JP2005035854A - Porous body and its producing method - Google Patents

Porous body and its producing method Download PDF

Info

Publication number
JP2005035854A
JP2005035854A JP2003276430A JP2003276430A JP2005035854A JP 2005035854 A JP2005035854 A JP 2005035854A JP 2003276430 A JP2003276430 A JP 2003276430A JP 2003276430 A JP2003276430 A JP 2003276430A JP 2005035854 A JP2005035854 A JP 2005035854A
Authority
JP
Japan
Prior art keywords
porous body
granulated
firing
molding
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003276430A
Other languages
Japanese (ja)
Inventor
Yoichi Sugiyama
洋一 杉山
Yoshiro Kobayashi
芳郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003276430A priority Critical patent/JP2005035854A/en
Publication of JP2005035854A publication Critical patent/JP2005035854A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Cultivation Of Plants (AREA)
  • Processing Of Solid Wastes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the strength of a porous body produced by using incineration ash of sewage sludge and to simplify the production method of the porous body. <P>SOLUTION: The porous body is produced through a mixing process for mixing an inorganic powder such as the incineration ash of sewage sludge and the like and a binder, a granulation process for granulating the mixture mixed in the mixing process, a forming process for forming the granule granulated in the granulation process, and a firing process for firing the formed body formed in the forming process. Thereby, the porous body having high strength can be easily obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無機物、特に下水汚泥焼却灰から形成されてなる多孔質体とその製造方法に関する。   The present invention relates to a porous body formed from an inorganic material, particularly sewage sludge incineration ash, and a method for producing the same.

下水処理する際に発生する下水汚泥は、都市下水などから大量に発生する。一般に、下水汚泥を処理する方法としては、汚泥を焼却炉で焼却して減容してから、その焼却灰を廃棄物として埋立てる方法が知られている。しかし、埋立地の確保が難しいことから、埋立地の延命化を図るため、下水汚泥焼却灰を資源として再利用する試みがなされている。   A large amount of sewage sludge generated during sewage treatment is generated from municipal sewage. In general, as a method of treating sewage sludge, a method is known in which sludge is incinerated in an incinerator to reduce the volume, and then the incinerated ash is landfilled as waste. However, since it is difficult to secure a landfill, attempts have been made to reuse sewage sludge incineration ash as a resource in order to extend the life of the landfill.

下水汚泥焼却灰(以下、単に焼却灰という。)を再利用する方法として、焼却灰をバインダとともに混練して造粒し、乾燥した造粒体を焼成炉に導いて高温(例えば、1050℃)に加熱し、焼却灰中の揮発分をガス化して発泡させることにより、気泡を含む粒子状の軽量骨材を得る方法が知られている。   As a method of reusing sewage sludge incineration ash (hereinafter simply referred to as incineration ash), the incineration ash is kneaded with a binder and granulated, and the dried granulated material is introduced into a firing furnace at a high temperature (eg, 1050 ° C.). There is known a method of obtaining a particulate lightweight aggregate containing bubbles by heating to a gas and gasifying and foaming volatile components in the incinerated ash.

また、焼却灰を造粒して乾燥後、焼成してなる粒子状の焼成体を2次原料とし、これを他のセラミックス粉末および結合材と混合してプレス成型後、再度焼成して多孔質体を形成し、舗装用ブロックなどに利用する方法が提案されている(特許文献1参照。)。   In addition, the incinerated ash is granulated, dried, and then fired into a particulate fired body as a secondary raw material. This is mixed with other ceramic powders and binders, press-molded, fired again, and porous. A method of forming a body and using it for paving blocks has been proposed (see Patent Document 1).

特開平10−67579号公報JP-A-10-67579

しかしながら、上記の技術によれば、焼却灰に結合材を加えて造粒、焼成してなる粒子状の焼成体に、再び結合材を加えて成型、焼成しているから、結合材の添加と焼成工程を2回行うことになり、製造工程が複雑になるという問題がある。   However, according to the above technique, since the binder is added to the incinerated ash and granulated and fired, the binder is added to the particulate fired body, and then molded and fired. There is a problem that the baking process is performed twice, and the manufacturing process becomes complicated.

また、一度焼成した粒子状の焼成体を再度焼成しているため、粒子同士の溶着が不十分となり、焼成体の強度が制限されるという問題がある。   Moreover, since the particulate fired body fired once is fired again, there is a problem that the particles are not sufficiently welded to each other and the strength of the fired body is limited.

本発明は、下水汚泥焼却灰を用いて製造される多孔質体の強度を高くし、かつ製造方法を簡単化することを課題とする。   It is an object of the present invention to increase the strength of a porous body produced using sewage sludge incineration ash and to simplify the production method.

本発明者は、上記課題を解決するために鋭意検討した結果、焼却灰などの無機物の粉体に結合材を加えて混練し、造粒、乾燥してなる造粒体を、先ず所定の形状に成型し、その成型体を焼成することにより、その形状を保持した多孔質体が得られることを知見した。すなわち、従来法のように、造粒体を焼成する場合、再び結合材を加えて成型体を形成し、焼成する必要が生じるが、本発明によれば、造粒体を直接成型しているから、結合材の添加と焼成がいずれも1回で済む。これにより、製造工程が簡単化され、製造コストが安価になるとともに、粒子同士が適度に溶着され、多孔質体の強度が高くなる。   As a result of intensive studies to solve the above problems, the inventor first added a binder to an inorganic powder such as incinerated ash, kneaded, granulated, and dried, and then a granulated body was first formed into a predetermined shape. It was found that a porous body that retains its shape can be obtained by molding into a green body and firing the molded body. That is, when the granulated body is fired as in the conventional method, it is necessary to add the binder again to form the molded body and fire it, but according to the present invention, the granulated body is directly molded. Thus, both the addition of the binder and the firing are all performed once. Thereby, the manufacturing process is simplified, the manufacturing cost is reduced, the particles are appropriately welded, and the strength of the porous body is increased.

この場合において、結合材は、バインダ、界面活性剤および水などからなり、配合比は、焼却灰の性状などにより適宜決められる。また、成型とは、例えば、造粒体を金型に充填して目的の形状を得ることをいう。ここで、造粒体の充填時または充填後においては、造粒体を加圧しながら成型することが望ましい。これにより、造粒体の充填が密になり、焼成時における成型体の保形性が向上する。さらには、成型体の保形性および金型からの離型性などを考慮すると、造粒体を押付ける圧力は、投影面積当り150乃至400kgf/cmの圧力範囲に調整することがより好ましい。 In this case, the binder is composed of a binder, a surfactant, water, and the like, and the blending ratio is appropriately determined depending on the properties of the incinerated ash. Molding refers to, for example, obtaining a desired shape by filling a granule into a mold. Here, at the time of filling the granulated body or after filling, it is desirable to mold the granulated body while applying pressure. Thereby, the filling of the granulated body becomes dense, and the shape retention of the molded body during firing is improved. Furthermore, in consideration of the shape retention of the molded body and the releasability from the mold, the pressure for pressing the granulated body is more preferably adjusted to a pressure range of 150 to 400 kgf / cm 2 per projected area. .

本発明により製造される多孔質体は、下水汚泥焼却灰などの無機物を主成分とする粒子群が所定形状に成型、焼成されてなり、粒子同士が融着する融着部と、粒子間の隙間に形成される空隙部とを有して構成される。この多孔質体の空隙率は、例えば、成型工程において、造粒体を押付ける圧力、および焼成温度などを適宜調整することにより、所定範囲の調整が可能となる。すなわち、押付け圧力を低くすると、造粒体同士の隙間が大きくなるから、焼成後において多孔質体の空隙率が大きくなる一方、押付け圧力を高くすると、反対に空隙率が小さくなる。   The porous body produced according to the present invention is formed by molding and firing a particle group mainly composed of an inorganic substance such as sewage sludge incineration ash into a predetermined shape. And a gap formed in the gap. The porosity of the porous body can be adjusted within a predetermined range by appropriately adjusting, for example, the pressure for pressing the granulated body and the firing temperature in the molding step. That is, when the pressing pressure is lowered, the gap between the granulated bodies is increased, so that the porosity of the porous body is increased after firing. On the other hand, when the pressing pressure is increased, the porosity is decreased.

本発明によれば、下水汚泥焼却灰を用いて製造される多孔質体の強度が高くなり、かつ製造工程が簡単になる。   ADVANTAGE OF THE INVENTION According to this invention, the intensity | strength of the porous body manufactured using sewage sludge incineration ash becomes high, and a manufacturing process becomes simple.

以下、本発明を実施形態に基づいて説明する。本実施形態に係る多孔質体は、一般に、都市などから排出される下水汚泥を、焼却炉などで焼却する際に排出される粉末状の下水汚泥焼却灰(以下、単に焼却灰という。)を用いて製造されるものである。すなわち、この焼却灰に結合材を加えて混練し、造粒、乾燥してなる乾燥造粒体を、直接金型などに充填して成型し、この成型体を焼成することにより、製造される。   Hereinafter, the present invention will be described based on embodiments. The porous body according to the present embodiment generally uses powdered sewage sludge incineration ash (hereinafter simply referred to as incineration ash) discharged when sewage sludge discharged from a city or the like is incinerated in an incinerator or the like. It is manufactured using. That is, it is manufactured by adding a binder to the incinerated ash, kneading, granulating and drying the dried granulated material directly into a mold or the like and molding, and firing the molded product. .

図1に本発明の一実施形態に係る多孔質体の製造方法の工程図を示す。図に示すように、この製造工程は、焼却灰を所定量受入れるステップS1と、焼却灰に結合材を加え混練して混合体を得るステップS2と、この混合体を造粒して造粒体を得るステップS3と、この造粒体を整粒するステップS4と、整粒された造粒体を乾燥するステップS5と、この乾燥された造粒体を成型して成型体を得るステップS6と、成型体を焼成するステップS7と、焼成体を製品化するステップS8とから構成される。以下、ステップ毎に順を追って説明する。   FIG. 1 shows a process diagram of a method for producing a porous body according to an embodiment of the present invention. As shown in the figure, this manufacturing process includes step S1 for receiving a predetermined amount of incinerated ash, step S2 for adding a binder to the incinerated ash and kneading to obtain a mixture, and granulating the mixture to granulate. Step S3 for obtaining the step, Step S4 for regulating the granulated body, Step S5 for drying the granulated body, Step S6 for obtaining the molded body by molding the dried granulated body, The process includes step S7 for firing the molded body and step S8 for commercializing the fired body. Hereinafter, the steps will be described step by step.

まず、ステップS1において、焼却炉から取り出された焼却灰を、例えば振動ミルによりさらに細かく粉砕し、粒度が調整された焼却灰を所定量用意する。   First, in step S1, the incineration ash taken out from the incinerator is further finely pulverized by, for example, a vibration mill, and a predetermined amount of incineration ash having a adjusted particle size is prepared.

次に、ステップS2において、この焼却灰に、結合材として、バインダ、界面活性剤および水を適量添加しながら、均一に混合するように混練して混合体とする。バインダとしては、酵母培養濃縮液や廃糖蜜液が好適に使用され、その主たる成分は、例えばセルロース、ヘミセルロース、リグニン等であるが、焼却灰を結合させるものであれば、これに限定されるものではない。また混練の際に添加する水は、混合物の湿潤状態を安定に維持するため使用するものであり、バインダのみでは調整できない場合に適宜使用する。界面活性剤としては、例えばアニオン系界面活性剤を使用することが望ましい。これにより、焼却灰表面の濡れ性が向上し、バインダや水などの湿潤が促進される。すなわち、多孔質体の性状および機能を安定化もしくは向上させる点において、焼却灰中に、バインダ、水および界面活性剤を添加し、均一混合または懸濁させることは有効である。   Next, in step S2, the incinerated ash is kneaded so as to be uniformly mixed while adding appropriate amounts of a binder, a surfactant, and water as a binder. As the binder, yeast culture concentrate and molasses liquid are preferably used, and the main components thereof are, for example, cellulose, hemicellulose, lignin, etc., but are limited to this as long as they bind incineration ash. is not. The water added at the time of kneading is used to stably maintain the wet state of the mixture, and is used appropriately when it cannot be adjusted only with the binder. As the surfactant, for example, it is desirable to use an anionic surfactant. Thereby, the wettability of the incinerated ash surface is improved, and wetting of the binder and water is promoted. That is, in terms of stabilizing or improving the properties and functions of the porous body, it is effective to add a binder, water, and a surfactant to the incinerated ash and uniformly mix or suspend them.

また、多孔質体の性状および機能に有効な上記以外の添加物としては、KOH、NaOH、Ca(OH)等の水酸化物、SiO、P、Al、CaO、KO、SO、Ni、MnO等の酸化物、KCl、NaCl等の塩化物、及びこれらの無機化合物や有機化合物などが挙げられる。 Further, additives other than the above effective for the properties and functions of the porous body include hydroxides such as KOH, NaOH, Ca (OH) 2 , SiO 2 , P 2 O 5 , Al 2 O 3 , CaO, Examples thereof include oxides such as K 2 O, SO 3 , Ni 2 O 3 and MnO, chlorides such as KCl and NaCl, and inorganic and organic compounds thereof.

次に、ステップS3において、ステップS2で得られた混合体を、例えば、ローラ、スクリーン、リテーナから構成される造粒機に供給し、ローラの転圧によりスクリ−ンの開口部から下方に押し出して造形し、次いで、ブレードなどにより所定寸法に切断して造粒体を得る。   Next, in step S3, the mixture obtained in step S2 is supplied to a granulator composed of, for example, a roller, a screen, and a retainer, and extruded downward from the opening of the screen by roller rolling. Then, it is cut into a predetermined size with a blade or the like to obtain a granulated body.

ステップS4において、この造粒体を回転する円盤(例えばマルメプレート)上に供給し、その上を転がすことにより、粒状に整粒化する。なお、整粒化された時点における粒度分布は、1mm〜20mm超まで幅広く分布している。   In step S4, this granulated body is supplied onto a rotating disk (for example, a Malmo plate), and rolled on the granule to be granulated. In addition, the particle size distribution at the time of sizing is widely distributed from 1 mm to over 20 mm.

ステップS5において、整粒された造粒体を乾燥機などに供給し、例えば200℃の熱風を流動させながら、数時間かけて乾燥させる。この乾燥された造粒体は、篩によって粒度選別され、粒径が0.6mm〜1.7mmの範囲の粒子群(以下、細粒という。)と、1.7mm〜3.4mmの範囲の粒子群(以下、粗粒という。)に選別され、乾燥造粒体として貯留される。なお、本実施形態における乾燥造粒体の細粒と粗粒の粒度範囲は、最終製造品に要求される機能などを考慮して適宜選択され、乾燥造粒体の粒度自体を規定するものではない。また、乾燥温度は、200℃に規定しているが、乾燥造粒体の水分が十分に蒸発され、焼却灰の焼結が開始されない温度であれば、これに限定されない。ちなみに、この乾燥造粒体は、例えば、直接多段噴流炉やロータリキルン炉に供給し焼成することにより、粒状生産物として製品化することができるものである。   In step S5, the sized granulated material is supplied to a dryer or the like, and dried for several hours while flowing hot air at 200 ° C., for example. This dried granulated product is subjected to particle size selection by a sieve, and a particle group having a particle size in the range of 0.6 mm to 1.7 mm (hereinafter referred to as a fine particle) and in a range of 1.7 mm to 3.4 mm. It is sorted into a particle group (hereinafter referred to as coarse particles) and stored as a dry granulated body. In addition, the fine particle size and coarse particle size range of the dry granule in the present embodiment is appropriately selected in consideration of functions required for the final product, etc., and does not prescribe the particle size of the dry granule itself. Absent. Moreover, although the drying temperature is prescribed | regulated to 200 degreeC, if the water | moisture content of a dry granulation body is fully evaporated and it is the temperature which does not start sintering of incineration ash, it will not be limited to this. By the way, this dried granulated product can be commercialized as a granular product by, for example, supplying it directly to a multistage jet furnace or a rotary kiln furnace and firing it.

次に、ステップS6において、乾燥造粒体を、金型内に充填させて成型する。本実施形態においては、周知の圧縮成型法として、例えば一軸圧縮成型が適用される。具体的には、僅かに抜きテーパを付けた金型内に乾燥造粒体(以下、適宜粒子という。)を供給し、短時間振動させて充填状態を充実させた後、押し型により所定圧力で押付けて圧縮するようにする。圧縮が完了したら、押し型を除去し、成型体を金型から抜き出す。   Next, in step S6, the dried granulated material is filled in a mold and molded. In the present embodiment, for example, uniaxial compression molding is applied as a known compression molding method. Specifically, a dry granulated body (hereinafter referred to as “particles” as appropriate) is supplied into a slightly punched die and vibrated for a short time to enhance the filling state. Press to compress it. When compression is completed, the pressing mold is removed, and the molded body is extracted from the mold.

この場合において、成型体が、例えば円柱や立方形などの単純形状であれば、1回の成型で製作できるが、逆円錐台形状などの複雑な形状を有する場合、底面部と側面部における押し型の押し付け移動量に対する粒子の被圧縮率が異なる。そのため、一軸圧縮法を適用する際は、底面部と側面部を2回に分けて、各々圧縮することが望ましい。また、圧縮成型する際に、金型の内側面を粒子が摺動するが、その影響を軽減するため、例えば2軸以上の圧縮成型を適用することが好ましい。また、金型からの離型性を向上させるため、金型内壁に離型剤を塗布することが好ましい。   In this case, if the molded body has a simple shape such as a cylinder or a cube, for example, it can be manufactured by a single molding. The compression ratio of the particles with respect to the pressing movement amount of the mold is different. Therefore, when applying the uniaxial compression method, it is desirable to divide the bottom surface portion and the side surface portion into two portions and compress each. Further, when compression molding, particles slide on the inner surface of the mold, but in order to reduce the influence, it is preferable to apply, for example, biaxial or more compression molding. Further, in order to improve the releasability from the mold, it is preferable to apply a release agent to the inner wall of the mold.

本実施形態の圧縮成型における押付け圧としては、乾燥造粒体つまり被圧縮物の投影単位面積当り150〜400kgf/cmであることが好ましく、さらには170〜250kgf/cmであることがより好ましい。この圧力範囲は、粉体の性状や添加する結合材の特性などにより異なるが、押付け圧が過大になると、成型体における粒子間の隙間が小さくなるか、または無くなり、最終製品の多孔性を実現できなくなる。一方、押しつけ圧が過小になると、成型体の強度が低くなり、搬送工程や焼成工程の際に、成型体の形状が維持できなくなる。 The pressing pressure in the compression molding of the present embodiment is preferably 150 to 400 kgf / cm 2 and more preferably 170 to 250 kgf / cm 2 per projected unit area of the dried granulated body, that is, the material to be compressed. preferable. This pressure range varies depending on the properties of the powder and the properties of the binder to be added, but if the pressing pressure is excessive, the gaps between the particles in the molded body will be reduced or eliminated, realizing the porosity of the final product. become unable. On the other hand, when the pressing pressure is too low, the strength of the molded body is lowered, and the shape of the molded body cannot be maintained during the transport process and the firing process.

次に、ステップ7において、成型体を焼成炉に投入し、焼成する。この場合において、焼成条件は、焼却灰の焼結が開始される温度(例えば、650℃)の手前までは、比較的早い速度(例えば、200℃/時)で昇温し、焼結開始から最高温度までを比較的遅い速度(例えば、50℃/時)で昇温するようにするのが好ましい。なお、最高温度は、例えば1060〜1100℃とし、十分な時間を保持するようにする。これにより、成型体を構成する粒子は、互いに接する部分から融着が開始される一方、融着されない空間は、空隙として残留し、これにより多孔質体が形成される。   Next, in step 7, the compact is put into a firing furnace and fired. In this case, the firing condition is that the temperature is increased at a relatively fast rate (for example, 200 ° C./hour) until the temperature before the incineration ash starts to be sintered (for example, 650 ° C.). It is preferable to raise the temperature up to the maximum temperature at a relatively slow rate (for example, 50 ° C./hour). The maximum temperature is, for example, 1060 to 1100 ° C., and a sufficient time is maintained. As a result, the particles constituting the molded body start to be fused from the portions in contact with each other, while the unfused space remains as a void, thereby forming a porous body.

最後に、焼成炉から取り出された焼成済みの多孔質体は、ステップ8において、製品用途に応じて後述する後処理が施され、最終製品となる。   Finally, the fired porous body taken out from the firing furnace is subjected to post-processing described later according to the product application in Step 8 to be a final product.

次に、本実施形態において製造される多孔質体の利用法の一例について具体的に説明する。本実施形態の多孔質体は、その空隙率にもよるが、一定の透水性と保水性を有している。これに対し、周知の撥水剤(例えば、炭化水素系、フッ素系など)を多孔質体に作用させると、通気性は維持されるが、透水性と保水性が極端に低下するようになる。そのため、例えば、側面の一部に撥水剤を塗布した多孔質体は、全体として多孔性を有しつつ、一部分は透水性と保水性を保ち、他の部分は殆ど透水性と保水性を持たない特性となる。本実施形態における多孔質体は、例えばフラワーポットとして利用できる。つまり、多孔質体の容器側面部のみ撥水剤を塗布することにより、その部分は通気性を持ちながら透水性が抑制され、内部から水が染み出ることなく、撥水剤を塗布しない底部からのみ排水および吸水が行われる。なお、多孔質体において撥水処理をする範囲は、外表面の一部に限定されず、用途に応じて、全体を撥水処理するようにしてもよい。   Next, an example of how to use the porous body produced in the present embodiment will be specifically described. The porous body of the present embodiment has certain water permeability and water retention, depending on the porosity. On the other hand, when a well-known water repellent (for example, hydrocarbon-based, fluorine-based, etc.) is allowed to act on the porous body, the air permeability is maintained, but the water permeability and water retention are extremely lowered. . Therefore, for example, a porous body in which a part of the side surface is coated with a water repellent has porosity as a whole, while part of the porous body maintains water permeability and water retention, and the other part has almost water permeability and water retention. It becomes a characteristic that does not have. The porous body in the present embodiment can be used as, for example, a flower pot. In other words, by applying the water repellent only to the side surface portion of the porous container, the water permeability is suppressed while the portion has air permeability, water does not ooze out from the inside, and the water repellent is not applied from the bottom. Only drainage and water absorption are performed. In addition, the range which performs a water-repellent process in a porous body is not limited to a part of outer surface, According to a use, you may make it make the whole water-repellent process.

また、多孔質体の空隙部に、例えば周知の有機肥料剤(例えば、窒素、リン酸、カリウムなどを含む化合物)を付着させることにより、透水性と保水性により、植栽としての有機成分が補われ、例えば屋上緑化用多孔質体として利用できる。また、上記の有機物を含む水分を多孔質体に含侵させることにより、例えば、コケ類や地被類を植栽した屋上緑化用タイルとして好適となる。   In addition, by attaching, for example, a well-known organic fertilizer (for example, a compound containing nitrogen, phosphoric acid, potassium, etc.) to the voids of the porous body, the organic component as planting can be obtained by water permeability and water retention. For example, it can be used as a porous material for rooftop greening. In addition, by impregnating the porous body with water containing the above organic matter, for example, it is suitable as a rooftop greening tile in which moss and ground cover are planted.

上述したように、本実施形態においては、下水汚泥焼却灰である粉体に結合材を加えて混練し、造粒、乾燥してなる乾燥造粒体を、直接、加圧して成型することにより、目的とする形状の成型体が形成される。また、この成型体を焼成処理しても、成型体の形状を維持した多孔質構造の焼成品を得ることができる。これにより、従来法のように、結合材の添加および焼成処理を2回行う必要がないため、製造工程が簡単化され、経済的である。また、焼成処理が1回で済むから、粒子同士が融着し易くなり、焼成体の強度(例えば、破壊強度)が高くなる。   As described above, in this embodiment, by adding a binder to the powder that is sewage sludge incineration ash, kneading, granulating, and drying, the dried granulated body is directly pressed and molded. A molded body having a desired shape is formed. Moreover, even if this molded body is fired, a fired product having a porous structure in which the shape of the molded body is maintained can be obtained. Thus, unlike the conventional method, it is not necessary to add the binder and perform the baking process twice, so that the manufacturing process is simplified and economical. Further, since the firing process is performed only once, the particles are easily fused with each other, and the strength (for example, breaking strength) of the fired body is increased.

また、本実施形態では、下水汚泥焼却灰を一例として説明したが、これに限られるものではなく、他の無機物の粉体を造粒し、これを成型、焼成しても、本実施形態と同様の効果を奏することができる。   Further, in the present embodiment, the sewage sludge incineration ash has been described as an example, but the present invention is not limited thereto, and other inorganic powders may be granulated, molded, and fired. Similar effects can be achieved.

なお、本実施形態では、乾燥造粒体の成型において、圧縮成型を適用する例を説明したが、これに限られるものではなく、例えば、上部が開放された型枠内に、乾燥造粒体を敷き詰めた状態(無圧状態)で焼成し、焼成後に型枠から取り出すようにしてもよい。これによれば、上記の多孔質体と比べて空隙率が大きくなり、破壊強度が低くなるが、その分、通気性が要求される製品などに利用することができる。   In the present embodiment, an example in which compression molding is applied in the molding of a dried granulated body has been described. However, the present invention is not limited to this. For example, the dried granulated body is placed in a mold having an open top. May be fired in a state where there is a spread (no pressure state), and taken out from the mold after firing. According to this, the porosity is increased and the breaking strength is reduced as compared with the above porous body, but it can be used for products that require air permeability.

以下、実施例をあげて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1〜8)前記した図1の製造工程に基づき、下水汚泥焼却灰(東京都下水道局製)を原料として、その乾燥造粒体を圧縮成型し、焼成することにより、多孔質体の試験片を作製した。この場合において用いる結合材は、酵母培養濃縮液(オリエンタル酵母工業(株)製)、界面活性剤は、サンノールDL−1430(ライオン(株)製)を使用した。結合材の添加量は、下水汚泥焼却灰を100重量部として、27重量部とした。また、乾燥造粒体は、上述した粗粒または細粒をそれぞれ使用した。詳細な試験条件を以下に示す。
(試験条件)
プレス機 :油圧プレス(リケンパワーP1B−041、理研精機(株)製)、ピストンシリンダ受圧面積:33.18cm
金型寸法 :内径φ25mm
プレス圧 :200kgf/cm、造粒体受圧面積:φ25mm
焼成炉 :マッフル炉(NMR−14−SK、いすず製作所(株)製)
重量測定 :電子天秤(FX−300N、AND(株)製)
焼成温度 :1060℃または1100℃
焼成時間 :6時間または12時間
圧縮成型の際に使用するプレス型を図2に示す。図示するように、まず、円筒状の筒枠1をプレス台2の上に載置し、筒枠1の充填部の底部に下敷きとしてピース3を入れ、次いで計量した乾燥造粒体4を投入後、押し型としてピース5を入れることにより、乾燥造粒体4を筒枠1内に挟み込むようにする。そして、ピース5を、ピストン6を介してプレス機により圧縮して成型する。成型後は、成型体を筒枠1から取出して焼成する。
(Examples 1-8) Based on the manufacturing process of FIG. 1 described above, the dried granulated material is compression molded and fired using sewage sludge incineration ash (manufactured by the Tokyo Sewerage Bureau) as a raw material. A test piece was prepared. The binding material used in this case was yeast culture concentrate (manufactured by Oriental Yeast Co., Ltd.), and the surfactant used was Sannol DL-1430 (manufactured by Lion Corporation). The amount of the binder added was 27 parts by weight with 100 parts by weight of sewage sludge incineration ash. Moreover, the coarse granule mentioned above or the fine grain was used for the dry granulated body, respectively. Detailed test conditions are shown below.
(Test conditions)
Press: hydraulic press (Riken power P1B-041, manufactured by Riken Seiki Co.), the piston cylinder pressure receiving area: 33.18Cm 2
Mold dimension: Inner diameter φ25mm
Press pressure: 200 kgf / cm 2 , granulated pressure receiving area: φ25 mm
Firing furnace: Muffle furnace (NMR-14-SK, manufactured by Isuzu Manufacturing Co., Ltd.)
Weight measurement: Electronic balance (FX-300N, manufactured by AND Corporation)
Firing temperature: 1060 ° C or 1100 ° C
Firing time: 6 hours or 12 hours FIG. 2 shows a press die used for compression molding. As shown in the figure, first, a cylindrical tube frame 1 is placed on a press stand 2, a piece 3 is placed as an underlay on the bottom of the filling portion of the tube frame 1, and then a dry granulated body 4 that is weighed is put in. Then, the dried granulated body 4 is sandwiched in the cylindrical frame 1 by putting the piece 5 as a pressing die. And the piece 5 is compressed and molded by a press machine through the piston 6. After molding, the molded body is taken out from the tube frame 1 and fired.

以上の条件に基づき、粒子サイズ、焼成温度および保持時間を変えて製作した結果(実施例1〜8)を、表1に示す。   Table 1 shows the results (Examples 1 to 8) produced by changing the particle size, firing temperature, and holding time based on the above conditions.

Figure 2005035854

実施例1〜8において、成型に使用する乾燥造粒体は、粗粒、細粒に関わらず、新たに結合材を添加しなくても成型が可能であり、焼成においても、その形状が維持され、十分に焼結されることが確かめられた。また、焼成体の重量、吸水量および外径寸法を測定した結果を表1に示す。各試験片とも、焼成による収縮が認められ、さらに、焼成温度を1060℃から1100℃に上昇させることにより、収縮率が大きくなっている。これにより、焼成温度を溶融域温度まで昇温させなくても焼結することが判明した。
Figure 2005035854

In Examples 1-8, the dried granulated material used for molding can be molded without adding a new binder regardless of whether it is coarse or fine, and its shape is maintained even during firing. And was confirmed to be fully sintered. Table 1 shows the results of measuring the weight, water absorption and outer diameter of the fired body. In each test piece, shrinkage due to firing was observed, and the shrinkage rate was increased by raising the firing temperature from 1060 ° C. to 1100 ° C. As a result, it has been found that sintering is performed without raising the firing temperature to the melting region temperature.

また、吸水量は、試験片にスポイトで水を滴下させ、試験片から水がしみ出し始めた時点を終点として、水の供給量を求めた。いずれの試験片も水が速やかに吸い込まれるとともに、毛管現象が認められた。以上より、いずれも実施例においても、十分な透水性と保水性を有することが確かめられた。   The amount of water absorption was determined by supplying water to the test piece by dropping the water with a dropper and setting the end point as the time when water began to ooze from the test piece. In all the test pieces, water was rapidly sucked and capillary action was observed. From the above, it was confirmed that all of the examples had sufficient water permeability and water retention.

(実施例9)粗粒の乾燥造粒体を上記の条件により成型し、焼成温度:1060℃、保持時間:12時間として焼成した試験片(表1参照)を、シロキサン系撥水剤(アクアシール1300CR、中外炉工業(株))に浸漬させて表面を撥水処理した後、乾燥させた状態で、表面に水滴を滴下した。その結果、水滴が表面で丸くなり、全く浸透しないことが確かめられた。   (Example 9) A test piece (see Table 1) obtained by molding a coarse dry granulated body under the above conditions and firing at a firing temperature of 1060 ° C. and a holding time of 12 hours was used as a siloxane-based water repellent (Aqua The surface was dipped in Seal 1300CR, Chugai Furnace Industry Co., Ltd. to make the surface water-repellent, and then water droplets were dropped on the surface in a dried state. As a result, it was confirmed that the water droplets were rounded on the surface and did not penetrate at all.

(実施例10)粗粒による乾燥造粒体を成型し、焼成温度:1060℃、保持時間:12時間の条件により焼成した試験片(実施例3の試験片を使用)を自然乾燥後、有機物を十分に含んだ水分を含侵させ、コケを付着させた状態で、十分大きい容器に密封し、暗室に約1ヶ月放置した。その後、容器を開放してみると、コケは青いまま生存していることが確かめられた。   (Example 10) A dry granulated body made of coarse particles was molded, and a test piece (using the test piece of Example 3) fired under conditions of firing temperature: 1060 ° C and holding time: 12 hours was naturally dried, and then organic matter In a state of impregnating moisture sufficiently containing moss and adhering moss, it was sealed in a sufficiently large container and left in a dark room for about 1 month. After that, when the container was opened, it was confirmed that the moss remained alive in blue.

(実施例11)次に、圧縮成型のプレス圧における成型品の評価を行った。金型を圧縮するプレス機のゲージ圧を、25,30,60,150,300kgf/cm(造粒体押付け圧に換算すると、それぞれ約167,200,400,1000,2000kgf/cm)と変化させ、乾燥造粒体(15g、粗粒品)を圧縮した結果、ゲージ圧60kgf/cm以上では粒子が潰れてしまい、直接焼却灰を押し固めたものと変わらなかった。一方、ゲージ圧25kgf/cmでは、粒子同士の付着が弱く、角部分が容易に脱落した。これに対し、ゲージ圧30kgf/cmでは、乾燥造粒体が潰れずに、比較的良好な状態で密着した成型品が得られた。ちなみに、このゲージ圧30kgf/cmの成型体を焼成(1060℃および1100℃)したところ、僅かの焼成収縮が見られたが、形状は保持されることが確かめられた。 (Example 11) Next, the molded product was evaluated at the press pressure of compression molding. The gauge pressure of the press to compress the mold, (when converted to granule pressing pressure, about each 167,200,400,1000,2000kgf / cm 2) 25,30,60,150,300kgf / cm 2 and As a result of changing and compressing the dried granulated product (15 g, coarse product), the particles were crushed at a gauge pressure of 60 kgf / cm 2 or more, which was the same as that obtained by directly compacting the incinerated ash. On the other hand, at a gauge pressure of 25 kgf / cm 2 , the adhesion between the particles was weak, and the corner portion easily dropped off. In contrast, in the gauge pressure 30 kgf / cm 2, without collapse dried granules, moldings in close contact with a relatively good state was obtained. By the way, when this molded body having a gauge pressure of 30 kgf / cm 2 was fired (1060 ° C. and 1100 ° C.), slight firing shrinkage was observed, but it was confirmed that the shape was maintained.

(実施例12)実施例1における乾燥造粒体を、加圧せずに、上部が開放された型枠内に敷き詰め、型枠とともに焼成し、多孔質の試験片を作製した。この試験片を、焼成温度が1000℃および1050℃〜1100℃の範囲において10℃間隔の7種類、保持時間を1,3,6,12,24hの5種類とし、これらの組み合わせに対し、焼結性を評価した。その結果、1080℃×12hにおいて、試験片の90%以上の粒子が融着されるとともに、表面に満遍なくガラス質が生じることが確認された。また、さらに焼成温度を上げていくと、上記の融着状態に要する保持時間が短縮できることが確認された。   (Example 12) The dried granulated material in Example 1 was spread in a mold having an open top without being pressurized, and baked together with the mold to produce a porous test piece. This test piece was made into seven types with a firing temperature of 1000 ° C. and 1050 ° C. to 1100 ° C. at intervals of 10 ° C. and holding times of five types of 1, 3, 6, 12, 24 h. The ligation was evaluated. As a result, at 1080 ° C. × 12 h, it was confirmed that 90% or more of the particles of the test piece were fused, and the glass was uniformly generated on the surface. Further, it was confirmed that the holding time required for the fused state can be shortened by further increasing the firing temperature.

本発明に係る多孔質体の製造方法の工程図である。It is process drawing of the manufacturing method of the porous body which concerns on this invention. 本発明の実施例に係る乾燥造粒体のプレス型の構成図である。It is a block diagram of the press die of the dry granulated body which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 筒枠
2 プレス台
3,5 ピース
6 ピストン
1 Cylinder frame 2 Press stand 3, 5 pieces 6 Piston

Claims (8)

無機物の粉体と結合材とを混合する混合工程と、該混合工程により混合された混合体を造粒する造粒工程と、該造粒工程により造粒された造粒体を成型する成型工程と、該成型工程により成型された成型体を焼成する焼成工程とを有してなる多孔質体の製造方法。 A mixing step of mixing the inorganic powder and the binder, a granulating step of granulating the mixture mixed by the mixing step, and a molding step of molding the granulated body granulated by the granulating step And a method for producing a porous body comprising a firing step of firing the molded body molded by the molding step. 前記粉体は、下水汚泥焼却灰であることを特徴とする請求項1に記載の多孔質体の製造方法。 The said powder is a sewage sludge incineration ash, The manufacturing method of the porous body of Claim 1 characterized by the above-mentioned. 前記成型工程は、前記造粒体を加圧して行うことを特徴とする請求項1または2に記載の多孔質体の製造方法。 The method for producing a porous body according to claim 1 or 2, wherein the molding step is performed by pressurizing the granulated body. 前記成型工程は、前記造粒体の投影面積当り150乃至400kgf/cmの圧力で加圧することを特徴とする請求項3に記載の多孔質体の製造方法。 The method for producing a porous body according to claim 3, wherein in the molding step, pressurization is performed at a pressure of 150 to 400 kgf / cm 2 per projected area of the granulated body. 無機物を主成分とする粒子群が成型、焼成されてなり、粒子同士が融着する融着部と、粒子間の隙間の空隙部とを有してなる多孔質体。 A porous body formed by molding and firing a particle group containing an inorganic substance as a main component, and having a fusion part where the particles are fused together and a gap part between the particles. 前記粒子群は、下水汚泥焼却灰から形成された粒子の集まりであることを特徴とする請求項5に記載の多孔質体。 The porous body according to claim 5, wherein the particle group is a collection of particles formed from sewage sludge incineration ash. 前記多孔質体は、該多孔質体の外表面の一部または全部が撥水処理されてなる請求項5または6に記載の多孔質体。 The porous body according to claim 5 or 6, wherein a part or all of the outer surface of the porous body is subjected to water repellent treatment. 前記多孔質体は、前記空隙部に有機物が付着してなる請求項5または6に記載の多孔質体。
The porous body according to claim 5 or 6, wherein the porous body is formed by attaching an organic substance to the void portion.
JP2003276430A 2003-07-18 2003-07-18 Porous body and its producing method Withdrawn JP2005035854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276430A JP2005035854A (en) 2003-07-18 2003-07-18 Porous body and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276430A JP2005035854A (en) 2003-07-18 2003-07-18 Porous body and its producing method

Publications (1)

Publication Number Publication Date
JP2005035854A true JP2005035854A (en) 2005-02-10

Family

ID=34212753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276430A Withdrawn JP2005035854A (en) 2003-07-18 2003-07-18 Porous body and its producing method

Country Status (1)

Country Link
JP (1) JP2005035854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026818A (en) * 2010-07-22 2012-02-09 Ngk Insulators Ltd Radioactive silicone oil processing method
JP2015057047A (en) * 2013-08-09 2015-03-26 ニチアス株式会社 Inorganic mold culture medium and method for producing inorganic mold culture medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026818A (en) * 2010-07-22 2012-02-09 Ngk Insulators Ltd Radioactive silicone oil processing method
JP2015057047A (en) * 2013-08-09 2015-03-26 ニチアス株式会社 Inorganic mold culture medium and method for producing inorganic mold culture medium

Similar Documents

Publication Publication Date Title
Bijen Manufacturing processes of artificial lightweight aggregates from fly ash
CN106630956B (en) A kind of ceramic particle and the baking-free water-permeable brick preparation method using it
CN110642601A (en) Water-retaining brick prepared by taking gasification furnace slag as raw material and preparation method thereof
JP5435255B2 (en) Geopolymer solidified product using sewage sludge molten slag as active filler and method for producing the same
EP3652129A1 (en) Method for obtaining a compacted material and compacted material obtained thereby
KR101066193B1 (en) Carbonized lightweight aggregate be made from organic sludge
JP2007145669A (en) Water-retainable block and its production method
CN108147837A (en) A kind of light porous ceramic filter material and preparation method thereof
JP2005035854A (en) Porous body and its producing method
KR100915432B1 (en) manufacture method brick of permeability a utilization zincslag
JP2004339042A (en) Method of manufacturing porous ceramic using charcoal powder or bamboo charcoal powder as main raw material
JP3072423B2 (en) Manufacturing method of high-strength artificial aggregate
JP2010089982A (en) Concrete, artificial aggregate used therefor and method for producing the same
JP2004536016A (en) Factory mortar
CN109485377A (en) It is the method for making of brick material using garbage incineration fly ash
JP4713214B2 (en) Method for producing porous ceramics
KR100415691B1 (en) Manufacture of charcoal tile
JP3514535B2 (en) Manufacturing method of artificial lightweight aggregate
JPH03183669A (en) Production of porous calcined and hardened body consisting of coal ash as main raw material
JP4509269B2 (en) Artificial aggregate and method for producing the same
JPH03232783A (en) Production of water-permeable paving block and water-permeable paving block
JP3097203B2 (en) Solidification method of incineration ash
JP4452116B2 (en) Porous landscape gravel and its manufacturing method
JP2007261887A (en) Method and apparatus for manufacturing artificial aggregate
JP3635288B2 (en) Manufacturing method of artificial lightweight aggregate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003