JP2005036653A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2005036653A
JP2005036653A JP2003197200A JP2003197200A JP2005036653A JP 2005036653 A JP2005036653 A JP 2005036653A JP 2003197200 A JP2003197200 A JP 2003197200A JP 2003197200 A JP2003197200 A JP 2003197200A JP 2005036653 A JP2005036653 A JP 2005036653A
Authority
JP
Japan
Prior art keywords
amount
absorbent
sulfur
fuel
accumulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003197200A
Other languages
English (en)
Other versions
JP4211514B2 (ja
Inventor
Kingo Suyama
欣悟 陶山
Akio Matsunaga
彰生 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003197200A priority Critical patent/JP4211514B2/ja
Publication of JP2005036653A publication Critical patent/JP2005036653A/ja
Application granted granted Critical
Publication of JP4211514B2 publication Critical patent/JP4211514B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】NO吸収剤内に蓄えられているイオウの量を正確に求めることができる。
【解決手段】機関排気通路内にNO吸収剤を配置する。機関運転状態に基づいて流入NO濃度を検出し、NO吸収剤下流に配置されたNOセンサにより流出NO濃度を検出し、これら流入NO濃度及び流出NO濃度からNO吸収剤のNO浄化率EFFを算出する。NO浄化率EFFを時間間隔を隔てて複数回算出し、燃料消費量QFとNO浄化率EFFとの関係を表す一次式mを決定する。NO吸収剤内の蓄積SO量を減少させるSO処理を行うべきと判断されたときには、このときのNO浄化率EFFを一次式mを用いて算出する。NO浄化率EFFと蓄積SO量との関係が予め求められており、一次式を用いて算出されたNO浄化率EFFから、蓄積SO量を算出する。
【選択図】 図8

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO吸収剤を配置し、NO吸収剤内に蓄えられているイオウの量である蓄積イオウ量の単位時間当たりの変化量をNO吸収剤の温度、吸入空気量、及びNO吸収剤内に流入する排気ガスの空燃比に基づいて算出し、この変化量を積算することにより蓄積イオウ量を算出するようにした内燃機関が公知である(特許文献1参照)。
【0003】
【特許文献1】
特開2001−74727号公報
【特許文献2】
特開平11−229858号公報
【特許文献3】
特開2000−274229号公報
【特許文献4】
特開2002−266628号公報
【特許文献5】
特開2002−221028号公報
【特許文献6】
特開2000−104536号公報
【0004】
【発明が解決しようとする課題】
蓄積イオウ量が少ないときにはNO吸収剤内に蓄えられ得るNOの量が多いけれども、蓄積イオウ量が多くなるとNO吸収剤内に蓄えられ得るNOの量が少なくなり、その結果NO吸収剤から流出した排気ガス中のNOの量である流出NO量が多くなり得る。このように、流出NO量は蓄積イオウ量を表す一つの指標となる。
【0005】
しかしながら、上述した内燃機関では、蓄積イオウ量を求めるために流出NO量を一切考慮しておらず、従って蓄積イオウ量を必ずしも正確に算出することができないという問題がある。
【0006】
そこで本発明の目的は、NO吸収剤内に蓄えられているイオウの量を正確に求めることができる内燃機関の排気浄化装置を提供することにある。
【0007】
【課題を解決するための手段】
前記課題を解決するために1番目の発明によれば、リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO吸収剤を配置した内燃機関において、NO吸収剤から流出した排気ガス中のNOの量である流出NO量を検出するためにNO吸収剤下流の排気通路内に配置されたNOセンサと、NO吸収剤内に蓄えられているイオウの量である蓄積イオウ量を該流出NO量に基づいて求める手段とを具備している。
【0008】
また、2番目の発明によれば1番目の発明において、NO吸収剤の蓄積イオウ量を減少させるイオウ処理を行う手段と、イオウ処理を行うべきか否かを判断する手段とを更に具備し、イオウ処理を行うべきと判断されたときにはこのときのNO吸収剤の蓄積イオウ量を求めると共に、処理開始時量を該求められた蓄積イオウ量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から予め定められた下限量以下まで減少させるのに必要なイオウ処理を行うようにしている。
【0009】
また、3番目の発明によれば2番目の発明において、前記求められたNO吸収剤の蓄積イオウ量が予め定められた境界量よりも多いときには、処理開始時量を該求められた蓄積イオウ量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行い、前記求められたNO吸収剤の蓄積イオウ量が前記境界量よりも少ないときには、処理開始時量を該求められた蓄積イオウ量とは無関係な量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにしている。
【0010】
また、4番目の発明によれば3番目の発明において、前記求められた蓄積イオウ量とは無関係な量を、燃料がイオウ濃度が基準濃度の燃料であると仮定したときにNO吸収剤内に蓄えられ得る最大のイオウ量に設定している。
【0011】
また、5番目の発明によれば3番目の発明において、流出NO量を互いに時間間隔を隔てて複数回検出すると共にこれら流出NO量に基づいてNO吸収剤の蓄積イオウ量を求め、前記検出された流出NO量が予め定められた許容最小量よりも少ないときの回数が上限回数を越えたときには、処理開始時量を該求められた蓄積イオウ量とは無関係な量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにしている。
【0012】
また、6番目の発明によれば2番目の発明において、前記設定された処理開始時量が、燃料が市場で入手可能な燃料のうちイオウ濃度が最も高い燃料であると仮定したときにNO吸収剤内に蓄えられ得る最大のイオウ量である蓄積可能最大量よりも多いときには、処理開始時量を該蓄積可能最大量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにしている。
【0013】
また、7番目の発明によれば2番目の発明において、処理開始時量を前記求められた蓄積イオウ量がそれを基準としてとり得る最大の量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにしている。
【0014】
また、8番目の発明によれば2番目の発明において、先のイオウ処理が完了してから燃料が予め定められた第1の設定量だけ消費されたときにイオウ処理を行うべきと判断される。
【0015】
また、9番目の発明によれば1番目の発明において、NO吸収剤内に流入する排気ガス中のNOの量である流入NO量を求める手段と、流入NO量及び流出NO量に基づいてNO吸収剤のNO浄化率を求める手段と、該求められたNO浄化率に基づいてNO吸収剤の蓄積イオウ量を求める手段とを更に具備している。
【0016】
また、10番目の発明によれば9番目の発明において、NO吸収剤のNO浄化率を互いに時間間隔を隔てて複数回求めると共に、これら求められたNO浄化率と燃料消費量との関係を表す関係式を求め、判断時期における燃料消費量と該関係式とから該判断時期におけるNO浄化率を求め、該求められた判断時期におけるNO浄化率に基づいて該判断時期における蓄積イオウ量を求めるようにしている。
【0017】
また、11番目の発明によれば10番目の発明において、前記求められたNO浄化率と燃料消費量との関係を一次式により表すと共に、該一次式を最小自乗法により求めるようにしている。
【0018】
また、12番目の発明によれば10番目の発明において、NO吸収剤のNO浄化率を互いに時間間隔を隔てて複数回求めると共に、平均値算出時期が到来する毎に前回の平均値算出時期から今回の平均値算出時期までの期間内に求められたNO浄化率の平均値を算出し、該算出されたNO浄化率の平均値と燃料消費量との関係を表す関係式を求めるようにしている。
【0019】
また、13番目の発明によれば12番目の発明において、NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を設定する手段とを更に具備し、NO吸収剤内に流入する排気ガスの空燃比がリーンのときの流入NO量及び流出NO量を求めると共に、これら流入NO量及び流出NO量に基づいてNO吸収剤のNO浄化率を求めるようにし、前回の平均値算出時期から今回の平均値算出時期までの期間内にNO浄化率が求められた回数が下限回数よりも少ないときには、該期間におけるNO浄化率の平均値を算出しないようにしている。
【0020】
また、14番目の発明によれば12番目の発明において、平均値算出時期が到来する毎に算出されるNO浄化率の平均値が、NO浄化率が求められたときに機関定常運転が行われているか機関過渡運転が行われているかに応じて重み付けられたNO浄化率の加重平均値である。
【0021】
また、15番目の発明によれば12番目の発明において、前回の平均値算出時期から燃料が予め定められた第2の設定量だけ消費されたときに次の平均値算出時期が到来したと判断される。
【0022】
また、16番目の発明によれば10番目の発明において、NO吸収剤の蓄積イオウ量を減少させるイオウ処理を行う手段と、前記求められたNO吸収剤の蓄積イオウ量が予め定められた境界量よりも多いときには燃料が高イオウ濃度燃料であると判断し、前記求められたNO吸収剤の蓄積イオウ量が該境界量よりも少ないときには燃料が低イオウ濃度燃料であると判断する手段とを更に具備し、燃料が高イオウ濃度燃料であると判断されたときには処理開始時量を前記求められた蓄積イオウ量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から予め定められた下限量以下まで減少させるのに必要なイオウ処理を行い、燃料が低イオウ濃度燃料であると判断されたときには、処理開始時量を該求められた蓄積イオウ量とは無関係な量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにしている。
【0023】
また、17番目の発明によれば16番目の発明において、前記求められたNO浄化率の前記関係式に対する偏差を求める手段を更に具備し、燃料が高イオウ濃度燃料であると判断されたときに該求められた偏差が予め定められたしきい値を越えて変化したときには燃料が低イオウ濃度燃料に変更されたと判断し、燃料が低イオウ濃度燃料であると判断されたときに該求められた偏差が該しきい値を越えて変化したときには燃料が高イオウ濃度燃料に変更されたと判断するようにしている。
【0024】
また、18番目の発明によれば9番目の発明において、NO吸収剤内に流入する排気ガスの空燃比がリーンである期間に設定された流出NO量検出期間における流出NO量の平均値を算出すると共に、該流出NO量検出期間における流入NO量の平均値を算出し、これら流入NO量の平均値及び流出NO量の平均値に基づいて該流出NO量検出期間におけるNO浄化率を求めるようにしている。
【0025】
また、19番目の発明によれば9番目の発明において、流入NO量と流出NO量とがほぼ同時期に求められるようになっており、排気ガス部分がそれについての流入NO量が求められてからNOセンサに到達するのに要する遅れ時間を求める手段と、該遅れ時間でもって流入NO量又は流出NO量を補正する手段とを更に具備し、該補正された流入NO量又は流出NO量に基づいてNO浄化率を求めるようにしている。
【0026】
また、20番目の発明によれば9番目の発明において、前記求められたNO浄化率をNO吸収剤の状態が予め定められた基準状態のときのNO浄化率に換算する手段を更に具備し、該換算されたNO浄化率に基づいてNO吸収剤の蓄積イオウ量を求めるようにしている。
【0027】
また、21番目の発明によれば9番目の発明において、NO吸収剤の熱劣化度合いを求める手段と、該求められたNO吸収剤の熱劣化度合いに基づいて前記求められたNO浄化率を補正する手段とを更に具備し、該補正されたNO浄化率に基づいてNO吸収剤の蓄積イオウ量を求めるようにしている。
【0028】
また、22番目の発明によれば9番目の発明において、機関運転状態を検出する手段を更に具備し、該検出された機関運転状態に基づいて前記流入NO量を算出するようにしている。
【0029】
また、23番目の発明によれば1番目の発明において、NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤内に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO処理を行う基本時間間隔を設定する手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないように該基本時間間隔を補正する手段と、NO処理を該補正された時間間隔を隔てて繰り返し行う手段と、基本時間間隔の補正量に基づいて流出NO量を補正する手段と、該補正された流出NO量に基づいてNO吸収剤の蓄積イオウ量を求めるようにしている。
【0030】
また、24番目の発明によれば1番目の発明において、NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤内に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO処理が行われたときに生ずる流出NO量の極大値を検出する手段とを更に具備し、該検出された流出NO量の極大値に基づいてNO吸収剤の蓄積イオウ量を求めるようにしている。
【0031】
また、25番目の発明によれば1番目の発明において、NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤内に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO処理が行われたときにNO吸収剤から流出したNOの量の積算量である流出NO量積算量を求める手段とを更に具備し、該求められた流出NO量積算量に基づいてNO吸収剤の蓄積イオウ量を求めるようにしている。
【0032】
また、26番目の発明によれば1番目の発明において、NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を設定する手段と、該設定された時間間隔に基づいてNO吸収剤の蓄積イオウ量を求める手段とを更に具備している。
【0033】
また、27番目の発明によれば1番目の発明において、NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を設定する手段と、単位期間当たりにNO処理により消費された燃料又は還元剤の量を求める手段と、該求められた単位期間当たりにNO処理により消費された燃料又は還元剤の量に基づいてNO吸収剤の蓄積イオウ量を求める手段とを更に具備している。
【0034】
なお、本明細書では排気通路の或る位置よりも上流の排気通路、燃焼室、及び吸気通路内に供給された空気と炭化水素HC及び一酸化炭素COのような還元剤との比をその位置における排気ガスの空燃比と称している。
【0035】
【発明の実施の形態】
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。
【0036】
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は筒内に燃料を直接噴射するための電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートをそれぞれ示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15の出口に連結される。コンプレッサ15の入口には吸気管13aが連結される。吸気ダクト13内にはステップモータ16により駆動されるスロットル弁17が配置され、更にコンプレッサ15下流の吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するための冷却装置18が配置される。
【0037】
一方、排気ポート10は排気マニホルド19及び排気管20を介して排気ターボチャージャ14の排気タービン21の入口に連結され、排気タービン21の出口は排気管20aを介して触媒コンバータ22に接続される。触媒コンバータ22内には、排気ガス中の微粒子を捕集するためのパティキュレートフィルタ22aが収容され、パティキュレートフィルタ22a上には後述するようにNO吸収剤23が担持されている。また、触媒コンバータ22は排気管20bに接続される。
【0038】
更に図1を参照すると、排気マニホルド19とサージタンク12とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結され、EGR通路24内には電気制御式EGR制御弁25が配置される。また、EGR制御弁25上流のEGR通路24周りにはEGR通路24内を流れるEGRガスを冷却するための冷却装置26が配置される。
【0039】
一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバ、いわゆるコモンレール27に連結される。このコモンレール27内へは電気制御式の吐出量可変な燃料ポンプ28から燃料が供給され、コモンレール27内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コモンレール27にはコモンレール27内の燃料圧を検出するための燃料圧センサ29が取り付けられ、燃料圧センサ29の出力信号に基づいてコモンレール27内の燃料圧が目標燃料圧となるように燃料ポンプ28の吐出量が制御される。なお、図1において30は燃料タンクを示している。
【0040】
排気マニホルド19には排気マニホルド19内に還元剤を供給するための電気制御式還元剤供給弁31が取り付けられている。本発明による実施例では燃料が還元剤として使用され、還元剤供給弁31は還元剤供給管31aを介してコモンレール27に連結される。
【0041】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、常時電源に接続されているB−RAM(バックアップRAM)43a、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。吸気管13aには吸入空気質量流量を検出するためのエアフロメータ49が取り付けられ、機関本体1には機関冷却水温THWを検出するための水温センサ50が取り付けられる。NO吸収剤23下流の排気管20bには、NO吸収剤23から流出した排気ガス中のNO濃度即ち流出NO濃度CNOを検出するためのNOセンサ51と、NO吸収剤23から流出した排気ガスの温度を検出するための排気温センサ52とが取り付けられる。排気温センサ52により検出される排気ガスの温度はNO吸収剤23の温度TCを表している。燃料圧センサ29、エアフロメータ49、水温センサ50、NOセンサ51、及び排気温センサ52の出力信号はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。
【0042】
更に、アクセルペダル(図示しない)にはアクセルペダルの踏み込み量に比例した出力電圧を発生する負荷センサ53が接続され、負荷センサ53の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。ここで、アクセルペダルの踏み込み量は要求負荷Lを表している。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ54が接続される。CPU44ではこの出力パルスに基づいて機関回転数Nが算出される。
【0043】
一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁駆動用ステップモータ16、EGR制御弁25、燃料ポンプ28、及び還元剤供給弁31にそれぞれ接続される。
【0044】
パティキュレートフィルタ22aはコージェライトのような多孔質材料からなり、その隔壁の両側面及び細孔内壁面上にはNO吸収剤23がそれぞれ担持されている。このNO吸収剤23は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属とが担持されている。
【0045】
NO吸収剤は流入する排気ガスの平均空燃比がリーンのときにはNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量を減少させる蓄積還元作用を行う。
【0046】
NO吸収剤の蓄積還元作用の詳細なメカニズムについては完全には明らかにされていない。しかしながら、現在考えられているメカニズムを、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると次のようになる。
【0047】
即ち、NO吸収剤に流入する排気ガスの空燃比が理論空燃比よりもかなりリーンになると流入する排気ガス中の酸素濃度が大巾に増大し、酸素OがO 又はO2−の形で白金Ptの表面に付着する。一方、流入する排気ガス中のNOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、NOとなる(NO+O→NO+O、ここでOは活性酸素)。次いで生成されたNOの一部は白金Pt上でさらに酸化されつつNO吸収剤内に吸収されて酸化バリウムBaOと結合しながら、硝酸イオンNO の形でNO吸収剤内に拡散する。このようにしてNOがNO吸収剤内に蓄えられる。
【0048】
これに対し、NO吸収剤に流入する排気ガスの空燃比がリッチ又は理論空燃比になると、排気ガス中の酸素濃度が低下してNOの生成量が低下し、反応が逆方向(NO →NO+2O)に進み、斯くしてNO吸収剤内の硝酸イオンNO がNOの形でNO吸収剤から放出される。この放出されたNOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなるとNO吸収剤から次から次へとNOが放出されて還元され、NO吸収剤内に蓄えられているNOの量が次第に減少する。
【0049】
なお、硝酸塩を形成することなくNOを蓄え、NOを放出することなくNOを還元することも可能であると考えられている。また、活性酸素Oに着目すれば、NO吸収剤はNOの蓄積及び放出に伴って活性酸素Oを生成する活性酸素生成触媒と見ることもできる。
【0050】
図1に示される内燃機関はリーン空燃比のもとでの燃焼が継続して行われており、従ってNO吸収剤23内に流入する排気ガスの空燃比はリーンに維持されている。その結果、排気ガス中のNOはNO吸収剤23内に蓄えられる。
【0051】
ところが、時間の経過と共にNO吸収剤23内に蓄えられているNOの量である蓄積NO量は次第に増大する。そこで本発明による実施例では、NO吸収剤23内に蓄えられているNOを還元しNO吸収剤23内の蓄積NO量を減少させるために、還元剤供給弁31から還元剤を一時的に供給してNO吸収剤23内に流入する排気ガスの空燃比AFNを一時的にリッチに切り替えるNO処理を行うようにしている。なお、NO吸収剤23内に流入する排気ガスの空燃比AFNを一時的にリッチに切り替えるために、例えば燃料噴射弁6から膨張行程又は排気行程に追加の燃料を噴射するようにしてもよいし、燃焼室5内で燃焼される混合気の空燃比を一時的にリッチに切り替えるようにしてもよい。
【0052】
例えば、NO吸収剤23の蓄積NO量を求め、この蓄積NO量が一定量を越える毎にNO処理を行うこともできる。しかしながら、本発明による実施例では図2に矢印RNで示されるように、NO処理を時間間隔tNでもって繰り返し行うようにしている。この時間間隔tNは基本時間間隔tNBを補正量ktNで補正することにより求められる(tN=tNB+ktN)。これら基本時間間隔tNB及び補正量ktNは次のように求めることができる。
【0053】
即ち、図2に示されるように、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンに保持されているときには、流出NO濃度CNOが少しずつ増大し、NO処理が開始される直前にZCNOとなる。このZCNOを直前NO濃度と称すると、時間間隔tNが短い場合には直前NO濃度ZCNOが低くなり、時間間隔tNが長い場合には直前NO濃度ZCNOが高くなる。直前NO濃度ZCNOはできるだけ低いのが好ましいが、時間間隔tNを短くすべく時間間隔tNを短くすると燃焼消費率が増大する。また、直前NO濃度ZCNOは後述するように、NO吸収剤23内に蓄えられているSOの量である蓄積SO量に応じて変動し得る。
【0054】
そこで本発明による実施例では、機関定常運転時でありかつ蓄積SO量が基準量例えばほぼゼロのときに、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンに保持されているときの流出NO濃度CNOが許容最大濃度を越えないように、かつNO処理による燃料消費率が許容最大値を越えないように、基本時間間隔tNBを予め設定している。
【0055】
その上で、機関過渡運転時にも、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンに保持されているときの流出NO濃度CNOが許容最大濃度を越えないように、かつNO処理による燃料消費率が許容最大値を越えないように、補正量ktNを更新し、更新された補正量ktNでもって基本時間間隔tNBを補正するようにしている。
【0056】
本発明による実施例では図3(A)に示されるように、要求負荷Lと機関回転数Nとにより定められる機関運転領域が九個の領域に分割されており、領域毎に基本時間間隔tNBが設定されている。また、基本時間間隔tNBは予め実験により求められており、図3(A)に示されるマップの形で予めROM42内に記憶されている。一方、補正量ktNも図3(B)に示されるように、基本時間間隔tNBに対する領域と同様に設定された領域毎に設定されており、図3(B)に示されるマップの形でB−RAM43a内に記憶される。
【0057】
図4は本発明による実施例のNO制御ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0058】
図4を参照すると、まずステップ100では、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンであるか否かが判別される。排気ガスの空燃比AFNがリーンでないときには処理サイクルを終了し、排気ガスの空燃比AFNがリーンのときには次いでステップ101に進んで現在の機関運転状態が属する領域が決定される。続くステップ102では、ステップ101で決定された領域に対し設定されている基本時間間隔tNB及び補正量ktNに基づいて時間間隔tNが算出される(tN=tNB+ktN)。続くステップ103では先のNO処理から時間tNだけ経過したか否かが判別される。先のNO処理から時間tNだけ経過していないときには処理サイクルを終了し、先のNO処理から時間tNだけ経過したときにはステップ104に進んでNO処理が行われる。具体的には、NO吸収剤23に流入する排気ガスの空燃比AFNがリッチになるように還元剤供給弁31から一時的に還元剤が供給される。
【0059】
図5は本発明による実施例の補正量ktN更新ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0060】
図5を参照すると、まずステップ110では、NO処理が開始されたか否かが判別される。NO処理が開始されていないときには次いでステップ111に進み、このときの流出NO濃度CNOがZCNOとして記憶される。次いで処理サイクルを終了する。
【0061】
次いで、NO処理が開始されると、ステップ110からステップ112に進む。従って、ZCNOは上述した直前NO濃度を表している。ステップ112では、直前NO濃度ZCNOが上述した流出NO濃度CNOの許容最大濃度に相当するCNHよりも大きいか否かが判別される。ZCNO>CNHのときには次いでステップ113に進み、現在の機関運転状態が属する領域が決定され、続くステップ114ではこの領域の補正量ktNが例えば一定値Δkだけ小さくされる。このようにして、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンに保持されているときの流出NO濃度CNOが許容最大濃度を越えないように、時間間隔tNが設定され又は基本時間間隔tNが補正される。
【0062】
一方、ZCNO≦CNHのときには次いでステップ115に進み、直前NO濃度ZCNOが上述した燃料消費率の許容最大値に相当するCNLよりも小さいか否かが判別される。ZCNO<CNLのときには次いでステップ116に進み、現在の機関運転状態が属する領域が決定される。続くステップ117ではこの領域の補正量ktNが例えば一定値Δkだけ大きくされる。このようにして、NO処理による燃料消費率が許容最大値を越えないように、時間間隔tNが設定され又は基本時間間隔tNが補正される。
【0063】
これに対し、ZCNO≧CNLのとき、即ちCNL≦ZCNO≦CNHのときには補正量ktNを更新することなく処理サイクルを終了する。この場合、直前NO濃度ZCNOがCNLからCNHまでの範囲内に維持されるように、補正量ktNを更新しているという見方もできる。
【0064】
このようにしてNO処理が行われ、その結果NO吸収剤23内に蓄えられ得るNOの量が増大される。
【0065】
ところが、排気ガス中にはイオウ分がSOの形で含まれており、NO吸収剤23内にはNOばかりでなくSOも蓄えられる。このSOのNO吸収剤23内への蓄積メカニズムはNOの蓄積メカニズムと同じであると考えられる。即ち、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると、NO吸収剤23に流入する排気ガスの空燃比がリーンのときには上述したように酸素OがO 又はO2−の形で白金Ptの表面に付着しており、流入する排気ガス中のSOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、SOとなる。次いで生成されたSOは白金Pt上でさらに酸化されつつNO吸収剤23内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO の形でNO吸収剤23内に拡散する。この硫酸イオンSO は次いでバリウムイオンBaと結合して硫酸塩BaSOを生成する。
【0066】
この硫酸塩BaSOは分解しにくく、NO吸収剤23内に流入する排気ガスの空燃比をただ単にリッチにしてもNO吸収剤23内の硫酸塩BaSOの量は減少しない。このため、時間が経過するにつれてNO吸収剤23内の硫酸塩BaSOの量が増大し、その結果NO吸収剤23内に蓄えられ得るNOの量が減少することになる。
【0067】
ところが、NO吸収剤23の温度を例えば600℃以上に維持しつつNO吸収剤23に流入する排気ガスの平均空燃比を理論空燃比又はリッチにすると、NO吸収剤23内の硫酸塩BaSOが分解してSOの形でNO吸収剤23から放出される。この放出されたSOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応してSOに還元せしめられる。このようにしてNO吸収剤23内に硫酸塩BaSOの形で蓄えられているSOの量が次第に減少し、このときNO吸収剤23からSOがSOの形で流出することがない。
【0068】
そこで本発明による実施例では、NO吸収剤23内の蓄積SO量を減少させるために、NO吸収剤23の温度を硫酸塩分解温度例えば600℃以上に維持しながら、還元剤供給弁31から還元剤を供給してNO吸収剤23に流入する排気ガスの平均空燃比を一時的にわずかばかりリッチに切り替えるSO処理を行うようにしている。なお、NO吸収剤23内に流入する排気ガスの平均空燃比AFNを一時的にわずかばかりリッチに切り替えるために、例えば燃料噴射弁6から膨張行程又は排気行程に追加の燃料を噴射するようにしてもよいし、燃焼室5内で燃焼される混合気の空燃比を一時的にリッチに切り替えるようにしてもよい。
【0069】
例えば、NO吸収剤23の蓄積SO量を求め、この蓄積SO量が一定量を越える毎にSO処理を行うこともできる。しかしながら、本発明による実施例では図6に示されるように、先のSO処理が完了してから(矢印X1)、燃料消費量QFが第1の設定量qf1だけ増大したときに次のSO処理を開始するようにしている(矢印X2)。或いは、先のSO処理が完了したときの燃料消費量QFをQFP1とすると、燃料消費量QFがQFP1からqf1だけ増大したときに次のSO処理が開始される。なお、燃料消費量QFは燃料噴射弁6から噴射される燃料の量と、還元剤供給弁31から供給される還元剤即ち燃料の量とを合計したものである。
【0070】
SO処理をどれくらいの時間にわたって行うかを定めるにも様々な方法があり、例えばSO処理を一定時間だけ行うこともできる。しかしながら本発明による実施例では、蓄積SO量を処理開始時量QSSから予め定められた下限値QSL以下まで減少させるのに必要なSO処理を行うようにしている。
【0071】
具体的には、先のSO処理が完了してから燃料消費量QFが第1の設定量qf1だけ増大するとまず、このときの蓄積SO量が求められ、処理開始時量QSSがこの蓄積SO量に設定され、SO処理が開始される。SO処理が開始されると図6に示されるように、蓄積SO量を代表する蓄積SO量代表値QSが処理開始時量QSSから逐次減算され、次いで蓄積SO量代表値QSが下限値QSL以下になると、SO処理が完了され、その結果NO吸収剤23内に流入する排気の平均空燃比AFNがリーンに戻される(矢印X3)。
【0072】
従って、一般的に表現すると、SO処理を行うべきと判断されたときにはこのときの蓄積SO量を求めると共に、処理開始時量QSSをこの求められた蓄積SO量に設定してNO吸収剤の蓄積SO量を処理開始時量QSSから下限値QSL以下まで減少させるのに必要なSO処理を行うようにしているということになる。
【0073】
ここで、本発明による実施例では、下限値QSLがほぼゼロに設定されており、従って蓄積SO量をほぼ処理開始時量だけ減少させるのに必要なSO処理が行われるということになる。
【0074】
なお、図6には示されていないが、SO処理が行われていないとき(矢印X1からX2まで)にはNO処理が繰り返し行われており、従ってNO吸収剤23内に流入する排気ガスの空燃比AFNは繰り返し一時的にリッチになっている。
【0075】
NO吸収剤23内の蓄積SO量を直接求めることは困難である。そこで本発明による各実施例では、蓄積SO量を推定するようにしている。次に、本発明による第1実施例の蓄積SO量推定値QSEの算出方法を説明する。
【0076】
本発明による第1実施例では、SO処理が行われていないときの、より正確にはNO吸収剤23内に流入する排気ガスの空燃比AFNがリーンのときのNO吸収剤23のNO浄化率EFFが互いに時間間隔を隔てて複数回算出され、このNO浄化率EFFに基づいて蓄積SO量推定値QSEが算出される。ここで、NO吸収剤23内に流入する排気ガス中のNO濃度である流入NO濃度をCNIとすると、NO吸収剤23のNO浄化率EFFは次式により表される。
【0077】
EFF=(CNI−CNO)/CNI
流出NO濃度CNOは上述したとおり、NOセンサ51により検出される。一方、流入NO濃度CNIを求めるために例えば排気管20aにNOセンサを取り付けることもできるが、本発明による第1実施例では流入NO濃度CNIは機関運転状態に基づいて求められる。即ち、流出NO濃度CNIは要求負荷L及び機関回転数Nの関数として予め実験により求められており、図7に示されるマップの形で予めROM42内に記憶されている。
【0078】
図8は算出された複数個のNO浄化率EFFを燃料消費量QFに対してプロットした結果の一例を示している。図8において、EFF(i),EFF(i+1),EFF(i+2)は燃料消費量QFがそれぞれQF(i),QF(i+1),QF(i+2)のときのNO浄化率EFFを表しており、i,i+1,i+2はNO浄化率の算出回数を表している(i=1,2,…)。
【0079】
図8からわかるように、燃料消費量QFが増大するにつれてNO浄化率EFFが低下し、燃料消費量QFとNO浄化率EFFとの関係は概ね一次式mにより表すことができる。
【0080】
ここで、一次式mの勾配は単位燃料消費量当たりのNO浄化率EFFの低下量を表している。後述するように、蓄積SO量が増大するにつれてNO浄化率EFFが低下し、NO浄化率EFFの低下量は蓄積SO量の増大量を表している。一方、蓄積SO量の単位時間当たりの増大量はNO吸収剤23内に単位時間当たり流入するSOの量に依存し、この流入SO量は単位時間当たりの燃料消費量に依存する。
【0081】
従って、燃料の種類、具体的には燃料中のイオウ濃度が変わらない限り、単位燃料消費量当たりの蓄積SO量の増大量はほぼ一定に維持され、単位燃料消費量当たりのNO浄化率EFFの低下量も一定に維持される。その結果、燃料消費量QFとNO浄化率EFFとの関係を表す一次式mは燃料の種類が変わらない限り、即ち給油されない限り、変わらないということになる。
【0082】
そうすると、一次式mを求めておけば、任意の時期におけるNO浄化率EFFを推定できることになる。即ち、図8に示される例では、燃料消費量QFがfのときのNO浄化率EFFはeであると推定できる。
【0083】
そこで本発明による第1実施例では、燃料消費量QFとNO浄化率EFFとの関係を表す一次式mを求めるようにしている。具体的には、NO浄化率EFFが少なくとも2回算出され、例えば最小自乗法により一次式mが決定される。
【0084】
一方、NO浄化率EFFは上述したように、蓄積SO量に依存し、具体的には蓄積SO量が多くなるにつれて小さくなる。蓄積SO量とNO浄化率EFFとの関係はNO吸収剤23の種類に応じて変動しうるが、NO吸収剤23の種類が決まればこの関係を予め実験により求めておくことができる。図9は蓄積SO量推定値QSEとNO浄化率EFFとの関係を示す一例であり、予め実験により求められROM42内に記憶されている。この例では、NO浄化率EFFがeのときの蓄積SO量推定値QSEはsになる。
【0085】
従って、図8及び図9に示される例では、燃料消費量QFがfのときの蓄積SO量推定値QSEがsであるということがわかる。
【0086】
本発明による第1実施例では、SO処理を行うべきと判断されたとき即ち先のSO処理が完了してから燃料消費量QFが第1の設定量qf1だけ増大したときに、燃料消費量QFとNO浄化率EFFとの関係を表す一次式mが求められ、このときの燃料消費量QF(=QFP1+qf1)から一次式mを用いてこのときのNO浄化率EFFが算出され、算出されたNO浄化率から図9のマップを用いてこのときの蓄積SO量推定値QSEが算出される。次いで、処理開始時量QSSがこの蓄積SO量推定値QSEに設定される。
【0087】
従って、一般的に言うと、流出NO濃度CNO又はNO浄化率EFFに基づいて蓄積SO量を求めているということになる。或いは、NO浄化率と燃料消費量との関係を表す関係式を求め、判断時期における燃料消費量と関係式とから判断時期におけるNO浄化率を求め、判断時期におけるNO浄化率に基づいて判断時期における蓄積SO量を求めるようにしているという見方もできる。この場合、先のSO処理が完了してから燃料が予め定められた第1の設定量だけ消費されたとき、又はSO処理を行うべきと判断されたときを判断時期と考えることができる。
【0088】
もっとも、一次式mのような燃料消費量QFとNO浄化率EFFとの関係を表す関係式を求めなくても、SO処理を行うべきと判断されたときにこのときの流出NO濃度CNOを検出してこのときのNO浄化率EFFを算出すれば、図9のマップを用いてこのときの蓄積SO量推定値QSEを算出することができる。しかしながら、上述したように一次式mのような関係式は複数回算出されたNO浄化率EFFに基づいて決定されており、しかもこの関係式mは燃料が同じである限り変わらない。従って、関係式mを用いた方が蓄積SO量をより正確に求めることができる。
【0089】
なお、NO浄化率EFF及び蓄積SO量推定値QSEには誤差が含まれ得る。即ち、図10(A)に示されるように、算出されたNO浄化率EFFが例えばeであるといっても、実際の蓄積SO量は必ずしもsではなく、QSEMからQSEmの範囲内にある。この場合、QSEMを蓄積SO量推定値QSEがそれを基準としてとり得る最大の量、即ち可能最大量と考えることができ、QSEmを蓄積SO量推定値QSEがそれを基準としてとり得る最小の量と考えることができる。
【0090】
従って、SO処理を行うべきと判断されたときのNO浄化率EFFが例えばeということで処理開始時量QSSをsに設定した場合に、実際の蓄積SO量が可能最大量QSEMであると、蓄積SO量を下限量以下まで減少させるのに必要なSO処理を行っても、NO吸収剤23内にSOが残存することになる。
【0091】
そこで、これを阻止するために、SO処理を行うべきと判断されたときにこの可能最大量QSEMを求め、処理開始時量QSSをこの可能最大量QSEMに設定することもできる。ここで、可能最大量QSEMはNO浄化率EFFの関数として例えば図10(B)に実線で示されるマップの形で予めROM42内に記憶しておくことができる。なお、図10(B)において破線は図9に示される蓄積SO量推定値QSEを表している。
【0092】
ところで、本発明による第1実施例において、SO処理を行うべきと判断されたときの蓄積SO量推定値QSEは燃料が一定量だけ消費されたときの蓄積SO量の増大量を概ね表しており、従って単位燃料消費量当たりの蓄積SO量の増大量、即ち燃料中のイオウ濃度を表している。
【0093】
そうすると、SO処理を行うべきと判断されたときの蓄積SO量推定値QSEが予め定められた境界量よりも大きいときには燃料が高イオウ濃度燃料であり、SO処理を行うべきと判断されたときの蓄積SO量推定値QSEが境界量よりも小さいときには燃料が低イオウ濃度燃料又は標準燃料であると判断することができる。本発明による第1実施例では、NO浄化率EFFが蓄積SO量推定値QSEに対応していることから、SO処理を行うべきと判断されたときのNO浄化率EFFが上述した境界量に相当する境界浄化率EFFBよりも低いときに燃料が高イオウ濃度燃料であり、SO処理を行うべきと判断されたときのNO浄化率EFFが境界浄化率EFFBよりも高いときに燃料が低イオウ濃度燃料又は標準燃料であると判断するようにしている。
【0094】
その上で、燃料が低イオウ濃度燃料又は標準燃料であると判断されたときには、処理開始時量QSSを、SO処理を行うべきと判断されたときの蓄積SO量推定値QSEとは無関係な量に設定している。この無関係な量はどのように定めてもよいが、本発明による第1実施例では、燃料がイオウ濃度が基準濃度CSRの燃料であると仮定したときにNO吸収剤23内に蓄えられ得る最大のSO量に設定される。更に、この基準濃度CSRもどのように定めてもよいが、本発明による第1実施例において基準濃度CSRは標準的な燃料中のイオウ濃度、例えば50ppmに定められる。即ち、イオウ濃度が基準濃度CSRである燃料が第1の設定量qf1だけ消費されたときには、NO吸収剤23内に蓄えられ得る最大のSO量はqf1・CSRであり、処理開始時量QSSがこのqf1・CSRに設定される。
【0095】
このようにしているのは次の理由による。即ち、イオウ濃度が低い燃料の場合には蓄積SO量がNO浄化率EFFに与える影響が小さく、従ってこの場合に算出された蓄積SO量推定値QSEの精度は必ずしも高くない。そこで、燃料が低イオウ濃度燃料又は標準燃料であると判断されたときには、処理開始時量QSSを算出された蓄積SO量推定値QSEに設定するのではなく、イオウ濃度が既知の燃料が用いられている仮定した上で、処理開始時量QSSをこの既知のイオウ濃度に応じて定まる量に設定しているのである。
【0096】
これに対し、燃料が高イオウ濃度燃料であると判断されたときには、上述したとおり、処理開始時量QSSはSO処理を行うべきと判断されたときの蓄積SO量推定値QSEに設定される。
【0097】
従って、一般的にいうと、SO処理を行うべきと判断されたときの蓄積SO量を算出し、この算出された蓄積SO量が境界量よりも多いときには処理開始時量をこの算出された蓄積SO量に設定し、少ないときには処理開始時量をこの算出された蓄積SO量とは無関係な量に設定しているということになる。
【0098】
一方、市場で入手可能な燃料のうちイオウ濃度が最も高い燃料のイオウ濃度をCSMで表すと、燃料が第1の設定量qf1だけ消費されたときにNO吸収剤23内に蓄えられ得るSO量はたかだかqf1・CSMであり、SO処理を行うべきと判断されたときの実際の蓄積SO量がこのqf1・CSMを越えることはない。即ち、燃料が市場で入手可能な燃料のうちイオウ濃度が最も高い燃料であると仮定したときにNO吸収剤内に蓄えられ得る最大のイオウ量を蓄積可能最大量QSMすると、処理開始時量QSSはこの蓄積可能最大量QSMを越えないはずである。
【0099】
そこで本発明による第1実施例では、処理開始時量QSSが蓄積可能最大量QSMを越えているときには、処理開始時量QSSを蓄積可能最大量QSMに設定するようにしている。このようにすると、処理開始時量QSSが実際の蓄積SO量推定値QSEから大きく逸脱するのを阻止できる。
【0100】
ところで、上述したように一次式m(図8参照)はNO浄化率EFF又は流出NO濃度CNOに基づいて決定される。次に、一次式mの決定方法をまず概略的に説明する。
【0101】
図11に矢印RNで示されるように、SO処理が行われていないときには時間間隔を隔ててNO処理が繰り返し行われ、NO処理が行われていないときには、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンになっている。本発明による第1実施例では、このようにNO吸収剤23内に流入する排気ガスの空燃比AFNがリーンである期間内にNO濃度検出期間DPが設定され、このNO濃度検出期間DP内に流入NO濃度CNI及び流出NO濃度CNOが検出される。
【0102】
NO濃度検出期間DPはNO吸収剤23内に流入する排気ガスの空燃比AFNがリーンである限りどのように定めてもよいが、本発明による第1実施例では図12に示されるように、NO吸収剤23の蓄積NO量の推定値QNEが下限値QNmを越えてから上限値QNMを越えるまでの間がNO濃度検出期間DPに設定される。
【0103】
NO処理が行われると流出NO濃度CNOが大きく変動するけれども、NO処理が行われてから或る程度の時間が経過すれば流出NO濃度CNOは安定する。一方、NO処理が行われてからの経過時間が長くなるにつれて蓄積NO量推定値QNEは次第に大きくなり、従って蓄積NO量推定値QNEはNO処理が行われてからの経過時間を表している。そこで本発明による第1実施例では、蓄積NO量推定値QNEに基づいてNO濃度検出期間DPを設定するようにしている。
【0104】
図13に矢印Y1で示されるようにNO濃度検出期間DPが開始されると、流入NO濃度CNI及び流出NO濃度CNOがほぼ同時期に検出される。具体的には、流入NO濃度CNIはこのときの期間運転状態に基づき図7のマップを用いて算出され、流出NO濃度CNOはNOセンサ51の出力に基づいて検出される。次いで、これら検出された流入NO濃度CNI及び流出NO濃度CNOの補正値CNIC,CNOCが算出される。
【0105】
このようなCNI,CNOの検出及びCNIC,CNOCの算出がわずかばかりの時間間隔Δtでもって繰り返し行われる。次いで、図13に矢印Y2で示されるようにNO濃度検出期間DPが完了すると、NO濃度検出期間DPにおける流入NO濃度補正値CNICの平均値CNIAV及び流出NO濃度補正値CNOCの平均値CNOAVが算出され、次いでこれら平均値CIAV,CNOAVに基づいてNO浄化率EFFが算出される。この場合、一定期間における流入NO濃度及び流出NO濃度の平均値を用いてNO浄化率EFFが算出されるので、NO浄化率EFFを精度よく求めることができる。次いで、NO浄化率EFFの補正値EFFCが算出される。
【0106】
即ち、図11からわかるように、NO処理が行われた後リーン運転が行われる毎に、NO浄化率EFF又はNO浄化率補正値EFFCが算出される。
【0107】
次いで、先のNO浄化率平均値EFFAVが算出されてから(図11の矢印Z1参照)、燃料消費量QFが第2の設定量qf2だけ増大すると(図11の矢印Z2参照)、燃料消費量QFが第2の設定量qf2だけ消費される期間中に算出されたNO浄化率補正値EFFCの平均値であるNO浄化率平均値EFFAVが算出される。
【0108】
即ち、図14に示されるように、燃料が第2の設定量qf2だけ消費される毎に、NO浄化率平均値EFFAVが算出される。この第2の設定量qf2は、燃料がqf2だけ消費されても蓄積SO量がほとんど増大せず従ってNO浄化率がほとんど変化しない量(≪qf1)に設定されている。
【0109】
次いで、先のSO処理が完了してから(図14の矢印X1参照)燃料が第1の設定量qf1だけ消費されると(図14の矢印X2参照)、NO浄化率平均値EFFAVと燃料消費量QFとの関係を表す一次式mが決定され、このときのNO浄化率推定値EFFEが一次式mを用いて算出される。次いで、このNO浄化率推定値EFFEから図9のマップを用いて蓄積SO量推定値QSEが算出される。
【0110】
従って、一般的にいうと、NO吸収剤23内に流入する排気ガスの空燃比がリーンのときの流入NO量及び流出NO量を求め、これら流入NO量及び流出NO量に基づいてNO吸収剤のNO浄化率を互いに時間間隔を隔てて複数回求め、平均値算出時期が到来する毎に前回の平均値算出時期から今回の平均値算出時期までの期間内に求められたNO浄化率の平均値EFFAVを算出し、これらNO浄化率平均値EFFAVと燃料消費量との関係を表す関係式mを求めているということになる。その上で、前回の平均値算出時期から燃料が予め定められた第2の設定量qf2だけ消費されたときに次の平均値算出時期が到来したと判断しているということになる。
【0111】
次に、図6及び図11から図14までを参照しつつ、図15から図35までを参照して本発明による第1実施例を詳しく説明する。
【0112】
図15は本発明による第1実施例のSO制御ルーチンを示している。このルーチンは予め定められた設定時間Δt毎の割り込みによって実行される。
【0113】
図15を参照すると、まずステップ200ではSO処理フラグXSOXがセットされているか否かが判別される。このSO処理フラグXSOXはSO処理を実行すべきときにセットされ(XSOX=1)、それ以外はリセットされる(XSOX=0)ものである。SO処理フラグXSOXがリセットされているときには次いでステップ201に進み、燃料消費量差ΔQF(=QF−QFP1)が算出される。ここで、QFは現在の燃料消費量、QFP1は先のSO処理が完了した時点での燃料消費量をそれぞれ表している。続くステップ202では燃料消費量差ΔQFが第1の設定量qf1以上か否かが判別される。ΔQF<qf1のとき、即ち先のSO処理が完了してから燃料が第1の設定量qf1だけ消費されていないときには次いでステップ203に進み、一次式mを特定する係数kmi(i=1,2,3,4)の算出ルーチンが実行される。この係数kmiの算出ルーチンは図17に示されている。
【0114】
次いで、ΔQF≧qf1になると、ステップ202からステップ204に進み、処理開始時量QSSの設定ルーチンが実行される。この処理開始時量QSSの設定ルーチンは図32から図34までに示されている。
【0115】
続くステップ205では、蓄積SO量代表値QSがステップ204で設定された処理開始時量QSSに設定される。続くステップ206ではSO処理フラグXSOXがセットされる(XSOX=1)。
【0116】
SO処理フラグXSOXがセットされると、ステップ200からステップ207に進み、SO処理が行われる。具体的には、NO吸収剤23の温度が硫酸塩分解温度以上に維持されながら、NO吸収剤23に流入する排気ガスの平均空燃比AFNがわずかばかりリッチになるように還元剤供給弁31から還元剤が一時的に供給される。
【0117】
即ち、図6に示されるように、先のSO処理が完了してから燃料消費量QFが第1の設定量qf1だけ増大すると、次のSO処理が開始される。
【0118】
続くステップ208では、前回の処理サイクルから今回の処理サイクルまでのNO吸収剤23の蓄積SO量の減少量qsrが算出される。このSO減少量qsrは例えば図16に示されるように、機関運転状態例えば要求負荷L及び機関回転数Nの関数として予め求められており、図16に示されるマップの形で予めROM42内に記憶されている。ステップ208では図16のマップからSO減少量qsrが算出される。続くステップ209では、蓄積SO量代表値QSがSO減少量qsrだけ減少される(QS=QS−qsr)。続くステップ210では蓄積SO量代表値QSが下限値QSL以下か否かが判別される。QS>QSLのときには処理サイクルを終了し、SO処理が継続される。次いで、QS≦QSLになると、ステップ210からステップ211に進み、SO処理フラグXSOXがリセットされる(XSOX=0)。次いで、ステップ212に進み、このときの燃料消費量QFがQFP1として記憶される。
【0119】
即ち、図6に示されるように、蓄積SO量代表値QSが下限値QSL以下になると、SO処理が完了される。
【0120】
次に、ステップ203(図15)で実行される係数kmiの算出ルーチンを図17を参照して説明する。図17を参照すると、まずステップ220では、現在の燃料消費量QFと、先の平均値算出時期における燃料消費量QFP2との差が第2の設定量qf2以上か否かが判別される。QF−QFP2<qf2のとき、即ち先のNO浄化率平均値EFFAVが算出されてから燃料が第2の設定量qf2だけ消費されていないときには次いでステップ221に進み、NO浄化率算出ルーチンが実行される。このNO浄化率算出ルーチンは図18から図20までに示されている。
【0121】
図18から図20までを参照すると、まずステップ230では検出期間フラグXDPがセットされているか否かが判別される。この検出期間フラグXDPはNO濃度検出期間DP中のときにセットされ(XDP=1)、それ以外はリセットされる(XDP=0)ものである。検出期間フラグXDPがリセットされているとき、即ち現在NO濃度検出期間DP中でないときには次いでステップ231に進み、NO吸収剤23及びNOセンサ51が活性化しているか否かが判別される。例えば、排気温センサ52により検出される排気ガスの温度が一定値以上のときにNO吸収剤23及びNOセンサ51が活性化していると判断することができる。NO吸収剤23及びNOセンサ51が活性化していると判断されたときには次いでステップ232に進み、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンであるか否かが判別される。例えば、還元剤供給弁31から還元剤が供給されていないときに、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンであると判断することができる。NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンであると判断されたときには次いでステップ233に進み、蓄積NO量推定値QNEが下限値QNmよりも大きいか否かが判別される。
【0122】
蓄積NO量推定値QNEは例えば図21に示される蓄積NO量推定値QNEの算出ルーチンにより算出することができる。この算出ルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0123】
図21を参照すると、まずステップ260では、還元剤供給弁31からの還元剤供給作用が停止されているか否かが判別される。還元剤供給作用が停止されているときには次いでステップ261に進み、前回の処理サイクルから今回の処理サイクルまでのNO吸収剤23の蓄積NO量の増加量qnaが算出される。このNO増加量qnaは例えば図22に示されるように、機関運転状態例えば要求負荷L及び機関回転数Nの関数として予め求められており、図22に示されるマップの形で予めROM42内に記憶されている。ステップ261では図22のマップからNO増加量qnaが算出される。続くステップ262では、蓄積NO量推定値QNEがNO増加量qnaだけ増大される(QNE=QNE+qna)。
【0124】
これに対し、還元剤供給作用が行われているときには次いでステップ263に進み、蓄積NO量推定値QNEがクリアされる。即ち、図12に示されるように、還元剤供給作用が開始されると蓄積NO量推定値QNEがクリアされ、還元剤供給作用が停止されると蓄積NO量推定値QNEが増大し始める。
【0125】
再び図19を参照すると、ステップ233においてQNE>QNmのときには次いでステップ234に進み、検出期間フラグXDPがセットされる(XDP=1)。
【0126】
これに対し、NO吸収剤23もしくはNOセンサ51が活性化しておらず、又はNO吸収剤23内に流入する排気ガスの空燃比AFNがリーンでなく、又はQNE≦QNmのときには処理サイクルを終了する。
【0127】
検出期間フラグXDPがセットされたときにはステップ230からステップ235に進み、蓄積NO量推定値QNEが上限値QNMよりも大きいか否かが判別される。QNE≦QNMのときには次いでステップ236に進み、流入NO濃度補正値CNICの算出ルーチンが実行される。このCNICの算出ルーチンでは図23を参照して後述するように、流入NO濃度CNIが検出され、流入NO濃度補正値CNICが算出される。続くステップ237では流出NO濃度補正値CNOCの算出ルーチンが実行される。このCNOCの算出ルーチンでは図26を参照して後述するように、流出NO濃度CNOが検出され、流出NO濃度補正値CNOCが算出される。
【0128】
即ち、本ルーチンは時間Δt毎に実行されるので、図13に示されるように、時間Δt毎に流入NO濃度CNI及び流出NO濃度CNOが検出され、時間Δt毎に流入NO濃度補正値CNIC及び流出NO濃度補正値CNOCが算出される。
【0129】
続くステップ238では、流出NO濃度補正値CNOCが許容最小値CNOLよりも小さいか否かが判別される。CNOC<CNOLのときには次いでステップ239に進み、流出NO濃度補正値CNOCが許容最小値CNOLよりも小さいときの回数を表す少量回数カウンタnNLが1だけインクリメントされる(nNL=nNL+1)。次いで、ステップ240に進む。これに対し、CNOC≧CNOLのときにはステップ238からステップ240にジャンプする。
【0130】
ステップ240では、流入NO濃度CNI及び流出NO濃度CNO又は補正値CNIC,CNOCの検出回数を表す検出回数カウンタnCが1だけインクリメントされる(nC=nC+1)。続くステップ241では、流入NO濃度補正値CNICの積算値SCNI及び流出NO濃度補正値CNOCの積算値SCNOがそれぞれ算出される(SCNI=SCNI+CNIO、SCNO=SCNO+CNOC)。
【0131】
次いで、蓄積NO量推定値QNEが上限値QNMを越えると、ステップ235からステップ242に進み、検出期間フラグXDPがリセットされる(XDP=0)。
【0132】
続くステップ243では、検出回数カウンタnCが予め定められた下限値nDP以上か否かが判別される。nC≧nDPのときには次いでステップ244に進み、流入NO濃度平均値CNIAV及び流出NO濃度平均値CNOAVがそれぞれ算出される(CNIAV=SCNI/nC,CNOAV=SCNO/nC)。続くステップ245では、NO浄化率補正値EFFCの算出ルーチンが実行される。NO浄化率補正値EFFCの算出ルーチンでは図27を参照して後述するように、NO浄化率EFF及びNO浄化率補正値EFFCが算出される。
【0133】
即ち、図11から図13までに示されるように、蓄積NO量推定値QNEが上限値QNMを越えると、NO濃度検出期間DPが完了され、このとき流入NO濃度平均値CNIAV及び流出NO濃度平均値CNOAVがそれぞれ算出され、更にNO浄化率EFF及びNO浄化率補正値EFFCが算出される。
【0134】
続くステップ246では、現在定常運転時であるか否かが判別される。例えば、機関回転数Nの変化率に基づいて定常運転時であるか否かを判断できる。定常運転時であると判断されたときには次いでステップ247に進み、NO浄化率補正値EFFCのうち定常運転時に算出されたものの積算値SSTが算出される(SST=SST+EFFC)。続くステップ248では、定常運転時におけるNO浄化率補正値EFFCの算出回数を表すカウンタnSTが1だけインクリメントされる(nST=nST+1)。次いでステップ251に進む。これに対し、現在過渡運転時であると判断されたときには次いでステップ249に進み、NO浄化率補正値EFFCのうち過渡運転時に算出されたものの積算値SNSTが算出される(SNST=SNST+EFFC)。続くステップ250では、過渡運転時におけるNO浄化率補正値EFFCの算出回数を表すカウンタnNSTが1だけインクリメントされる(nNST=nNST+1)。次いでステップ251に進む。ステップ251では、NO浄化率EFF又は補正値EFFCの算出回数を表す浄化率算出回数カウンタnEFFが1だけインクリメントされる(nEFF=nEFF+1)。次いでステップ252に進む。
【0135】
ステップ252では、検出回数カウンタnC及び積算値SCNI,SCNOがそれぞれクリアされる。
【0136】
これに対し、nC<nDPのときにはステップ243からステップ252にジャンプする。即ち、一つのNO濃度検出期間DP中における流入NO濃度CNI及び流出NO濃度CNOの検出回数が下限値nDPよりも少ないときには、NO浄化率EFF及びNO浄化率補正値EFFCが算出されない。このようにしているのは、流入NO濃度CNI及び流出NO濃度CNOの検出回数が少なくなると、NO浄化率EFF及びNO浄化率補正値EFFCを精度よく算出するのが困難になるからである。ここで、カウンタnCがNO濃度検出期間DPの継続時間を表していることを考えると、NO濃度検出期間DPの継続時間が設定時間よりも短いときには、NO浄化率EFF及びNO浄化率補正値EFFCを算出するのを禁止しているという見方もできる。なお、NO濃度検出期間DPの継続時間は蓄積NO量推定値QNEの増加速度、即ち機関運転状態に応じて変動しうるので、検出回数カウンタnCが下限値nDPよりも大きいときもあれば小さいときもある。
【0137】
再び図17を参照すると、QF−QFP2≧qf2になるとステップ220からステップ222進み、浄化率算出回数カウンタnEFFが予め定められた下限値nL2以上か否かが判別される。nEFF≧nL2のときには次いでステップ223に進み、次式に基づいてNO浄化率平均値EFFAVが算出される。
【0138】
【数1】
Figure 2005036653
【0139】
ここで、wSTは機関定常運転時に算出されたNO浄化率EFF又は補正値EFFCの重み付け係数,wNSTは機関過渡運転時に算出されたNO浄化率EFF又は補正値EFFCの重み付け係数をそれぞれ表している。即ち、本発明による第1実施例では、NO浄化率EFF又は補正値EFFCが算出されたときに機関定常運転が行われているか機関過渡運転が行われているかに応じて重み付けられた加重平均値EFFAVが算出される。この場合、機関定常運転時に算出されたNO浄化率EFF又は補正値EFFCのほうがより信頼できることを考えると、重み付け係数wSTは重み付け係数wNSTよりも大きくされている。
【0140】
続くステップ224では、NO浄化率平均値EFFAVの算出回数を表す平均値算出回数カウンタnAVが1だけインクリメントされる(nAV=nAV+1)。続くステップ225では、係数kmi(i=1,2,3,4)が次式に基づいてそれぞれ算出される。
【0141】
km1=km1+QF
km2=km2+QF
km3=km3+QF・EFFAV
km4=km4+EFFAV
本発明による第1実施例では、NO浄化率平均値EFFAVが算出される毎に係数kmiが更新され、従ってNO浄化率平均値EFFAVが算出される毎に一次式mが決定されているということになる。
【0142】
続くステップ226では、給油判定ルーチンが実行される。この給油判定ルーチンでは図30を参照して後述するように、給油が行われたか否か、より正確にはイオウ濃度の異なる燃料が給油されたか否かが判定される。続くステップ227では、現在の燃料消費量QFがQFP2として記憶され、積算値SST,SNST、カウンタnST,nNST,nEFFがそれぞれクリアされる。
【0143】
これに対し、nEFF<nL2のときにはステップ222からステップ227にジャンプする。即ち、前回のNO浄化率平均値算出時期から今回のNO浄化率平均値算出時期までの期間内にNO浄化率EFF又は補正値EFFCが算出された回数が下限値nL2よりも少ないときには、この期間におけるNO浄化率平均値EFFAVが算出されない。なお、単位時間当たりにNO浄化率EFF又は補正値EFFCが算出される回数はNO処理が行われる時間間隔tNに応じて定まるので、浄化率算出回数カウンタnEFFが下限値nL2よりも大きい場合もあれば小さい場合もある。
【0144】
次に、ステップ236(図20)で実行される流入NO濃度補正値CNICの算出ルーチンを図23を参照して説明する。図23を参照すると、まずステップ270では、現在の機関運転状態即ち要求負荷L及び機関回転数Nに基づいて図7のマップから流入NO濃度CNIが算出される。続くステップ271では遅れ時間DLYが算出される。続くステップ272では、次式(1)に基づいて流入NO濃度補正値CNICが算出される。
【0145】
【数2】
Figure 2005036653
【0146】
続くステップ273では、ステップ271で算出された流入NO濃度CNIがCNIPとして記憶される。
【0147】
図13を参照して上述したように、流入NO濃度CNI及び流出NO濃度CNOはほぼ同時期に検出される。しかしながら、排気ガス部分がそれについての流入NO濃度CNIが算出されてからNOセンサ51に到達するまでに遅れ時間DLYだけ必要であることを考えると、或る時点で検出された流出NO濃度CNOと、この或る時点から遅れ時間DLYだけ前に検出された流入NO濃度CNIとに基づいてNO浄化率EFFを算出すべきである。
【0148】
そこで本発明による第1実施例では、この遅れ時間DLYを求め(ステップ271)、現時点から遅れ時間DLYだけ前の流入NO濃度CNIを算出するようにしている。この算出結果が本発明による第1実施例における流入NO濃度補正値CNICである。
【0149】
遅れ時間DLYは機関運転状態例えば吸入空気量Gaの関数として予め求められており、図24に示されるマップの形でROM42内に予め記憶されている。ステップ271では図24のマップから遅れ時間DLYが算出される。
【0150】
一方、図25に示されるように、前回即ち時間t(j−1)に検出された流入NO濃度をCNI(j−1)、今回即ち時間t(j)に検出された流入NO濃度をCNI(j)とすると、時間tと流入NO濃度CNIとの関係は次式(2)で表される。
【0151】
【数3】
Figure 2005036653
【0152】
なお、jは流入NO濃度CNIの検出回数を表している(j=1,2,…)。この式(2)において、時間tにt−DLYを代入し、CNI(j−1)を前回検出された流入NO濃度CNIPに書き換えると、上述した式(1)が得られる。
【0153】
なお、今回検出された流入NO濃度CNIと、遅れ時間DLYだけ先の流出NO濃度CNOとに基づいてNO浄化率を算出するようにしてもよい。即ち、この場合には、流出NO濃度CNOが遅れ時間に基づいて補正されるということになる。
【0154】
次に、ステップ237(図20)で実行される流出NO濃度補正値CNOCの算出ルーチンを図26を参照して説明する。図26を参照すると、まずステップ280では、NOセンサ51により検出された流出NO濃度CNOが読み込まれる。続くステップ281では次式に基づいて流出NO濃度補正値CNOCが算出される。
【0155】
【数4】
Figure 2005036653
【0156】
ここで、tN,ktNは上述したNO処理の時間間隔及び補正量である。
【0157】
図2から図5までを参照して説明したように、本発明による実施例では、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンに保持されているときの流出NO濃度CNOが許容最大濃度を越えないように、かつNO処理による燃料消費率が許容最大値を越えないように、補正量ktNでもって基本時間間隔tNBが補正される(tN=tNB+ktN)。ここで、補正量ktNが機関運転状態に応じて変動することを考えると、(tNB+ktN)/tNB(=tN/tNB)は機関運転状態の定常運転状態に対するずれ量を表しており、検出された流出NO濃度CNOをこの(tNB+ktN)/tNBで割り算した結果は基準運転状態即ち定常運転時における流出NO濃度に換算した値を表している。
【0158】
そこで本発明による第1実施例では、ステップ280で検出された流出NO濃度CNOを(tNB+ktN)/tNBで割り算することにより、定常運転時における流出NO濃度に換算した値を算出するようにしている。この算出結果が本発明による第1実施例における流出NO濃度補正値CNOCである。このようにすると、流出NO濃度が機関運転状態の影響を受けず、従ってNO浄化率又は一次式mが機関運転状態の影響を受けない。
【0159】
従って、一般的にいうと、機関定常運転時のためのNO処理の基本時間間隔tNBを設定し、機関運転状態に基づいて基本時間間隔tNBを補正量ktNでもって補正し、補正量ktNに基づいて流出NO量CNOを補正しているということになる。
【0160】
次に、ステップ245(図18)で実行されるNO浄化率補正値EFFCの算出ルーチンを図27を参照して説明する。図27を参照すると、まずステップ290では、NO浄化率EFFが次式に基づいて算出される。
【0161】
EFF=(CNIAV−CNOAV)/CNIAV
続くステップ291では図28(A)のマップから第1の補正係数kE1が算出され、続くステップ292では図28(B)のマップから第2の補正係数kE2が算出され、続くステップ293では図28(C)のマップから第3の補正係数kE3が算出される。続くステップ294では次式に基づいてNO浄化率補正値EFFCが算出される。
【0162】
EFFC=EFF・kE1・kE2・kE3
第1及び第2の補正係数kE1,kE2はステップ290で算出されたNO浄化率EFFを、NO吸収剤23の状態が予め定められた基準状態のときのNO浄化率に換算するためのものである。この基準状態はどのように定めてもよいが、本発明による第1実施例では、NO吸収剤23の温度TCが基準温度TCRであり、NO吸収剤23における排気ガスの空間速度を表す吸入空気量Gaが基準量GaRであるときを基準状態としている。
【0163】
第1の補正係数kE1は図28(A)に示されるように、NO吸収剤23の温度TCが低いときにはNO吸収剤23の温度TCが高くなるにつれて小さくなり、NO吸収剤23の温度TCが高いときにはNO吸収剤23の温度TCが高くなるにつれて大きくなり、NO吸収剤23の温度TCが基準温度TCRのときに1.0となる。
【0164】
また、第2の補正係数kE2は図28(B)に示されるように、NO吸収剤23における排気ガスの空間速度を表す吸入空気量Gaが多くなるにつれて大きくなり、吸入空気量Gaが基準量GaRのときに1.0となる。
【0165】
このようにすると、NO浄化率がNO吸収剤23の状態の影響を受けず、従って一次式mがNO吸収剤23の状態の影響を受けない。
【0166】
一方、第3の補正係数kE3はNO浄化率に対するNO吸収剤23の熱劣化度合いの影響を除去するためのものである。即ち、第3の補正係数kE3はNO吸収剤23の熱劣化度合いを表す熱劣化カウンタnTCHがゼロのときに1.0であり、熱劣化カウンタnTCHが大きくなるにつれて大きくなる。
【0167】
これら補正係数kE1,kE2,kE3はそれぞれ予め実験により求められており、図28(A),(B),(C)に示されるマップの形で予めROM42内に記憶されている。
【0168】
熱劣化カウンタnTCHは例えば図29に示される熱劣化カウンタnTCHの算出ルーチンにより算出することができる。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0169】
図29を参照すると、まずステップ300では、NO吸収剤23の温度TCが予め定められた設定温度TCHよりも高いか否かが判別される。TC≦TCHのときには処理サイクルを終了し、TC>TCHのときには次いでステップ301に進み、熱劣化カウンタnTCHが1だけインクリメントされる(nTCH=nTCH+1)。
【0170】
次に、ステップ226(図17)で実行される給油判定ルーチンを図30を参照して説明する。図30を参照すると、まずステップ310では、給油フラグXFCがリセットされているか否かが判別される。この給油フラグは給油、より正確にはイオウ濃度の異なる燃料の給油が行われたと判定されたときにセットされ(XFC=1)、それ以外はリセットされる(XFC=0)ものである。給油フラグXFCがリセットされているときには次いでステップ311に進み、NO浄化率平均値EFFAVの一次式mに対する偏差Rが算出される。この偏差Rは例えば相関係数で表すことができる。
【0171】
続くステップ312では、今回の処理サイクルにおける偏差Rと前回の処理サイクルにおける偏差RPとの差が予め定められたしきい値R1よりも大きいか否かが判別される。R−RP≦R1のときには次いでステップ313に進み、今回の処理サイクルにおける偏差RがRPとして記憶される。これに対し、R−RP>R1のときには次いでステップ314に進み、給油フラグXFCがセットされる(XFC=1)。即ち、R−RP>R1のときには給油が行われたと判断される。
【0172】
図8を参照して上述したように、給油が行われない限り、燃料消費量QFとNO浄化率平均値EFFAVとの関係を表す一次式mは変わらない。このことは、給油前と給油後とで、燃料消費量QFとNO浄化率平均値EFFAVとの関係を表す一次式mが異なることを意味している。即ち、図31に示されるように、給油前には燃料消費量QFとNO浄化率平均値EFFAVとの関係を表す一次式はm1であり、給油後にはm2になる。
【0173】
このように、本来、二つの一次式m1,m2で表されるべき燃料消費量QFとNO浄化率平均値EFFAVとの関係を一つの一次式mで表そうとすると、偏差Rが大きくなる。そこで本発明による第1実施例では、偏差Rがしきい値R1よりも大きくなったときに給油が行われたと判断しているのである。
【0174】
続くステップ315では、係数kmi及び平均値算出回数カウンタnAVがクリアされる。即ち、給油が行われたと判断されたときには、給油前のNO浄化率EFF又は平均値EFFAVに基づく一次式mの決定が禁止される。
【0175】
続くステップ316では、高イオウ濃度フラグXFSHがセットされているか否かが判別される。この高イオウ濃度フラグXFSHは燃料が高イオウ濃度燃料であると判断されたときにセットされ(XFSH=1)、低イオウ濃度燃料又は標準燃料であると判断されたときにリセットされる(XFSH=0)ものであり、図32から図34までの処理開始時量QSSの設定ルーチンにおいてセット又はリセットされる。
【0176】
高イオウ濃度フラグXFSHがセットされているときには次いでステップ317に進み、低イオウ濃度判定フラグXFCLがセットされる(XFCL=1)。この低イオウ濃度判定フラグXFCLは燃料が低イオウ濃度燃料又は標準燃料に切り替えられたと判断されたときにセットされ(XFCL=1)、それ以外はリセットされる(XFCL=0)ものである。即ち、燃料が高イオウ濃度燃料である(XFSH=1)ときに給油が行われたということは、燃料が低イオウ濃度燃料又は標準燃料に切り替えられたということであり、このとき低イオウ濃度判定フラグXFCLがセットされる。
【0177】
これに対し、高イオウ濃度フラグXFSHがリセットされているときには次いでステップ318に進み、高イオウ濃度判定フラグXFCHがセットされる(XFCH=1)。この高イオウ濃度判定フラグXFCHは燃料が高イオウ濃度燃料に切り替えられたと判断されたときにセットされ(XFCH=1)、それ以外はリセットされる(XFCH=0)ものである。即ち、燃料が低イオウ濃度燃料又は標準燃料である(XFSH=0)ときに給油が行われたということは、燃料が高イオウ濃度燃料に切り替えられたということであり、このとき高イオウ濃度判定フラグXFCHがセットされる。
【0178】
一方、ステップ310において、給油フラグXFCがセットされると(XFC=1)、処理サイクルが完了される。後述するように、この給油フラグXFCは図32から図34までに示される処理開始時量QSSの設定ルーチンにおいてリセットされる。従って、給油フラグXFCが一旦セットされると、処理開始時量QSSの設定又はSO処理が行われるまで給油判定が行われず、処理開始時量QSSの設定又はSO処理が行われると、再び給油判定が行われることになる。
【0179】
次に、ステップ204(図15)で実行される処理開始時量QSSの設定ルーチンを図32から図34までを参照して説明する。図32から図34までを参照すると、まずステップ320では、蓄積可能最大量QSMが算出される(QSM=ΔQF1・CSM)。続くステップ321では、高イオウ濃度判定フラグXFCHがリセットされているか否かが判別される。高イオウ濃度判定フラグXFCHがリセットされているときには次いでステップ322に進み、低イオウ濃度判定フラグXFCLがリセットされているか否かが判別される。低イオウ濃度判定フラグXFCLがリセットされているときには次いでステップ323に進む。高イオウ濃度判定フラグXFCH又は低イオウ濃度判定フラグXFCLがセットされるのは給油が行われたと判定されたときであるので(図30参照)、給油が行われたと判定されていないときにステップ323に進むことになる。
【0180】
ステップ323では、NO浄化率平均値EFFAVの算出回数を表す平均値算出回数カウンタnAV(図17参照)が予め定められた下限値nL1以上か否かが判別される。nAV≧nL1のときには次いでステップ324に進み、SO処理を開始すべきときのNO浄化率推定値EFFEが次式(3)に基づいて算出される。
【0181】
【数5】
Figure 2005036653
【0182】
続くステップ325では、NO浄化率推定値EFFEが境界浄化率EFFBよりも高いか否かが判別される。EFFE>EFFBのときには次いでステップ326に進み、図9のマップから蓄積SO量推定値QSEが算出される。続くステップ327では、処理開始時量QSSがこの蓄積SO量推定値QSEに設定される。続くステップ328では、高イオウ濃度フラグXFSHがセットされる(XFSH=1)。即ち、この場合には燃料が高イオウ濃度燃料であると判断される。次いでステップ335に進む。
【0183】
これに対し、EFFE≦EFFBのときにはステップ325からステップ329に進み、基準濃度CSRを用いて処理開始時量QSSが設定される(QSS=ΔQF1・CSR)。即ち、処理開始時量QSSがNO浄化率平均値EFFAV又は蓄積SO量推定値QSEとは無関係な量に設定される。続くステップ330では、高イオウ濃度フラグXFSHがリセットされる(XFSH=0)。即ち、この場合には燃料が低イオウ濃度燃料又は標準燃料であると判断される。次いでステップ335に進む。
【0184】
一方、nAV<nL1のときにはステップ323からステップ331に進み、流出NO濃度補正値CNOCが許容最小値CNOLよりも小さいときの回数を表す少量回数カウンタnNL(図20参照)が予め定められた上限値nUよりも小さいか否かが判別される。nNL<nUのときには次いでステップ332に進み、処理開始時量QSSが蓄積可能最大量QSMに設定される。次いでステップ328に進み、高イオウ濃度フラグXFSHがセットされる。
【0185】
これに対し、nNL≧nUのときには次いでステップ329に進んで処理開始時量QSSが設定され(QSS=ΔQF1・CSR),続くステップ330では高イオウ濃度フラグXFSHがリセットされる(XFSH=0)。
【0186】
このように、平均値算出回数カウンタnAVにより表されるNO浄化率平均値EFFAVの算出回数が多いときには、NO浄化率推定値EFFE及び蓄積SO量推定値QSEに基づいて処理開始時量QSSが設定され、NO浄化率平均値EFFAVの算出回数が少ないときには、燃料中のイオウ濃度をCSR又はCSMと仮定して処理開始時量QSSが設定される。
【0187】
従って、一般的に言うと、検出された流出NO量CNO又は補正値CNOcが予め定められた許容最小量CNOLよりも少ないときの回数nNLが上限値nUを越えたときには、処理開始時量QSSを算出された蓄積SO量QSEとは無関係な量に設定しているということになる。
【0188】
その上で、少量回数カウンタnNLが小さいときには高イオウ濃度燃料であると判断され、少量回数カウンタnNLが大きいときには燃料が低イオウ濃度燃料又は標準燃料であると判断される。
【0189】
一方、高イオウ濃度判定フラグXFCHがセットされているとき、即ち高イオウ濃度燃料が給油されたと判断されたときにはステップ321からステップ333に進み、平均値算出回数カウンタnAVが下限値nL1以上か否かが判別される。nAV≧nL1のときにはステップ334に進み、SO処理を開始すべきときのNO浄化率推定値EFFEが上述の式(3)に基づいて算出される。次いでステップ326,327,328に順次進む。これに対し、nAV<nL1のときには、ステップ332,328に順次進む。
【0190】
一方、低イオウ濃度判定フラグXFCLがセットされているとき、即ち低イオウ濃度燃料又は標準燃料が給油されたと判断されたときにはステップ322からステップ329,330に順次進む。
【0191】
ステップ335では、設定された処理開始時量QSSが蓄積可能最大量QSMよりも多いか否かが判別される。QSM>QSMのときには次いでステップ336に進み、処理開始時量QSSを蓄積可能最大量QSMに設定した後にステップ337に進む。これに対し、QSS≦QSMのときにはステップ337にジャンプする。
【0192】
ステップ337では、係数kmi(i=1,2,3,4)、平均値算出回数カウンタnAV、及び少量回数カウンタnNLがクリアされ、給油フラグXFC、高イオウ濃度判定フラグXFCH、及び低イオウ濃度判定フラグXFCLがリセットされる。
【0193】
このように本発明による第1実施例では、図35に示されるように、燃料消費量QFが第2の設定量qf2だけ増大する毎にNO浄化率平均値EFFAVが算出される。なお、浄化率算出回数カウンタnEFFで表されるNO浄化率EFFの算出回数が少ないときには、図35において矢印Wで示されるようにNO浄化率平均値EFFAVは算出されない。その上で、NO浄化率平均値EFFAVと燃料消費量QFとの関係を表す一次式mがこれらNO浄化率平均値EFFAVに基づき決定される。次いで、先のSO処理が完了してから(図35の矢印X1参照)、燃料消費量QFが第1の設定量qf1だけ増大すると、このときのNO浄化率推定値EFFEが一次式mを用いて算出される。
【0194】
次に、本発明による第2実施例を説明する。
【0195】
図36に示されるように、NO処理が行われると、NOセンサ51により検出される流出NO濃度CNOはまず、急激に減少して下向きのピークPKm1に達し、次いで増大して今度は上向きのピークPKMに達し、次いで再び減少して下向きのピークPKm2に達した後に、徐々に増大する。
【0196】
流出NO濃度CNOがなぜこのような挙動をとるかは必ずしも明らかではないが、次の理由によるものと考えられている。即ち、NO吸収剤23内に流入する排気ガスの空燃比AFNがリッチに切り替えられると、上述したように、NO吸収剤23内に蓄えられているNOがNO吸収剤23から例えばNOの形で放出される。NO処理が開始された直後はこの放出されたNOが直ちに還元され、斯くして下向きのピークPKm1が発生する。ところが、時間の経過と共にNOの還元反応が生じにくくなり、NO吸収剤23から放出されるけれども還元されないNOの量が増大し、斯くして上向きのピークPKMが発生する。更に時間が経過すると、NO吸収剤23から放出されるNOの量が次第に減少し、しかしながらNO吸収剤23内に流入するNOのうちNO吸収剤23内に吸収されることなくNO吸収剤23を通過するNOの量が少しずつ増大し、斯くして下向きのピークPKm2が発生する。
【0197】
上向きのピークPKMにおける流出NO濃度CNOを極大値CPKと称すると、この極大値CPKはNO処理によりNO吸収剤23から放出されるNOの量に依存し、従ってNO処理が開始されるときのNO吸収剤23内の蓄積NO量に依存する。即ち、蓄積NO量が多いときには極大値CPKは大きくなり、蓄積NO量が少ないときには極大値CPKは小さくなる。一方、NO吸収剤23内の蓄積SO量が多くなるにつれて、NO吸収剤23内に蓄えられ得るNOの量が少なくなる。
【0198】
従って、蓄積SO量が多くなるにつれて極大値CPKが小さくなり、燃料消費量QFが多くなるにつれて極大値CPKが小さくなることがわかる。
【0199】
そこで本発明による第2実施例では、極大値CPKと燃料消費量QFとの関係を表す関係式を求め、SO処理を開始すべきと判断されたときの極大値CPKの推定値CPKEをこの関係式を用いて算出するようにしている。
【0200】
具体的には、NO処理が行われる毎に極大値CPKが算出される。その上で、図37に示されるように、平均値算出時期が到来する毎に、即ち燃料消費量QFが第2の設定量qf2だけ増大する毎に極大値平均値CPKAVが算出され、極大値平均値CPKAVと燃料消費量QFとの関係を表す一次式mがこれら極大値平均値CPKAVに基づき決定される。次いで、先のSO処理が完了してから(図37の矢印X1参照)、燃料消費量QFが第1の設定量qf1だけ増大すると、このときの極大値推定値CPKEが一次式mを用いて算出される。
【0201】
更に、極大値CPKと蓄積SO量推定値QSEとの関係は予め実験により求められており、図38に示されるマップの形で予めROM42内に記憶されている。従って、SO処理を行うべきと判断されたときの極大値推定値CPKEが算出されれば、このときの蓄積SO量推定値QSEが図38のマップを用いて求められる。
【0202】
従って、一般的に表現すると、NO処理が行われたときに生ずる流出NO量の極大値を検出し、検出された流出NO量の極大値に基づいてNO吸収剤の蓄積SO量を求めているということになる。
【0203】
図39は本発明による第2実施例の係数kmiの算出ルーチンを示している。本発明による第2実施例でも図15に示されるSO制御ルーチンが実行され、この係数kmiの算出ルーチンはSO制御ルーチンのステップ203で実行される。
【0204】
図39を参照すると、ステップ400では現在の燃料消費量QFと、先の平均値算出時期における燃料消費量QFP2との差が第2の設定量qf2以上か否かが判別される。QF−QFP2<qf2のとき、即ち先の極大値平均値CPKAVが算出されてから燃料が第2の設定量qf2だけ消費されていないときには次いでステップ401に進み、NO処理が行われているか否かが判別される。NO処理が行われていないときには処理サイクルを終了し、NO処理が行われているときには次いでステップ402に進み、流出NO濃度CNOの極大値CPKが算出される。なお、極大値CPKを機関運転状態又はNO触媒23の状態に基づいて補正することもできる。続くステップ403では、極大値CPKの積算値SCPKが算出される(SCPK=SCPK+CPK)。続くステップ404では、極大値CPKの検出回数を表す検出回数カウンタnCPKが1だけインクリメントされる(nCPK=nCPK+1)。
【0205】
QF−QFP2≧qf2になるとステップ400からステップ405に進み、極大値平均値CPKAVが算出される(CPKAV=SCPK/nCPK)。続くステップ406では、極大値平均値CPKAVの算出回数を表す平均値算出回数カウンタnAVが1だけインクリメントされる(nAV=nAV+1)。続くステップ407では、係数kmi(i=1,2,3,4)が次式に基づいてそれぞれ算出される。
【0206】
km1=km1+QF
km2=km2+QF
km3=km3+QF・CPK
km4=km4+CPK
続くステップ408では、現在の燃料消費量QFがQFP2として記憶され、積算値SCPK及びカウンタnCPKがそれぞれクリアされる。
【0207】
図40は本発明による第2実施例の処理開始時量QSSの設定ルーチンを示している。このルーチンはSO制御ルーチンのステップ204で実行される。
【0208】
図40を参照すると、ステップ410では極大値推定値CPKEが次式に基づいて算出される。
【0209】
【数6】
Figure 2005036653
【0210】
続くステップ411では、図38のマップから蓄積SO量推定値QSEが算出される。続くステップ412では、処理開始時量QSSがこの蓄積SO量推定値QSEに設定される。続くステップ413では、係数kmi(i=1,2,3,4)及び平均値算出回数カウンタnAVがクリアされる。
【0211】
本発明による第2実施例のその他の構成及び作用は上述の実施例と同様であるので説明を省略する。
【0212】
次に、本発明による第3実施例を説明する。
【0213】
上述したように、NO処理が行われると、NO吸収剤23内に蓄えられているNOが還元されることなくNO吸収剤23から流出する。このときNO吸収剤23から流出するNOの積算量SQLは図41に示されるように、流出NO濃度CNOに下向きのピークPKm1が発生してから、下向きのピークPKm2が発生するまでの間の、流出NO濃度CNOの積算値の形で求めることができる。
【0214】
この流出NO積算量SQLは上述の極大値CPKと同様に、NO処理が開始されるときのNO吸収剤23内の蓄積NO量に依存する。即ち、蓄積SO量が多くなるにつれて流出NO積算量SQLが少なくなり、燃料消費量QFが多くなるにつれて流出NO積算量SQLが少なくなる。
【0215】
そこで本発明による第3実施例では、流出NO積算量SQLと燃料消費量QFとの関係を表す関係式を求め、SO処理を開始すべきと判断されたときの流出NO積算量SQLの推定値SQLEをこの関係式を用いて算出するようにしている。
【0216】
具体的には、NO処理が行われる毎に流出NO積算量SQLが算出される。その上で、図42に示されるように、平均値算出時期が到来する毎に、即ち燃料消費量QFが第2の設定量qf2だけ増大する毎に流出NO積算量平均値SQLAVが算出され、流出NO積算量平均値SQLAVと燃料消費量QFとの関係を表す一次式mがこれら流出NO積算量平均値SQLAVに基づき決定される。次いで、先のSO処理が完了してから(図42の矢印X1参照)、燃料消費量QFが第1の設定量qf1だけ増大すると、このときの流出NO積算量推定値SQLEが一次式mを用いて算出される。
【0217】
更に、流出NO積算量SQLと蓄積SO量推定値QSEとの関係は予め実験により求められており、図43に示されるマップの形で予めROM42内に記憶されている。従って、SO処理を行うべきと判断されたときの流出NO積算量推定値SQLEが算出されれば、このときの蓄積SO量推定値QSEが図43のマップを用いて求められる。
【0218】
従って、一般的に表現すると、NO処理が行われたときの流出NO量積算値を検出し、検出された流出NO量積算値に基づいてNO吸収剤の蓄積SO量を求めているということになる。
【0219】
図44は本発明による第3実施例の係数kmiの算出ルーチンを示している。本発明による第3実施例でも図15に示されるSO制御ルーチンが実行され、この係数kmiの算出ルーチンはSO制御ルーチンのステップ203で実行される。
【0220】
図44を参照すると、ステップ420では現在の燃料消費量QFと、先の平均値算出時期における燃料消費量QFP2との差が第2の設定量qf2以上か否かが判別される。QF−QFP2<qf2のとき、即ち先の極大値平均値CPKAVが算出されてから燃料が第2の設定量qf2だけ消費されていないときには次いでステップ421に進み、NO処理が行われているか否かが判別される。NO処理が行われていないときには処理サイクルを終了し、NO処理が行われているときには次いでステップ422に進み、流出NO量積算値SQLが算出される。なお、流出NO量積算値SQLを機関運転状態又はNO触媒23の状態に基づいて補正することもできる。続くステップ423では、流出NO量積算値SQLの積算値SSQLが算出される(SSQL=SSQL+SQL)。続くステップ424では、流出NO量積算値SQLの検出回数を表す検出回数カウンタnSQLが1だけインクリメントされる(nSQL=nSQL+1)。
【0221】
QF−QFP2≧qf2になるとステップ420からステップ425に進み、流出NO量積算値平均値SQLAVが算出される(SQLAV=SSQL/nSQL)。続くステップ426では、流出NO量積算値平均値SQLAVの算出回数を表す平均値算出回数カウンタnAVが1だけインクリメントされる(nAV=nAV+1)。続くステップ427では、係数kmi(i=1,2,3,4)が次式に基づいてそれぞれ算出される。
【0222】
km1=km1+QF
km2=km2+QF
km3=km3+QF・SQL
km4=km4+SQL
続くステップ428では、現在の燃料消費量QFがQFP2として記憶され、積算値SSQL及びカウンタnSQLがそれぞれクリアされる。
【0223】
図45は本発明による第3実施例の処理開始時量QSSの設定ルーチンを示している。このルーチンはSO制御ルーチンのステップ204で実行される。
【0224】
図45を参照すると、ステップ430では流出NO積算量推定値SQLEが次式に基づいて算出される。
【0225】
【数7】
Figure 2005036653
【0226】
続くステップ431では、図43のマップから蓄積SO量推定値QSEが算出される。続くステップ432では、処理開始時量QSSがこの蓄積SO量推定値QSEに設定される。続くステップ433では、係数kmi(i=1,2,3,4)及び平均値算出回数カウンタnAVがクリアされる。
【0227】
本発明による第3実施例のその他の構成及び作用は上述の実施例と同様であるので説明を省略する。
【0228】
次に、本発明による第4実施例を説明する。
【0229】
図2から図5までを参照して上述したように、本発明による実施例では、NO吸収剤23内に流入する排気ガスの空燃比AFNがリーンに保持されているときの流出NO濃度CNOが許容最大濃度を越えないように、かつNO処理による燃料消費率が許容最大値を越えないように、補正量ktNでもって基本時間間隔tNBを補正することにより、NO処理の時間間隔tNが算出される(tN=tNB+ktN)。
【0230】
蓄積SO量が少ないときには、NO吸収剤23内に流入したNOのうちNO吸収剤23内に蓄えられるNOの割合が高いので、流出NO濃度CNOが許容最大濃度に達するまでの時間が比較的長くなっている。その結果、図46(A)に示されるようにNO処理の時間間隔tNは比較的長くなっている。これに対し、蓄積SO量が多くなると、NO吸収剤23内に蓄えられるNOの割合が低下するので、流出NO濃度CNOが許容最大濃度に達するまでの時間が短くなり、図46(B)に示されるように時間間隔tNが短くなる。
【0231】
本発明による実施例では上述したように、蓄積SO量がほぼゼロのときに最適になるように基本時間間隔tNBが設定されており、蓄積SO量が多くなるにつれて時間間隔tNが短くなる。従って、蓄積SO量が多くなるにつれて時間間隔比tNB/tNが大きくなり、燃料消費量QFが多くなるにつれて時間間隔比tNB/tNが大きくなる。
【0232】
ところが上述したように、時間間隔tNは機関運転状態によっても変動し得る。しかしながら、定常運転時における時間間隔tN又は時間間隔比tNB/tNは機関運転状態の影響を受けず、機関定常運転時における実際の時間間隔tNの基本時間間隔tNBに対するずれは蓄積SO量によるものである。
【0233】
そこで本発明による第4実施例では、定常運転時にNO処理が行われたときの時間間隔比、即ち定常時時間間隔比RST(=tNB/(tNB+ktN))と、燃料消費量QFとの関係を表す関係式を求め、SO処理を開始すべきと判断されたときの定常時時間間隔比RSTの推定値RSTEをこの関係式を用いて算出するようにしている。
【0234】
具体的には、定常運転時にNO処理が行われる毎に定常時時間間隔比RSTが算出される。その上で、図47に示されるように、平均値算出時期が到来する毎に、即ち燃料消費量QFが第2の設定量qf2だけ増大する毎に定常時時間間隔比平均値RSTAVが算出され、定常時時間間隔比平均値RSTAVと燃料消費量QFとの関係を表す一次式mがこれら定常時時間間隔比平均値RSTAVに基づき決定される。次いで、先のSO処理が完了してから(図47の矢印X1参照)、燃料消費量QFが第1の設定量qf1だけ増大すると、このときの定常時時間間隔比推定値RSTEが一次式mを用いて算出される。
【0235】
更に、定常時時間間隔比RSTと蓄積SO量推定値QSEとの関係は予め実験により求められており、図48に示されるマップの形で予めROM42内に記憶されている。従って、SO処理を行うべきと判断されたときの定常時時間間隔比推定値RSTEが算出されれば、このときの蓄積SO量推定値QSEが図48のマップを用いて求められる。
【0236】
従って、一般的に表現すると、NO吸収剤23内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を設定し、制御された時間間隔に基づいてNO吸収剤の蓄積イオウ量を求めているということになる。
【0237】
図49は本発明による第4実施例の係数kmiの算出ルーチンを示している。本発明による第4実施例でも図15に示されるSO制御ルーチンが実行され、この係数kmiの算出ルーチンはSO制御ルーチンのステップ203で実行される。
【0238】
図49を参照すると、ステップ440では現在の燃料消費量QFと、先の平均値算出時期における燃料消費量QFP2との差が第2の設定量qf2以上か否かが判別される。QF−QFP2<qf2のとき、即ち先の定常時時間間隔比平均値RSTAVが算出されてから燃料が第2の設定量qf2だけ消費されていないときには次いでステップ441に進み、定常運転時でかつNO処理が行われているか否かが判別される。定常運転時でないか又はNO処理が行われていないときには処理サイクルを終了し、定常運転時でかつNO処理が行われているときには次いでステップ442に進み、現在の機関運転状態が属する領域が決定される。続くステップ443では、定常時時間間隔比RSTが算出される。
【0239】
RST=tNB/(tNB+ktN)
続くステップ444では、定常時時間間隔比RSTの積算値SRSTが算出される(SRST=SRST+RST)。続くステップ445では、定常時時間間隔比RSTの検出回数を表す検出回数カウンタnRSTが1だけインクリメントされる(nRST=nRST+1)。
【0240】
QF−QFP2≧qf2になるとステップ440からステップ446に進み、定常時時間間隔比平均値RSTAVが算出される(RSTAV=SRST/nRST)。続くステップ447では、定常時時間間隔比RSTAVの算出回数を表す平均値算出回数カウンタnAVが1だけインクリメントされる(nAV=nAV+1)。続くステップ448では、係数kmi(i=1,2,3,4)が次式に基づいてそれぞれ算出される。
【0241】
km1=km1+QF
km2=km2+QF
km3=km3+QF・RST
km4=km4+RST
続くステップ449では、現在の燃料消費量QFがQFP2として記憶され、積算値SRST及びカウンタnRSTがそれぞれクリアされる。
【0242】
図50は本発明による第4実施例の処理開始時量QSSの設定ルーチンを示している。このルーチンはSO制御ルーチンのステップ204で実行される。
【0243】
図50を参照すると、ステップ450では定常時時間間隔比推定値RSTEが次式に基づいて算出される。
【0244】
【数8】
Figure 2005036653
【0245】
続くステップ451では、図48のマップから蓄積SO量推定値QSEが算出される。続くステップ452では、処理開始時量QSSがこの蓄積SO量推定値QSEに設定される。続くステップ453では、係数kmi(i=1,2,3,4)及び平均値算出回数カウンタnAVがクリアされる。
【0246】
本発明による第4実施例のその他の構成及び作用は上述の実施例と同様であるので説明を省略する。
【0247】
次に、本発明による第5実施例を説明する。
【0248】
図46を参照して説明したように、蓄積SO量に応じてNO処理の時間間隔tNが変動する。従って、単位期間当たりに還元剤供給弁31から供給される還元剤の総量も蓄積SO量に応じて変動することになる。即ち、蓄積SO量が多くなるにつれて単位期間当たりの還元剤供給量QRは多くなり、燃料消費量QFが多くなるにつれて単位期間当たりの還元剤供給量QRは多くなる。
【0249】
そこで本発明による第5実施例では、単位期間当たりの還元剤供給量QRと燃料消費量QFとの関係を表す関係式を求め、SO処理を開始すべきと判断されたときの単位期間当たりの還元剤供給量QRの推定値QREをこの関係式を用いて算出するようにしている。
【0250】
具体的には、図51に示されるように、供給量算出時期が到来する毎に、即ち例えば燃料消費量QFが第2の設定量qf2だけ増大する毎に還元剤供給量の積算値、即ち単位期間当たりの還元剤供給量QRが算出され、単位期間当たりの還元剤供給量QRと燃料消費量QFとの関係を表す一次式mがこれら単位期間当たりの還元剤供給量QRに基づき決定される。次いで、先のSO処理が完了してから(図51の矢印X1参照)、燃料消費量QFが第1の設定量qf1だけ増大すると、このときの単位期間当たりの還元剤供給量の推定値QREが一次式mを用いて算出される。
【0251】
更に、単位期間当たりの還元剤供給量QRと蓄積SO量推定値QSEとの関係は予め実験により求められており、図52に示されるマップの形で予めROM42内に記憶されている。従って、SO処理を行うべきと判断されたときの単位期間当たりの還元剤供給量の推定値QREが算出されれば、このときの蓄積SO量推定値QSEが図52のマップを用いて求められる。
【0252】
従って、一般的に表現すると、単位期間当たりにNO処理により消費された燃料又は還元剤の量を求め、単位期間当たりにNO処理により消費された燃料又は還元剤の量に基づいてNO吸収剤の蓄積SO量を求めているということになる。
【0253】
図53は本発明による第5実施例の係数kmiの算出ルーチンを示している。本発明による第5実施例でも図15に示されるSO制御ルーチンが実行され、この係数kmiの算出ルーチンはSO制御ルーチンのステップ203で実行される。
【0254】
図53を参照すると、ステップ460では現在の燃料消費量QFと、先の還元剤量算出時期における燃料消費量QFP2との差が第2の設定量qf2以上か否かが判別される。QF−QFP2<qf2のとき、即ち先の単位当たりの還元剤供給量QRが算出されてから燃料が第2の設定量qf2だけ消費されていないときには次いでステップ461に進み、NO処理が行われているか否かが判別される。NO処理が行われていないときには処理サイクルを終了し、NO処理が行われているときには次いでステップ462に進み、今回のNO処理において還元剤供給弁31から供給される還元剤量qrが算出される。続くステップ463では、還元剤量qrの積算値Sqrが算出される(Sqr=Sqr+qr)。
【0255】
QF−QFP2≧qf2になるとステップ460からステップ464に進み、積算値Sqrが単位期間当たりの還元剤供給量QRとされる。続くステップ465では、単位当たりの還元剤供給量QRの算出回数を表す算出回数カウンタnQRが1だけインクリメントされる(nQR=nQR+1)。続くステップ466では、係数kmi(i=1,2,3,4)が次式に基づいてそれぞれ算出される。
【0256】
km1=km1+QF
km2=km2+QF
km3=km3+QF・QR
km4=km4+QR
続くステップ467では、現在の燃料消費量QFがQFP2として記憶され、積算値Sqr及びカウンタnQRがそれぞれクリアされる。
【0257】
図54は本発明による第5実施例の処理開始時量QSSの設定ルーチンを示している。このルーチンはSO制御ルーチンのステップ204で実行される。
【0258】
図54を参照すると、ステップ470では単位期間当たりの還元剤供給量の推定値QREが次式に基づいて算出される。
【0259】
【数9】
Figure 2005036653
【0260】
続くステップ471では、図52のマップから蓄積SO量推定値QSEが算出される。続くステップ472では、処理開始時量QSSがこの蓄積SO量推定値QSEに設定される。続くステップ473では、係数kmi(i=1,2,3,4)及び算出回数カウンタnQRがクリアされる。
【0261】
本発明による第5実施例のその他の構成及び作用は上述の実施例と同様であるので説明を省略する。
【0262】
【発明の効果】
NO吸収剤内に蓄えられているイオウの量を正確に求めることができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】NO処理を説明するためのタイムチャートである。
【図3】NO処理の基本時間間隔tNB及び補正量ktNを示す線図である。
【図4】NO制御ルーチンを示すフローチャートである。
【図5】補正量ktNの更新ルーチンを示すフローチャートである。
【図6】本発明による実施例のSO処理を説明するためのタイムチャートである。
【図7】流入NO濃度CNIを示す線図である。
【図8】一次式mを説明するための線図である。
【図9】蓄積SO量推定値QSEとNO浄化率EFFとの関係を示す線図である。
【図10】蓄積SO量推定値QSEの可能最大量QSEMを示す線図である。
【図11】NO浄化率平均値EFFAV等の算出タイミングを説明するためのタイムチャートである。
【図12】NO濃度検出期間DPを説明するためのタイムチャートである。
【図13】NO浄化率EFF等の算出タイミングを説明するためのタイムチャートである。
【図14】蓄積SO量推定値QSE等の算出タイミングを説明するためのタイムチャートである。
【図15】SO制御ルーチンを示すフローチャートである。
【図16】SO減少量qsrを示す線図である。
【図17】係数kmiの算出ルーチンを示すフローチャートである。
【図18】NO浄化率算出ルーチンを示すフローチャートである。
【図19】NO浄化率算出ルーチンを示すフローチャートである。
【図20】NO浄化率算出ルーチンを示すフローチャートである。
【図21】蓄積NO量推定値QNEの算出ルーチンを示すフローチャートである。
【図22】NO増加量qnaを示す線図である。
【図23】流入NO濃度補正値CNICの算出ルーチンを示すフローチャートである。
【図24】遅れ時間DLYを示す線図である。
【図25】流入NO濃度補正値CNICの算出方法を説明するためのタイムチャートである。
【図26】流出NO濃度補正値CNOCの算出ルーチンを示すフローチャートである。
【図27】NO浄化率補正値EFFCの算出ルーチンを示すフローチャートである。
【図28】補正係数kE1,kE2,kE3を示す線図である。
【図29】熱劣化カウンタnTCHの算出ルーチンを示すフローチャートである。
【図30】給油判定ルーチンを示すフローチャートである。
【図31】給油判定方法を説明するための図である。
【図32】処理開始時量QSSの設定ルーチンを示すフローチャートである。
【図33】処理開始時量QSSの設定ルーチンを示すフローチャートである。
【図34】処理開始時量QSSの設定ルーチンを示すフローチャートである。
【図35】本発明による第1実施例を説明するための図である。
【図36】本発明による第2実施例を説明するための図である。
【図37】本発明による第2実施例を説明するための図である。
【図38】蓄積SO量推定値QSEと極大値CPKとの関係を示す線図である。
【図39】本発明による第2実施例の係数kmiの算出ルーチンを示すフローチャートである。
【図40】本発明による第2実施例の処理開始時量QSSの設定ルーチンを示すフローチャートである。
【図41】本発明による第3実施例を説明するための図である。
【図42】本発明による第3実施例を説明するための図である。
【図43】蓄積SO量推定値QSEと流出NO積算量SQLとの関係を示す線図である。
【図44】本発明による第3実施例の係数kmiの算出ルーチンを示すフローチャートである。
【図45】本発明による第3実施例の処理開始時量QSSの設定ルーチンを示すフローチャートである。
【図46】本発明による第4実施例を説明するための図である。
【図47】本発明による第4実施例を説明するための図である。
【図48】蓄積SO量推定値QSEと定常時時間間隔比RSTとの関係を示す線図である。
【図49】本発明による第4実施例の係数kmiの算出ルーチンを示すフローチャートである。
【図50】本発明による第4実施例の処理開始時量QSSの設定ルーチンを示すフローチャートである。
【図51】本発明による第5実施例を説明するための図である。
【図52】蓄積SO量推定値QSEと還元剤供給量QRとの関係を示す線図である。
【図53】本発明による第5実施例の係数kmiの算出ルーチンを示すフローチャートである。
【図54】本発明による第5実施例の処理開始時量QSSの設定ルーチンを示すフローチャートである。
【符号の説明】
1…機関本体
20a,20b…排気管
23…NO吸収剤
31…還元剤供給弁
51…NOセンサ

Claims (27)

  1. リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO吸収剤を配置した内燃機関において、NO吸収剤から流出した排気ガス中のNOの量である流出NO量を検出するためにNO吸収剤下流の排気通路内に配置されたNOセンサと、NO吸収剤内に蓄えられているイオウの量である蓄積イオウ量を該流出NO量に基づいて求める手段とを具備した排気浄化装置。
  2. NO吸収剤の蓄積イオウ量を減少させるイオウ処理を行う手段と、イオウ処理を行うべきか否かを判断する手段とを更に具備し、イオウ処理を行うべきと判断されたときにはこのときのNO吸収剤の蓄積イオウ量を求めると共に、処理開始時量を該求められた蓄積イオウ量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から予め定められた下限量以下まで減少させるのに必要なイオウ処理を行うようにした請求項1に記載の内燃機関の排気浄化装置。
  3. 前記求められたNO吸収剤の蓄積イオウ量が予め定められた境界量よりも多いときには、処理開始時量を該求められた蓄積イオウ量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行い、前記求められたNO吸収剤の蓄積イオウ量が前記境界量よりも少ないときには、処理開始時量を該求められた蓄積イオウ量とは無関係な量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにした請求項2に記載の内燃機関の排気浄化装置。
  4. 前記求められた蓄積イオウ量とは無関係な量を、燃料がイオウ濃度が基準濃度の燃料であると仮定したときにNO吸収剤内に蓄えられ得る最大のイオウ量に設定した請求項3に記載の内燃機関の排気浄化装置。
  5. 流出NO量を互いに時間間隔を隔てて複数回検出すると共にこれら流出NO量に基づいてNO吸収剤の蓄積イオウ量を求め、前記検出された流出NO量が予め定められた許容最小量よりも少ないときの回数が上限回数を越えたときには、処理開始時量を該求められた蓄積イオウ量とは無関係な量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにした請求項3に記載の内燃機関の排気浄化装置。
  6. 前記設定された処理開始時量が、燃料が市場で入手可能な燃料のうちイオウ濃度が最も高い燃料であると仮定したときにNO吸収剤内に蓄えられ得る最大のイオウ量である蓄積可能最大量よりも多いときには、処理開始時量を該蓄積可能最大量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにした請求項2に記載の内燃機関の排気浄化装置。
  7. 処理開始時量を前記求められた蓄積イオウ量がそれを基準としてとり得る最大の量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにした請求項2に記載の内燃機関の排気浄化装置。
  8. 先のイオウ処理が完了してから燃料が予め定められた第1の設定量だけ消費されたときにイオウ処理を行うべきと判断される請求項2に記載の内燃機関の排気浄化装置。
  9. NO吸収剤内に流入する排気ガス中のNOの量である流入NO量を求める手段と、流入NO量及び流出NO量に基づいてNO吸収剤のNO浄化率を求める手段と、該求められたNO浄化率に基づいてNO吸収剤の蓄積イオウ量を求める手段とを更に具備した請求項1に記載の内燃機関の排気浄化装置。
  10. NO吸収剤のNO浄化率を互いに時間間隔を隔てて複数回求めると共に、これら求められたNO浄化率と燃料消費量との関係を表す関係式を求め、判断時期における燃料消費量と該関係式とから該判断時期におけるNO浄化率を求め、該求められた判断時期におけるNO浄化率に基づいて該判断時期における蓄積イオウ量を求めるようにした請求項9に記載の内燃機関の排気浄化装置。
  11. 前記求められたNO浄化率と燃料消費量との関係を一次式により表すと共に、該一次式を最小自乗法により求めるようにした請求項10に記載の内燃機関の排気浄化装置。
  12. NO吸収剤のNO浄化率を互いに時間間隔を隔てて複数回求めると共に、平均値算出時期が到来する毎に前回の平均値算出時期から今回の平均値算出時期までの期間内に求められたNO浄化率の平均値を算出し、該算出されたNO浄化率の平均値と燃料消費量との関係を表す関係式を求めるようにした請求項10に記載の内燃機関の排気浄化装置。
  13. NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を制御する手段とを更に具備し、NO吸収剤内に流入する排気ガスの空燃比がリーンのときの流入NO量及び流出NO量を求めると共に、これら流入NO量及び流出NO量に基づいてNO吸収剤のNO浄化率を求めるようにし、前回の平均値算出時期から今回の平均値算出時期までの期間内にNO浄化率が求められた回数が下限回数よりも少ないときには、該期間におけるNO浄化率の平均値を算出しないようにした請求項12に記載の内燃機関の排気浄化装置。
  14. 平均値算出時期が到来する毎に算出されるNO浄化率の平均値が、NO浄化率が求められたときに機関定常運転が行われているか機関過渡運転が行われているかに応じて重み付けられたNO浄化率の加重平均値である請求項12に記載の内燃機関の排気浄化装置。
  15. 前回の平均値算出時期から燃料が予め定められた第2の設定量だけ消費されたときに次の平均値算出時期が到来したと判断される請求項12に記載の内燃機関の排気浄化装置。
  16. NO吸収剤の蓄積イオウ量を減少させるイオウ処理を行う手段と、前記求められたNO吸収剤の蓄積イオウ量が予め定められた境界量よりも多いときには燃料が高イオウ濃度燃料であると判断し、前記求められたNO吸収剤の蓄積イオウ量が該境界量よりも少ないときには燃料が低イオウ濃度燃料であると判断する手段とを更に具備し、燃料が高イオウ濃度燃料であると判断されたときには処理開始時量を前記求められた蓄積イオウ量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から予め定められた下限量以下まで減少させるのに必要なイオウ処理を行い、燃料が低イオウ濃度燃料であると判断されたときには、処理開始時量を該求められた蓄積イオウ量とは無関係な量に設定してNO吸収剤の蓄積イオウ量を該処理開始時量から前記下限量以下まで減少させるのに必要なイオウ処理を行うようにした請求項10に記載の内燃機関の排気浄化装置。
  17. 前記求められたNO浄化率の前記関係式に対する偏差を求める手段を更に具備し、燃料が高イオウ濃度燃料であると判断されたときに該求められた偏差が予め定められたしきい値を越えて変化したときには燃料が低イオウ濃度燃料に変更されたと判断し、燃料が低イオウ濃度燃料であると判断されたときに該求められた偏差が該しきい値を越えて変化したときには燃料が高イオウ濃度燃料に変更されたと判断するようにした請求項16に記載の内燃機関の排気浄化装置。
  18. NO吸収剤内に流入する排気ガスの空燃比がリーンである期間に設定された流出NO量検出期間における流出NO量の平均値を算出すると共に、該流出NO量検出期間における流入NO量の平均値を算出し、これら流入NO量の平均値及び流出NO量の平均値に基づいて該流出NO量検出期間におけるNO浄化率を求めるようにした請求項9に記載の内燃機関の排気浄化装置。
  19. 流入NO量と流出NO量とがほぼ同時期に求められるようになっており、排気ガス部分がそれについての流入NO量が求められてからNOセンサに到達するのに要する遅れ時間を求める手段と、該遅れ時間でもって流入NO量又は流出NO量を補正する手段とを更に具備し、該補正された流入NO量又は流出NO量に基づいてNO浄化率を求めるようにした請求項9に記載の内燃機関の排気浄化装置。
  20. 前記求められたNO浄化率をNO吸収剤の状態が予め定められた基準状態のときのNO浄化率に換算する手段を更に具備し、該換算されたNO浄化率に基づいてNO吸収剤の蓄積イオウ量を求めるようにした請求項9に記載の内燃機関の排気浄化装置。
  21. NO吸収剤の熱劣化度合いを求める手段と、該求められたNO吸収剤の熱劣化度合いに基づいて前記求められたNO浄化率を補正する手段とを更に具備し、該補正されたNO浄化率に基づいてNO吸収剤の蓄積イオウ量を求めるようにした請求項9に記載の内燃機関の排気浄化装置。
  22. 機関運転状態を検出する手段を更に具備し、該検出された機関運転状態に基づいて前記流入NO量を算出するようにした請求項9に記載の内燃機関の排気浄化装置。
  23. NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤内に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO処理を行う基本時間間隔を設定する手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないように該基本時間間隔を補正する手段と、NO処理を該補正された時間間隔を隔てて繰り返し行う手段と、基本時間間隔の補正量に基づいて流出NO量を補正する手段と、該補正された流出NO量に基づいてNO吸収剤の蓄積イオウ量を求めるようにした請求項1に記載の内燃機関の排気浄化装置。
  24. NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤内に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO処理が行われたときに生ずる流出NO量の極大値を検出する手段とを更に具備し、該検出された流出NO量の極大値に基づいてNO吸収剤の蓄積イオウ量を求めるようにした請求項1に記載の内燃機関の排気浄化装置。
  25. NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤内に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO処理が行われたときにNO吸収剤から流出したNOの量の積算量である流出NO量積算量を求める手段とを更に具備し、該求められた流出NO量積算量に基づいてNO吸収剤の蓄積イオウ量を求めるようにした請求項1に記載の内燃機関の排気浄化装置。
  26. NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を設定する手段と、該制御された時間間隔に基づいてNO吸収剤の蓄積イオウ量を求める手段とを更に具備した請求項1に記載の内燃機関の排気浄化装置。
  27. NO吸収剤内に蓄えられているNOを還元しNO吸収剤内に蓄えられているNOの量を減少させるためにNO吸収剤に流入する排気ガスの空燃比を一時的にリッチに切り替えるNO処理を行う手段と、NO吸収剤内に流入する排気ガスの空燃比がリーンに保持されているときの流出NO量が予め定められた許容最大量を越えないようにNO処理が行われる時間間隔を制御する手段と、単位期間当たりにNO処理により消費された燃料又は還元剤の量を求める手段と、該求められた単位期間当たりにNO処理により消費された燃料又は還元剤の量に基づいてNO吸収剤の蓄積イオウ量を求める手段とを更に具備した請求項1に記載の内燃機関の排気浄化装置。
JP2003197200A 2003-07-15 2003-07-15 内燃機関の排気浄化装置 Expired - Fee Related JP4211514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197200A JP4211514B2 (ja) 2003-07-15 2003-07-15 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197200A JP4211514B2 (ja) 2003-07-15 2003-07-15 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2005036653A true JP2005036653A (ja) 2005-02-10
JP4211514B2 JP4211514B2 (ja) 2009-01-21

Family

ID=34207422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197200A Expired - Fee Related JP4211514B2 (ja) 2003-07-15 2003-07-15 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP4211514B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096575A1 (ja) 2008-01-30 2009-08-06 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
JP2011157892A (ja) * 2010-02-02 2011-08-18 Denso Corp 内燃機関の排気浄化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096575A1 (ja) 2008-01-30 2009-08-06 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
US8297042B2 (en) 2008-01-30 2012-10-30 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JP2011157892A (ja) * 2010-02-02 2011-08-18 Denso Corp 内燃機関の排気浄化装置
DE102010043983B4 (de) * 2010-02-02 2021-05-06 Denso Corporation Abgasreinigungsvorrichtung für eine Maschine

Also Published As

Publication number Publication date
JP4211514B2 (ja) 2009-01-21

Similar Documents

Publication Publication Date Title
EP1536114B1 (en) An exhaust gas purification device for an internal combustion engine
JP2600492B2 (ja) 内燃機関の排気浄化装置
JP3341284B2 (ja) 内燃機関の排気浄化装置
US6502391B1 (en) Exhaust emission control device of internal combustion engine
US6826902B2 (en) Method and apparatus for estimating oxygen storage capacity and stored NOx in a lean NOx trap (LNT)
JP3613676B2 (ja) 内燃機関の排気浄化装置
JP4577039B2 (ja) 内燃機関の排気浄化装置
JP4208012B2 (ja) 内燃機関の排気浄化装置
JP2002242663A (ja) 内燃機関の排気浄化装置
US6418711B1 (en) Method and apparatus for estimating lean NOx trap capacity
JP3508744B2 (ja) 内燃機関の排気浄化装置
JP2004084535A (ja) 内燃機関の排気浄化方法
EP2420655A1 (en) Exhaust purification device for internal combustion engine
JP3601395B2 (ja) 内燃機関の排気浄化装置
JP2001303937A (ja) 内燃機関の排気浄化装置
JP4211514B2 (ja) 内燃機関の排気浄化装置
JP3656616B2 (ja) 内燃機関の排気浄化装置
US20030000202A1 (en) Exhaust gas aftertreatment device efficiency estimation
JP4449242B2 (ja) 内燃機関の排気浄化装置
JP3478135B2 (ja) 内燃機関の排気浄化装置
JP3580188B2 (ja) 内燃機関の排気浄化装置
JP2004285841A (ja) 内燃機関の排気浄化装置
JP4225017B2 (ja) 内燃機関の排気浄化装置
JP3775158B2 (ja) エンジンの排気浄化装置
JP2000161045A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees