JP2005034676A - Method for stabilizing heavy metals contained in incineration residue - Google Patents

Method for stabilizing heavy metals contained in incineration residue Download PDF

Info

Publication number
JP2005034676A
JP2005034676A JP2003149280A JP2003149280A JP2005034676A JP 2005034676 A JP2005034676 A JP 2005034676A JP 2003149280 A JP2003149280 A JP 2003149280A JP 2003149280 A JP2003149280 A JP 2003149280A JP 2005034676 A JP2005034676 A JP 2005034676A
Authority
JP
Japan
Prior art keywords
incineration
lead
incineration residue
heavy metals
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149280A
Other languages
Japanese (ja)
Other versions
JP4374402B2 (en
Inventor
Takayuki Shimaoka
隆行 島岡
Shogo Sakida
省吾 崎田
Akiko Nakano
彰子 中野
Terufumi Motohata
照文 本幡
Seiichi Abe
清一 阿部
Toshihito Uchida
敏仁 内田
Hiroaki Kawabata
博昭 河端
Masayuki Futamatsu
雅之 二松
Masahide Nishigaki
正秀 西垣
Hiroichi Obata
博一 小畑
Asato Tanaka
朝都 田中
Shinseki Itaya
真積 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Shinko Pantec Co Ltd
Kubota Corp
Kurita Water Industries Ltd
Hitachi Zosen Corp
Mitsui Engineering and Shipbuilding Co Ltd
Kyushu TLO Co Ltd
Original Assignee
Takuma Co Ltd
Kubota Corp
Kurita Water Industries Ltd
Hitachi Zosen Corp
Mitsui Engineering and Shipbuilding Co Ltd
Kyushu TLO Co Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, Kubota Corp, Kurita Water Industries Ltd, Hitachi Zosen Corp, Mitsui Engineering and Shipbuilding Co Ltd, Kyushu TLO Co Ltd, Kobelco Eco Solutions Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003149280A priority Critical patent/JP4374402B2/en
Publication of JP2005034676A publication Critical patent/JP2005034676A/en
Application granted granted Critical
Publication of JP4374402B2 publication Critical patent/JP4374402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stabilizing heavy metals such as lead contained in an incineration residue comprising incineration main ashes and/or incineration fly ash discharged from, for example, a municipal waste incineration plant or an industrial waste treatment plant by insolubilizing them efficiently and easily by a simple method and to eminently decrease running costs by making conventional chemicals including a chelating agent, power rates, etc., unnecessary. <P>SOLUTION: In the method for stabilizing the heavy metals contained in the incineration residue, first, treatment for wetting the incineration residue containing the heavy metals such as lead and treatment for drying the incineration residue are repeated, second, the incineration residue is treated at high temperatures and high pressures, third, after the treatment for drying the incineration residue and the method for drying the incineration residue are repeated, the incineration residue is treated at high temperatures and high pressures. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼却残渣に含まれる重金属類の安定化処理方法に関し、例えば都市ごみ焼却プラント、産業廃棄物処理プラントなどから排出される焼却残渣に含まれる鉛等の重金属類の安定化処理に適用されるものである。ここで、焼却残渣とは、焼却主灰及び/又は焼却飛灰を意味する。
【0002】
また、本発明は、ガス化溶融炉・灰溶融炉プラントなどから排出される焼却残渣、あるいはまた、下水処理・し尿処理などから排出される汚泥の焼却残渣の重金属類の安定化処理にも適用されるものである。
【0003】
【従来の技術】
産業廃棄物および都市生活からの廃棄物等のうち、可燃物は回収後、焼却炉で焼却されて焼却灰(焼却主灰、以下、単に焼却灰ともいう)の形態として投棄されたり埋設処分に付されたりしている。
【0004】
しかしながら、これら焼却灰(焼却主灰)は、鉛(Pb)、カドミウム(Cd)、クロム(Cr)、水銀(Hg)、ひ素(As)などの有害な重金属類を含んでいるため、最近では規制が厳しくなり、各種溶出試験などにおいて一定のレベル以下でないと土壌中に投棄したりすることはできず、埋立て地の溶出基準値をクリアする必要があった。また、道路の路盤材として再利用する場合には、土壌環境基準値をクリアする必要があった。
【0005】
その一方で、このような廃棄物を燃焼すると、各種成分中の低沸点物質が揮散し、いわゆる焼却飛灰(以下、単に飛灰ともいう)となるが、この飛灰は、上記焼却灰に比べて有害な重金属類などを非常に多く含むので、一般廃棄物のように埋め立てることができないばかりか、外部環境に拡散させないために消石灰を担持させたバグフィルターなどにこれを捕集している。このような飛灰は、環境衛生上厳重な管理が必要とされ、そのままでは投棄したり埋め立て資材として利用することはできない。
【0006】
しかしながら、近年、産業廃棄物や一般家庭からの廃棄物の量は増加の一途であり、既存の処分場の飽和化と環境汚染の問題等から処分場用地の確保が困難となっており、焼却灰、飛灰などをコンクリート成形体として各種土木工事や建築工事の基礎としたり路盤材として再利用することが検討されている。
【0007】
さらに、焼却炉からの焼却灰や飛灰を溶融処理することにより減容化やダイオキシン類の熱分解を図ることが行われているが、上記溶融処理においては蒸気圧の大きい鉛やカドミウム等の重金属は、炉内で揮発して排ガス中に入り、排ガスに入った重金属は排ガス処理設備内で凝縮し、再び飛灰となってしまうという問題があった。
【0008】
従来、このような焼却残渣に含まれる鉛等の重金属類の安定化処理方法としては、つぎの5つの処理が実用化されている。
【0009】
(1) 溶融固化処理:溶融固化は、燃料の燃焼熱や電気から得られた熱エネルギーまたはその他のエネルギーにより、媒塵や焼却灰等を加熱し、1200〜1400℃の高温下で有機物を燃焼、ガス化させ、無機物を溶融して、ガラス質のスラグとして回収する処理方法である。
【0010】
(2) セメント固化:セメント固化は、セメント中のケイ酸カルシウム等の組織鉱物が水と結合し、水和物結晶を生じて硬化する過程において、焼却残渣中の有害物質の吸着や固溶化を伴い、またセメントの強いアルカリ性によって有害物質の難溶性化合物を生成して、固化体中に沈着、固定する処理方法である。
【0011】
ここで、このセメント固化による焼却残渣の安定化処理方法には、つぎのような先行特許文献がある。
【0012】
【特許文献1】
「特開2002−86100号公報」
この特許文献1記載の発明は、pHの管理を行わず最適pH値の範囲に収まり、飛灰の重金属、特に鉛の溶出を簡便に安定して防止できる重金属溶出防止方法を提供することを目的としており、特許文献1記載の発明では、溶融飛灰及び/又は焼成飛灰に、該飛灰当たりセメントを1〜100%添加して混合後、鉄塩を前記飛灰当たりFe換算で0.1%以上添加し、水を加えて混練し湿潤状態、又は、造粒することとするか、又は、前記飛灰を含有する排ガスを、前段のバグフィルタに通して該飛灰を捕集し、捕集後の排ガスに消石灰を噴霧して後段のバグフィルタを通して排ガスを処理するに際し、前記前段のバグフィルタで捕集した飛灰に、該飛灰当たりセメントを1〜100%と後段のバグフィルタによる捕集灰を添加して混合後、鉄塩を前記飛灰当たりFe換算で0.1%以上添加し、水を加えて混練し湿潤状態、又は、造粒することとしている。
【0013】
(3) 薬剤処理:薬剤処理は、焼却残渣をキレート剤等の薬剤で処理し、薬剤との反応により安定化を図る処理方法である。
【0014】
ここで、この薬剤処理による焼却残渣の安定化処理方法には、つぎのような先行特許文献がある。
【0015】
【特許文献2】
「特開2001−137823号公報」
この特許文献2記載の発明は、都市ごみ焼却飛灰、特に流動床炉飛灰処理物の体積膨張を抑制し、固化状態を良好にし、鉛の溶出を基準値以下に抑えて処理を行うことを目的としており、都市ごみ焼却飛灰に対し、液体キレート剤と、ポルトランドセメントと、ケイ酸アルカリ金属塩と、炭酸アルカリ金属塩とを併用配合し、水と共に混練するものである。
【0016】
(4) 酸・その他の溶媒による安定化処理:酸抽出・水酸化物法/酸抽出・硫化物法/酸抽出・重金属固定剤法/排ガス中和法による安定化処理。
【0017】
ここで、この酸・その他の溶媒による安定化処理方法には、つぎのような先行特許文献がある。
【0018】
【特許文献3】
「特開2001−49360号公報」
この特許文献3記載の発明は、低コストで飛灰中に含まれる鉛を除去することにより飛灰を安定化するとともに、除去した鉛を回収する飛灰中の鉛回収処理法を提供することを目的としており、焼却炉又は溶融炉から排出される鉛などの重金属類を含有する飛灰に、硫酸を加えて、鉛以外の重金属類を抽出したのち固液分離し、次いで、固液分離して得られた鉛を含む残渣にチオ硫酸アルカリ塩を加えて鉛を抽出したのち固液分離し、さらに固液分離して得られた濾液に硫化薬剤を加えて鉛を不溶化物としたのち固液分離するものである。
【0019】
(5) 焼成固化:焼却残渣単独またはこれに粘土等を添加し、粒状、レンガ状に成形した後、概ね1000℃以上の高温で焼成することにより、固体粒子が加熱によって互いに融解固着し、さらに付随して起こる収縮、緻密化、再結晶等により固化安定させる処理方法である。
【0020】
【発明が解決しようとする課題】
しかしながら、上記の従来の焼却残渣に含まれる鉛等の重金属類の安定化処理方法のうち、(1) 溶融固化処理方法では、燃料の燃焼熱や電気によるエネルギー費用が非常に高くつくという問題があった。また、上記(2) セメント固化処理方法では、セメント費用を必要とするし、セメントの添加によって処理物量が増大するという問題があった。さらに、上記(3) 薬剤処理方法では、液体キレート剤等の薬剤の費用が非常に高くつくという問題があった。また、上記(4) 酸・その他の溶媒による安定化処理方法では、薬品(酸)と水処理設備が必要であるという問題があった。また、上記(5) 焼成固化処理方法では、焼成固化での成形、高温処理のための設備を必要とし、設備費が高くつくという問題があった。
【0021】
本発明の目的は、上記の従来技術の問題を解決し、焼却主灰及び/又は焼却飛灰よりなる焼却残渣に含まれる鉛等の重金属類を、簡易な方法で、しかも高効率で容易に不溶化して安定化することができて、従来のキレート剤等の薬剤、電気代等が不要で、ランニングコストを大幅に低減することができる、焼却残渣に含まれる重金属類の安定化処理方法を提供しようとするにある。
【0022】
【課題を解決するための手段】
上記の点に鑑み、本発明者らは鋭意研究を重ねた結果、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を湿潤状態で放置するより湿潤処理と乾燥処理を繰り返す方が、鉛等の不溶化が促進されることがわかった。一方、鉛等の重金属類を含む焼却残渣を高温・高圧で処理することにより、鉛等の不溶化が促進されることがわかった。さらに、本発明者らは、上記第1の方法と第2の方法とを組み合わせて、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)の湿潤処理と乾燥処理とを繰り返した後、焼却残渣を、高温・高圧で処理することにより、さらに鉛等の重金属類の不溶化が促進されることを見出し、本発明を完成した。
【0023】
本発明の請求項1記載の焼却残渣に含まれる重金属類の安定化処理方法は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を湿潤する処理と、乾燥する処理とを繰り返すことを特徴としている。
【0024】
上記請求項1記載の焼却残渣に含まれる重金属類の安定化処理方法においては、焼却残渣の湿潤処理が、焼却残渣を含水率5〜35%に湿潤する処理であり、焼却残渣の乾燥処理が、湿潤状態の焼却残渣を50℃以上115℃以下の温度で乾燥させる処理である。
【0025】
また、本発明の請求項3記載の焼却残渣に含まれる重金属類の安定化処理方法は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を、高温・高圧で処理することを特徴としている。
【0026】
上記請求項3記載の焼却残渣に含まれる重金属類の安定化処理方法においては、焼却残渣の高温・高圧処理を、温度115℃以上150℃以下、及び圧力200kPa以上500kPa以下の条件で行なうものである。
【0027】
本発明の請求項5記載の焼却残渣に含まれる重金属類の安定化処理方法は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)の湿潤処理と乾燥処理とを繰り返した後、焼却残渣を、高温・高圧で処理することを特徴としている。
【0028】
上記請求項5記載の焼却残渣に含まれる重金属類の安定化処理方法においては、焼却残渣の湿潤処理が、焼却残渣を含水率5〜35%に湿潤する処理であり、焼却残渣の乾燥処理が、湿潤状態の焼却残渣を50℃以上115℃以下の温度で乾燥させる処理であり、焼却残渣の高温・高圧処理が、温度115℃以上150℃以下、及び圧力200kPa以上500kPa以下の条件で行なう処理である。
【0029】
【発明の実施の形態】
つぎに、本発明の実施の形態を説明する。
【0030】
一般廃棄物の焼却残渣(焼却主灰及び/又は焼却飛灰)を有効利用するためには、重金属等有害物質の溶出に対処することが不可欠である。その方法の一つとして、エージング(aging)による重金属の不溶化現象を利用することが挙げられる。
【0031】
例えば、日本の表層土の約4割が火山灰に由来することに注目すると、「人工の火山」とも言える廃棄物焼却炉からの焼却残渣(人工の火山灰)もまた、土壌生成因子が作用することによって土壌化していくことが、充分に期待される。
【0032】
本発明者らは、焼却残渣に上記の土壌生成因子として、水分(湿潤・乾燥の繰り返し)、温度、圧力(高温・高圧状態への暴露)を作用させ、それらに伴って、焼却残渣中の鉛等の重金属類の不溶化現象が大きく生じることを見出した。
【0033】
本発明による焼却残渣に含まれる重金属類の安定化処理方法の第1は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を湿潤する処理と、乾燥する処理とを繰り返すものである。
【0034】
ここで、焼却残渣の湿潤処理が、焼却残渣を含水率5〜35%に湿潤する処理であり、焼却残渣の乾燥処理が、湿潤状態の焼却残渣を50℃以上115℃以下の温度で乾燥させる処理であるのが、好ましい。
【0035】
この焼却残渣の湿潤処理において、焼却残渣の含水率が5%未満であれば、鉛等重金属類の不溶化に寄与しないので、好ましくない。また焼却残渣の含水率が35%を超えると、湿潤処理後の乾燥処理に時間がかゝるとともに、乾燥のためのエネルギーコストが高くつくので、好ましくない。また、焼却残渣の乾燥処理において、焼却残渣の乾燥温度が50℃未満であれば、鉛等重金属類の不溶化が生じにくいので、好ましくない。また焼却残渣の乾燥温度が115℃を超えると、鉛等重金属類の不溶化は充分に生じるが、加熱乾燥のためのエネルギーコストが高くつくので、好ましくない。
【0036】
なお、焼却残渣を湿潤する処理と、乾燥する処理とを繰り返す回数は、特に制限はないが、2〜10回程度が好ましい。
【0037】
また、本発明による焼却残渣に含まれる重金属類の安定化処理方法の第2は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を、高温・高圧で処理するものである。
【0038】
ここで、焼却残渣の高温・高圧処理を、温度115℃以上150℃以下、及び圧力200kPa以上500kPa以下の条件で行なうのが、好ましい。
【0039】
この焼却残渣の高温・高圧処理において、温度が115℃未満、及び圧力が200kPa未満であれば、鉛等重金属類の不溶化が充分に生じないので、好ましくない。また温度が150℃を超え、及び圧力が500kPaを超えると、鉛等重金属類の不溶化は充分に生じるが、加熱・加圧のためのエネルギーコストが高くつくので、好ましくない。
【0040】
本発明の上記第1の方法と第2の方法によれば、いずれの場合にも、焼却主灰及び/又は焼却飛灰よりなる焼却残渣に含まれる鉛等の重金属類を、簡易な方法で、しかも高効率で容易に不溶化して安定化することができて、従来のキレート剤等の薬剤が不要であるとともに、電気代等が少なくてすみ、ランニングコストを大幅に低減することができる。
【0041】
つぎに、本発明による焼却残渣に含まれる重金属類の安定化処理方法の第3は、上記第1の方法と第2の方法とを組み合わせたものであり、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)の湿潤処理と乾燥処理とを繰り返した後、焼却残渣を、高温・高圧で処理するものである。
【0042】
ここで、焼却残渣の湿潤処理が、焼却残渣を含水率5〜35%に湿潤する処理であり、焼却残渣の乾燥処理が、湿潤状態の焼却残渣を50℃以上115℃以下の温度で乾燥させる処理であり、焼却残渣の高温・高圧処理が、温度115℃以上150℃以下、及び圧力200kPa以上500kPa以下の条件で行なう処理であるのが、好ましい。
【0043】
この場合、焼却残渣の湿潤処理において、焼却残渣の含水率が5%未満であれば、鉛等重金属類の不溶化に寄与しないので、好ましくない。また焼却残渣の含水率が35%を超えると、湿潤処理後の乾燥処理に時間がかゝるとともに、乾燥のためのエネルギーコストが高くつくので、好ましくない。また、焼却残渣の乾燥処理において、焼却残渣の乾燥温度が50℃未満であれば、鉛等重金属類の不溶化が生じにくいので、好ましくない。また焼却残渣の乾燥温度が115℃を超えると、鉛等重金属類の不溶化は充分に生じるが、加熱乾燥のためのエネルギーコストが高くつくので、好ましくない。また、焼却残渣の高温・高圧処理において、温度が115℃未満、及び圧力が200kPa未満であれば、鉛等重金属類の不溶化が充分に生じないので、好ましくない。また温度が150℃を超え、及び圧力が500kPaを超えると、鉛等重金属類の不溶化は充分に生じるが、加熱・加圧のためのエネルギーコストが高くつくので、好ましくない。
【0044】
本発明の上記第3の方法によれば、焼却主灰及び/又は焼却飛灰よりなる焼却残渣に含まれる鉛等の重金属類を、簡易な方法で、しかもより一層、高効率で容易に不溶化して安定化することができて、従来のキレート剤等の薬剤が不要であるとともに、電気代等が少なくてすみ、ランニングコストを大幅に低減することができる。
【0045】
【実施例】
つぎに、本発明の実施例を説明するが、本発明は、これらの実施例に限定されるものではない。
【0046】
実施例1
この実施例では、都市の乾式排ガス処理を行なっている清掃工場の電気集塵機で集められた飛灰、及び都市廃棄物の焼却灰を試料とした。各試料の成分分析と環境庁告示第46号法に基づくに溶出試験(JLT46)の結果を、下記の表1に示す。
【0047】
【表1】

Figure 2005034676
最初に、鉛の含有量が多く、不溶化現象の等の把握が比較的容易である飛灰を用いて実験を行ない、つぎに、焼却灰を用いて同様の現象が生じるかを検討した。
【0048】
本発明において、湿潤・乾燥工程の繰り返しが鉛の溶出に与える影響を調べるために、以下の実験を行なった。まず、各温度における乾燥時間を決定するために、含水率30%に調整した試料をシャーレに所定の量を計り取り、60℃(条件A1)または110℃(条件A2)で乾燥させた。1時間ごとに試料の含水率を測定し、同時に溶出試験に供した。この実験の結果より絶乾状態となる最小の時間を決定した。
【0049】
この実施例では、試料をバットに取り、純水を加えて、含水率30%に調整した後、各温度に設定した乾燥器で乾燥させ、再び含水率が30%となるように純水を加えるという操作を1工程とし、この工程を繰り返す実験を行なった。
【0050】
また、この実施例では、実験を同じにするために、試料の厚さは1.5センチとした。1工程終了後の試料から50gを採取し、溶出試験(JLT46)、pH依存性試験を行なった。pH依存性試験は、初期の液固化比を10とし、1Nの硝酸で滴定し、pHをそれぞれ4,6,8,10,12に設定しながら、6時間スターラーで攪拌し、0.45μmの濾紙で濾過した。また、対照試験として、含水率30%に調整した試料を室温17℃の室内に放置する実験(条件B1)も行なった。濾液は、pHと鉛の濃度を測定した。
【0051】
さらに、上記の飛灰、及び焼却灰を試料とし、これらの焼却残渣を高温・高圧下に暴露した際の鉛溶出量を調べるため、以下の実験を行なった。
【0052】
純水を用いて含水率30%に調整した焼却残渣を500mlの三角フラスコに入れ、120℃、(223kPa)に設定した滅菌用オートクレーブに配置した(条件C1,C2)。実験中、含水率をほゞ一定に保つため、100mmビーカーで三角フラスコに蓋をした。含水率の増加は、実験前後で1〜2%以下に抑えられた。
【0053】
加熱・加圧後、焼却残渣の試料は、湿潤・乾燥実験と同様に溶出試験(JLT46)、pH依存性試験に供し、濾液のpHと、鉛の濃度を測定した。
【0054】
以上の実験条件を、下記の表2にまとめて示した。
【0055】
【表2】
Figure 2005034676
実験結果と考察
<異なる乾燥温度における含水率の変化と鉛の不溶化>
図1に、飛灰の含水率と乾燥時間の関係を、図2に、鉛の溶出濃度と乾燥時間の関係を示す。
【0056】
これらの図から明らかなように、60℃で乾燥させた場合は、110℃の場合と比較して乾燥速度は遅くなり、8時間経過後に、ほゞ含水率0%となった。鉛の溶出濃度は、初めの1時間で急激に低下した後、緩慢に低下し続け、乾燥開始から8時間目で値は落ち着いた。110℃で乾燥させた場合、含水率は2時間目でほゞ0%となり、Pbの溶出濃度は、3時間経過後に最小値を示した。これより、鉛の不溶化が進行するのに充分かつ最短の時間として、60℃では8時間を、110℃の乾燥では、3時間を乾燥工程1回とした。
【0057】
本実験の結果から、60℃で乾燥させた場合と、110℃で乾燥させた場合の溶出濃度を同じ乾燥時間で比較すると、60℃で乾燥させた場合の方が鉛の不溶化が進行していることが判る。
【0058】
以上のことから、鉛の不溶化と含水率や乾燥速度は密接に関係しており、鉛の不溶化現象には、水分の存在が必須であることが判明した。
【0059】
<湿潤・乾燥工程における鉛の不溶化現象>
飛灰を用いた実験(条件A1,A2,B1)における鉛の溶出濃度の経時変化を図3に示す。湿潤・乾燥工程を繰り返すことよって、著しく鉛の不溶化が進行していることが判る。湿潤状態では、室内に放置したものは48時間後、60℃では、40時間後、110℃では、15時間後に、鉛の土壌環境基準値(0.01mg/l)以下となった。先にのべた実験では、鉛の不溶化現象には、水分の存在が大きく関与していると推測されたが、含水率を一定に保ったものと比較して、110℃で乾燥させたものの方が鉛の不溶化が進行していたため、温度が与える影響も示唆された。
【0060】
つぎに、焼却灰を用いた実験(条件A3,A4)の結果を図4に示す。焼却灰の鉛の溶出濃度は、比較的低い濃度ではあったが、湿潤・乾燥工程を繰り返すことよって、飛灰と同様に鉛の不溶化現象が見られ、土壌環境基準を満たした。
【0061】
<高温・高圧下における鉛の不溶化現象>
高温・高圧下に放置した際の鉛の溶出濃度の経時変化を図5に示す。飛灰(条件C1)、及び焼却灰(条件C2)ともに加熱・加圧時間の経過とともに、鉛の溶出濃度が減少した。焼却灰は、2時間後に鉛の土壌環境基準値(0.01mg/l)以下となった。しかし、飛灰は、鉛の土壌環境基準値(0.01mg/l)を下回ることはなかった。高温・高圧状態で2時間加熱した飛灰の鉛溶出濃度は、0.29mg/lであり、110℃での湿潤・乾燥工程を3回(計9時間)繰り返した時の鉛溶出濃度1.5mg/lよりは小さかった。この結果から、湿潤状態に保持したまま圧力を加えながら加熱する方が、湿潤・乾燥を繰り返すことよりも、鉛の不溶化を促進させることが示された。
【0062】
<濾液のpHと鉛の不溶化率の関係>
湿潤・乾燥実験、高温・高圧実験では、環境条件を急激に変化させることよって鉛の不溶化現象が認められたが、同時に濾液のpHも変化していた。各種の環境条件を与えたときの鉛の不溶化率と、そのときの濾液のpHの関係を図6に示す。鉛の不溶化率とは、初期の鉛の溶出濃度に対する減少濃度の割合を百分率で表わしたものである。湿潤・乾燥条件下では、鉛の不溶化率が上昇するにつれ、pHが低下した。一方、高温・高圧条件下では、pHがあまり変化しないにもかゝわらず、鉛の不溶化率が上昇していた。このことから、焼却残渣を高温・高圧下に放置した際の鉛の不溶化現象は、pHの要因よりも、他の要因、例えば鉛の化合形態の変化の可能性があることが判る。
【0063】
<pHの依存性試験による鉛の溶出特性>
鉛の不溶化現象が認められた試料について、pHの依存性試験を行なうことよって、酸性領域、強アルカリ領域での鉛の溶出量を調べた。試験には、不溶化の初期段階と最終段階として、湿潤・乾燥実験(条件A1,A2)の2回目と5回目、高温・高圧実験(条件C1)の0.5時間と2時間後の試料を用いた。ここで、飛灰(条件A1,A2)についてのpH依存性試験の結果を図7に示す。
【0064】
pH12の強アルカリ領域では、原灰と比較して処理を加えた試料は、鉛の溶出濃度が減少していることが判る。減少の程度は、各試料の溶出試験(JLT46)の結果と類似しており、強アルカリ領域では鉛の不溶化の進行によりpHの影響を受けにくい形態の鉛に変化していることが考えられる。しかし、pH4の酸性領域では、処理を加えた試料について飛灰原灰と比較すると、鉛の溶出量が増加する傾向が見られる。特に、不溶化の進んでいない試料での溶出量が大きくなる傾向が見られ、低pHで再溶解する形態の鉛も多く含まれていることが判る。
【0065】
X線回析により、飛灰原灰とオートクレーブで1時間加熱した試料の化学形態について分析したところ、原灰中の鉛は不溶性の形態として、金属鉛、PbS、PbSO の形で存在していたが、加熱・加圧後にはPbSO がPbCO に変化していることが確認された。しかし、この2つの結晶物の酸性領域出の溶解特性を考えると、鉛の不溶化現象は、鉛の化合形態の変化だけなく、共存物質の影響など、より複雑なメカニズムによって生じていることが考えられる。
【0066】
上記の本発明の実施例によれば、焼却残渣に土壌生成因子として、水分(湿潤・乾燥の繰り返し)、温度、圧力(高温・高圧状態への暴露)を作用させることにより、以下のような結果が得られた。
【0067】
(1) 鉛の不溶化現象には、水分の存在が必須である。
【0068】
(2) 一定の湿潤状態で放置する場合に比較して、湿潤・乾燥を繰り返すと、鉛の不溶化が促進される。
【0069】
(3) 鉛の不溶化現象は、pHの影響のみではなく、結晶物の変化など、鉱物学的な変化にも起因することが判明した。
【0070】
(4) 湿潤・乾燥、高温・高圧条件を作用させた場合、酸性領域では、鉛が溶出しやすくなることが認められた。
【0071】
なお、将来的には、酸性領域での鉛の不溶化を生じさせるためにも、上記実施例で得られた鉛の不溶化現象のメカニズムを、機器分析、熱力学平衡計算等の手法を用いて解明するのが、望ましい。
【0072】
【発明の効果】
本発明の請求項1記載の焼却残渣に含まれる重金属類の安定化処理方法は、上述のように、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を湿潤する処理と、乾燥する処理とを繰り返すことを特徴とするもので、本発明によれば、焼却主灰及び/又は焼却飛灰よりなる焼却残渣に含まれる鉛等の重金属類を、簡易な方法で、しかも高効率で容易に不溶化して安定化することができて、従来のキレート剤等の薬剤、電気代等が不要で、ランニングコストを大幅に低減することができるという効果を奏する。
【0073】
また、本発明の請求項3記載の焼却残渣に含まれる重金属類の安定化処理方法は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を、高温・高圧で処理することを特徴とするもので、本発明によれば、焼却主灰及び/又は焼却飛灰よりなる焼却残渣に含まれる鉛等の重金属類を、簡易な方法で、しかも高効率で容易に不溶化して安定化することができて、従来のキレート剤等の薬剤が不要であるとともに、電気代等が少なくてすみ、ランニングコストを大幅に低減することができるという効果を奏する。
【0074】
本発明の請求項5記載の焼却残渣に含まれる重金属類の安定化処理方法は、鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)の湿潤処理と乾燥処理とを繰り返した後、焼却残渣を、高温・高圧で処理することを特徴とするもので、本発明によれば、焼却主灰及び/又は焼却飛灰よりなる焼却残渣に含まれる鉛等の重金属類を、簡易な方法で、しかもより一層、高効率で容易に不溶化して安定化することができて、従来のキレート剤等の薬剤が不要であるとともに、電気代等が少なくてすみ、ランニングコストを大幅に低減することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態において、飛灰の含水率と乾燥時間の関係を示すグラフである。
【図2】本発明の実施形態において、鉛の溶出濃度と乾燥時間の関係を示すグラフである。
【図3】本発明の実施形態において、飛灰を用いた実験における鉛の溶出濃度の経時変化を示すグラフである。
【図4】本発明の実施形態において、焼却灰を用いた実験における鉛の溶出濃度の経時変化を示すグラフである。
【図5】本発明の実施形態において、高温・高圧下に放置した際の鉛の溶出濃度の経時変化を示すグラフである。
【図6】本発明の実施形態において、鉛の不溶化率と、そのときの濾液のpHとの関係を示すグラフである。
【図7】本発明の実施形態において、飛灰についてのpH依存性試験の結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stabilizing heavy metals contained in incineration residues, and is applied to, for example, stabilizing treatment of heavy metals such as lead contained in incineration residues discharged from municipal waste incineration plants, industrial waste treatment plants, etc. It is what is done. Here, the incineration residue means incineration main ash and / or incineration fly ash.
[0002]
The present invention is also applicable to stabilization of heavy metals such as incineration residues discharged from gasification melting furnaces and ash melting furnace plants, or sludge incineration residues discharged from sewage treatment and human waste processing, etc. It is what is done.
[0003]
[Prior art]
Of industrial waste and waste from city life, combustibles are recovered and then incinerated in an incinerator and dumped in the form of incinerated ash (incinerated main ash, also simply referred to as incinerated ash) or buried It is attached.
[0004]
However, these incineration ash (incineration main ash) contains harmful heavy metals such as lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), and arsenic (As). The regulations became stricter, and it was impossible to dump in the soil unless it was below a certain level in various elution tests, and it was necessary to clear the elution standard value of landfill. Moreover, when reusing as roadbed material, it was necessary to clear the soil environment standard value.
[0005]
On the other hand, when such waste is burned, low-boiling substances in various components are volatilized to form so-called incineration fly ash (hereinafter also simply referred to as fly ash). It contains a lot of harmful heavy metals, so it can not be landfilled like ordinary waste, and it is collected in a bag filter that carries slaked lime so that it does not diffuse into the external environment. . Such fly ash requires strict management in terms of environmental sanitation, and cannot be dumped or used as landfill as it is.
[0006]
However, in recent years, the amount of industrial waste and household waste has been increasing, and it has become difficult to secure land for disposal due to problems such as saturation of existing disposal sites and environmental pollution. It has been studied to use ash, fly ash, etc. as a concrete molded body as a basis for various civil engineering and construction work, or as a roadbed material.
[0007]
In addition, the incineration ash and fly ash from the incinerator are melted to reduce the volume and to thermally decompose dioxins. However, in the above melting process, lead or cadmium with a high vapor pressure is used. The heavy metal volatilizes in the furnace and enters the exhaust gas, and the heavy metal contained in the exhaust gas condenses in the exhaust gas treatment facility and becomes fly ash again.
[0008]
Conventionally, the following five treatments have been put to practical use as methods for stabilizing heavy metals such as lead contained in such incineration residues.
[0009]
(1) Melt-solidification treatment: Melt-solidification involves heating the dust and incineration ash etc. with the heat energy of fuel, the heat energy obtained from electricity, or other energy, and burning the organic matter at a high temperature of 1200-1400 ° C. This is a processing method of gasifying, melting an inorganic substance, and recovering it as a glassy slag.
[0010]
(2) Cement solidification: Cement solidification is the process of adsorption and solidification of harmful substances in incineration residues in the process where tissue minerals such as calcium silicate in cement combine with water to form hydrate crystals and harden. In addition, it is a processing method in which a hardly soluble compound of a harmful substance is generated by the strong alkalinity of cement, and is deposited and fixed in a solidified body.
[0011]
Here, there are the following prior patent documents in the method for stabilizing the incineration residue by cement solidification.
[0012]
[Patent Document 1]
"JP 2002-86100 A"
An object of the invention described in Patent Document 1 is to provide a heavy metal elution prevention method that can be easily and stably prevented from elution of heavy metals in fly ash, particularly lead, within the optimum pH value range without performing pH control. In the invention described in Patent Document 1, 1 to 100% of cement per fly ash is added to and mixed with molten fly ash and / or calcined fly ash, and then iron salt is converted to Fe in terms of Fe per fly ash. Add 1% or more, add water, knead and wet or granulate, or pass the exhaust gas containing the fly ash through the bag filter in the previous stage to collect the fly ash When spraying slaked lime on the collected exhaust gas and treating the exhaust gas through the subsequent bag filter, the fly ash collected by the preceding bag filter is mixed with 1-100% cement per fly ash and the latter bug After adding the ash collected by the filter and mixing, Salts adding the fly ash per Fe converted at least 0.1%, by adding water and kneaded wet state, or is set to be granulated.
[0013]
(3) Chemical treatment: The chemical treatment is a treatment method in which the incineration residue is treated with a chemical such as a chelating agent and stabilized by a reaction with the chemical.
[0014]
Here, there are the following prior patent literatures as methods for stabilizing the incineration residue by this chemical treatment.
[0015]
[Patent Document 2]
"JP 2001-137823 A"
The invention described in Patent Document 2 suppresses the volume expansion of municipal waste incineration fly ash, in particular fluidized bed furnace fly ash, improves the solidification state, and suppresses lead elution to a reference value or less to perform the treatment. The purpose of this is to mix together a liquid chelating agent, Portland cement, an alkali metal silicate and an alkali carbonate carbonate to municipal waste incineration fly ash and knead with water.
[0016]
(4) Stabilization treatment with acid and other solvents: Stabilization treatment with acid extraction / hydroxide method / acid extraction / sulfide method / acid extraction / heavy metal fixing method / exhaust gas neutralization method.
[0017]
Here, there are the following prior patent documents for the stabilization treatment method using an acid or other solvent.
[0018]
[Patent Document 3]
"JP 2001-49360 A"
The invention described in Patent Document 3 provides a method for recovering lead in fly ash that stabilizes fly ash by removing lead contained in fly ash at a low cost and collects the removed lead. In addition, sulfuric acid is added to fly ash containing heavy metals such as lead discharged from an incinerator or melting furnace, and then heavy metals other than lead are extracted, followed by solid-liquid separation, and then solid-liquid separation. After adding lead thiosulfate alkali salt to the resulting lead-containing residue and extracting lead, it is separated into solid and liquid, and further, a sulfide is added to the filtrate obtained by solid-liquid separation to make lead insolubilized. Solid-liquid separation.
[0019]
(5) Solidification by firing: After incineration residue is added alone or clay is added to form a granular or brick shape, the solid particles are melted and fixed to each other by heating, by firing at a high temperature of approximately 1000 ° C. or higher. This is a treatment method for solidifying and stabilizing by accompanying shrinkage, densification, recrystallization and the like.
[0020]
[Problems to be solved by the invention]
However, among the conventional methods for stabilizing heavy metals such as lead contained in the above incineration residue, (1) the melt-solidifying method has the problem that the energy cost of fuel combustion heat and electricity is very high. there were. In addition, the above (2) cement solidification treatment method has a problem that a cement cost is required and the amount of treated material increases due to the addition of cement. Further, the above (3) chemical treatment method has a problem that the cost of chemicals such as liquid chelating agents is very high. In addition, the above-mentioned (4) stabilization method using an acid or other solvent has a problem that a chemical (acid) and water treatment equipment are required. Further, the above-mentioned (5) calcination solidification treatment method has a problem that equipment for molding by calcination solidification and high-temperature treatment are required, and the equipment cost is high.
[0021]
The object of the present invention is to solve the above-mentioned problems of the prior art, and to easily remove heavy metals such as lead contained in the incineration residue composed of incineration main ash and / or incineration fly ash by a simple method and with high efficiency. A method for stabilizing heavy metals contained in incineration residues that can be insolubilized and stabilized, eliminates the need for conventional chelating agents and other chemicals, electricity costs, etc., and significantly reduces running costs. Try to offer.
[0022]
[Means for Solving the Problems]
In view of the above points, as a result of intensive studies, the present inventors have conducted a wet treatment and a dry treatment rather than leaving incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead in a wet state. It was found that the insolubilization of lead and the like was promoted by repeating the above. On the other hand, it was found that insolubilization of lead and the like was promoted by treating the incineration residue containing heavy metals such as lead at a high temperature and high pressure. Furthermore, the present inventors combine the first method and the second method, and wet treatment and drying treatment of incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead, etc. After repeating the above, the incineration residue was treated at a high temperature and a high pressure to find that further insolubilization of heavy metals such as lead was promoted, and the present invention was completed.
[0023]
The stabilization method of heavy metals contained in the incineration residue according to claim 1 of the present invention is a treatment for wetting incineration residue (incineration main ash and / or incineration fly ash) containing heavy metals such as lead and drying. It is characterized by repeating the process.
[0024]
In the method for stabilizing heavy metals contained in the incineration residue according to claim 1, the incineration residue wetting treatment is a treatment for wetting the incineration residue to a moisture content of 5 to 35%, and the incineration residue drying treatment is performed. This is a treatment for drying a wet incineration residue at a temperature of 50 ° C. or higher and 115 ° C. or lower.
[0025]
Moreover, the stabilization processing method of heavy metals contained in the incineration residue according to claim 3 of the present invention is a method for treating incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead at high temperature and high pressure. It is characterized by processing.
[0026]
In the stabilization method of heavy metals contained in the incineration residue according to claim 3, the high temperature and high pressure treatment of the incineration residue is performed under conditions of a temperature of 115 ° C to 150 ° C and a pressure of 200 kPa to 500 kPa. is there.
[0027]
The stabilization method of heavy metals contained in the incineration residue according to claim 5 of the present invention includes a wet treatment and a drying treatment of the incineration residue (incineration main ash and / or incineration fly ash) containing heavy metals such as lead. After the repetition, the incineration residue is treated at high temperature and high pressure.
[0028]
In the method for stabilizing heavy metals contained in the incineration residue according to claim 5, the incineration residue wet treatment is a treatment of wetting the incineration residue to a moisture content of 5 to 35%, and the incineration residue drying treatment is performed. The incineration residue in a wet state is dried at a temperature of 50 ° C. or higher and 115 ° C. or lower, and the high temperature and high pressure treatment of the incineration residue is performed at a temperature of 115 ° C. or higher and 150 ° C. or lower and a pressure of 200 kPa or higher and 500 kPa or lower. It is.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0030]
In order to effectively use the incineration residue (incineration main ash and / or incineration fly ash) of general waste, it is indispensable to deal with elution of toxic substances such as heavy metals. One of the methods is to use the insolubilization phenomenon of heavy metals due to aging.
[0031]
For example, focusing on the fact that about 40% of the surface soil in Japan is derived from volcanic ash, the incineration residue (artificial volcanic ash) from a waste incinerator, which can be called an “artificial volcano”, is also affected by soil formation factors. It is fully expected that it will become soil.
[0032]
The present inventors acted moisture (repetition of wet and dry), temperature and pressure (exposure to high temperature and high pressure) on the incineration residue as the above-mentioned soil formation factors, and accordingly, in the incineration residue It has been found that the insolubilization phenomenon of heavy metals such as lead occurs greatly.
[0033]
A first method for stabilizing heavy metals contained in incineration residues according to the present invention is a treatment for wetting incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead, and a treatment for drying. Is repeated.
[0034]
Here, the wetting treatment of the incineration residue is a treatment of wetting the incineration residue to a moisture content of 5 to 35%, and the drying treatment of the incineration residue is drying the incineration residue in a wet state at a temperature of 50 ° C. or more and 115 ° C. or less. A treatment is preferred.
[0035]
In the wet treatment of the incineration residue, if the water content of the incineration residue is less than 5%, it does not contribute to insolubilization of heavy metals such as lead, which is not preferable. Further, if the moisture content of the incineration residue exceeds 35%, it takes a long time for the drying treatment after the wet treatment, and the energy cost for drying is high, which is not preferable. In addition, if the drying temperature of the incineration residue is less than 50 ° C. in the incineration residue drying process, insolubilization of heavy metals such as lead is unlikely to occur. Further, if the drying temperature of the incineration residue exceeds 115 ° C., heavy metals such as lead are sufficiently insolubilized, but this is not preferable because the energy cost for heat drying is high.
[0036]
In addition, the frequency | count of repeating the process which wets an incineration residue, and the process to dry is although there is no restriction | limiting in particular, About 2 to 10 times is preferable.
[0037]
The second method for stabilizing heavy metals contained in incineration residues according to the present invention is to treat incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead at high temperature and high pressure. Is.
[0038]
Here, it is preferable to perform the high-temperature and high-pressure treatment of the incineration residue under conditions of a temperature of 115 ° C. to 150 ° C. and a pressure of 200 kPa to 500 kPa.
[0039]
In the high-temperature and high-pressure treatment of the incineration residue, if the temperature is less than 115 ° C. and the pressure is less than 200 kPa, insolubilization of heavy metals such as lead does not occur sufficiently, which is not preferable. On the other hand, if the temperature exceeds 150 ° C. and the pressure exceeds 500 kPa, heavy metals such as lead are sufficiently insolubilized, but this is not preferable because the energy cost for heating and pressurization is high.
[0040]
According to the first method and the second method of the present invention, in any case, heavy metals such as lead contained in the incineration residue composed of incineration main ash and / or incineration fly ash can be obtained by a simple method. In addition, it can be easily insolubilized and stabilized with high efficiency, and a conventional agent such as a chelating agent is not required, and an electric bill and the like can be reduced, and the running cost can be greatly reduced.
[0041]
Next, the third of the stabilization methods for heavy metals contained in the incineration residue according to the present invention is a combination of the first method and the second method, and the incineration residue containing heavy metals such as lead. The incineration residue is treated at a high temperature and a high pressure after the wet treatment and the drying treatment of (incineration main ash and / or incineration fly ash) are repeated.
[0042]
Here, the wetting treatment of the incineration residue is a treatment of wetting the incineration residue to a moisture content of 5 to 35%, and the drying treatment of the incineration residue is drying the incineration residue in a wet state at a temperature of 50 ° C. or more and 115 ° C. or less. Preferably, the high-temperature and high-pressure treatment of the incineration residue is performed under conditions of a temperature of 115 ° C. to 150 ° C. and a pressure of 200 kPa to 500 kPa.
[0043]
In this case, in the wet treatment of the incineration residue, if the moisture content of the incineration residue is less than 5%, it does not contribute to insolubilization of heavy metals such as lead, which is not preferable. Further, if the moisture content of the incineration residue exceeds 35%, it takes a long time for the drying treatment after the wet treatment, and the energy cost for drying is high, which is not preferable. In addition, if the drying temperature of the incineration residue is less than 50 ° C. in the incineration residue drying process, insolubilization of heavy metals such as lead is unlikely to occur. Further, if the drying temperature of the incineration residue exceeds 115 ° C., heavy metals such as lead are sufficiently insolubilized, but this is not preferable because the energy cost for heat drying is high. In addition, in the high-temperature and high-pressure treatment of incineration residues, if the temperature is less than 115 ° C. and the pressure is less than 200 kPa, insolubilization of heavy metals such as lead does not occur sufficiently, such being undesirable. On the other hand, if the temperature exceeds 150 ° C. and the pressure exceeds 500 kPa, heavy metals such as lead are sufficiently insolubilized, but this is not preferable because the energy cost for heating and pressurization is high.
[0044]
According to the third method of the present invention, heavy metals such as lead contained in the incineration residue composed of incineration main ash and / or incineration fly ash can be easily insolubilized with a simple method, yet with higher efficiency. Thus, the conventional chelating agent and other chemicals are not necessary, and the electricity cost and the like can be reduced, and the running cost can be greatly reduced.
[0045]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited to these examples.
[0046]
Example 1
In this example, fly ash collected by an electric dust collector of a cleaning factory that performs dry exhaust gas treatment in cities and incineration ash of city wastes were used as samples. Table 1 below shows the results of the dissolution analysis (JLT46) based on the component analysis of each sample and the Environmental Agency Notification No. 46.
[0047]
[Table 1]
Figure 2005034676
First, an experiment was conducted using fly ash, which contains a large amount of lead and it is relatively easy to grasp the insolubilization phenomenon. Next, it was examined whether the same phenomenon would occur using incinerated ash.
[0048]
In the present invention, the following experiment was conducted in order to investigate the influence of repeated wet and dry processes on lead elution. First, in order to determine the drying time at each temperature, a predetermined amount of a sample adjusted to a moisture content of 30% was measured in a petri dish and dried at 60 ° C. (condition A1) or 110 ° C. (condition A2). The moisture content of the sample was measured every hour and simultaneously subjected to a dissolution test. Based on the results of this experiment, the minimum time for an absolutely dry state was determined.
[0049]
In this example, a sample is taken into a vat, pure water is added to adjust the moisture content to 30%, and then dried with a drier set to each temperature, and pure water is added again so that the moisture content becomes 30%. The operation of adding was taken as one step, and this step was repeated.
[0050]
In this example, the thickness of the sample was 1.5 cm in order to make the experiment the same. 50 g was collected from the sample after completion of one step, and a dissolution test (JLT46) and a pH dependence test were performed. In the pH dependence test, the initial liquid solidification ratio was 10, and titration with 1N nitric acid was performed. The pH was set to 4, 6, 8, 10, and 12, respectively, and the mixture was stirred with a stirrer for 6 hours. Filter with filter paper. As a control test, an experiment (condition B1) was also conducted in which a sample adjusted to a moisture content of 30% was left in a room at a room temperature of 17 ° C. The filtrate was measured for pH and lead concentration.
[0051]
Furthermore, the following experiment was conducted in order to investigate the amount of lead elution when the above-mentioned fly ash and incineration ash were used as samples and these incineration residues were exposed to high temperature and high pressure.
[0052]
The incineration residue adjusted to a water content of 30% using pure water was placed in a 500 ml Erlenmeyer flask and placed in a sterilization autoclave set at 120 ° C. (223 kPa) (conditions C1, C2). During the experiment, the Erlenmeyer flask was covered with a 100 mm beaker in order to keep the water content almost constant. The increase in moisture content was suppressed to 1 to 2% or less before and after the experiment.
[0053]
After heating and pressurizing, the incineration residue sample was subjected to a dissolution test (JLT46) and a pH dependence test in the same manner as the wet / dry experiment, and the pH of the filtrate and the lead concentration were measured.
[0054]
The above experimental conditions are summarized in Table 2 below.
[0055]
[Table 2]
Figure 2005034676
Experimental results and discussion
<Change in moisture content and insolubilization of lead at different drying temperatures>
FIG. 1 shows the relationship between the water content of fly ash and the drying time, and FIG. 2 shows the relationship between the elution concentration of lead and the drying time.
[0056]
As is apparent from these figures, when dried at 60 ° C., the drying rate was lower than at 110 ° C., and after 8 hours, the water content was almost 0%. The elution concentration of lead decreased rapidly after the first hour, and then continued to decrease slowly. The value settled at 8 hours after the start of drying. When dried at 110 ° C., the moisture content was about 0% at 2 hours, and the elution concentration of Pb showed a minimum value after 3 hours. As a result, as the shortest time sufficient and sufficient for lead insolubilization to proceed, 8 hours at 60 ° C. and 3 hours for 110 ° C. drying were defined as one drying step.
[0057]
From the results of this experiment, when the elution concentration when dried at 60 ° C. and when dried at 110 ° C. are compared with the same drying time, lead insolubilization progresses when dried at 60 ° C. I know that.
[0058]
From the above, it was found that the insolubilization of lead and the moisture content and drying rate are closely related, and the presence of moisture is essential for the insolubilization phenomenon of lead.
[0059]
<Lead insolubilization phenomenon in wet and dry process>
FIG. 3 shows changes with time in the elution concentration of lead in experiments using fly ash (conditions A1, A2, and B1). It can be seen that lead insolubilization has advanced remarkably by repeating the wetting and drying steps. In the wet state, the sample left in the room was 48 hours later, 60 ° C., 40 hours later, and 110 ° C., 15 hours later, the lead soil soil environmental standard value (0.01 mg / l) or less. In the previous experiment, it was speculated that the presence of moisture greatly contributed to the insolubilization phenomenon of lead, but the one dried at 110 ° C compared to the one in which the moisture content was kept constant. However, since lead insolubilization was in progress, the effect of temperature was also suggested.
[0060]
Next, the result of the experiment using the incinerated ash (conditions A3 and A4) is shown in FIG. Although the elution concentration of lead in incineration ash was relatively low, by repeating the wet and dry process, lead insolubilization phenomenon was observed in the same way as fly ash, and the soil environmental standards were satisfied.
[0061]
<Lead insolubilization phenomenon under high temperature and pressure>
FIG. 5 shows changes with time in the elution concentration of lead when left under high temperature and high pressure. In both fly ash (condition C1) and incineration ash (condition C2), the elution concentration of lead decreased with the lapse of heating and pressurizing time. The incinerated ash became lead soil environmental standard value (0.01 mg / l) or less after 2 hours. However, fly ash did not fall below the soil soil environmental standard value (0.01 mg / l). The lead elution concentration of fly ash heated at high temperature and high pressure for 2 hours is 0.29 mg / l, and the lead elution concentration when the wet / dry process at 110 ° C. is repeated 3 times (9 hours in total). It was less than 5 mg / l. From this result, it was shown that heating while applying pressure while keeping the wet state promoted insolubilization of lead rather than repeating wet and dry.
[0062]
<Relationship between pH of filtrate and insolubilization rate of lead>
In wet / dry experiments and high-temperature / high-pressure experiments, lead insolubilization was observed by rapidly changing environmental conditions, but at the same time, the pH of the filtrate also changed. FIG. 6 shows the relationship between the insolubilization rate of lead when various environmental conditions are given and the pH of the filtrate at that time. The insolubilization rate of lead is a percentage of the decrease concentration relative to the initial lead elution concentration. Under wet and dry conditions, the pH decreased as the lead insolubilization rate increased. On the other hand, under high temperature and high pressure conditions, the insolubilization rate of lead increased even though the pH did not change much. From this, it is understood that the insolubilization phenomenon of lead when the incineration residue is left under high temperature and high pressure may change other factors than the factor of pH, for example, the compound form of lead.
[0063]
<Lead elution characteristics by pH dependence test>
About the sample in which the insolubilization phenomenon of lead was recognized, the elution amount of lead in the acidic region and the strong alkali region was examined by conducting a pH dependency test. In the test, as the initial stage and the final stage of insolubilization, the second and fifth times of the wet / dry experiment (Conditions A1, A2) and the samples after 0.5 hours and 2 hours of the high temperature / high pressure experiment (Condition C1) were used. Using. Here, the result of the pH dependence test about fly ash (conditions A1 and A2) is shown in FIG.
[0064]
It can be seen that in the strongly alkaline region of pH 12, the lead elution concentration decreased in the sample subjected to the treatment as compared with the raw ash. The degree of decrease is similar to the results of the elution test (JLT46) of each sample, and it is considered that the lead is in a form that is hardly affected by pH due to the progress of insolubilization of lead in the strong alkali region. However, in the acidic region of pH 4, there is a tendency for the amount of lead elution to increase when the treated sample is compared with the fly ash ash. In particular, it can be seen that the amount of elution in a sample that has not been insolubilized tends to increase, and a large amount of lead that is redissolved at a low pH is also contained.
[0065]
Analysis of the chemical form of the fly ash raw ash and the sample heated in an autoclave for 1 hour by X-ray diffraction revealed that the lead in the raw ash was insoluble, and metal lead, PbS, PbSO 4 It was present in the form of PbSO after heating and pressurization. 4 Is PbCO 3 It has been confirmed that However, considering the dissolution characteristics of these two crystals in the acidic region, it is considered that the insolubilization phenomenon of lead is caused not only by the change in the compound form of lead but also by more complicated mechanisms such as the influence of coexisting substances. It is done.
[0066]
According to the above-described embodiment of the present invention, moisture (repeated wet and dry), temperature, and pressure (exposure to high temperature and high pressure) are applied to the incineration residue as a soil formation factor. Results were obtained.
[0067]
(1) The presence of moisture is essential for the insolubilization phenomenon of lead.
[0068]
(2) Lead insolubilization is promoted when wetting and drying are repeated as compared with the case of leaving in a constant moist state.
[0069]
(3) It has been found that the insolubilization phenomenon of lead is caused not only by the influence of pH but also by mineralogical changes such as changes in crystalline substances.
[0070]
(4) When wet / dry, high temperature / high pressure conditions were applied, it was found that lead is likely to elute in the acidic region.
[0071]
In the future, in order to cause insolubilization of lead in the acidic region, the mechanism of the insolubilization phenomenon of lead obtained in the above examples will be elucidated using methods such as instrumental analysis and thermodynamic equilibrium calculation. It is desirable to do.
[0072]
【The invention's effect】
The method for stabilizing heavy metals contained in the incineration residue according to claim 1 of the present invention wets the incineration residue (incineration main ash and / or incineration fly ash) containing heavy metals such as lead as described above. According to the present invention, heavy metals such as lead contained in the incineration residue composed of incineration main ash and / or incineration fly ash can be obtained by a simple method. In addition, it can be easily insolubilized and stabilized with high efficiency, and there is no need for conventional chemicals such as chelating agents, electricity bills, etc., and the running cost can be greatly reduced.
[0073]
Moreover, the stabilization processing method of heavy metals contained in the incineration residue according to claim 3 of the present invention is a method for treating incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead at high temperature and high pressure. According to the present invention, heavy metals such as lead contained in the incineration residue composed of incineration main ash and / or incineration fly ash can be easily and efficiently processed. It can be insolubilized and stabilized, and there is an effect that a conventional agent such as a chelating agent is not necessary, an electricity bill is reduced, and a running cost can be greatly reduced.
[0074]
The stabilization method of heavy metals contained in the incineration residue according to claim 5 of the present invention includes a wet treatment and a drying treatment of the incineration residue (incineration main ash and / or incineration fly ash) containing heavy metals such as lead. After repeating, the incineration residue is treated at high temperature and high pressure. According to the present invention, heavy metals such as lead contained in the incineration residue composed of incineration main ash and / or incineration fly ash In addition, it can be easily insolubilized and stabilized with a simple method, and can be stabilized with no need for conventional chelating agents and other chemicals. There is an effect that it can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between fly ash moisture content and drying time in an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between lead elution concentration and drying time in an embodiment of the present invention.
FIG. 3 is a graph showing a change with time in the elution concentration of lead in an experiment using fly ash in the embodiment of the present invention.
FIG. 4 is a graph showing a change with time in the elution concentration of lead in an experiment using incinerated ash in the embodiment of the present invention.
FIG. 5 is a graph showing a change with time in the elution concentration of lead when left under high temperature and high pressure in an embodiment of the present invention.
FIG. 6 is a graph showing the relationship between the insolubilization rate of lead and the pH of the filtrate at that time in the embodiment of the present invention.
FIG. 7 is a graph showing the results of a pH dependence test on fly ash in the embodiment of the present invention.

Claims (6)

鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を湿潤する処理と、乾燥する処理とを繰り返すことを特徴とする、焼却残渣に含まれる重金属類の安定化処理方法。A method for stabilizing heavy metals contained in incineration residues, characterized by repeating a process of wetting and drying an incineration residue (incineration main ash and / or incineration fly ash) containing heavy metals such as lead. . 焼却残渣の湿潤処理が、焼却残渣を含水率5〜35%に湿潤する処理であり、焼却残渣の乾燥処理が、湿潤状態の焼却残渣を50℃以上115℃以下の温度で乾燥させる処理である、請求項1記載の焼却残渣に含まれる重金属類の安定化処理方法。The incineration residue wetting process is a process of wetting the incineration residue to a moisture content of 5 to 35%, and the incineration residue drying process is a process of drying the wet incineration residue at a temperature of 50 ° C. or higher and 115 ° C. or lower. A method for stabilizing heavy metals contained in the incineration residue according to claim 1. 鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)を、高温・高圧で処理することを特徴とする、焼却残渣に含まれる重金属類の安定化処理方法。A method for stabilizing heavy metals contained in incineration residues, comprising treating incineration residues (incineration main ash and / or incineration fly ash) containing heavy metals such as lead at high temperature and high pressure. 焼却残渣の高温・高圧処理を、温度115℃以上150℃以下、及び圧力200kPa以上500kPa以下の条件で行なうことを特徴とする、請求項3記載の焼却残渣に含まれる重金属類の安定化処理方法。The method for stabilizing heavy metals contained in an incineration residue according to claim 3, wherein the incineration residue is subjected to high temperature and high pressure treatment under conditions of a temperature of 115 ° C to 150 ° C and a pressure of 200 kPa to 500 kPa. . 鉛等の重金属類を含む焼却残渣(焼却主灰及び/又は焼却飛灰)の湿潤処理と乾燥処理とを繰り返した後、焼却残渣を、高温・高圧で処理することを特徴とする、焼却残渣に含まれる重金属類の安定化処理方法。Incineration residue, characterized by treating the incineration residue at high temperature and high pressure after wetting and drying of the incineration residue (incineration main ash and / or incineration fly ash) containing heavy metals such as lead Of stabilization of heavy metals contained in the above. 焼却残渣の湿潤処理が、焼却残渣を含水率5〜35%に湿潤する処理であり、焼却残渣の乾燥処理が、湿潤状態の焼却残渣を50℃以上115℃以下の温度で乾燥させる処理であり、焼却残渣の高温・高圧処理が、温度115℃以上150℃以下、及び圧力200kPa以上500kPa以下の条件で行なう処理であることを特徴とする、請求項5記載の焼却残渣に含まれる重金属類の安定化処理方法。The incineration residue wetting process is a process of wetting the incineration residue to a moisture content of 5 to 35%, and the incineration residue drying process is a process of drying the wet incineration residue at a temperature of 50 ° C. to 115 ° C. The high-temperature and high-pressure treatment of the incineration residue is a treatment performed under the conditions of a temperature of 115 ° C or higher and 150 ° C or lower and a pressure of 200 kPa or higher and 500 kPa or lower. Stabilization method.
JP2003149280A 2003-05-27 2003-05-27 Method for stabilizing heavy metals contained in incineration residues Expired - Lifetime JP4374402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149280A JP4374402B2 (en) 2003-05-27 2003-05-27 Method for stabilizing heavy metals contained in incineration residues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149280A JP4374402B2 (en) 2003-05-27 2003-05-27 Method for stabilizing heavy metals contained in incineration residues

Publications (2)

Publication Number Publication Date
JP2005034676A true JP2005034676A (en) 2005-02-10
JP4374402B2 JP4374402B2 (en) 2009-12-02

Family

ID=34204270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149280A Expired - Lifetime JP4374402B2 (en) 2003-05-27 2003-05-27 Method for stabilizing heavy metals contained in incineration residues

Country Status (1)

Country Link
JP (1) JP4374402B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271508A (en) * 2006-03-31 2007-10-18 Sumitomo Osaka Cement Co Ltd Soil pollutant elution testing method and soil pollutant elution promoting apparatus
WO2020090829A1 (en) * 2018-10-29 2020-05-07 電源開発株式会社 Method for producing reclaimed land
JP2021030121A (en) * 2019-08-20 2021-03-01 株式会社タクマ Incinerated ash treatment apparatus and incinerated ash treatment method
CN113264715A (en) * 2021-05-24 2021-08-17 燕山大学 Heavy metal curing baking-free brick based on household garbage incineration fly ash and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271508A (en) * 2006-03-31 2007-10-18 Sumitomo Osaka Cement Co Ltd Soil pollutant elution testing method and soil pollutant elution promoting apparatus
JP4709678B2 (en) * 2006-03-31 2011-06-22 住友大阪セメント株式会社 Soil pollutant elution test method and soil pollutant elution promoting device
WO2020090829A1 (en) * 2018-10-29 2020-05-07 電源開発株式会社 Method for producing reclaimed land
JPWO2020090829A1 (en) * 2018-10-29 2021-09-16 電源開発株式会社 Production method of landfill site
JP7301066B2 (en) 2018-10-29 2023-06-30 電源開発株式会社 Reclamation land production method
JP2021030121A (en) * 2019-08-20 2021-03-01 株式会社タクマ Incinerated ash treatment apparatus and incinerated ash treatment method
CN113264715A (en) * 2021-05-24 2021-08-17 燕山大学 Heavy metal curing baking-free brick based on household garbage incineration fly ash and preparation method thereof

Also Published As

Publication number Publication date
JP4374402B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
Kim et al. Evaluation of pre-treatment methods for landfill disposal of residues from municipal solid waste incineration
JP2006181535A (en) Processing method of incineration ash
JP4374402B2 (en) Method for stabilizing heavy metals contained in incineration residues
JP4686227B2 (en) Treatment method of sulfuric acid pitch
EP1343734A2 (en) Method for inerting ash, artificial pozzolan obtained by said method
JP2005313147A (en) Method for processing incineration ash
JP2006198505A (en) Processing method of combustion ash
TW201912209A (en) Method for stabilizing MSWI fly ash
JP3762965B2 (en) Methods for insolubilizing heavy metal elements contained in pollutants such as waste
JP3574928B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP3940157B1 (en) Incineration residue treatment method and incineration residue treatment product
JP4834719B2 (en) Waste disposal method
JPH1034105A (en) Method for processing fly ash
JP4231935B2 (en) Effective use of fly ash
JPS6140885B2 (en)
JP2000167529A (en) Separation of water soluble component from exhaust gas dust or incineration ash
JP3234189B2 (en) Method and apparatus for effective use of waste incineration fly ash
JP4061253B2 (en) Method for producing heavy metal treatment agent
JP2007313382A (en) Method for treating incineration ash containing fluorine and chrome
JP7143233B2 (en) Incineration ash disposal method
BE1015866A3 (en) Incinerator smoke solid residue treatment comprises washing with hot water to dissolve soluble residues and precipitate heavy metals
JP3624296B2 (en) Method for treating industrial waste containing heavy metals
Świerczek et al. Determination of metal content in sewage sludge and sewage sludge ash to find opportunities to use them in the construction industry
JPH1028947A (en) Treatment of flying ashes of melting furnace
JP2003181243A (en) Method of treating waste gas, soot and dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

R150 Certificate of patent or registration of utility model

Ref document number: 4374402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term