JP2005034702A - Suspended particle flocculation unit and waste liquid purifying apparatus - Google Patents

Suspended particle flocculation unit and waste liquid purifying apparatus Download PDF

Info

Publication number
JP2005034702A
JP2005034702A JP2003197976A JP2003197976A JP2005034702A JP 2005034702 A JP2005034702 A JP 2005034702A JP 2003197976 A JP2003197976 A JP 2003197976A JP 2003197976 A JP2003197976 A JP 2003197976A JP 2005034702 A JP2005034702 A JP 2005034702A
Authority
JP
Japan
Prior art keywords
waste liquid
suspended particle
passed
suspended
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197976A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aida
寛幸 会田
Akira Kochi
章 胡内
Senichi Kakiuchi
千一 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Sumitomo Densetsu Co Ltd
Original Assignee
Nikkato Corp
Sumitomo Densetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp, Sumitomo Densetsu Co Ltd filed Critical Nikkato Corp
Priority to JP2003197976A priority Critical patent/JP2005034702A/en
Publication of JP2005034702A publication Critical patent/JP2005034702A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suspended particle flocculation unit efficiently flocculating suspended particles in waste liquid by eluting positive ions into the passing waste liquid, causing little clogging, and treating a large amount of waste liquid. <P>SOLUTION: A pipe 5 is formed from magnesium eluting positive ions, multiple pipes 5 are collectively installed in a cylinder 4, waste liquid is made to flow through holes 6 of the pipes 5 and spaces 7 among the pipes, positive ions are eluted into the waste liquid, thereby enhancing flocculation effect of the suspended particles contained in the waste liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、廃液の浄化のために活性汚泥処理装置などに採用して廃液に含まれる微粒子を効果的に凝集させる懸濁粒子凝集ユニットと、その懸濁粒子凝集ユニットと凝集沈澱槽とを組み合わせて構成される廃液浄化装置に関する。
【0002】
【従来の技術】
各種廃液中に含まれる汚濁物質は濾材で捕捉できないものが多く、濾過法では効率的な除去が難しい。このため、一般的な水処理では中和処理などの前処理を行った後に廃水に凝集剤を加えて液中の懸濁粒子(浮遊粒子)を凝集させ、粒子が凝集してできるフロック(綿状物)を大きくして沈降さるなどの方法で除去している。
【0003】
疎水性コロイド粒子の凝集は、粒子の表面に存在する電荷(凝集阻害因子)と反対符号のイオンを加える方法でなされる。
【0004】
電解質を加えると、粒子間の反発ポテンシャルが減少し、相対的に粒子間の引力が上回り、粒子が互いに引き寄せられて凝集することはDLVO理論として知られ、また、イオンによる凝集はイオンの価数が大きいほど低濃度で起こることはシュルツハーディの法則として知られている。
【0005】
ところで、この出願の発明者等は、廃液に凝集剤を添加する方法よりも、陽イオンを発生させる物質に廃液を接触させて通過させ、通過する液に陽イオンを溶出させる方法の方が優れた凝集効果が得られることを見いだし、その方法を実施するための凝集器を開発して特願2002−113027号や特願2002−336043号等で提案している。
【0006】
その提案済の凝集器は、顆粒、ペレット或いは、チップ状の凝集剤(陽イオンを発生させる物質)を容器に充填し、或いは凝集剤の粉末を焼き固めたポーラスな成形体(以下マグフォームと称す)をパイプ内に装填し、容器やパイプに導入する廃液を内部の凝集剤やマグフォームに接触させて通過させるようにしたものである。凝集剤は、マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化カルシウム、水酸化カルシウム、炭酸カルシウムなどのアルカリ土類金属やアルミニウム、酸化アルミニウム、水酸化アルミニウムなどが有効であり、多孔質酸化マグネシウムや多孔質水酸化マグネシウムを用いると特に優れた効果が得られることを確認している。
【0007】
なお、本出願人が特願2002−113027号や特願2002−336043号等で先に提案している方法は、凝集器通過後の廃液をペーパフィルタなどに通し、凝集した液中の懸濁粒子を漉し取る。
【0008】
【発明が解決しようとする課題】
本出願人が特願2002−113027号や特願2002−336043号等で提案している凝集器は、凝集剤間に生じた微小隙間やマグフォームの内部空孔を通路にしてその通路に廃液を通すようにしているので、浮遊物質濃度(MLLS)の高い液を処理する場合には特に、目詰まりが発生し易い。微小な隙間や経路の複雑なマグフォームの内部空孔に廃液を通すので液の流動抵抗が元々大きい。そこに目詰まりによる圧損(流量低下)が生じるため処理能力に限界があり、大量処理ができない。
【0009】
凝集器の手前にカッターポンプとストレーナを配置して凝集器を通るまでの間に成長したフロックなどを事前に粉砕し、さらに、廃液に圧力をかけて目詰まりを抑えることも試みられているが、これでも処理能力はせいぜい200t/日ぐらいが限界である。
【0010】
規模の大きい活性汚泥処理等ではそれを超える処理能力を必要とし、その処理能力を高めるために凝集器の目詰まりを無くすことが要求されている。
【0011】
この発明は、その要求に応えた懸濁粒子凝集ユニットと廃液浄化装置を提供することを課題としている。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、陽イオンを溶出させる物質で形成された部材に平行配置の複数の穴を設け、この穴を通路にしてその穴に廃液を通すようにした懸濁粒子凝集ユニットと、
陽イオンを溶出させる物質で形成されたパイプを複数本平行配置にして集合し、各パイプの穴を通路にしてこの穴に廃液を通すようにした懸濁粒子凝集ユニットを提供する。
【0013】
また、これらの懸濁粒子凝集ユニットと、懸濁粒子凝集ユニット通過後の陽イオンが溶け込んだ廃液を導入して液中の懸濁粒子を凝集沈澱させ、上澄み液をオーバーフローさせて流出させる凝集沈澱槽とを備えている廃液浄化装置も提供する。
【0014】
凝集ユニットに採用する陽イオンを溶出させる物質は、マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、多孔質水酸化マグネシウム、多孔質酸化マグネシウムなどが好ましい。
【0015】
なお、パイプを集合させて作られる懸濁粒子凝集ユニットは、例えば丸パイプを組み合わせたときに隣り合うパイプ間にできる隙間も廃液の通路として使用することができる。ここで云うパイプは、複数の壁材を筒状に組合わせたものであってもよい。
【0016】
【作用】
この発明の懸濁粒子凝集ユニットは、陽イオンを溶出させる物質によって形成された部材に複数の穴を平行配置にして設け、その穴に廃液を通すようにしたので、目詰まりが発生しない。陽イオンを溶出させる物質でパイプを形成し、そのパイプを複数本集合させてパイプの穴を廃液の通路となすものも同様である。この目詰まりの解消により、凝集ユニットの処理能力が高まり、廃液の大量処理が可能になる。
【0017】
なお、これまでは、陽イオンを溶出させる凝集剤と廃液との接触面積を広げるほど浮遊粒子の凝集効果が高まると考え、凝集剤間の微細な隙間や凝集剤を固形化したポーラスなマグフォームの内部空孔に廃液を通すようにしていたが、陽イオンを溶出させる物質を固形化した部材に直径が数cmの穴、例えば10mm〜50mm程度の穴を設けてその穴に廃液を通す方法や、穴径が10mm〜50mm程度あるパイプを陽イオンを溶出させる物質で形成してこのパイプの穴に廃液を通す方法でも廃液中の懸濁粒子(浮遊粒子)を効果的に凝集させ得ることを見いだした。
【0018】
穴径が10mmを超えるような穴に廃液を通すと、先に提案している凝集器に廃液を通す場合に比べて陽イオンを発生させる物質の溶出量が少なくなるが、それでも高い凝集効果が発揮される。そのことを実験によって確認した。
【0019】
【発明の実施の形態】
以下、この発明の実施の形態を添付図に基づいて説明する。図1に第1形態の懸濁粒子凝集ユニットを、また、図2に第2実施形態の懸濁粒子凝集ユニットをそれぞれ示す。
【0020】
図1の懸濁粒子凝集ユニット1は、陽イオンを発生させる物質(粉末の凝集剤)を焼き固めて構成される柱状部材2にストレートな穴3を平行配置にして複数設け、これを筒4の内部に装填して構成されている。
【0021】
また、図2の懸濁粒子凝集ユニット1は、陽イオンを発生させる物質(粉末の凝集剤)を焼き固めて形成されたパイプ5を複数本密着させて集合させ、これを筒4の内部に装填して構成されている。
【0022】
図1の柱状部材2に形成される穴3の直径および図2のパイプ5の内径(穴6の直径)は、小さすぎると、目詰まり防止効果が小さくなり、大きすぎると粒子の凝集効果が小さくなる。穴3、6の直径は10mm〜50mm程度、好ましくは20mm〜30mm程度がよい。
【0023】
図1の穴3は、柱状部材2に機械加工して設けた穴、原料粉末を成形するときに同時に形成した成形穴のどちらであってもよい。図1の懸濁粒子凝集ユニット1は、この穴3に処理対象の廃液を通す。
【0024】
図2の懸濁粒子凝集ユニット1は、パイプ5として図示の丸パイプを使用するとパイプ間の隙間7も廃液の通路となり、通路面積を広くとれるが、丸パイプに制限されるものではなく、角パイプを使用することもできる。
【0025】
図3に例示の懸濁粒子凝集ユニット1を採用した活性汚泥処理装置10の一例を示す。図の11は廃水を導入する初段のばっき槽、12は中継槽、13はフローキュレータ、14は凝集沈澱槽、15はポンプ、16はフローセル(ミキシング装置)、17はバルブである。
【0026】
凝集沈澱槽14の内筒(インナーシェル)18の中にこの発明の懸濁粒子凝集ユニット1が組み込まれている。このように、凝集沈澱槽14の内筒18の中に懸濁粒子凝集ユニット1を組み込めば、図1、図2の筒4は省略することができる。
【0027】
懸濁粒子凝集ユニット1は、中継槽12から凝集沈澱槽14に至る間の管路中に組み込んでもよい。管路の中に懸濁粒子凝集ユニットを組み込む場合には、図4に示すように、懸濁粒子凝集ユニット1を適当な間隔をあけて直列に複数基組み込むことができる。また、図示の装置はフローキュレータ13を有する管路19と並列配置の管路20を設けており、その管路20の途中に懸濁粒子凝集ユニット1を組み込んでこの懸濁粒子凝集ユニット1に通した廃水とフローキュレータ13に通した廃水を所定の割合で混合して凝集沈澱槽14に導いたり、管路19の懸濁粒子凝集ユニット1に通した廃水とフローキュレータ13に通した廃水を選択的に凝集沈澱槽14に導いたりすることができる。
【0028】
図3の活性汚泥処理装置10は、ばっき処理した廃水をばっき槽11からポンプ15で汲み上げて中継槽12に移し、さらに、中継槽12内の廃水をポンプ15で汲み上げて管路19、20の少なくとも一方に通し、凝集沈澱槽14に導く。凝集沈澱槽14の内筒を通り抜けた廃水には懸濁粒子凝集ユニット1に通したことによって陽イオンが溶出しており、懸濁粒子の凝集、沈澱が効果的に起こる。
【0029】
なお、凝集沈澱槽14内において凝集、沈澱した汚泥は、一部が種汚泥としてばっき槽11に返送され、余剰汚泥が外部に抜きとられて産廃として処分される。また、凝集沈澱槽14内の上澄み水はオーバフローして排出される。
【0030】
−実施例−
以下に、この発明の実施例を述べる。この発明の懸濁粒子凝集ユニットを有する活性汚泥処理装置を使用して実験を行った。実験に使用した活性汚泥処理装置は既存の装置を僅かに改良したものである。その装置は、図3の管路19にこの発明の懸濁粒子凝集ユニットを組み込んである。図3の凝集沈澱槽14内の懸濁粒子凝集ユニットは存在しない。なお、使用した懸濁粒子凝集ユニットは、内径20mm、長さ約200mmの水酸化マグネシウム製のパイプを10本集合させたものであり、これを図4に示すように管路内に4連に連ならせて組み込んだ。
【0031】
この活性汚泥処理装置を用いて装置の運転条件を統一し、廃水の全量を懸濁粒子凝集ユニットを通さずに中継槽から凝集沈澱槽に導入する方法(これをMg経由0%と表示)と、廃水の半分を懸濁粒子凝集ユニットに通し、残り半分は通さずに凝集沈澱槽に導入する方法(これをMg経由50%と表示)の2通りについて装置をそれぞれ一定時間稼働させて汚泥の堆積状況を比較した。
【0032】
そして、原液及び引き抜き汚泥のMLLSを調査し、懸濁粒子凝集ユニット経由時の凝集効果を確認した。
【0033】
この試験におけるphの測定結果を表1に、また、引き抜き汚泥のMLLS比較結果を表2にそれぞれ示す。
【0034】
【表1】

Figure 2005034702
【0035】
【表2】
Figure 2005034702
【0036】
まとめ)
原液は酸性、ph=6.5程度で安定している。上澄みは廃液供給開始時は水道水のためph=7.0、その後原液と混合してph=6.6〜6.7で安定。内筒入口部は、原液のph値とほぼ同等であり、Mg溶出による影響は殆ど無い。また、50%Mgサンプルは、原液比+0.1で安定しており、微量ではあるがMgが溶出していることが表1から分かる。
【0037】
この試験では、フロックの沈降がMg経由50%の方は廃液の供給開始から45分経過付近から始まったのに対し、Mg経由0%は沈降開始が約20分遅れた。また、堆積汚泥層の界面レベルが安定するまでの時間もMg経由50%の方は廃液の供給開始から95分程度であったのに対し、Mg経由0%は115分を超えており、20分以上の差がついた。
【0038】
さらに、安定後の堆積汚泥層の界面レベルは、Mg経由50%の方が6〜7cm程度低く、Mg経由0%と比較して約8%の凝集効果向上が認められた。
【0039】
MLLS比較では、表2に示すようにMg経由50%の場合の引き抜き汚泥の濃度がMg経由0%に比べて約50%高く、懸濁粒子が効果的に凝集して堆積していることを確認した。
【0040】
次に、水酸化マグネシウム製のφ65mmのマグフォーム(多孔質成形体)を装填した凝集器を中継槽と凝集沈澱槽との間の管路に4連(一連当たりのマグフォーム数8個)組み込んで使用した場合との目詰まり状況を比較した。その結果、マグフォームを用いた凝集器は2時間経過時点で目詰まりが発生し、なおかつ、水圧で一部のマグフォームが欠けたのに対し、水酸化マグネシウム製のパイプの穴に廃水を通すこの発明の凝集ユニットを使用したものは目詰まりやパイプの欠けは発生しなかった。また、マグフォーム使用品に比べて廃水の通過量を飛躍的に増加させることができた。
【0041】
【発明の効果】
以上述べたように、この発明の懸濁粒子凝集ユニットは、マグネシウムなどで形成された部材に平行配置の穴を設けてその穴に処理対象の廃液を通すか又はマグネシウムなどで形成されたパイプを複数本集合させてこのパイプの穴に廃液を通すようにしたので、目詰まりを発生させずに廃液中に陽イオンを溶出させて浮遊粒子の凝集効果を高めることができ、廃液の大量処理が可能になる。
【0042】
また、この発明の廃液浄化装置は、既に技術が確立しているばっき槽を組み合わせて、大量処理が可能な凝集能力の高い廃液処理装置を作り出すことができる。
【0043】
このほか、この発明の技術を利用すれば、既設の活性汚泥処理装置の処理能力を装置の大がかりな改造を行わずに増強することも可能になる。
【図面の簡単な説明】
【図1】(a)第1形態の懸濁粒子凝集ユニットの一例を示す断面図
(b)陽イオンを溶出させる物質で形成された柱状成形体の斜視図
【図2】(a)第2形態の懸濁粒子凝集ユニットの一例を示す断面図
(b)陽イオンを溶出させる物質で形成されたパイプの集合体を示す斜視図
【図3】活性汚泥処理装置の一例を示す回路図
【図4】この発明の懸濁粒子凝集ユニットを管路に複数組み込んだ状態を示す図
【符号の説明】
1 懸濁粒子凝集ユニット
2 陽イオンを溶出させる柱状部材
3、6 穴
4 筒
5 陽イオンを溶出させるパイプ
7 パイプ間隙間
10 活性汚泥処理装置
11 ばっき槽
12 中継槽
13 フローキュレータ
14 凝集沈澱槽
15 ポンプ
16 フローセル
17 バルブ
18 内筒
19、20 管路[0001]
BACKGROUND OF THE INVENTION
The present invention employs an activated sludge treatment apparatus or the like for the purification of waste liquid to effectively agglomerate fine particles contained in the waste liquid, and a combination of the suspended particle aggregation unit and the aggregation sedimentation tank. It is related with the waste liquid purification apparatus comprised.
[0002]
[Prior art]
Many pollutants contained in various waste liquids cannot be captured by the filter medium, and efficient removal is difficult by the filtration method. For this reason, in general water treatment, flocs (cotton) formed by aggregating suspended particles (floating particles) in the liquid by adding a flocculant to the waste water after pretreatment such as neutralization treatment, The material is removed by a method such as enlarging and sinking.
[0003]
Aggregation of the hydrophobic colloidal particles is performed by a method of adding ions having the opposite sign to the charge (aggregation inhibitor) present on the surface of the particles.
[0004]
When electrolyte is added, the repulsive potential between the particles decreases, the attractive force between the particles relatively increases, and the particles are attracted to each other and agglomerate. This is known as DLVO theory. It is known as Schulz Hardy's law that the smaller the value, the lower the concentration.
[0005]
By the way, the inventors of this application are superior to the method of adding a flocculant to the waste liquid, the method in which the waste liquid is brought into contact with the substance that generates cations and the cation is eluted in the liquid that passes through. The coagulator for carrying out the method has been developed and proposed in Japanese Patent Application Nos. 2002-113027 and 2002-336043.
[0006]
The proposed aggregator is a porous compact (hereinafter referred to as magfoam) in which a container is filled with granules, pellets, or chip-like agglomerates (a substance that generates cations), or a powder of agglomerates is baked and hardened. The waste liquid to be introduced into the container or pipe is allowed to pass through in contact with the internal flocculant or magfoam. As the aggregating agent, alkaline earth metals such as magnesium, magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium hydroxide, and calcium carbonate, aluminum, aluminum oxide, aluminum hydroxide, and the like are effective. Porous magnesium oxide It has been confirmed that particularly excellent effects can be obtained by using porous magnesium hydroxide.
[0007]
The method previously proposed by the present applicant in Japanese Patent Application Nos. 2002-113027 and 2002-336043 is a suspension in the agglomerated liquid by passing the waste liquid after passing through the aggregator through a paper filter or the like. Scatter the particles.
[0008]
[Problems to be solved by the invention]
The aggregator proposed by the present applicant in Japanese Patent Application No. 2002-113027, Japanese Patent Application No. 2002-336043, etc. is a waste liquid in the passage using fine gaps formed between the flocculants and internal pores of the Magfoam as a passage. Therefore, clogging is likely to occur particularly when a liquid with a high suspended solids concentration (MLLS) is processed. Since the waste liquid is passed through the internal pores of the magfoam with minute gaps and paths, the liquid flow resistance is originally high. Since pressure loss (flow rate reduction) occurs due to clogging, the processing capacity is limited, and mass processing cannot be performed.
[0009]
Although a cutter pump and a strainer are placed in front of the agglomerator, flocs that have grown before passing through the agglomerator are crushed in advance, and pressure is applied to the waste liquid to suppress clogging. Even so, the processing capacity is limited to about 200 t / day at most.
[0010]
A large-scale activated sludge treatment or the like requires a treatment capacity exceeding that, and it is required to eliminate clogging of the aggregator in order to increase the treatment capacity.
[0011]
This invention makes it the subject to provide the suspended particle aggregation unit and the waste liquid purification apparatus which met the request | requirement.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a plurality of holes arranged in parallel are provided in a member formed of a substance that elutes cations, and the waste liquid is passed through the holes using the holes as passages. A turbid particle aggregation unit;
A suspended particle agglomeration unit is provided in which a plurality of pipes formed of a substance that elutes cations are gathered in a parallel arrangement, and the waste liquid is passed through the holes through the holes of each pipe.
[0013]
In addition, these suspended particle aggregating units and the waste liquid in which the cation after passing through the suspended particle aggregating unit is introduced to agglomerate and precipitate suspended particles in the liquid, and the agglomerated sediment that overflows the supernatant and flows out. There is also provided a waste liquid purification apparatus including a tank.
[0014]
The substance that elutes cations used in the aggregation unit is preferably magnesium, magnesium oxide, magnesium hydroxide, magnesium carbonate, porous magnesium hydroxide, porous magnesium oxide, or the like.
[0015]
In the suspended particle agglomeration unit formed by collecting pipes, for example, a gap formed between adjacent pipes when round pipes are combined can also be used as a passage for waste liquid. The pipe referred to here may be a combination of a plurality of wall materials in a cylindrical shape.
[0016]
[Action]
In the suspended particle aggregating unit of the present invention, a plurality of holes are provided in a parallel arrangement in a member formed of a substance that elutes cations, and waste liquid is passed through the holes, so that clogging does not occur. The same applies to a pipe made of a substance that elutes cations, and a plurality of pipes are assembled to make a hole in the pipe as a passage for waste liquid. By eliminating the clogging, the processing capacity of the aggregating unit is increased, and a large amount of waste liquid can be processed.
[0017]
Up to now, the larger the contact area between the flocculating agent that elutes cations and the waste liquid, the more effective the flocculating effect of floating particles. The waste liquid is allowed to pass through the internal pores of the tube, but a hole having a diameter of several centimeters, for example, a hole having a diameter of about 10 mm to 50 mm, is provided in the member solidified with a substance that elutes cations, and the waste liquid is passed through the hole. Also, it is possible to effectively agglomerate suspended particles (floating particles) in the waste liquid by forming a pipe having a hole diameter of about 10 mm to 50 mm with a substance that elutes cations and passing the waste liquid through the hole of this pipe. I found.
[0018]
When waste liquid is passed through a hole with a hole diameter exceeding 10 mm, the amount of elution of substances that generate cations is reduced compared with the case where waste liquid is passed through the previously proposed aggregator. Demonstrated. This was confirmed by experiments.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a suspended particle aggregation unit of the first embodiment, and FIG. 2 shows a suspended particle aggregation unit of the second embodiment.
[0020]
The suspended particle aggregating unit 1 in FIG. 1 is provided with a plurality of straight holes 3 arranged in parallel in a columnar member 2 formed by baking and solidifying a substance (powder aggregating agent) that generates cations. It is configured to be loaded inside.
[0021]
2, the suspended particle aggregating unit 1 aggregates a plurality of pipes 5 formed by baking and solidifying a substance (powder aggregating agent) that generates cations. Loaded and configured.
[0022]
If the diameter of the hole 3 formed in the columnar member 2 of FIG. 1 and the inner diameter of the pipe 5 of FIG. 2 (diameter of the hole 6) are too small, the clogging prevention effect is reduced, and if too large, the particle agglomeration effect is obtained. Get smaller. The diameter of the holes 3 and 6 is about 10 mm to 50 mm, preferably about 20 mm to 30 mm.
[0023]
The hole 3 in FIG. 1 may be either a hole provided by machining in the columnar member 2 or a forming hole formed at the same time when the raw material powder is formed. The suspended particle aggregation unit 1 in FIG. 1 passes the waste liquid to be processed through the hole 3.
[0024]
In the suspended particle aggregation unit 1 shown in FIG. 2, when the round pipe shown in the figure is used as the pipe 5, the gap 7 between the pipes also becomes a passage for waste liquid, and the passage area can be widened. Pipes can also be used.
[0025]
FIG. 3 shows an example of an activated sludge treatment apparatus 10 that employs the suspended particle aggregation unit 1 exemplified. In the figure, 11 is a first-stage flash tank for introducing waste water, 12 is a relay tank, 13 is a flow curator, 14 is a coagulation sedimentation tank, 15 is a pump, 16 is a flow cell (mixing device), and 17 is a valve.
[0026]
The suspended particle aggregation unit 1 of the present invention is incorporated in an inner cylinder (inner shell) 18 of the aggregation precipitation tank 14. Thus, if the suspended particle aggregation unit 1 is incorporated in the inner cylinder 18 of the aggregation / precipitation tank 14, the cylinder 4 in FIGS. 1 and 2 can be omitted.
[0027]
The suspended particle aggregating unit 1 may be incorporated in a pipe line extending from the relay tank 12 to the agglomeration sedimentation tank 14. When incorporating suspended particle agglomeration units into the pipeline, a plurality of suspended particle agglomeration units 1 can be incorporated in series at appropriate intervals as shown in FIG. Further, the illustrated apparatus is provided with a pipe line 20 arranged in parallel with a pipe line 19 having a flow curator 13, and the suspended particle aggregation unit 1 is incorporated in the middle of the pipe line 20. The waste water that has passed through and the waste water that has passed through the flow curator 13 are mixed at a predetermined ratio and guided to the coagulation sedimentation tank 14, or the waste water that has passed through the suspended particle aggregation unit 1 in the pipe 19 and the waste water that has passed through the flow curator 13 Alternatively, it can be led to a coagulating sedimentation tank 14.
[0028]
The activated sludge treatment apparatus 10 in FIG. 3 pumps the treated wastewater from the tank 11 with the pump 15 and transfers it to the relay tank 12, and further pumps the wastewater in the relay tank 12 with the pump 15. 20 is passed to at least one of 20 and led to the coagulating sedimentation tank 14. The waste water that has passed through the inner cylinder of the coagulation sedimentation tank 14 is passed through the suspended particle coagulation unit 1, so that cations are eluted, and aggregation and precipitation of the suspended particles occur effectively.
[0029]
A part of the sludge coagulated and precipitated in the coagulation sedimentation tank 14 is returned as seed sludge to the batch tank 11, and the excess sludge is extracted outside and disposed of as industrial waste. The supernatant water in the coagulation sedimentation tank 14 overflows and is discharged.
[0030]
-Example-
Examples of the present invention will be described below. Experiments were performed using an activated sludge treatment apparatus having the suspended particle aggregation unit of the present invention. The activated sludge treatment equipment used in the experiment is a slight improvement over the existing equipment. The apparatus incorporates the suspended particle agglomeration unit of the present invention in line 19 of FIG. There is no suspended particle agglomeration unit in the agglomeration settling tank 14 of FIG. The suspended particle agglomeration unit used was a collection of 10 magnesium hydroxide pipes having an inner diameter of 20 mm and a length of about 200 mm, and this was divided into four lines in the pipeline as shown in FIG. Incorporated in series.
[0031]
Using this activated sludge treatment equipment, the operating conditions of the equipment are unified, and the entire amount of waste water is introduced from the relay tank to the coagulation sedimentation tank without passing through the suspended particle coagulation unit (this is indicated as 0% via Mg). The half of the wastewater is passed through the suspended particle agglomeration unit, and the other half is introduced into the agglomeration settling tank (this is indicated as 50% via Mg). The deposition situation was compared.
[0032]
And MLLS of undiluted | stock solution and drawing | extracting sludge was investigated and the aggregation effect at the time of passing through a suspended particle aggregation unit was confirmed.
[0033]
The measurement results of ph in this test are shown in Table 1, and the MLLS comparison results of the drawn sludge are shown in Table 2, respectively.
[0034]
[Table 1]
Figure 2005034702
[0035]
[Table 2]
Figure 2005034702
[0036]
Summary)
The stock solution is acidic and stable at about ph = 6.5. The supernatant is stable at ph = 7.0 to 6.7 because it is tap water at the start of waste liquid supply and then mixed with the stock solution. The inner cylinder inlet is almost equal to the ph value of the stock solution, and is hardly affected by Mg elution. Further, it can be seen from Table 1 that the 50% Mg sample is stable at the stock solution ratio +0.1, and Mg is eluted even though the amount is small.
[0037]
In this test, when the floc sedimentation was 50% via Mg, the start of sedimentation was delayed by about 20 minutes when 0% via Mg started from around 45 minutes after the start of the supply of the waste liquid. In addition, the time until the interface level of the deposited sludge layer is stabilized is about 95 minutes from the start of the supply of the waste liquid in the case of 50% via Mg, whereas the time of 0% via Mg exceeds 115 minutes. There was a difference of more than a minute.
[0038]
Furthermore, the interface level of the deposited sludge layer after stabilization was lower by about 6 to 7 cm in the case of 50% via Mg, and an improvement in the coagulation effect of about 8% was observed compared with 0% via Mg.
[0039]
In the MLLS comparison, as shown in Table 2, the concentration of the extracted sludge in the case of 50% via Mg is about 50% higher than that of 0% via Mg, and the suspended particles are effectively aggregated and deposited. confirmed.
[0040]
Next, four agglomerators (magmagfoam number of 8 per series) are assembled into the conduit between the relay tank and the coagulation sedimentation tank, loaded with magnesium hydroxide φ65mm magfoam (porous compact). The clogging situation was compared with the case of using in the above. As a result, the aggregator using magfoam was clogged after 2 hours, and part of the magfoam was missing due to water pressure, but the waste water was passed through the hole in the magnesium hydroxide pipe. Those using the agglomeration unit of the present invention did not cause clogging or pipe breakage. In addition, the amount of wastewater passing was greatly increased compared to products using magfoam.
[0041]
【The invention's effect】
As described above, the suspended particle agglomeration unit of the present invention is provided with a hole arranged in parallel in a member formed of magnesium or the like, and a waste liquid to be treated is passed through the hole or a pipe formed of magnesium or the like is provided. Since multiple wastes are gathered and the waste liquid is passed through the hole of this pipe, cations can be eluted in the waste liquid without causing clogging, and the agglomeration effect of suspended particles can be enhanced. It becomes possible.
[0042]
In addition, the waste liquid purification apparatus of the present invention can produce a waste liquid treatment apparatus with high agglomeration capacity that can be processed in large quantities by combining a well-known tank.
[0043]
In addition, if the technology of the present invention is used, it becomes possible to enhance the processing capacity of the existing activated sludge treatment apparatus without making extensive modification of the apparatus.
[Brief description of the drawings]
1A is a cross-sectional view showing an example of a suspended particle aggregation unit according to a first embodiment. FIG. 1B is a perspective view of a columnar molded body formed of a substance that elutes cations. FIG. FIG. 3 is a cross-sectional view showing an example of a suspended particle agglomeration unit in the form (b) a perspective view showing an assembly of pipes formed of a substance that elutes cations. FIG. 3 is a circuit diagram showing an example of an activated sludge treatment apparatus. 4 Diagram showing a state in which a plurality of suspended particle agglomeration units of the present invention are incorporated in a pipe line.
DESCRIPTION OF SYMBOLS 1 Suspended particle aggregation unit 2 Columnar member 3 which elutes cations, 6 Hole 4 Cylinder 5 Pipe which elutes cations 7 Pipe gap 10 Activated sludge processing apparatus 11 Flash tank 12 Relay tank 13 Flow curator 14 Aggregation sedimentation tank 15 Pump 16 Flow cell 17 Valve 18 Inner cylinder 19, 20 Pipe line

Claims (4)

陽イオンを溶出させる物質で形成された部材に平行配置の複数の穴を設け、この穴を通路にしてその穴に廃液を通すようにした懸濁粒子凝集ユニット。A suspended particle agglomeration unit in which a plurality of holes arranged in parallel are provided in a member formed of a substance that elutes cations, and the waste liquid is passed through the holes through the holes. 陽イオンを溶出させる物質で形成されたパイプを複数本平行配置にして集合し、各パイプの穴を通路にしてこの穴に廃液を通すようにした懸濁粒子凝集ユニット。A suspended particle agglomeration unit in which a plurality of pipes made of a substance that elutes cations are gathered in a parallel arrangement, and the waste liquid is passed through the holes of each pipe. 陽イオンを溶出させる物質が、マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、多孔質水酸化マグネシウム、多孔質酸化マグネシウムのいずれかである請求項1又は2に記載の懸濁粒子凝集ユニット。The suspended particle aggregation unit according to claim 1 or 2, wherein the substance that elutes cations is any of magnesium, magnesium oxide, magnesium hydroxide, magnesium carbonate, porous magnesium hydroxide, and porous magnesium oxide. 廃液を導入して通過させ、通過する廃液中に陽イオンを溶出させる請求項1乃至3のいずれかに記載の懸濁粒子凝集ユニットと、この懸濁粒子凝集ユニットを通過した廃液を導入して液中の懸濁粒子を凝集沈澱させ、かつ、上澄み液をオーバーフローさせて流出させる凝集沈澱槽とを備えている廃液浄化装置。The suspension liquid aggregation unit according to any one of claims 1 to 3, wherein the waste liquid is introduced and allowed to pass through, and the cation is eluted in the waste liquid passing therethrough, and the waste liquid that has passed through the suspension particle aggregation unit is introduced. A waste liquid purification apparatus comprising a coagulation sedimentation tank for coagulating and precipitating suspended particles in a liquid and overflowing a supernatant liquid to flow out.
JP2003197976A 2003-07-16 2003-07-16 Suspended particle flocculation unit and waste liquid purifying apparatus Pending JP2005034702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197976A JP2005034702A (en) 2003-07-16 2003-07-16 Suspended particle flocculation unit and waste liquid purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197976A JP2005034702A (en) 2003-07-16 2003-07-16 Suspended particle flocculation unit and waste liquid purifying apparatus

Publications (1)

Publication Number Publication Date
JP2005034702A true JP2005034702A (en) 2005-02-10

Family

ID=34207929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197976A Pending JP2005034702A (en) 2003-07-16 2003-07-16 Suspended particle flocculation unit and waste liquid purifying apparatus

Country Status (1)

Country Link
JP (1) JP2005034702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741679A2 (en) 2005-07-06 2007-01-10 Peter Schöndorfer Process for improving the supply of calcium and magnesium in biological wastewater treatment plant
KR100948107B1 (en) 2009-09-25 2010-03-16 주식회사 엔바이로코리아 Tube for producing ionization and device having thereof
JP2016180274A (en) * 2015-03-25 2016-10-13 一般財団法人上越環境科学センター Water collecting pipe for subsoil drainage facilities and slime adhesion preventing method in the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741679A2 (en) 2005-07-06 2007-01-10 Peter Schöndorfer Process for improving the supply of calcium and magnesium in biological wastewater treatment plant
EP1741679A3 (en) * 2005-07-06 2008-07-30 Peter Schöndorfer Process for improving the supply of calcium and magnesium in biological wastewater treatment plant
KR100948107B1 (en) 2009-09-25 2010-03-16 주식회사 엔바이로코리아 Tube for producing ionization and device having thereof
WO2011037350A2 (en) * 2009-09-25 2011-03-31 주식회사 엔바이로코리아 Ionization generating tube and an ionization generating device comprising the same
WO2011037350A3 (en) * 2009-09-25 2011-08-11 주식회사 엔바이로코리아 Ionization generating tube and an ionization generating device comprising the same
JP2016180274A (en) * 2015-03-25 2016-10-13 一般財団法人上越環境科学センター Water collecting pipe for subsoil drainage facilities and slime adhesion preventing method in the same

Similar Documents

Publication Publication Date Title
KR101733979B1 (en) Physicochemical apparatus for purifying water
CN204824453U (en) Desulfurization pretreatment of water device that gives up
JP2011230038A (en) Water treatment apparatus
CA2614268C (en) Improved phosphorus removal system and process
JP2007245150A (en) Waste water treating device
CN109133413A (en) Industrial waste water purifying system and purification process based on air-float filtration processing
CN106517591A (en) Reverse osmosis concentration treatment system and method
CN205442869U (en) It produces brackish water desalination system of water recovery rate to improve bitter
JP4918703B2 (en) Muddy water treatment method
CN108892276A (en) A kind of waste water treatment system and its method of lead refinery
JP2005034702A (en) Suspended particle flocculation unit and waste liquid purifying apparatus
CN102176952A (en) Flocculation precipitation treatment method
JP2000325710A (en) Solid-liquid separation apparatus
KR20200041881A (en) Treatment of liquid streams containing high concentrations of solids using ballast-type clarification
JP2014144433A (en) Boron-containing effluent treatment method and boron-containing effluent treatment system
WO2021175795A1 (en) Liquid treatment product and method with a gas-producing compound
JP2008080321A (en) Wastewater purifier
KR100341208B1 (en) Apparatus and method for removing pollutants in outflow water of abandoned mine by surface electrochemical reaction
CN220300556U (en) Silicon and fluorine removing system with zero emission for steel wastewater
WO2021117542A1 (en) Water softener
JP2000135407A (en) Powdery flocculant
JP2007319764A (en) Coagulant
JP2558547B2 (en) Coagulation method and coagulation equipment
JP7117101B2 (en) Water treatment method and device
CN209815854U (en) Water treatment system for micro-polluted source water