder are provided. ing. At the tip of each finger 18, 19 is attached a holder 20 that holds the upper surface of the lens by suction. One of the two holders 20 is for conveying the lens before processing, and the other is for conveying the processed lens. The reason why the two lens holders 20 are arranged in the longitudinal direction of the arm 13 with the fingers 18 and 19 being long and short is that the operation of picking up the processed lens from the processing position 3 and placing the lens before processing is carried out. This is because it is performed only by movement in the direction along the arm 13.

第1及び第2サーボモータ15、16は、NC装置21によって制御されており、NC装置21は、搬送ヘッド14の位置を各サーボモータ15、16の原点からの回転量によって認識している。搬送ヘッド14には、下向きに光ファイバセンサ22が搭載されており、この光ファイバセンサの信号がNC装置21に送られている。   The first and second servo motors 15 and 16 are controlled by the NC device 21, and the NC device 21 recognizes the position of the transport head 14 from the rotation amount from the origin of each servo motor 15 and 16. An optical fiber sensor 22 is mounted on the transport head 14 downward, and a signal from the optical fiber sensor is sent to the NC device 21.

レンズ保持具20の移動領域内で、かつ光ファイバセンサ22の移動領域内の適宜な箇所に、レンズを一時的に載置するための受台23が設けられている。この受台23は、必要により負圧でレンズを吸着可能な構造とし、加工位置3との相対位置関係を正確な位置関係にして設けられている。受台23の上面を挟む両側に、V形の先端辺を対向させた一対の芯出し板24と、この芯出し板を同期開閉する図示しないシリンダとが設けられている。受台23上のレンズは、この芯出し板で外周を挟むことにより、受台23上の定位置に位置決めされる。   A pedestal 23 for temporarily placing the lens is provided in an appropriate position in the moving region of the lens holder 20 and in the moving region of the optical fiber sensor 22. The pedestal 23 has a structure capable of attracting the lens with a negative pressure if necessary, and is provided with a relative positional relationship with the processing position 3 in an accurate positional relationship. On both sides of the upper surface of the cradle 23, there are provided a pair of centering plates 24 with their V-shaped tip sides facing each other, and a cylinder (not shown) that opens and closes the centering plates synchronously. The lens on the cradle 23 is positioned at a fixed position on the cradle 23 by sandwiching the outer periphery with the centering plate.

なお図示の装置は、径の異なる2種類のレンズを並行加工可能にするため、2個の受台23と4個の不良品ボックス25とを備えている。   The illustrated apparatus includes two cradles 23 and four defective product boxes 25 so that two types of lenses having different diameters can be processed in parallel.

次に図2ないし4を参照して、この発明による加工済レンズの外形計測について説明する。図2に示すように、加工前レンズを搭載したパレット11bから、加工前レンズ4bがレンズ保持具20で吸着されて、受台23上に搬送される。受台23上に置かれたレンズは、芯出し板24で挟まれて芯出しされ、再びレンズ保持具20に吸着され、加工位置3へと搬送される。加工位置に搬送されたレンズは、図2に示すように、上ワーク軸7の下降動作により、上下のレンズホルダ5、6で挟持された状態で回転駆動され、隣接配置された回転砥石9で外周加工される。加工が終了したら、上ワーク軸7が上動し、加工済レンズは、レンズ保持具20によって受台23上へと搬送される。加工されるレンズは、レンズ加工位置3で正確に芯出しされるので、受台23と加工位置3の相対位置関係を正確に設定しておけば、NC装置21によるサーボモータ15、16の制御により、加工済レンズ4aを受台23に正確に載置することが可能である。   Next, with reference to FIG. 2 thru | or 4, the external shape measurement of the processed lens by this invention is demonstrated. As shown in FIG. 2, the unprocessed lens 4 b is attracted by the lens holder 20 from the pallet 11 b on which the unprocessed lens is mounted, and is conveyed onto the cradle 23. The lens placed on the cradle 23 is centered by being pinched by the centering plate 24, is attracted to the lens holder 20 again, and is transported to the processing position 3. As shown in FIG. 2, the lens transported to the processing position is rotationally driven while being held between the upper and lower lens holders 5, 6 by the lowering operation of the upper work shaft 7. Peripheral machining. When the processing is completed, the upper work shaft 7 is moved upward, and the processed lens is conveyed onto the receiving table 23 by the lens holder 20. Since the lens to be processed is accurately centered at the lens processing position 3, if the relative positional relationship between the cradle 23 and the processing position 3 is set accurately, the servo motors 15 and 16 are controlled by the NC device 21. Thus, the processed lens 4a can be accurately placed on the cradle 23.

加工済レンズ4aを受台23上に載置したあと、図3に示すように、光ファイバセンサ22が受台23上に来るように搬送ヘッド14が移動する。そして、図4に示すように、サーボモータ15、16の制御による搬送ヘッド14の移動により、光ファイバセンサ22を図4の矢印方向に移動させ、その移動軌跡と加工済レンズ4aの縁が交差する点でレンズの縁の検出信号が光ファイバセンサ22からNC装置21へと送られる。ここで図4(a)は、レンズの縁の4点を測定する例を示した図であり、同(b)は8点を測定する例を示した図である。前述したように、精度の高い計測を行うためには、より多くの測定点が必要である。光ファイバセンサ22からレンズの縁の検出信号が出力されたとき、NC装置21が搬送ヘッド14の座標を読取ることによって、複数の測定点相互の二次元座標上での相対的な位置関係を読取ることができる。被計測レンズ4aの直径や真円度は、複数の測定点の相対的な二次元座標から数学的な演算で求めることが可能である。   After the processed lens 4a is placed on the cradle 23, the transport head 14 moves so that the optical fiber sensor 22 is on the cradle 23 as shown in FIG. Then, as shown in FIG. 4, the optical fiber sensor 22 is moved in the direction of the arrow in FIG. 4 by the movement of the transport head 14 under the control of the servo motors 15 and 16, and the movement locus and the edge of the processed lens 4a intersect. Thus, a lens edge detection signal is sent from the optical fiber sensor 22 to the NC device 21. Here, FIG. 4A is a diagram showing an example of measuring four points on the edge of the lens, and FIG. 4B is a diagram showing an example of measuring eight points. As described above, in order to perform highly accurate measurement, more measurement points are required. When a lens edge detection signal is output from the optical fiber sensor 22, the NC device 21 reads the coordinates of the transport head 14, thereby reading the relative positional relationship between the plurality of measurement points on the two-dimensional coordinates. be able to. The diameter and roundness of the lens 4a to be measured can be obtained by mathematical calculation from the relative two-dimensional coordinates of a plurality of measurement points.

図1に示す芯取機は、レンズを受台23上で芯出しするための一対の芯出し板24を備えているので、この芯出し板24でレンズを挟んだ状態でレンズの外形計測を行うこともできる。図5はその例を示す平面図で、受台23に置かれた加工済レンズ4aを対向する芯出し板24のV形の先端辺で挟み、その挟む方向と平行な方向に搬送ヘッド14を移動させる。これにより、光ファイバセンサ22が図5の矢印方向に移動し、その移動軌跡と芯出し板24の縁が交差する点で検出信号が光ファイバセンサ22からNC装置21へと送られる。   The centering machine shown in FIG. 1 is provided with a pair of centering plates 24 for centering the lens on the cradle 23. Therefore, the outer shape of the lens is measured with the lens sandwiched between the centering plates 24. It can also be done. FIG. 5 is a plan view showing an example thereof. The processed lens 4a placed on the cradle 23 is sandwiched between the opposite ends of the V-shaped centering plate 24, and the transport head 14 is placed in a direction parallel to the sandwiching direction. Move. As a result, the optical fiber sensor 22 moves in the direction of the arrow in FIG. 5, and a detection signal is sent from the optical fiber sensor 22 to the NC device 21 at the point where the movement locus and the edge of the centering plate 24 intersect.

実用的には、予め外形の正確なマスタレンズを挟んで両側の交差点間隔Eを計測してNC装置に記憶しておき、加工済レンズ4aを計測したときの交差点間隔と記憶値との差から、レンズの外径誤差を演算する。芯出し板24の先端辺のV字の頂角を120度とすれば、レンズの外径誤差は、交差点間隔Eの記憶値からの偏差量に3の平方根を乗じて2で割った値となる。   Practically, the intersection distance E on both sides is measured in advance with a master lens having an accurate outer shape and stored in the NC device, and the difference between the intersection distance when the processed lens 4a is measured and the stored value is calculated. Calculate the outer diameter error of the lens. If the apex angle of the V-shape of the tip side of the centering plate 24 is 120 degrees, the lens outer diameter error is obtained by multiplying the deviation from the stored value of the intersection interval E by the square root of 3, and dividing by 2. Become.

この外形の計測により、誤差が許容範囲内にあるレンズは、レンズ保持具20により、加工済レンズ用のパレット11aへと搬出される。再加工することができない不良レンズは、レンズ保持具20により不良品ボックス25へと排出される。このような動作を、加工前レンズパレット11bからのレンズ取り出し位置を1ピッチずつずらしながら、かつ加工済レンズ用パレット11aへの搬出位置を1ピッチずつずらしながら繰り返すことによって、多数のレンズの加工と外形計測とが行われる。   By measuring the outer shape, a lens whose error is within an allowable range is carried out by the lens holder 20 to the processed lens pallet 11a. The defective lens that cannot be reprocessed is discharged to the defective product box 25 by the lens holder 20. By repeating such an operation while shifting the lens take-out position from the pre-processing lens pallet 11b by one pitch and shifting the carry-out position to the processed lens pallet 11a by one pitch, a large number of lenses can be processed. External shape measurement is performed.

なお、レンズの外形を抜取り検査で行うときは、例えば10個なら10個毎に加工済レンズを受台23上に載せて計測を行う。計測を行わないレンズは、加工位置3から直接加工済レンズ用パレット11aへと戻される。レンズの測定点を多くすると精度の高いレンズの計測が可能であるが、測定に時間がかかる。加工前レンズの芯出し用の受台を外形測定用の受台23とは別に設けてやれば、次に抜取り検査されるレンズが加工されるまでの間、被計測レンズを受台23上に置いておくことができるので、レンズ搬送装置が加工待ちとなる時間を利用して、複数の測定点を分割して測定することにより、測定時間が加工時間より長くなるときでも、加工能率を低下させないで精度の高い抜き取り検査を行うことができる。   When the outer shape of the lens is extracted and inspected, for example, if there are 10 lenses, the processed lens is mounted on the receiving table 23 for every 10 and the measurement is performed. The lens for which measurement is not performed is returned directly from the processing position 3 to the processed lens pallet 11a. If the number of measurement points of the lens is increased, it is possible to measure the lens with high accuracy, but the measurement takes time. If a cradle for centering the lens before processing is provided separately from the cradle 23 for external measurement, the lens to be measured is placed on the cradle 23 until the lens to be inspected next is processed. Since it is possible to leave it in place, it is possible to reduce the machining efficiency even when the measurement time is longer than the machining time by dividing and measuring multiple measurement points using the time that the lens transport device is waiting for machining. It is possible to carry out a sampling inspection with high accuracy.

実施例装置の要部を示す斜視図The perspective view which shows the principal part of an Example apparatus. 図1の装置におけるレンズ搬送を示す模式的な側面図Schematic side view showing lens conveyance in the apparatus of FIG. レンズ計測時の検出端とレンズの側面図Side view of detection end and lens during lens measurement レンズ計測時の検出端の移動を説明する平面図Plan view explaining the movement of the detection end during lens measurement 図3、4と異なる態様での計測を説明する平面図FIG. 3 is a plan view for explaining measurement in a different mode from FIG.

符号の説明Explanation of symbols

14 搬送ヘッド
15 第1サーボモータ
16 第2サーボモータ
20 保持具
21 NC装置
22 光ファイバセンサ
14 Transport head
15 1st servo motor
16 2nd servo motor
20 Holder
21 NC unit
22 Optical fiber sensor

Claims (3)

レンズ保持具(20)を備えた搬送ヘッド(14)と、当該搬送ヘッドを第1の方向及び当該第1の方向と略直交する第2の方向にそれぞれ移動させる数値制御可能な駆動源(15,16)と、これらの駆動源を制御する数値制御装置(21)とを備え、レンズを前記レンズ保持具で保持して第1の位置から第2の位置へと搬送するレンズ搬送装置において、前記搬送ヘッドに所定位置に置かれたレンズないしこれに当接する部材(24)の縁を検出する検出端(22)が装着され、前記数値制御装置は、前記検出端が前記縁を検出したときに前記それぞれの駆動源の位置信号を検出する検出手段と、当該検出された位置信号の複数値からレンズの外形を演算する演算手段とを備えている、レンズの搬送装置。   A transport head (14) having a lens holder (20), and a numerically controllable drive source (15) for moving the transport head in a first direction and a second direction substantially orthogonal to the first direction. , 16) and a numerical controller (21) for controlling these drive sources, and a lens transport device for transporting the lens from the first position to the second position by holding the lens with the lens holder, A detection end (22) for detecting an edge of a lens placed in a predetermined position on the transport head or a member (24) abutting on the lens is mounted, and the numerical control device detects when the detection end detects the edge. A lens conveying apparatus, further comprising: detecting means for detecting a position signal of each of the driving sources; and calculating means for calculating the outer shape of the lens from a plurality of values of the detected position signal. 第1の方向及び当該第1の方向と略直交する第2の方向に移動位置決めされる搬送ヘッド(14)にレンズ保持具(20)とレンズの縁を検出する検出端(22)とを装着し、所定の位置に置かれたレンズを他の位置に搬送する際に前記保持具による当該レンズの保持に先立って、前記検出端が前記所定の位置を少なくとも第1の方向及び当該第1の方向と略直交する第2の方向に横切るように搬送ヘッド(14)を移動させ、その移動時に前記検出端がレンズの縁を検出したときの搬送ヘッド(14)の二次元座標の座標値を読取り、当該読取った複数の座標値から搬送する直前のレンズの外形を計測することを特徴とする、レンズの搬送方法。   The conveyance head (14) moved and positioned in the first direction and the second direction substantially orthogonal to the first direction is equipped with a lens holder (20) and a detection end (22) for detecting the edge of the lens. When the lens placed at a predetermined position is transported to another position, the detection end moves the predetermined position at least in the first direction and the first prior to holding the lens by the holder. The transport head (14) is moved so as to cross in the second direction substantially orthogonal to the direction, and the coordinate value of the two-dimensional coordinates of the transport head (14) when the detection end detects the edge of the lens at the time of the movement is obtained. A method for conveying a lens, comprising: reading and measuring an outer shape of the lens immediately before conveyance from the plurality of read coordinate values. 搬送ヘッド(14)の移動領域内にレンズを径方向に挟持する芯出し板(24)を備えた受台(23)を配置し、搬送ヘッド(14)にレンズ保持具(20)と前記芯出し板の縁を検出する検出端(22)とを装着し、搬送途中のレンズを前記受台上に置き、前記芯出し板でレンズを挟持し、前記検出端が受台上を芯出し板の挟持方向に横切るように搬送ヘッド(14)を移動させ、その移動時に前記検出端が芯出し板の縁を検出したときの搬送ヘッド(14)の座標値を読取り、当該読取った複数の座標値から受台上のレンズの外形を計測し、次いで受台から所望の位置にレンズを搬送することを特徴とする、レンズの搬送方法。   A cradle (23) having a centering plate (24) that clamps the lens in the radial direction is disposed in a moving region of the transport head (14), and the lens holder (20) and the core are disposed on the transport head (14). A detection end (22) for detecting the edge of the centering plate is mounted, the lens being transported is placed on the cradle, the lens is sandwiched by the centering plate, and the detection end is centered on the cradle. The transport head (14) is moved so as to cross in the clamping direction, and the coordinate value of the transport head (14) when the detection end detects the edge of the centering plate during the movement is read, and the plurality of coordinates read A lens transport method, comprising: measuring an outer shape of a lens on a cradle from a value, and then transporting the lens from the cradle to a desired position.
JP2003273995A 2003-07-14 2003-07-14 Lens conveying device and conveying method Expired - Fee Related JP4298416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273995A JP4298416B2 (en) 2003-07-14 2003-07-14 Lens conveying device and conveying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273995A JP4298416B2 (en) 2003-07-14 2003-07-14 Lens conveying device and conveying method

Publications (2)

Publication Number Publication Date
JP2005037224A true JP2005037224A (en) 2005-02-10
JP4298416B2 JP4298416B2 (en) 2009-07-22

Family

ID=34211075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273995A Expired - Fee Related JP4298416B2 (en) 2003-07-14 2003-07-14 Lens conveying device and conveying method

Country Status (1)

Country Link
JP (1) JP4298416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019783A (en) * 2014-06-13 2014-09-03 冠亿精密工业(昆山)有限公司 Outer diameter detecting device
CN109724555A (en) * 2019-03-05 2019-05-07 佛山市艾菲尔智能科技有限公司 The online contour detecting device of plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019783A (en) * 2014-06-13 2014-09-03 冠亿精密工业(昆山)有限公司 Outer diameter detecting device
CN109724555A (en) * 2019-03-05 2019-05-07 佛山市艾菲尔智能科技有限公司 The online contour detecting device of plate

Also Published As

Publication number Publication date
JP4298416B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
KR102166641B1 (en) Self-diagnosis of machine and method for precision calibration of machine
JP4621605B2 (en) Method for measuring and correcting machining dimension in chamfering device for plate material
EP0906174B1 (en) Workpiece inspection and handling
CN107919310B (en) Processing device
US10228303B2 (en) Flexible automation cell for performing secondary operations in concert with a machining center and roll check operations
CN104070613B (en) Apparatus for circumference grinding of workpiece
CN203100687U (en) Automatic detection device for milling cutter
US11806794B2 (en) Processing device and processing method
JP4298416B2 (en) Lens conveying device and conveying method
KR20190005570A (en) Continuous processing method and its system
KR102492263B1 (en) Automatic workpiece unloading device for CNC machine tools
CN107990827B (en) Full-automatic detection system for M value and tooth surface run-out of worm
JPS59108934A (en) Optical inspecting apparatus for lens
US11126155B2 (en) Automatic screw inspection system
US20170010084A1 (en) Apparatus for inspecting machined bores
JPS6128470B2 (en)
CN217528319U (en) Detection equipment
JP7260293B2 (en) Automated inspection system for processed products
KR102482853B1 (en) Automated system for high-speed gripping and supply using cam method
JPH05177494A (en) Automatic machining device
KR100802359B1 (en) Lens chamfering machine
JPH08222620A (en) Automatic teaching method for wafer automatic transferring machine
JPH067887Y2 (en) Centerless grinding machine
JPS6368267A (en) Method and device for cutting classification of steel plate
JP2023006188A (en) Information exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Ref document number: 4298416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees