JP2005033176A - Capacitor and method of manufacturing capacitor - Google Patents

Capacitor and method of manufacturing capacitor Download PDF

Info

Publication number
JP2005033176A
JP2005033176A JP2004130788A JP2004130788A JP2005033176A JP 2005033176 A JP2005033176 A JP 2005033176A JP 2004130788 A JP2004130788 A JP 2004130788A JP 2004130788 A JP2004130788 A JP 2004130788A JP 2005033176 A JP2005033176 A JP 2005033176A
Authority
JP
Japan
Prior art keywords
thin film
electrode conductor
type
dielectric
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004130788A
Other languages
Japanese (ja)
Inventor
Atsushi Otsuka
淳 大塚
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004130788A priority Critical patent/JP2005033176A/en
Priority to US10/870,037 priority patent/US6885541B2/en
Publication of JP2005033176A publication Critical patent/JP2005033176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film capacitor that can obtain a more large electrostatic capacitance even when the capacitor has a small size, and to provide a method of manufacturing the capacitor. <P>SOLUTION: In the thin film capacitor, a first thin dielectric film 13(A), an another kind of thin electrode conductor film 14, and a second thin dielectric film 13(B) are arranged in this order between the same kind of thin electrode conductor films 17(A) and 17(B) adjoining each other in the direction of lamination. In addition, first and second thin coupling conductor film sections 19a and 19b are respectively protruded into first and second through holes 13h(A) and 13h(B) from the same kind of thin electrode conductor films 17(A) and 17(B) and an integral coupling conductor section 19 is formed in a second through hole 16 by coupling the first and second thin coupling conductor film sections 19a and 19b with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明はコンデンサ及びコンデンサの製造方法に関する。   The present invention relates to a capacitor and a method for manufacturing the capacitor.

CPUやその他のLSIなどの高速動作する集積回路デバイスにおいては、集積回路内の複数の回路ブロックに対し、共通の電源から分岐する形で電源線が割り振られているが、回路ブロック内の多数の素子が同時に高速でスイッチングすると、電源から一度に大きな電流が引き出され、電源電圧の変動が一種のノイズとなり、電源線を介して各回路ブロックに伝播してしまう問題がある。そこで、各回路ブロック毎に電源インピーダンスを下げるためのデカップリングコンデンサを設けることが、電源電圧変動によるブロック間ノイズ伝播を抑制する上で有効である。また、サージノイズなどの外来性ノイズを交流フィルタリング的に除去するバイパスコンデンサ(「パスコン」と通称される)が、同様の接続形態で設けられる場合もある。   In an integrated circuit device such as a CPU or other LSI that operates at high speed, power lines are allocated to a plurality of circuit blocks in the integrated circuit so as to branch from a common power source. When the elements are simultaneously switched at a high speed, a large current is drawn from the power supply at once, and there is a problem that fluctuations in the power supply voltage become a kind of noise and propagate to each circuit block through the power supply line. Therefore, providing a decoupling capacitor for reducing the power supply impedance for each circuit block is effective in suppressing noise propagation between blocks due to power supply voltage fluctuations. Further, a bypass capacitor (commonly referred to as “pass capacitor”) that removes external noise such as surge noise in an AC filtering manner may be provided in the same connection form.

ところで、CPUなどの大規模な集積回路の場合、作りこまれる回路ブロックの数も多く、電源端子やグランド端子の数も増加する傾向にあり、端子間距離もどんどん縮小しつつある。デカップリングコンデンサは各回路ブロックに向かう電源線毎に接続する必要があり、多数の端子が密集した集積回路にコンデンサを個別接続するのが実装技術的に困難であるばかりでなく、小型化等の流れにも逆行する。   By the way, in the case of a large-scale integrated circuit such as a CPU, the number of circuit blocks to be built is large, the number of power supply terminals and ground terminals tends to increase, and the distance between terminals is steadily decreasing. Decoupling capacitors need to be connected to each power supply line going to each circuit block, and it is not only difficult to mount capacitors individually in an integrated circuit where many terminals are densely packed, but also miniaturization, etc. Go backwards in the flow.

そこで、特許文献1及び非特許文献1には、強誘電体薄膜と金属薄膜とを積層し、密集した集積回路側端子に個別に接続される多数のコンデンサ端子を、フォトリソグラフィー技術を用いて作りこんだ薄膜デカップリングコンデンサが開示されている。高速スイッチング時の電源電圧変動によるノイズ問題が特に表面化しやすい高周波領域(特に100MHz以上)においては、電源インピーダンスに占める誘導性リアクタンス項の比重が大きくなるため、デカップリングコンデンサに導通する電源端子とグランド端子との距離をなるべく接近させることが、電源インピーダンス低減に効果的である。また、端子部分のインダクタンスが増加すると、デカップリングコンデンサの容量成分と結合して共振点が生じ、十分なインピーダンス低減効果が得られる帯域幅が縮小する問題もある。従って、上記のようにフォトリソグラフィー技術を利用して端子間距離の小さい薄膜コンデンサを作製することは、単に素子の小型化だけでなく、本来の目的である電源インピーダンス低減とその広帯域化にも寄与する利点がある。
特開2003−142624号公報 栗原 和明「低インダクタンス薄膜デカップリングキャパシタの開発」 エレクトロニクス実装技術 第19巻(2003年)第1号、50頁
Therefore, in Patent Document 1 and Non-Patent Document 1, a ferroelectric thin film and a metal thin film are laminated, and a large number of capacitor terminals individually connected to a dense integrated circuit side terminal are formed using photolithography technology. A recessed thin film decoupling capacitor is disclosed. In a high frequency region (especially 100 MHz or more) where the noise problem due to power supply voltage fluctuation at the time of high-speed switching is particularly likely to occur, the specific gravity of the inductive reactance term occupying the power supply impedance becomes large. Making the distance from the terminal as close as possible is effective in reducing the power source impedance. Further, when the inductance of the terminal portion increases, there is a problem that the resonance point is generated by coupling with the capacitance component of the decoupling capacitor, and the bandwidth capable of obtaining a sufficient impedance reduction effect is reduced. Therefore, using the photolithography technology as described above to produce a thin film capacitor with a small distance between terminals contributes not only to the miniaturization of the element but also to the reduction of the power source impedance and the broadening of the band, which are the original purposes. There are advantages to doing.
JP 2003-142624 A Kazuaki Kurihara “Development of Low Inductance Thin Film Decoupling Capacitors” Electronics Packaging Technology Vol. 19 (2003) No. 1, p. 50

ところで、近年は集積回路を利用した機器の小型化が著しく、デカップリングコンデンサもより小型のものが求められている。しかし、コンデンサの素子寸法が小さくなった場合、限られた寸法内にて望みの静電容量を実現することが困難になる。特に、比較的低い帯域でのインピーダンス低減効果を高めるには、より大容量のデカップリングコンデンサが必要になるが、前述の特許文献1及び非特許文献1に開示された薄膜デカップリングコンデンサは、コンデンサ電極は2層配置されているに過ぎず、大容量化を図る場合の、あるいは素子寸法の縮小を容量面で補償する場合の、具体的な方法については何も考慮されていない。   By the way, in recent years, devices using integrated circuits have been remarkably miniaturized, and decoupling capacitors have been required to be smaller. However, when the element size of the capacitor becomes small, it becomes difficult to realize a desired capacitance within a limited size. In particular, in order to enhance the impedance reduction effect in a relatively low band, a decoupling capacitor having a larger capacity is required. However, the thin film decoupling capacitors disclosed in Patent Document 1 and Non-Patent Document 1 described above are capacitors. There are only two layers of electrodes, and no consideration is given to a specific method for increasing the capacity or compensating for the reduction of the element size in terms of capacity.

本発明の課題は、小寸法であってもより大きな静電容量が得られる薄膜コンデンサと、その製造方法を提供することにある。   An object of the present invention is to provide a thin film capacitor capable of obtaining a larger capacitance even with a small size, and a manufacturing method thereof.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明のコンデンサは、
コンデンサを形成する複数の誘電体薄膜と複数の電極導体薄膜とが交互に積層された薄膜積層体を有し、該薄膜積層体の第一主表面に、直流的に互いに分離された第一種端子と第二種端子とが形成されるとともに、
電極導体薄膜は、第一種端子に導通する第一種電極導体薄膜と、第二種端子に導通する第二種電極導体薄膜とが、誘電体薄膜により隔てられた形で積層方向に交互に配列するとともに、該積層方向に隣接する一方の同種電極導体薄膜と他方の同種電極導体薄膜との間に第一の誘電体薄膜と、他種電極導体薄膜と、第二の誘電体薄膜とがこの順序で配列してなり、
第一の誘電体薄膜に形成された第一貫通孔と、他種電極導体薄膜に形成された第二貫通孔とが面内投影にて重なりを有し、該第二貫通孔と第二の誘電体薄膜に形成された第三貫通孔とが面内投影にて重なりを有し、
一方の同種電極導体薄膜と他方の同種電極導体薄膜とを結合する結合導体部が、第一貫通孔と第三貫通孔とをそれぞれ充填する形で、2つの同種電極導体薄膜の少なくともいずれかと共成膜される薄膜部として形成され、第二貫通孔内において、第一の誘電体薄膜及び第二の誘電体薄膜と一体化された誘電体孔内充填部により、該結合導体部の外周面と該第二貫通孔の内周面とが直流的に分離されてなることを特徴とする。なお、本発明において「薄膜」とは、厚さが1.5μm以下の膜のことをいう。
In order to solve the above problems, the capacitor of the present invention is:
A first type having a thin film laminate in which a plurality of dielectric thin films and a plurality of electrode conductor thin films forming a capacitor are alternately laminated, and separated from each other in a direct current manner on the first main surface of the thin film laminate A terminal and a second type terminal are formed,
The electrode conductor thin film is alternately arranged in the stacking direction in such a manner that the first kind electrode conductor thin film conducting to the first kind terminal and the second kind electrode conductor thin film conducting to the second kind terminal are separated by the dielectric thin film. A first dielectric thin film, another kind of electrode conductor thin film, and a second dielectric thin film between one of the same kind of electrode conductor thin film and the other of the same kind of electrode conductor thin film adjacent to each other in the stacking direction. Arranged in this order,
The first through hole formed in the first dielectric thin film and the second through hole formed in the other-type electrode conductor thin film have an overlap by in-plane projection, and the second through hole and the second through hole The third through-hole formed in the dielectric thin film has an overlap by in-plane projection,
A coupling conductor portion that joins one homogeneous electrode conductor thin film and the other homogeneous electrode conductor thin film fills the first through hole and the third through hole, respectively, and is coupled with at least one of the two identical electrode conductor thin films. The outer peripheral surface of the coupling conductor portion is formed as a thin film portion to be formed and is filled in the second through hole with the first dielectric thin film and the dielectric hole filling portion integrated with the second dielectric thin film. And the inner peripheral surface of the second through hole are separated from each other in a direct current manner. In the present invention, “thin film” means a film having a thickness of 1.5 μm or less.

この構造によると、コンデンサの異極性の電極導体薄膜を第一種電極導体薄膜と第二種電極導体薄膜として、複数の誘電体薄膜を介して交互に積層し、さらに、第一種電極導体薄膜と第二種電極導体薄膜とを、誘電体薄膜に形成された(第一及び第三)貫通孔をそれぞれ充填する結合導体部により結合する。結合導体部は、2つの同種電極導体薄膜の少なくともいずれかと共成膜される薄膜部である。そして、結合導体部には、極性の異なる異種の電極導体薄膜と交差する位置に第二貫通孔を設け、前記の結合導体薄膜部を該第二貫通孔の内側に配置するとともに、第二貫通孔内において誘電体孔内充填部により、結合導体部の外周面と該第二貫通孔の内周面とを直流的に分離する。これにより、2種の電極導体薄膜は、同種別のもの(つまり、コンデンサ使用時に互いに同極性となるもの)同士が複数層、結合導体薄膜部により直流的に連結され、他方、異種別(つまり、異極性)の複数層同士は、誘電体薄膜と誘電体孔内充填部とを介して直流的に完全に分離される。これにより、各極性の電極導体薄膜は多層化により合計面積が拡大し、かつ、誘電体層の薄膜化効果とも相俟って、素子寸法が小さくとも、実現可能な静電容量を大幅に増加させることができる。   According to this structure, the electrode conductor thin films of different polarities of the capacitor are alternately laminated as a first kind electrode conductor thin film and a second kind electrode conductor thin film via a plurality of dielectric thin films, and further, the first kind electrode conductor thin film And the second-type electrode conductor thin film are coupled by coupling conductor portions respectively filling (first and third) through-holes formed in the dielectric thin film. The coupled conductor portion is a thin film portion that is co-filmed with at least one of two similar electrode conductor thin films. The coupling conductor portion is provided with a second through hole at a position where it intersects with different types of electrode conductor thin films having different polarities, and the coupling conductor thin film portion is disposed inside the second through hole, and the second penetration hole. In the hole, the outer peripheral surface of the coupling conductor portion and the inner peripheral surface of the second through hole are separated in a direct current manner by the dielectric hole filling portion. As a result, two types of electrode conductor thin films of the same type (that is, those having the same polarity when a capacitor is used) are connected to each other by a plurality of layers and a coupled conductor thin film portion, and on the other hand, , Different polarities) are completely separated in a direct current manner through the dielectric thin film and the dielectric hole filling portion. As a result, the total area of the electrode conductor thin film of each polarity is expanded by multilayering, and in combination with the thinning effect of the dielectric layer, the achievable capacitance is greatly increased even if the element size is small. Can be made.

また、電極導体薄膜及び誘電体薄膜に形成される(第一〜第三の)貫通孔は、フォトリソグラフィー技術により、各薄膜に簡単に形成でき、さらに、誘電体孔内充填部は誘電体薄膜の成膜・堆積時に、原料を第二貫通孔内にも堆積させることにより、また、結合導体薄膜部は、電極導体薄膜の成膜・堆積時に、原料を第一ないし第三貫通孔内にも堆積させることにより、いずれも極めて簡単に形成できる。すなわち、積層方向に電極導体薄膜及び誘電体薄膜とが多層に積層され、かつ異極性の電極導体薄膜同士が直流的に互いに分離された複雑な結合構造を有しているにもかかわらず、フォトリソグラフィー技術によるパターニングと、一般的な成膜技術とを単純に繰り返すだけで容易に製造できる。   Moreover, the (first to third) through holes formed in the electrode conductor thin film and the dielectric thin film can be easily formed in each thin film by photolithography, and the dielectric hole filling portion is a dielectric thin film. When the film is formed and deposited, the raw material is also deposited in the second through-hole. In addition, the coupled conductor thin film portion is disposed in the first through third through-holes when the electrode conductor thin film is formed and deposited. Can also be formed very easily. That is, although the electrode conductor thin film and the dielectric thin film are laminated in multiple layers in the lamination direction and the electrode conductor thin films having different polarities are separated from each other in a direct current manner, It can be easily manufactured by simply repeating patterning by lithography and general film formation.

誘電体薄膜の厚さは、例えば10nm以上1000nm以下であることが望ましい。誘電体薄膜の厚さが10nm未満になると、該誘電体薄膜が隔てている電極導体薄膜間の直流的な分離状態が悪化し、リーク電流の発生が顕著となる。また、誘電体薄膜の厚さが1000nmを超えると、薄膜コンデンサ特有の小型化あるいは大容量化のメリットが顕著でなくなる。誘電体薄膜の厚さは、より望ましくは30nm以上500nm以下であるのがよい。他方、電極導体薄膜は、例えば金属薄膜を用いる場合、その厚さを10nm以上500nm以下とすることが望ましい。電極導体薄膜をなす金属薄膜の厚さが10nm未満になると、薄膜のシート抵抗が増大するため、等価回路的には、形成されるコンデンサに対し直列的に付加される直流抵抗成分が大きくなる。これは、デカップリングコンデンサやパスコン等に使用した場合に、インピーダンス低減効果を損ねる原因となり、またRC直列共振回路形成による帯域幅の狭小化につながる場合もある。また、500nm以上の電極導体薄膜を用いることは、コストアップの要因ともなる。電極導体薄膜の厚さは、より望ましくは50nm以上300nm以下であるのがよい。   The thickness of the dielectric thin film is preferably 10 nm or more and 1000 nm or less, for example. When the thickness of the dielectric thin film is less than 10 nm, the direct current separation state between the electrode conductor thin films separated by the dielectric thin film deteriorates, and the occurrence of leakage current becomes significant. On the other hand, when the thickness of the dielectric thin film exceeds 1000 nm, the merit of miniaturization or large capacity peculiar to the thin film capacitor is not significant. The thickness of the dielectric thin film is more preferably 30 nm or more and 500 nm or less. On the other hand, for example, when a metal thin film is used as the electrode conductor thin film, the thickness is desirably set to 10 nm or more and 500 nm or less. When the thickness of the metal thin film forming the electrode conductor thin film is less than 10 nm, the sheet resistance of the thin film increases, so that the DC resistance component added in series to the formed capacitor increases in terms of the equivalent circuit. This is a cause of impairing the impedance reduction effect when used for a decoupling capacitor, a bypass capacitor, or the like, and may lead to narrowing of the bandwidth due to formation of an RC series resonance circuit. In addition, the use of an electrode conductor thin film having a thickness of 500 nm or more also causes an increase in cost. The thickness of the electrode conductor thin film is more desirably 50 nm or more and 300 nm or less.

結合導体部にて結合される同種の電極導体薄膜は、インダクタンス低減及び直流抵抗増大防止のために、電極導体薄膜毎に、同じ主表面側にて該電極導体薄膜に導通する結合導体部を複数個形成することが望ましい。この場合、それら複数個の結合導体部のうち、異種であって最も近接するもの同士の縁間間隔は、20μm以上300μm以下であることが望ましい。該縁間間隔が20μm未満になると、直流的に分離すべき異種の結合導体部間での短絡が生じやすくなる。また、結合導体部間への誘電体層の充填が困難となり、空隙等の欠陥を生じやすくなる場合もある。また、縁間間隔が300μmを超えると、コンデンサの直流抵抗増大を招きやすくなる。他方、異種の結合導体部間の間隔を300μm以下に接近させれば、異種の結合導体部を流れる逆相交流波形同士の相互誘導的なキャンセル効果により、結合導体部の見かけのインダクタンスを低減でき、ひいてはコンデンサの更なる低インピーダンス化を図ることができる。なお、本発明においてフォトリソグラフィー技術が採用できるということは、多数の電源端子あるいはグランド端子を有した集積回路用のデカップリングコンデンサとして用いる場合、上記のようなμmオーダーにて結合導体部が微細に密集している場合でも、簡単かつ高精度に形成できる利点がある。   For the same kind of electrode conductor thin film coupled at the coupling conductor portion, in order to reduce inductance and prevent DC resistance increase, each electrode conductor thin film has a plurality of coupling conductor portions that are electrically connected to the electrode conductor thin film on the same main surface side. It is desirable to form them individually. In this case, it is desirable that the distance between the edges of the plurality of coupled conductor portions which are different and closest to each other is 20 μm or more and 300 μm or less. When the distance between the edges is less than 20 μm, a short circuit is likely to occur between different types of coupled conductor parts to be separated in a direct current manner. In addition, it may be difficult to fill the dielectric layer between the coupling conductor portions, and defects such as voids may be easily generated. On the other hand, if the distance between the edges exceeds 300 μm, the direct current resistance of the capacitor is likely to increase. On the other hand, if the distance between the different types of coupling conductors is made close to 300 μm or less, the apparent inductance of the coupling conductors can be reduced due to the mutual inductive cancellation effect of the negative phase alternating current waveforms flowing through the different types of coupling conductors. As a result, the impedance of the capacitor can be further reduced. Note that the photolithography technique can be used in the present invention when the coupling conductor portion is fine in the order of μm as described above when used as a decoupling capacitor for an integrated circuit having a large number of power supply terminals or ground terminals. Even when it is dense, there is an advantage that it can be formed easily and with high precision.

この場合、コンデンサの本体をなす薄膜積層体の第一主表面に、第一種端子と第二種端子とを予め定められた間隔にて各々複数個配置し、それら第一種端子及び第二種端子を、第一主表面に最も近い第一種電極導体薄膜及び第二種電極導体薄膜に対し、それぞれ直接又は補助結合導体部を介して積層方向に結合することができる。これにより、コンデンサ端子部の電極導体薄膜からの距離が大幅に縮小され、端子部のインダクタンスを小さくできるので、より低インピーダンス化を図ることができる。そして、薄膜積層体の第一主表面に、それら複数の第一種端子と第二種端子とが混在した端子アレーが形成される場合は、該端子アレー内にて最も隣接する異種端子同士の縁間間隔を20μm以上300μm以下とすることが望ましい。デカップリングコンデンサに使用する場合、上記の異種端子は一方が電源端子、他方がグランド端子として機能することになるが、この両者を縁間間隔にて300μm以下に接近させることにより、異種の端子を流れる逆相的な交流波形同士の相互誘導的なキャンセル効果により、端子部の見かけのインダクタンスを低減でき、ひいてはコンデンサの更なる低インピーダンス化を図ることができる。   In this case, a plurality of first-type terminals and second-type terminals are arranged at predetermined intervals on the first main surface of the thin film laminate that forms the main body of the capacitor. The seed terminal can be coupled to the first-type electrode conductor thin film and the second-type electrode conductor thin film closest to the first main surface in the stacking direction either directly or via an auxiliary coupling conductor portion. As a result, the distance from the electrode conductor thin film of the capacitor terminal portion is greatly reduced, and the inductance of the terminal portion can be reduced, so that the impedance can be further reduced. And, when a terminal array in which the plurality of first-type terminals and second-type terminals are mixed is formed on the first main surface of the thin-film laminate, the dissimilar terminals closest to each other in the terminal array It is desirable that the interval between the edges is 20 μm or more and 300 μm or less. When used as a decoupling capacitor, one of the above-mentioned different terminals functions as a power supply terminal and the other functions as a ground terminal. The apparent inductance of the terminal portion can be reduced by the mutual inductive canceling effect between the flowing reverse-phase alternating current waveforms, and as a result, the impedance of the capacitor can be further reduced.

次に、結合導体部は、電極導体薄膜毎に複数個(例えば、これに導通する第一種端子又は第二種端子と同数)のものを、電極導体薄膜の面内に分散形成することができる。このようにすると、結合導体部を含めたコンデンサ全体の直流抵抗成分及び寄生インダクタンスを大幅に低減でき、ひいてはより低インピーダンスの薄膜コンデンサを得ることができる。   Next, a plurality of coupling conductor portions (for example, the same number as the first type terminal or the second type terminal conducting to the electrode conductor thin film) may be dispersedly formed in the surface of the electrode conductor thin film. it can. In this way, the direct current resistance component and parasitic inductance of the entire capacitor including the coupling conductor portion can be greatly reduced, and as a result, a low impedance thin film capacitor can be obtained.

電極導体薄膜及び結合導体部は、例えばCu、Ag、AuあるいはPtなどの金属で構成でき、スパッタリング、真空蒸着などの気相成膜法にて形成することが効率的である。他方、誘電体薄膜及び誘電体孔内充填部は、酸化物あるいは窒化物などの無機誘電体の場合、高周波スパッタリング、反応性スパッタリング、化学気相堆積法(Chemical Vapor Deposition:CVD)などの気相成膜法を用いることが効率的である。また、酸化物系の誘電体薄膜の場合、いわゆるゾルゲル成膜法などの化学溶液成膜法(Chemical Solution Deposition:CSD)にて形成することもできる。化学溶液成膜法は、誘電体薄膜を構成する化合物の原料となる溶液の塗付層を乾燥ないし焼成により誘電体薄膜を得る方法で、誘電体薄膜を気相成膜法よりも一層簡便に形成できる利点がある。例えば、ゾルゲル成膜法は、有機金属溶液のゾル状組成物を板状基体上に塗付して乾燥後、焼成して誘電体薄膜(例えば酸化物薄膜)を得る。   The electrode conductor thin film and the coupling conductor portion can be made of a metal such as Cu, Ag, Au, or Pt, for example, and it is efficient to form the electrode conductor thin film and the bonding conductor portion by a vapor deposition method such as sputtering or vacuum deposition. On the other hand, in the case of an inorganic dielectric such as an oxide or a nitride, the dielectric thin film and the dielectric hole filling portion are formed by a gas phase such as high-frequency sputtering, reactive sputtering, or chemical vapor deposition (CVD). It is efficient to use a film forming method. In the case of an oxide-based dielectric thin film, it can be formed by a chemical solution deposition (CSD) method such as a so-called sol-gel deposition method. The chemical solution film formation method is a method of obtaining a dielectric thin film by drying or baking a coating layer of a solution that is a raw material of a compound constituting the dielectric thin film. There is an advantage that can be formed. For example, in the sol-gel film forming method, a sol-like composition of an organometallic solution is applied onto a plate-like substrate, dried and then fired to obtain a dielectric thin film (for example, an oxide thin film).

特に静電容量の高いコンデンサを得たい場合、あるいは同容量のコンデンサをより小型化したい場合には、誘電率のより大きい誘電体を使用することが有利であり、この目的のためには、誘電体薄膜及び誘電体孔内充填部を高誘電率セラミック(比誘電率が50以上のセラミックと定義する:例えば強誘電性セラミック)にて構成することが望ましい。高誘電率セラミックからなる誘電体薄膜としては、ペロブスカイト型結晶構造を有した複合酸化物、例えばチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上にて構成されたものが特に高誘電率であり、また、製造も比較的容易であるため本発明に好適に採用できる。なお、高誘電率セラミックからなる誘電体薄膜は、結晶性が損なわれると誘電率の大幅な低下を招くので、該誘電体薄膜は結晶質薄膜として構成することが望ましい。スパッタ法などの気相成膜法を採用する場合は、板状基体を加熱しながら成膜すれば結晶化を促進することができ、ゾルゲル法などの化学溶液成膜法を採用する場合は、乾燥後の焼成処理にて膜の結晶化を進行させることができる。   In particular, when it is desired to obtain a capacitor having a high capacitance, or when it is desired to further reduce the size of a capacitor having the same capacitance, it is advantageous to use a dielectric having a higher dielectric constant. It is desirable that the body thin film and the dielectric hole filling portion be made of a high dielectric constant ceramic (defined as a ceramic having a relative dielectric constant of 50 or more: for example, a ferroelectric ceramic). As the dielectric thin film made of a high dielectric constant ceramic, a composite oxide having a perovskite crystal structure, for example, one composed of one or more of barium titanate, strontium titanate and lead titanate is particularly used. Since it has a high dielectric constant and is relatively easy to manufacture, it can be suitably used in the present invention. Note that a dielectric thin film made of a high dielectric constant ceramic causes a significant decrease in dielectric constant when the crystallinity is impaired. Therefore, it is desirable that the dielectric thin film be configured as a crystalline thin film. When employing a vapor phase film formation method such as sputtering, crystallization can be promoted by forming a film while heating the plate-like substrate. When employing a chemical solution film formation method such as a sol-gel method, Crystallization of the film can be advanced by baking treatment after drying.

次に、本発明のコンデンサは、薄膜積層体の第二主表面が板状基体の第一主表面に結合され、該板状基体の第二主表面に、直流的に互いに分離された第一種基体側端子と第二種基体側端子とが形成され、それら第一種基体側端子と第二種基体側端子とが、薄膜積層体の第二主表面に最も近い第一種電極導体薄膜及び第二種電極導体薄膜にそれぞれ結合された構造とすることができる。薄膜積層体の第一主表面に形成された第一種端子及び第二種端子には、シリコン集積回路チップ等で構成された半導体素子側の電源端子及びグランド端子をそれぞれ半田接続でき、また、板状基体の第二主表面側の第一種基体側端子及び第二種基体側端子には、高分子材料を主体とする主基板側の電源端子及びグランド端子をそれぞれ接続できる。従って、該構造のコンデンサは、半導体素子と主基板との中間に位置して両者の接続の仲立ちをする中間基板として機能させることができる。   Next, in the capacitor according to the present invention, the second main surface of the thin film laminate is bonded to the first main surface of the plate-like substrate, and the first main surfaces of the plate-like substrate are separated from each other in a direct current manner. A seed substrate side terminal and a second type substrate side terminal are formed, and the first type substrate side terminal and the second type substrate side terminal are closest to the second main surface of the thin film laminate. And it can be set as the structure respectively couple | bonded with the 2nd type electrode conductor thin film. The first type terminal and the second type terminal formed on the first main surface of the thin film laminate can be solder-connected to the power supply terminal and the ground terminal on the semiconductor element side formed of a silicon integrated circuit chip, respectively, A power supply terminal and a ground terminal on the main substrate side mainly composed of a polymer material can be connected to the first-type substrate-side terminal and the second-type substrate-side terminal on the second main surface side of the plate-like substrate. Therefore, the capacitor having the structure can be functioned as an intermediate substrate that is located between the semiconductor element and the main substrate and mediates the connection between the two.

また、デカップリングコンデンサ(あるいはパスコン)として機能するコンデンサを、中間基板の形で半導体素子に直結することで、デカップリングコンデンサを半導体素子により近づけることができ、電源端子とデカップリングコンデンサとの配線長を短縮できる。その結果、コンデンサ端子部のインダクタンスを低減することができ、デカップリングコンデンサの低インピーダンス化に寄与する。また、中間基板内にデカップリングコンデンサが組み込まれるので、デカップリングコンデンサを別素子として主基板の裏面側に配置する必要がなくなり、部品点数の削減あるいは装置の小型化とを図ることができる。   In addition, by connecting a capacitor that functions as a decoupling capacitor (or bypass capacitor) directly to a semiconductor element in the form of an intermediate substrate, the decoupling capacitor can be brought closer to the semiconductor element, and the wiring length between the power supply terminal and the decoupling capacitor Can be shortened. As a result, the inductance of the capacitor terminal can be reduced, which contributes to lowering the impedance of the decoupling capacitor. Further, since the decoupling capacitor is incorporated in the intermediate board, it is not necessary to arrange the decoupling capacitor as a separate element on the back side of the main board, and the number of parts can be reduced or the apparatus can be downsized.

なお、前述の特許文献1においては、薄膜コンデンサをシリコン基板上に形成し、さらに半導体素子を薄膜コンデンサに実装した後、そのシリコン基板を剥離して、薄膜コンデンサを単独で中間基板化した構成となっている。この構成は、シリコン基板剥離に工数を要し、また、基板剥離された薄膜コンデンサは剛性がそれほど高くない欠点がある。このため、接続先となる主基板が、マザーボードや、2段目の中間基板をなすオーガニックパッケージ基板など、高分子材料を主体とするものであった場合、半田リフローなどの熱履歴が加わると、半導体素子と主基板との線膨張係数係数差を吸収しきれず、半田剥がれや薄膜コンデンサ自体が剛性不足のため損傷する、といった不具合につながる惧れがある。しかしながら、上記のように、薄膜コンデンサをなす薄膜積層体の成膜ベースとなる板状基体に、基体側端子と基体側結合導体部とを作り込み、該板状基体を中間基板の構成要素として取り込んでしまえば、基体の剥離工程が不要となる上、中間基板の剛性が大幅に向上し、上記のような不具合の発生を効果的に防止することができる。   In Patent Document 1, the thin film capacitor is formed on a silicon substrate, the semiconductor element is further mounted on the thin film capacitor, the silicon substrate is peeled off, and the thin film capacitor is singly formed as an intermediate substrate. It has become. This configuration requires man-hours for peeling the silicon substrate, and the thin film capacitor having the peeled substrate has a drawback that the rigidity is not so high. For this reason, when the main substrate to be connected is mainly composed of a polymer material such as a mother board or an organic package substrate that forms the second intermediate substrate, when a thermal history such as solder reflow is added, The difference in coefficient of linear expansion coefficient between the semiconductor element and the main board cannot be absorbed, and there is a risk that the solder may be peeled off or the thin film capacitor itself may be damaged due to insufficient rigidity. However, as described above, the substrate-side terminal and the substrate-side coupling conductor portion are formed in the plate-like substrate that is the film formation base of the thin film laminate constituting the thin-film capacitor, and the plate-like substrate is used as a component of the intermediate substrate. Once incorporated, the substrate peeling step is not required, and the rigidity of the intermediate substrate is greatly improved, and the occurrence of the above-described problems can be effectively prevented.

剛性向上の観点においては、上記板状基体は、剛性の低い薄膜積層体よりも厚く形成しておくのがよい。板状基体の材質は高分子材料などであってもよい。しかし、より望ましくは、半導体素子(例えばシリコン)と中間基板間、及び中間基板と高分子材料を主体とする主基板間との各膨張係数差を縮小し、ひいては半田リフロー時等において中間基板の両面に形成された各端子に加わる熱的な剪断応力のレベルを低減できるように、基板材質を選定することが、端子における半田剥がれ等を防止する観点において望ましい。室温から半田リフローに使用される300℃付近までのシリコンの線膨張係数は2〜3ppm/℃と低く、逆に、主基板(マザーボードあるいはオーガニックパッケージ基板)を構成するエポキシ樹脂等の高分子材料は17〜20ppm/℃と高い。薄膜積層体を構成する誘電体層が高誘電率セラミックの線膨張係数は、例えば前述のペロブスカイト型酸化物の場合は、12〜13ppm/℃と比較的高いので、これよりも線膨張係数の低いセラミック材料にて板状基体を構成することが、上記の各線膨張係数差の縮小、ひいては端子に働く剪断応力の軽減により効果的である。このようなセラミック材料としては、アルミナ(7〜8ppm/℃)や、ホウケイ酸系ガラスあるいはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40〜60重量部添加したガラスセラミックなどを使用できる。また、その他のセラミック材料としては、窒化アルミニウム、窒化珪素、ムライト、二酸化珪素、酸化マグネシウムなども使用可能である。他方、セラミック以外の材料としては、半導体素子との線膨張係数が類似している観点から、シリコンを使用することも可能である(ただし、薄膜積層体に組み込まれたコンデンサや、これに導通する導体部との絶縁を考慮する必要がある)。   From the viewpoint of improving rigidity, the plate-like substrate is preferably formed thicker than a thin film laminate having low rigidity. The material of the plate-like substrate may be a polymer material. However, more preferably, the difference in expansion coefficient between the semiconductor element (for example, silicon) and the intermediate substrate and between the intermediate substrate and the main substrate mainly composed of the polymer material is reduced, and as a result, the intermediate substrate is not reflowed during solder reflow. It is desirable from the viewpoint of preventing the solder from peeling off at the terminals so that the level of the thermal shear stress applied to each terminal formed on both sides can be reduced. The linear expansion coefficient of silicon from room temperature to around 300 ° C used for solder reflow is as low as 2-3 ppm / ° C. Conversely, polymer materials such as epoxy resins that constitute the main substrate (motherboard or organic package substrate) are It is as high as 17 to 20 ppm / ° C. For example, in the case of the above-described perovskite type oxide, the dielectric layer constituting the thin film laminate is relatively high at 12 to 13 ppm / ° C., and therefore the linear expansion coefficient is lower than this. Constructing a plate-like substrate with a ceramic material is effective for reducing the above-described differences in linear expansion coefficients and, in turn, reducing the shear stress acting on the terminals. As such a ceramic material, alumina (7 to 8 ppm / ° C.), glass ceramic obtained by adding 40 to 60 parts by weight of an inorganic ceramic filler such as alumina to borosilicate glass or lead borosilicate glass can be used. As other ceramic materials, aluminum nitride, silicon nitride, mullite, silicon dioxide, magnesium oxide, and the like can also be used. On the other hand, as a material other than ceramic, silicon can also be used from the viewpoint that the linear expansion coefficient is similar to that of a semiconductor element (however, a capacitor incorporated in a thin film laminate or a conductive material to this). It is necessary to consider insulation from the conductor part).

上記の線膨張係数差によって、半導体素子と中間基板間、及び中間基板と主基板間にて、端子間の面内方向の相対変位が生じようとするが、これが端子間の半田結合によって拘束されるため、端子間の半田接続部には剪断応力が付加される。この場合、中間基板の要部をなす板状基体を、誘電体薄膜をなす高誘電率セラミックよりもヤング率の高いセラミック材料にて構成しておくことが望ましい。これにより板状基体の剛性が高められ、線膨張率差が多少存在していても、板状基体側の弾性変形量は少なく留まるから、結果的に半田接続部に作用する剪断変形的な変位も小さくなり、接続部の剥離や断線などの不具合を生じにくくなる。   Due to the difference in the coefficient of linear expansion, relative displacement in the in-plane direction between the terminals is likely to occur between the semiconductor element and the intermediate substrate and between the intermediate substrate and the main substrate, but this is restrained by solder bonding between the terminals. Therefore, a shear stress is applied to the solder connection portion between the terminals. In this case, it is desirable that the plate-like substrate forming the main part of the intermediate substrate is made of a ceramic material having a higher Young's modulus than the high dielectric constant ceramic forming the dielectric thin film. As a result, the rigidity of the plate-like substrate is increased, and even if there is a slight difference in linear expansion coefficient, the amount of elastic deformation on the plate-like substrate side remains small. Becomes smaller, and it is difficult to cause problems such as peeling and disconnection of the connection portion.

また、板状基体は、焼成セラミック誘電体層と、該焼成セラミック誘電体層と同時焼成された電極導体層とを交互に積層した積層セラミックコンデンサ基体として構成することもできる。これにより、薄膜積層体に作りこまれた薄膜コンデンサと、板状基体側に作りこまれた焼成型の積層セラミックコンデンサとにより、コンデンサ全体の静電容量をより増加させることができる。また、比較的大容量の薄膜コンデンサと、それよりも容量的には小さい積層セラミックコンデンサとの並列的な組合せを一素子で実現でき、インピーダンス低減効果をより広い周波数帯域にて確保できる場合もある。なお、積層セラミックコンデンサに使用する誘電体層を、アルミナやガラスセラミックなど、常誘電性のセラミックで構成することも可能であるが、大容量化という観点では、積層セラミックコンデンサに使用する誘電体層も、高誘電率セラミック(前述のペロブスカイト型酸化物層)にて構成することが望ましい。   The plate-like substrate can also be configured as a multilayer ceramic capacitor substrate in which fired ceramic dielectric layers and electrode conductor layers fired simultaneously with the fired ceramic dielectric layers are alternately laminated. Thereby, the electrostatic capacitance of the whole capacitor can be further increased by the thin film capacitor built in the thin film laminate and the fired multilayer ceramic capacitor built on the plate-like substrate side. Moreover, a parallel combination of a relatively large-capacity thin film capacitor and a monolithic ceramic capacitor having a smaller capacity than that can be realized with one element, and the impedance reduction effect may be secured in a wider frequency band. . The dielectric layer used for the multilayer ceramic capacitor can be composed of a paraelectric ceramic such as alumina or glass ceramic. From the viewpoint of increasing the capacity, the dielectric layer used for the multilayer ceramic capacitor In addition, it is desirable to use a high dielectric constant ceramic (the above-mentioned perovskite oxide layer).

次に、本発明のコンデンサは、薄膜積層体の第一主表面に、複数の第一種端子と複数の第二種端子とが混在した薄膜積層体側端子アレーが形成され、
板状基体の第二主表面に、複数の第一種基体側端子と複数の第二種基体側端子とが混在した基体側端子アレーが形成され、
基体側端子アレーの端子配列間隔が薄膜積層体側端子アレーの端子配列間隔よりも広く設定されたものとして構成することができる。
Next, the capacitor of the present invention is formed on the first main surface of the thin film laminate, a thin film laminate side terminal array in which a plurality of first type terminals and a plurality of second type terminals are mixed,
A substrate-side terminal array in which a plurality of first-type substrate-side terminals and a plurality of second-type substrate-side terminals are mixed is formed on the second main surface of the plate-like substrate,
The terminal arrangement interval of the substrate side terminal array can be configured to be set wider than the terminal arrangement interval of the thin film laminate side terminal array.

コンデンサの接続対象となる集積回路素子の端子間隔は、前述の通り、近年ますます狭くなる傾向にある。他方、主基板側の端子間隔は、製造コスト上の観点からむやみに狭くできない場合があり、この場合、集積回路素子の端子間隔と主基板側の端子間隔とが一致しないケースが生ずる。しかし、上記のように、中間基板をなすコンデンサにおいて、薄膜積層体の第一主表面に形成する薄膜積層体側端子アレーよりも、板状基体の第二主表面に形成される基体側端子アレーの端子配列間隔を広く設定しておけば、中間基板をなすコンデンサの表裏において、上記のような端子間隔の不一致が生じていても、両者を問題なく接続できる。   In recent years, as described above, the terminal spacing of integrated circuit elements to which capacitors are to be connected tends to become narrower. On the other hand, the terminal interval on the main board side may not be narrowed from the viewpoint of manufacturing cost. In this case, the terminal interval of the integrated circuit element and the terminal interval on the main board side may not match. However, as described above, in the capacitor forming the intermediate substrate, the base-side terminal array formed on the second main surface of the plate-like base is more than the thin-film stack-side terminal array formed on the first main surface of the thin-film stack. If the terminal arrangement interval is set wide, even if the above-mentioned terminal interval mismatch occurs on the front and back sides of the capacitor forming the intermediate substrate, both can be connected without any problem.

この場合、薄膜積層体上の薄膜積層体側端子アレーにおいて、第一種端子及び第二種端子を、第一主表面に最も近い第一種電極導体薄膜に対し、直接又は補助結合導体部を介してそれぞれ積層方向に結合(つまり直結)しておくことが、薄膜コンデンサの端子部のインダクタンス低減に有利であることは既に説明した。他方、板状基体の第一主表面においては、第一種基体側端子に導通する第一種基体側結合導体部と、第二種基体側端子に導通する第二種基体側結合導体部との各端部が、薄膜積層体側端子アレーの端子間隔よりも大間隔にて配列し、それぞれ、薄膜積層体の第二主表面に最も近い第一種電極薄膜導体及び第二電極薄膜導体に対し、直接又は補助結合導体部を介して積層方向に結合することができる。この場合、薄膜積層体側端子アレー側の狭い端子間隔を、広い基体側端子アレーの端子配列に合わせるために、コンデンサ内部のどこかで、端子間隔の変換を行なわなければならない。   In this case, in the thin film laminate-side terminal array on the thin film laminate, the first type terminal and the second type terminal are directly or via an auxiliary coupling conductor portion with respect to the first type electrode conductor thin film closest to the first main surface. It has already been described that it is advantageous to reduce the inductance of the terminal portion of the thin film capacitor by coupling (that is, directly coupling) in the stacking direction. On the other hand, on the first main surface of the plate-like substrate, a first-type substrate-side coupling conductor portion conducting to the first-type substrate-side terminal, and a second-type substrate-side coupling conductor portion conducting to the second-type substrate-side terminal; Are arranged at intervals larger than the terminal interval of the thin film laminate-side terminal array, respectively, with respect to the first electrode thin film conductor and the second electrode thin film conductor closest to the second main surface of the thin film laminate, respectively. It can be coupled in the stacking direction directly or via an auxiliary coupling conductor part. In this case, in order to match the narrow terminal interval on the thin film laminate side terminal array side with the terminal arrangement of the wide substrate side terminal array, the terminal interval must be converted somewhere inside the capacitor.

例えば、薄膜積層体の第二主表面において第一種基体側結合導体部及び第二種基体側結合導体部を、薄膜積層体側端子アレーよりも大間隔にて配列した、第一端子結合導体部及び第二端子結合導体部にそれぞれ導通させた構造とすることができる。この構造は、換言すれば、端子間隔の変換が薄膜積層体の内部にて行われ、薄膜積層体との境界をなす板状基体の第一主表面では、大間隔の基体側結合導体部に既に合わせ込まれていることを意味する。これにより、板状基体側では、基体側結合導体部をそれほど微細にする必要がなくなり、焼成による製造が容易である。他方、薄膜積層体側では、薄膜積層体側端子アレーの微細な端子配列はもとより、端子間隔の変換部も、フォトリソグラフィー技術の適用により比較的簡単に製造することができる。   For example, the first terminal-coupled conductor portion in which the first-type substrate-side coupled conductor portion and the second-type substrate-side coupled conductor portion are arranged at a larger interval than the thin-film laminate-side terminal array on the second main surface of the thin film laminate. And it can be set as the structure connected to the 2nd terminal coupling conductor part, respectively. In other words, in this structure, the terminal spacing is converted inside the thin film laminate, and the first main surface of the plate-like substrate that forms a boundary with the thin film laminate is connected to the substrate-side coupling conductor portion having a large interval. It means that it has already been put together. Thereby, on the plate-like substrate side, it is not necessary to make the substrate-side coupling conductor portion so fine, and the production by firing is easy. On the other hand, on the thin film laminate side, not only the fine terminal arrangement of the thin film laminate side terminal array but also the terminal interval conversion part can be relatively easily manufactured by applying the photolithography technique.

この場合、薄膜積層体においては、電極導体薄膜の少なくとも一層を、薄膜積層体側端子アレー側から当該電極導体薄膜に結合導体部(薄膜積層体の結合導体部である)が第一配列間隔にて接続する一方、基体側端子アレー側から当該電極導体薄膜に第一配列間隔よりも広い第二配列間隔にて結合導体部(薄膜積層体の結合導体部又は基体側結合導体部のいずれかである)が接続する間隔変換用薄膜とすることができる。本明細書において第一配列間隔及び第二配列間隔は、いずれも結合導体部の平均的な間隔を意味するものとして定義する。該間隔変換用薄膜の上下に接続する結合導体部の、対応するもの同士の位置を互いに異ならせることで、端子間隔の変換を極めて簡単に行なうことができる。   In this case, in the thin film laminate, at least one electrode conductor thin film is connected to the electrode conductor thin film from the thin film laminate side terminal array side to the electrode conductor thin film at the first arrangement interval. On the other hand, from the substrate side terminal array side to the electrode conductor thin film, the coupling conductor portion (either the coupling conductor portion of the thin film laminate or the substrate side coupling conductor portion) at a second arrangement interval wider than the first arrangement interval. ) Are connected to each other. In the present specification, the first arrangement interval and the second arrangement interval are both defined as meaning the average interval of the coupling conductor portions. By changing the positions of corresponding ones of the connecting conductor portions connected to the upper and lower sides of the gap converting thin film, the terminal gap can be converted very easily.

また、次のような利点もある。すなわち、特許文献1においては、その図2に示されているように、コンデンサ電極とは別に、端子間隔変換のための引き回し配線部(符号32:第三の導電体層)を最上層位置にわざわざ設けており、層数増加により製造工程が長くなるばかりでなく、半導体素子の端子部に直結する位置に長い引き回し配線部が形成されるために、端子部のインダクタンスが大きく増加し、低インピーダンス化及び広帯域化を図ることが困難である。しかし、コンデンサを構成する電極導体薄膜を間隔変換用薄膜として利用すれば、上記のような長い引き回し配線部の形成が不要となるか、あってもその長さを最小限に留めることができ、端子部のインダクタンスを大幅に低減することができる。   There are also the following advantages. That is, in Patent Document 1, as shown in FIG. 2, a lead wiring portion (reference numeral 32: third conductor layer) for terminal interval conversion is placed at the uppermost layer position separately from the capacitor electrode. Not only does this increase the number of layers, but the manufacturing process is lengthened, and a long lead wiring is formed at a position directly connected to the terminal portion of the semiconductor element, so that the inductance of the terminal portion is greatly increased, resulting in low impedance. It is difficult to increase the frequency and bandwidth. However, if the electrode conductor thin film constituting the capacitor is used as a thin film for interval conversion, it is not necessary to form the long wiring portion as described above, or even if the length can be kept to a minimum, The inductance of the terminal portion can be greatly reduced.

この場合、薄膜積層体において、第一種電極導体薄膜の少なくとも一層と、第二種電極導体薄膜の少なくとも一層とを、それぞれ間隔変換用薄膜とすることができる。これにより、第一種端子と第二種端子の直流的な分離状態を維持しつつ、それぞれ独立に端子間隔の変換を容易に行なうことができる。つまり、第一種電極導体薄膜を第一種端子に導通する結合導体部の間隔拡張に使用し、第二種電極導体薄膜を第二種端子に導通する結合導体部の間隔拡張に使用することで、各種別の端子の間隔を、積層方向において互いに異なる位置で拡張変換することができる。   In this case, in the thin film laminate, at least one layer of the first-type electrode conductor thin film and at least one layer of the second-type electrode conductor thin film can each be a thin film for interval conversion. Thereby, it is possible to easily convert the terminal interval independently while maintaining the DC separation state of the first type terminal and the second type terminal. That is, the first type electrode conductor thin film is used for expanding the interval of the coupling conductor portion conducting to the first type terminal, and the second type electrode conductor thin film is used for expanding the interval of the coupling conductor portion conducting to the second type terminal. Thus, the intervals between the various types of terminals can be expanded and converted at different positions in the stacking direction.

異なる種別の端子の間隔を、積層方向の同じ位置で行なおうとすると、第一極性(第一種及び第二種の一方)の電極導体薄膜中に貫通孔を穿ち、その貫通孔内に第二極性(第一種及び第二種の他方)の導体薄膜を、誘電体にて隔てられた形で、端子間隔拡張のため比較的大面積で配置しなければならない。この第二極性の導体薄膜は、誘電体薄膜を隔てて隣接する導体薄膜と同極性になるため、静電容量形成にはほとんど寄与しない。他方、第一極性の電極導体薄膜は、誘電体薄膜を隔てて隣接する導体薄膜と異極性になるため、静電容量形成の主体となるが、第二極性の導体薄膜を配置するために貫通孔を大きく形成しなければならないので、電極実効面積が減少し、静電容量の低下につながる。   If spacing between different types of terminals is to be performed at the same position in the stacking direction, a through hole is formed in the electrode conductor thin film of the first polarity (one of the first type and the second type), and the first hole is inserted into the through hole. Bipolar (the other of the first type and the second type) conductive thin films must be arranged in a relatively large area in order to expand the terminal spacing in a form separated by a dielectric. This second polar conductive thin film has the same polarity as the adjacent conductive thin film across the dielectric thin film, and therefore hardly contributes to the formation of capacitance. On the other hand, the first polarity electrode conductor thin film has a different polarity from the adjacent conductor thin film across the dielectric thin film, so it is the main component of capacitance formation, but it penetrates to place the second polarity conductor thin film Since a large hole must be formed, the electrode effective area is reduced, leading to a decrease in capacitance.

しかし、各種別の端子の間隔を、積層方向において互いに異なる位置で拡張変換すれば、積層方向の同一位置において、第一極性の導体薄膜に上記のような第二極性の導体薄膜を混在させる必要がなくなるので、静電容量の低下を防止することができる。より具体的には、第一種電極導体薄膜及び第二種電極導体薄膜は、間隔変換用薄膜に対して薄膜積層体側端子アレー側に最も近い同種の電極導体薄膜を変換前薄膜として定義し、同じく基体側端子アレー側に最も近い同種の電極導体薄膜を変換後薄膜として定義したとき、変換前薄膜と間隔変換用薄膜との間、及び間隔変換用薄膜と変換後薄膜との間で、各結合導体部の結合位置が面内方向にてそれぞれ互いに一致してなり、かつ、変換前薄膜と間隔変換用薄膜との間、及び間隔変換用薄膜と変換後薄膜との間にそれぞれ位置する2つの他種の電極導体薄膜に、結合導体部を通すための第二貫通孔を互いにずれた位置関係で形成した構成とすることができる。これにより、端子間隔変換を行なうにもかかわらず、第一種電極導体薄膜及び第二種電極導体薄膜に形成する貫通孔は、結合導体部を通す必要最小限の面積で済み、貫通孔形成による静電容量低下の影響を可及的に排除することができる。   However, if the distance between various terminals is extended and converted at different positions in the stacking direction, the first polar conductor thin film must be mixed with the first polar conductor thin film at the same position in the stacking direction. Therefore, the capacitance can be prevented from decreasing. More specifically, the first-type electrode conductor thin film and the second-type electrode conductor thin film are defined as the pre-conversion thin film of the same type closest to the thin film laminate side terminal array side with respect to the distance conversion thin film, Similarly, when the same kind of electrode conductor thin film closest to the base-side terminal array side is defined as a thin film after conversion, the thin film between the thin film for conversion and the thin film for interval conversion, and between the thin film for interval conversion and the thin film for conversion, 2 in which the coupling positions of the coupling conductor portions coincide with each other in the in-plane direction, and are located between the thin film before conversion and the thin film for interval conversion, and between the thin film for interval conversion and the thin film after conversion, respectively. It can be set as the structure which formed the 2nd through-hole for letting a joint conductor part pass in the positional relationship which mutually shifted | deviated to one other kind of electrode conductor thin film. As a result, the through-holes formed in the first-type electrode conductor thin film and the second-type electrode conductor thin film need only have the minimum necessary area to pass through the coupling conductor portion, regardless of the terminal spacing conversion. The influence of the decrease in capacitance can be eliminated as much as possible.

上記のように端子間隔の拡張変換を行なう場合、薄膜積層体側端子アレーと基体側端子アレーとの面積差を利用して、薄膜積層体の第二主表面側に配列する、第一種電極導体薄膜と第二種電極導体薄膜との組の一部のものを、第一主表面側に配列する第一種電極導体薄膜と第二種電極導体薄膜との組よりも大面積とすることができる。これにより、コンデンサの静電容量を一層高めることができる。   When expanding the terminal spacing as described above, the first-type electrode conductors arranged on the second main surface side of the thin film laminate using the area difference between the thin film laminate side terminal array and the substrate side terminal array A part of the combination of the thin film and the second type electrode conductor thin film may have a larger area than the combination of the first type electrode conductor thin film and the second type electrode conductor thin film arranged on the first main surface side. it can. As a result, the capacitance of the capacitor can be further increased.

また、薄膜積層体の第一主表面には、第一種端子及び第二種端子の他に信号用端子を形成することができる。この場合、該信号用端子は、板状基体の第二主表面に形成された信号用基体側端子に対し、薄膜積層体内にて電極導体薄膜に導通しない形で、薄膜積層体内の信号用結合導体部及び板状基体内の信号用基体側結合導体部を介して接続することができる。これによると、信号ラインも薄膜積層体内に同時に作りこむことができ、かつ、コンデンサ部分を回避した形で信号ラインを形成できるので信号品質への影響も少ない。この場合、薄膜積層体内において信号用結合導体部を覆う誘電体層は、電極導体薄膜を覆う誘電体層よりも低誘電率の材料にて形成することが、複数の信号ライン間でのキャパシタンス的な結合を防止でき、ひいては信号ラインのインピーダンス不整合等を生じにくくなるので望ましい。   In addition to the first type terminal and the second type terminal, a signal terminal can be formed on the first main surface of the thin film laminate. In this case, the signal terminal is connected to the signal base in the thin film stack so as not to conduct to the electrode conductor thin film in the thin film stack with respect to the signal base side terminal formed on the second main surface of the plate base. The connection can be made via the conductor portion and the signal substrate-side coupling conductor portion in the plate-like substrate. According to this, the signal line can be simultaneously formed in the thin film laminate, and the signal line can be formed in a form avoiding the capacitor portion, so that the influence on the signal quality is small. In this case, the dielectric layer covering the signal coupling conductor in the thin film laminate may be formed of a material having a lower dielectric constant than the dielectric layer covering the electrode conductor thin film. This is desirable because it is possible to prevent undesired coupling and, in turn, it is difficult to cause impedance mismatching of the signal lines.

次に、本発明のコンデンサは、薄膜積層体の第二主表面が板状基体の第一主表面に結合され、該板状基体の第二主表面に、直流的に互いに分離された第一種基体側端子と第二種基体側端子とが形成され、それら第一種基体側端子と第二種基体側端子とが、前記薄膜積層体の第二主表面に最も近い第一種電極導体薄膜及び第二種電極導体薄膜にそれぞれ結合された構造とすることができる。薄膜積層体の第一主表面に形成された第一種端子及び第二種端子には、シリコン集積回路チップ等で構成された半導体素子側の電源端子及びグランド端子をそれぞれ半田接続でき、また、板状基体の第二主表面側の第一種基体側端子及び第二種基体側端子には、高分子材料を主体とする主基板側の電源端子及びグランド端子をそれぞれ接続できる。ここでは、板状基体を配線基板(パッケージ基板)として、主基板はマザーボードとすることが可能である。   Next, in the capacitor according to the present invention, the second main surface of the thin film laminate is bonded to the first main surface of the plate-like substrate, and the first main surfaces of the plate-like substrate are separated from each other in a direct current manner. A seed substrate side terminal and a second class substrate side terminal are formed, and the first type substrate side terminal and the second type substrate side terminal are closest to the second main surface of the thin film laminate. It can be set as the structure respectively couple | bonded with the thin film and the 2nd type electrode conductor thin film. The first type terminal and the second type terminal formed on the first main surface of the thin film laminate can be solder-connected to the power supply terminal and the ground terminal on the semiconductor element side formed of a silicon integrated circuit chip, respectively, A power supply terminal and a ground terminal on the main substrate side mainly composed of a polymer material can be connected to the first-type substrate-side terminal and the second-type substrate-side terminal on the second main surface side of the plate-like substrate. Here, the plate substrate can be a wiring board (package board), and the main board can be a mother board.

ここで配線基板とは、絶縁層と導体層(配線層)とを備えており、特には多層配線基板であることがよい。これらの導体層の層間接続を図るために、基板内部に結合導体部(基体側結合導体部)が形成されている。前記導体層は基板表面に形成されていてもよく、基板内部に形成されていてもよい。導体層が、引き回し配線として機能し、端子間隔の変換を行うことが可能である。例えば、前記薄膜積層体の第二主表面に最も近い第一種電極導体薄膜及び第二種電極導体薄膜にそれぞれ結合された上の基体側結合導体部と、第一種基体側端子及び第二種基体側端子にそれぞれ結合された下の基体側結合導体部とが、基体内部の導体層(引き回し配線部)を介してピッチ変換され、結合された構造とすることができる。この場合、薄膜積層体の第二主表面における第一端子結合導体部及び第二端子結合導体部の配列間隔が、板状基体(配線基板)の第二主表面における第一種基体側結合導体部及び第二種基体側結合導体部の配列間隔よりも小とすることが可能である。   Here, the wiring board includes an insulating layer and a conductor layer (wiring layer), and is particularly preferably a multilayer wiring board. In order to achieve interlayer connection between these conductor layers, a coupling conductor portion (base-side coupling conductor portion) is formed inside the substrate. The conductor layer may be formed on the substrate surface or may be formed inside the substrate. The conductor layer functions as a routing wiring and can convert the terminal interval. For example, the first-type electrode conductor thin film closest to the second main surface of the thin-film laminate and the upper substrate-side combined conductor portion respectively bonded to the second-type electrode conductor thin film, the first-type substrate-side terminal, and the second type A lower base-side coupled conductor portion respectively coupled to the seed substrate-side terminal is pitch-converted via a conductor layer (leading wiring portion) inside the base body, thereby obtaining a coupled structure. In this case, the arrangement interval of the first terminal coupling conductor portion and the second terminal coupling conductor portion on the second main surface of the thin film laminate is such that the first-type substrate-side coupling conductor on the second main surface of the plate-like substrate (wiring board). It is possible to make it smaller than the arrangement interval of the first and second type substrate-side coupling conductor portions.

他の局面において、課題を解決するために本発明のコンデンサは、
コンデンサを形成する複数の誘電体薄膜と複数の電極導体薄膜とが交互に積層された薄膜積層体を有し、該薄膜積層体の第一主表面に、直流的に互いに分離された第一種端子と第二種端子とが形成されるとともに、
電極導体薄膜は、第一種端子に導通する第一種電極導体薄膜と、第二種端子に導通する第二種電極導体薄膜とが、誘電体薄膜により隔てられた形で積層方向に交互に配列するとともに、該積層方向に隣接する一方の同種電極導体薄膜と他方の同種電極導体薄膜との間に第一の誘電体薄膜と、他種電極導体薄膜と、第二の誘電体薄膜とがこの順序で配列してなり、
他種電極導体薄膜に形成された貫通孔を積層方向に投影して定められる内側領域には、一方の同種電極導体薄膜と他方の同種電極導体薄膜が結合されてなる結合導体部が位置し、
その結合導体部と他種電極導体薄膜との間には、第一の誘電体薄膜及び第二の誘電体薄膜と一体化してなる誘電体孔内充填部が介在し、
その誘電体孔内充填部が、貫通孔の内側領域内において結合導体部を取り囲むことにより、該結合導体部の外周面と他種電極導体薄膜の貫通孔の内周面とが直流的に分離されてなることを特徴とする。
In another aspect, in order to solve the problem, the capacitor of the present invention includes:
A first type having a thin film laminate in which a plurality of dielectric thin films and a plurality of electrode conductor thin films forming a capacitor are alternately laminated, and separated from each other in a direct current manner on the first main surface of the thin film laminate A terminal and a second type terminal are formed,
The electrode conductor thin film is alternately arranged in the stacking direction in such a manner that the first kind electrode conductor thin film conducting to the first kind terminal and the second kind electrode conductor thin film conducting to the second kind terminal are separated by the dielectric thin film. A first dielectric thin film, another kind of electrode conductor thin film, and a second dielectric thin film between one of the same kind of electrode conductor thin film and the other of the same kind of electrode conductor thin film adjacent to each other in the stacking direction. Arranged in this order,
In the inner region determined by projecting through-holes formed in the other-type electrode conductor thin film in the stacking direction, a coupling conductor portion formed by coupling one same-type electrode conductor thin film and the other same-type electrode conductor thin film is located,
Between the coupling conductor portion and the other-type electrode conductor thin film, a dielectric hole filling portion integrated with the first dielectric thin film and the second dielectric thin film is interposed,
The dielectric hole filling portion surrounds the coupling conductor portion in the inner region of the through hole, so that the outer circumferential surface of the coupling conductor portion and the inner circumferential surface of the through hole of the other electrode thin film are separated in a direct current manner. It is characterized by being made.

この構造によると、コンデンサの異極性の電極導体薄膜を第一種電極導体薄膜と第二種電極導体薄膜として、複数の誘電体薄膜を介して交互に積層し、さらに、第一種電極導体薄膜と第二種電極導体薄膜とを結合導体部により結合する。極性の異なる異種の電極導体薄膜と交差する位置に貫通孔を設け、前記の結合導体薄膜部を該貫通孔の内側に位置させるとともに、誘電体孔内充填部により、結合導体部の外周面と該貫通孔の内周面とを直流的に分離する。これにより、2種の電極導体薄膜は、同種別のもの(つまり、コンデンサ使用時に互いに同極性となるもの)同士が複数層、結合導体部により直流的に連結され、他方、異種別(つまり、異極性)の複数層同士は、誘電体薄膜と誘電体孔内充填部とを介して直流的に完全に分離される。これにより、各極性の電極導体薄膜は多層化により合計面積が拡大し、かつ、誘電体層の薄膜化効果とも相俟って、素子寸法が小さくとも、実現可能な静電容量を大幅に増加させることができる。   According to this structure, the electrode conductor thin films of different polarities of the capacitor are alternately laminated as a first kind electrode conductor thin film and a second kind electrode conductor thin film via a plurality of dielectric thin films, and further, the first kind electrode conductor thin film And the second type electrode conductor thin film are coupled by a coupling conductor portion. A through hole is provided at a position intersecting with different types of electrode conductor thin films having different polarities, and the coupling conductor thin film portion is positioned inside the through hole, and the outer circumferential surface of the coupling conductor portion is formed by a dielectric hole filling portion. The inner peripheral surface of the through hole is separated in a direct current manner. As a result, two types of electrode conductor thin films of the same type (that is, those having the same polarity when a capacitor is used) are connected to each other in a DC manner by a plurality of layers and a coupling conductor portion, A plurality of layers having different polarities are completely separated in a direct current manner through the dielectric thin film and the dielectric hole filling portion. As a result, the total area of the electrode conductor thin film of each polarity is expanded by multilayering, and in combination with the thinning effect of the dielectric layer, the achievable capacitance is greatly increased even if the element size is small. Can be made.

また、本発明のコンデンサは、以下に示す方法を採用することにより高効率かつ高精度で製造することができる。すなわち、本発明のコンデンサの製造方法は、直流的に互いに分離された第一種基体側結合導体部と第二種基体側結合導体部とが第一主表面に露出した板状基体を作製する基体作製工程と、コンデンサを形成する複数の誘電体薄膜と複数の電極導体薄膜とが交互に積層された薄膜積層体を板状基体上に形成する薄膜積層体形成工程とを備え、その薄膜積層体形成工程は、
a.第一種基体側結合導体部と導通し、第二種基体側結合導体部とは直流的に分離した第一種電極導体薄膜を、板状基体の第一主表面上に形成する工程と、
b.第一種電極導体薄膜を被覆する第一の誘電体薄膜を形成する工程と、
c.第一の誘電体薄膜に切れ目を形成し、その切れ目にて第二種基体側結合導体部に導通するとともに、第一種基体側結合導体部とは直流的に分離した第二種電極導体薄膜を形成することと、第一の誘電体薄膜を露出させるための貫通孔を第二種電極導体薄膜に設けることとを行なう工程と、
d.第二種電極導体薄膜に設けた貫通孔を積層方向に投影して定められる内側領域にて第一の誘電体薄膜と一体化するとともに、第二種電極導体薄膜及び該第二種電極導体薄膜に設けた貫通孔の内周面を被覆する第二の誘電体薄膜を形成する工程と、
e.第二の誘電体薄膜に切れ目を形成し、その切れ目にて第一種電極導体薄膜に導通するとともに第二種電極導体薄膜とは直流的に分離した電極導体薄膜を形成する工程とを含むことを特徴とする。
Further, the capacitor of the present invention can be manufactured with high efficiency and high accuracy by employing the following method. That is, the method for manufacturing a capacitor according to the present invention produces a plate-like substrate in which the first-type substrate-side coupling conductor portion and the second-type substrate-side coupling conductor portion that are separated from each other in terms of DC are exposed on the first main surface. A thin film laminate forming step of forming on a plate substrate a thin film laminate in which a plurality of dielectric thin films forming a capacitor and a plurality of electrode conductor thin films are alternately laminated. The body formation process
a. Forming a first-type electrode conductor thin film on the first main surface of the plate-like substrate, which is electrically connected to the first-type substrate-side coupled conductor portion and separated from the second-type substrate-side coupled conductor portion in a direct current manner;
b. Forming a first dielectric thin film covering the first-type electrode conductor thin film;
c. A second type electrode conductor thin film that forms a cut in the first dielectric thin film, is electrically connected to the second type substrate side coupling conductor portion at the cut, and is DC-isolated from the first type substrate side coupling conductor portion. Forming a through-hole for exposing the first dielectric thin film in the second type electrode conductor thin film, and
d. The second type electrode conductor thin film and the second type electrode conductor thin film are integrated with the first dielectric thin film in the inner region determined by projecting through holes provided in the second type electrode conductor thin film in the stacking direction. Forming a second dielectric thin film covering the inner peripheral surface of the through-hole provided in
e. Forming a slit in the second dielectric thin film, and forming a conductive film that is electrically connected to the first type electrode conductor thin film at the cut and separated from the second type electrode conductor thin film in a direct current manner. It is characterized by.

上記本発明の方法は、フォトリソグラフィー技術等を用いて、コンデンサの電極導体薄膜と誘電体薄膜とを交互に一層ずつ作り上げていくものである。多層薄膜コンデンサを作製するに際しては、電源同士、グランド同士といった同極性の電極導体薄膜同士、はたまた誘電体薄膜同士を積層方向で高効率及び高精度で接続していく技術が1つの鍵である。上記本発明の方法では、工程d.に記載のごとく、第二種電極導体薄膜に設けた貫通孔の内側領域にて第一の誘電体薄膜と一体化し、第二電極導体の貫通孔の内周面を被覆する第二の誘電体薄膜を形成している。そして、工程e.に記載のごとく、誘電体薄膜に開口等に切れ目を設け、その切れ目にて上下の同種電極導体薄膜(第一種電極導体薄膜及び第三電極導体薄膜)を接続するようにしている。こうした手順によれば、例えば図18の最下段及び図19の上2段に示すごとく、異種の電極導体薄膜同士を直流的に分離するプロセスと、上下に隣接する誘電体薄膜同士を接続するプロセスとを同時進行していることとなり、高効率及び高精度でコンデンサの1単位を作りこんでいける。したがって、上記工程を繰り返し行なうことにより、多層薄膜コンデンサを高効率にて製造できる。   In the method of the present invention, the electrode conductor thin film and the dielectric thin film of the capacitor are alternately formed one by one using a photolithography technique or the like. When manufacturing multilayer thin film capacitors, one key is technology that connects electrode conductor thin films of the same polarity, such as power supplies and grounds, or dielectric thin films with high efficiency and high accuracy in the stacking direction. is there. In the method of the present invention, the step d. As described in 2. above, the second dielectric that is integrated with the first dielectric thin film in the inner region of the through hole provided in the second type electrode conductor thin film and covers the inner peripheral surface of the through hole of the second electrode conductor A thin film is formed. And step e. As described above, a slit is formed in the opening or the like in the dielectric thin film, and upper and lower similar electrode conductor thin films (first-type electrode conductor thin film and third electrode conductor thin film) are connected at the cut. According to such a procedure, for example, as shown in the lowermost stage of FIG. 18 and the upper two stages of FIG. 19, a process of separating different kinds of electrode conductor thin films from each other in a direct current and a process of connecting adjacent dielectric thin films As a result, the unit of the capacitor can be built with high efficiency and high accuracy. Therefore, a multilayer thin film capacitor can be manufactured with high efficiency by repeating the above steps.

具体的に、上記した工程a.は、第二種基体側結合導体部を露出させるための第一貫通孔を有する第一種電極導体薄膜を形成する工程とされる。また、工程b.は、第一種電極導体薄膜の表面及び該第一種電極導体薄膜に設けた第一貫通孔の内周面が被覆されるように第一の誘電体薄膜を形成する工程とされる。   Specifically, the steps a. Is a step of forming a first-type electrode conductor thin film having a first through hole for exposing the second-type substrate-side coupling conductor portion. Step b. Is a step of forming the first dielectric thin film so that the surface of the first type electrode conductor thin film and the inner peripheral surface of the first through hole provided in the first type electrode conductor thin film are covered.

また、上記した工程d.は、第二種電極導体薄膜の表面及び該第二種電極導体薄膜に設けた貫通孔の内周面が被覆されるように第二の誘電体薄膜を形成する工程と、第二種電極導体薄膜に設けた貫通孔の内側領域にて一体化した第一の誘電体薄膜及び第二の誘電体薄膜からなる誘電体孔内充填部の一部を、該誘電体孔内充填部によって第二種電極導体薄膜の貫通孔の内周面が被覆された状態を維持しつつくり貫いて、第一種電極導体薄膜に通ずる誘電体薄膜側貫通孔を設ける工程とを含むものとすることができる。この場合、工程e.は、誘電体薄膜側貫通孔内に露出した第一種電極導体薄膜に直接接するように、第二種電極導体薄膜とは直流的に分離した電極導体薄膜を形成する工程とされる。こうした方法によれば、第一種電極導体薄膜と、第二種電極導体薄膜との直流的な分離を確実に取れるとともに、同極性の電極導体薄膜同士の接続工程を極めて簡単に行なうことができる。   In addition, step d. Forming a second dielectric thin film so that the surface of the second type electrode conductor thin film and the inner peripheral surface of the through hole provided in the second type electrode conductor thin film are covered; and the second type electrode conductor A part of the dielectric hole filling portion made of the first dielectric thin film and the second dielectric thin film integrated in the inner region of the through hole provided in the thin film is made to be second by the dielectric hole filling portion. And maintaining a state where the inner peripheral surface of the through hole of the seed electrode conductor thin film is covered, and providing a dielectric thin film side through hole leading to the first type electrode conductor thin film. In this case, step e. Is a step of forming an electrode conductor thin film separated from the second type electrode conductor thin film in direct current so as to be in direct contact with the first kind electrode conductor thin film exposed in the dielectric thin film side through-hole. According to such a method, direct current separation between the first-type electrode conductor thin film and the second-type electrode conductor thin film can be ensured, and the connection process between the electrode conductor thin films having the same polarity can be performed very easily. .

また以下のような工程とすることも可能である。
上記した工程a.は、第二種基体側結合導体部と導通しかつ第一種電極導体薄膜とは絶縁された第二種結合導体部を残して、ドーナツ状にエッチングした第一貫通孔を有する第一種電極導体薄膜を形成する工程とされる。また、工程b.は、第一種電極導体薄膜の表面及び該第一種電極導体薄膜に設けた第一貫通孔の内周面が被覆されるように第一の誘電体薄膜を形成する工程とされる。
Also, the following steps can be performed.
Step a. Is a first type electrode having a first through hole etched in a donut shape, leaving a second type coupled conductor portion that is electrically connected to the second type substrate side coupled conductor portion and insulated from the first type electrode conductor thin film. The step is to form a conductive thin film. Step b. Is a step of forming the first dielectric thin film so that the surface of the first type electrode conductor thin film and the inner peripheral surface of the first through hole provided in the first type electrode conductor thin film are covered.

そして、上記した工程c.における貫通孔は、第一種基体側結合導体部と導通しかつ第二種電極導体薄膜とは絶縁された第一種結合導体部を残して、ドーナツ状にエッチングした貫通孔である。また、上記した工程d.は、第二種電極導体薄膜の表面及び該第二種電極導体薄膜に設けた貫通孔の内周面が被覆されるように第二の誘電体薄膜を形成する工程と、第二種電極導体薄膜に設けた貫通孔の内側領域にて一体化した第一の誘電体薄膜及び第二の誘電体薄膜からなる誘電体孔内充填部の一部を、該誘電体孔内充填部によって第二種電極導体薄膜の貫通孔の内周面が被覆された状態を維持しつつくり貫いて、第一種結合導体部に通ずる誘電体薄膜側貫通孔を設ける工程とを含むものとすることができる。この場合、工程e.は、誘電体薄膜側貫通孔内に露出した第一種結合導体部に直接接するように、第二種電極導体薄膜とは直流的に分離した電極導体薄膜を形成する工程とされる。こうした方法によっても、第一種電極導体薄膜と、第二種電極導体薄膜との直流的な分離を確実に取れるとともに、同極性の電極導体薄膜同士の接続工程を極めて簡単に行なうことができる。   And the above-mentioned process c. The through-hole is a through-hole etched into a donut shape, leaving a first-type coupling conductor portion that is electrically connected to the first-type substrate-side coupling conductor portion and insulated from the second-type electrode conductor thin film. In addition, step d. Forming a second dielectric thin film so that the surface of the second type electrode conductor thin film and the inner peripheral surface of the through hole provided in the second type electrode conductor thin film are covered; and the second type electrode conductor A part of the dielectric hole filling portion made of the first dielectric thin film and the second dielectric thin film integrated in the inner region of the through hole provided in the thin film is made to be second by the dielectric hole filling portion. And maintaining a state where the inner peripheral surface of the through hole of the seed electrode conductor thin film is covered, and providing a dielectric thin film side through hole that leads to the first type coupling conductor portion. In this case, step e. Is a step of forming an electrode conductor thin film DC-separated from the second type electrode conductor thin film so as to be in direct contact with the first type coupling conductor portion exposed in the dielectric thin film side through hole. Even with such a method, it is possible to reliably separate the first-type electrode conductor thin film and the second-type electrode conductor thin film from each other in a direct current manner, and it is possible to extremely easily perform the connection process between the electrode conductor thin films having the same polarity.

以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の一実施形態をなすコンデンサ1を、半導体集積回路素子2と主基板3との間に配置される中間基板として構成した例である(以下、必要に応じ、中間基板1ともいう)。また、本実施形態において板状部材の第一主表面は、図中にて上側に表れている面とし、第二主表面は下側に表れている面とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which a capacitor 1 according to an embodiment of the present invention is configured as an intermediate substrate disposed between a semiconductor integrated circuit element 2 and a main substrate 3 (hereinafter referred to as an intermediate substrate 1 if necessary). Also called). In the present embodiment, the first main surface of the plate-like member is a surface appearing on the upper side in the drawing, and the second main surface is a surface appearing on the lower side.

半導体集積回路素子2は第二主表面に各々複数の信号端子、電源端子及びグランド端子からなる素子側端子アレー4を有し、中間基板1の第一主表面に形成された薄膜積層体側端子アレー5に対し、半田接続部9を介してフリップチップ接続されている。他方、主基板3はマザーボード、あるいは2段目の中間基板をなすオーガニック積層パッケージ基板であり、いずれもセラミック粒子あるいは繊維をフィラーとして強化された高分子材料を主体に構成されており、半田ボールあるいは金属ピンからなる主基板側端子アレー8において、中間基板1の第二主表面に形成された基体側端子アレー7に対し、半田接続部9を介して接続されている。中間基板をなすコンデンサ1は、図2に示すように、半導体集積回路素子2の電源ラインに並列接続されるデカップリングコンデンサとして機能する。なお、図2の等価回路では、電源ライン毎に独立したデカップリングコンデンサを設けているように描いているが、これらのデカップリングコンデンサは全て、同一電圧の電源ラインとグランドとの間に並列接続されるので、以下の実施形態においては、該デカップリングコンデンサを、単一のコンデンサとして電源ライン間で共用化した構成により代表させて説明する(ただし、これに限られるものではない)。   The semiconductor integrated circuit element 2 has an element-side terminal array 4 composed of a plurality of signal terminals, a power supply terminal, and a ground terminal on the second main surface, and a thin film laminate-side terminal array formed on the first main surface of the intermediate substrate 1. 5 is flip-chip connected via a solder connection portion 9. On the other hand, the main substrate 3 is a mother board or an organic laminated package substrate forming a second-stage intermediate substrate, each of which is mainly composed of a polymer material reinforced with ceramic particles or fibers as fillers. In the main board side terminal array 8 made of metal pins, the base side terminal array 7 formed on the second main surface of the intermediate board 1 is connected via a solder connection portion 9. The capacitor 1 constituting the intermediate substrate functions as a decoupling capacitor connected in parallel to the power supply line of the semiconductor integrated circuit element 2 as shown in FIG. In the equivalent circuit of FIG. 2, it is drawn that an independent decoupling capacitor is provided for each power supply line, but these decoupling capacitors are all connected in parallel between the power supply line of the same voltage and the ground. Therefore, in the following embodiments, the decoupling capacitor will be described by being representatively represented by a configuration in which the power supply line is shared as a single capacitor (however, the present invention is not limited to this).

図3に示すように、コンデンサ1は、板状基体50と、その板状基体50の第一主表面に、薄膜コンデンサを構成する薄膜積層体10が接合された構造を有する。薄膜積層体10の第一主表面には、一方が電源端子、他方がグランド端子として使用される第一種端子5aと第二種端子5bとが互い違いの格子状(あるいは千鳥状でもよい)に配列され、薄膜積層体側端子アレー5を形成している。また、板状基体50の第二主表面には、一方が電源端子、他方がグランド端子として使用される第一種基体側端子7aと第二種基体側端子7bとが、薄膜積層体側端子アレー5の端子配列に対応した、互い違いの格子状(あるいは千鳥状でもよい)に配列されて、基体側端子アレー7を形成している。なお、いずれのアレー5,7も、電源端子とグランド端子との格子状配列を取り囲む形態で複数の信号用端子5s及び信号用基体側端子7sを有している。   As shown in FIG. 3, the capacitor 1 has a structure in which a thin film laminate 10 constituting a thin film capacitor is bonded to a plate-like substrate 50 and a first main surface of the plate-like substrate 50. On the first main surface of the thin film laminate 10, a first type terminal 5a and a second type terminal 5b, one of which is used as a power supply terminal and the other as a ground terminal, are arranged in a staggered grid (or may be staggered). The thin film laminate side terminal array 5 is arranged. Further, on the second main surface of the plate-like substrate 50, a first-type substrate-side terminal 7a and a second-type substrate-side terminal 7b, one of which is used as a power supply terminal and the other as a ground terminal, are thin-film laminate-side terminal arrays. The base-side terminal array 7 is formed by being arranged in an alternating grid pattern (or may be a staggered pattern) corresponding to the terminal array 5. Each of the arrays 5 and 7 has a plurality of signal terminals 5s and a signal base-side terminal 7s in a form surrounding a grid-like arrangement of power supply terminals and ground terminals.

図4は、コンデンサ(中間基板)1の詳細構造を示すものである。
薄膜積層体10は、コンデンサを形成する複数の誘電体薄膜13と複数の電極導体薄膜14,17とが交互に積層されたものである。該薄膜積層体10の第一主表面には、第一種端子5aと第二種端子5bとが直流的に互いに分離された形で形成されている。電極導体薄膜14,17は、第一種端子5aに導通する第一種電極導体薄膜14と、第二種端子5bに導通する第二種電極導体薄膜17とが、誘電体薄膜13により隔てられた形で積層方向に交互に配列している。
FIG. 4 shows the detailed structure of the capacitor (intermediate substrate) 1.
The thin film laminate 10 is formed by alternately laminating a plurality of dielectric thin films 13 and a plurality of electrode conductor thin films 14 and 17 forming a capacitor. A first type terminal 5a and a second type terminal 5b are formed on the first main surface of the thin film laminate 10 so as to be separated from each other in terms of direct current. The electrode conductor thin films 14 and 17 are separated by a dielectric thin film 13 from a first kind electrode conductor thin film 14 conducting to the first kind terminal 5a and a second kind electrode conductor thin film 17 conducting to the second kind terminal 5b. Are arranged alternately in the stacking direction.

一方、板状基体50側の第一種基体側端子7aと第二種基体側端子7bとは、薄膜積層体10の第二主表面に最も近い第一種電極導体薄膜14及び第二種電極導体薄膜17にそれぞれ、薄膜積層体10側の結合導体部15,19を介して結合されている。この構造により、図1に示すように、薄膜積層体10の第一主表面に形成された第一種端子5a及び第二種端子5bには、シリコン集積回路チップ等で構成された半導体集積回路素子2(図1)側の電源端子及びグランド端子(アレー4)がそれぞれ半田接続できる。また、板状基体50の第二主表面側の第一種基体側端子7a及び第二種基体側端子7bには、主基板3側の電源端子及びグランド端子(アレー8)をそれぞれ接続できる。かくして、上記コンデンサ1は、半導体集積回路素子2と主基板3との中間に位置して両者の接続の仲立ちをする中間基板として機能させることができる。   On the other hand, the first-type substrate-side terminal 7 a and the second-type substrate-side terminal 7 b on the plate-like substrate 50 side are the first-type electrode conductor thin film 14 and the second-type electrode that are closest to the second main surface of the thin film laminate 10. The conductor thin film 17 is coupled to the thin film laminate 10 via the coupling conductor portions 15 and 19 on the thin film laminate 10 side. With this structure, as shown in FIG. 1, the first type terminal 5a and the second type terminal 5b formed on the first main surface of the thin film stack 10 have a semiconductor integrated circuit formed of a silicon integrated circuit chip or the like. The power supply terminal and the ground terminal (array 4) on the element 2 (FIG. 1) side can be connected by soldering. Further, a power terminal and a ground terminal (array 8) on the main substrate 3 side can be connected to the first-type substrate-side terminal 7a and the second-type substrate-side terminal 7b on the second main surface side of the plate-like substrate 50, respectively. Thus, the capacitor 1 can function as an intermediate substrate that is located between the semiconductor integrated circuit element 2 and the main substrate 3 and mediates the connection between the two.

図4に戻り、一部拡大例示するように、積層方向に隣接する一方の同種電極導体薄膜(ここでは、第二種電極導体薄膜)17(A)と、他方の同種電極導体薄膜17(B)との間に、第一の誘電体薄膜13(A)と、他種電極導体薄膜(ここでは、第一種電極導体薄膜)14と、第二の誘電体薄膜13(B)とがこの順序で配列してなる。第一の誘電体薄膜13(A)に形成された第一貫通孔13h(A)と、他種電極導体薄膜14に形成された第二貫通孔16とは面内投影にて重なりを有し、該第二貫通孔16と第二の誘電体薄膜13(B)に形成された第三貫通孔13h(B)とが面内投影にて重なりを有している(例示した部分では、これらの貫通孔は円形断面により同軸的に配置されている)。そして、第一貫通孔13h(A)と第三貫通孔13h(B)とをそれぞれ充填する形で、一方の同種電極導体薄膜17(A)と、他方の同種電極導体薄膜17(B)とを結合する結合導体部19が形成されている。そして、第二貫通孔16内において、第一の誘電体薄膜13(A)及び第二の誘電体薄膜13(B)とそれぞれ一体化(結合)された誘電体孔内充填部13vにより、結合導体部19の外周面と該第二貫通孔16の内周面とが直流的に分離されてなる。上記構造において、第一種電極導体薄膜14と第二種電極導体薄膜17とが反転した構造部も同様に形成されている。本実施形態では、一方の同種電極導体薄膜17(A)から第一結合導体薄膜部19aが突出し、他方の同種電極導体薄膜17(B)から第二結合導体薄膜部19bが突出し、第二貫通孔16内にてそれら第一結合導体薄膜部19aと第二結合導体薄膜部19bとが互いに結合して一体の結合導体部19を形成している(ただし、一方の同種電極導体薄膜から突出する結合導体部の先端を、他方の同種電極導体薄膜に直接結合してもよい)。   Returning to FIG. 4, as shown in a partially enlarged example, one of the same kind of electrode conductor thin films (here, the second kind of electrode conductor thin film) 17 (A) and the other of the same kind of electrode conductor thin film 17 (B ) Between the first dielectric thin film 13 (A), the other type electrode conductive thin film (here, the first type electrode conductive thin film) 14, and the second dielectric thin film 13 (B). Arranged in order. The first through-hole 13h (A) formed in the first dielectric thin film 13 (A) and the second through-hole 16 formed in the other-type electrode conductor thin film 14 are overlapped by in-plane projection. The second through-hole 16 and the third through-hole 13h (B) formed in the second dielectric thin film 13 (B) are overlapped by in-plane projection (in the illustrated portion, these Through-holes are arranged coaxially with a circular cross-section). The first through-hole 13h (A) and the third through-hole 13h (B) are filled, respectively, so that one homogeneous electrode conductor thin film 17 (A) and the other identical electrode conductor thin film 17 (B) A coupling conductor portion 19 is formed to couple the two. And in the 2nd through-hole 16, it couple | bonds by the dielectric material hole filling part 13v integrated (coupled) with the 1st dielectric thin film 13 (A) and the 2nd dielectric thin film 13 (B), respectively. The outer peripheral surface of the conductor portion 19 and the inner peripheral surface of the second through hole 16 are separated in a direct current manner. In the above structure, a structure part in which the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 are inverted is also formed in the same manner. In this embodiment, the first combined conductor thin film portion 19a protrudes from one homogeneous electrode conductor thin film 17 (A), the second coupled conductor thin film portion 19b protrudes from the other identical electrode conductor thin film 17 (B), and the second penetration In the hole 16, the first coupled conductor thin film portion 19a and the second coupled conductor thin film portion 19b are coupled to each other to form an integral coupled conductor portion 19 (however, protruding from one of the same kind of electrode conductor thin films). You may couple | bond the front-end | tip of a coupling | bonding conductor part directly with the other homogeneous electrode conductor thin film).

電極導体薄膜14,17の多層化により合計面積が拡大し、かつ、誘電体層の薄膜化効果とも相俟って、素子寸法が小さくとも、実現可能な静電容量を大幅に増加させることができる。図4では、貫通孔16,18の図示に伴い、電極導体薄膜14,17は面内方向に分断されているように見えるが、実際は図5のごとく、貫通孔16,18以外の部分では面内方向に連続薄膜を形成している。また、誘電体薄膜13についても同様である。   The total area of the electrode conductor thin films 14 and 17 can be increased by combining the thin electrode conductor films 14 and 17, and the effect of reducing the thickness of the dielectric layer can greatly increase the achievable capacitance even if the element size is small. it can. In FIG. 4, the electrode conductor thin films 14 and 17 appear to be divided in the in-plane direction along with the illustration of the through holes 16 and 18, but in actuality, as shown in FIG. A continuous thin film is formed in the inward direction. The same applies to the dielectric thin film 13.

誘電体薄膜13の厚さは、例えば10nm以上1000nm以下、より望ましくは30nm以上500nm以下である。他方、電極導体薄膜14,17の厚さは、例えば10nm以上500nm以下、より望ましくは50nm以上500nm以下である。電極導体薄膜14,17及び結合導体部15(19)は、例えばCu、Ag、AuあるいはPtなどの金属で構成でき、スパッタリング、真空蒸着などの気相成膜法にて形成される。他方、誘電体薄膜13及び誘電体孔内充填部13vは、酸化物あるいは窒化物などの無機誘電体で構成され、高周波スパッタリング、反応性スパッタリング、化学気相堆積法(Chemical Vapor Deposition:CVD)などの気相成膜法により形成される。本実施形態では、誘電体薄膜13及び誘電体孔内充填部13vを、ペロブスカイト型結晶構造を有した複合酸化物、例えばチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上にて構成された酸化物薄膜を、ゾルゲル法により形成している。   The thickness of the dielectric thin film 13 is, for example, not less than 10 nm and not more than 1000 nm, and more preferably not less than 30 nm and not more than 500 nm. On the other hand, the thickness of the electrode conductor thin films 14 and 17 is, for example, not less than 10 nm and not more than 500 nm, and more preferably not less than 50 nm and not more than 500 nm. The electrode conductor thin films 14 and 17 and the coupling conductor portion 15 (19) can be made of, for example, a metal such as Cu, Ag, Au, or Pt, and are formed by a vapor deposition method such as sputtering or vacuum evaporation. On the other hand, the dielectric thin film 13 and the dielectric hole filling portion 13v are made of an inorganic dielectric such as oxide or nitride, and include high frequency sputtering, reactive sputtering, chemical vapor deposition (CVD), and the like. It is formed by the vapor phase film forming method. In this embodiment, the dielectric thin film 13 and the dielectric hole filling portion 13v are replaced with one or more of complex oxides having a perovskite crystal structure, for example, barium titanate, strontium titanate, and lead titanate. The oxide thin film configured as described above is formed by a sol-gel method.

なお、結合導体部15(19)にて結合される同種の電極導体薄膜14(17)は、直流抵抗増大を防止するために、電極導体薄膜14(17)毎に、同じ主表面側にて該電極導体薄膜14(17)に導通する結合導体部15(19)を複数個形成してあり、具体的には、薄膜積層体側端子アレー5の各端子と同数にて、結合導体部15(19)が分散形成されてなる。複数個の結合導体部15(19)は、異種であって最も近接するもの同士の縁間間隔が、20μm以上300μm以下に設定されている。   In addition, the same kind of electrode conductor thin film 14 (17) coupled by the coupling conductor portion 15 (19) is provided on the same main surface side for each electrode conductor thin film 14 (17) in order to prevent an increase in DC resistance. A plurality of coupling conductor portions 15 (19) that are electrically connected to the electrode conductor thin film 14 (17) are formed. Specifically, the coupling conductor portions 15 ( 19) is formed in a dispersed manner. The plurality of coupling conductor portions 15 (19) are different in kind, and the distance between the adjacent ones is set to 20 μm or more and 300 μm or less.

また、薄膜積層体側アレー5内の第一種端子5aと第二種端子5bとは、該第一主表面に最も近い第一種電極導体薄膜14及び第二種電極導体薄膜17に対し、それぞれ直接(本実施形態では第一種電極導体薄膜14側)又は補助結合導体部19’(本実施形態では第二種電極導体薄膜17側)を介して層厚方向に結合された構造となっている。また、最も隣接する第一種端子5aと第二種端子5bとの縁間間隔は、20μm以上300μm以下とされる。デカップリングコンデンサ1に使用する場合、これら異種端子は一方が電源端子、他方がグランド端子として機能するが、この両者を縁間間隔にて300μm以下に接近させることにより、異種の端子を流れる逆相的な交流波形同士のキャンセル効果により見かけのインダクタンスを低減でき、ひいてはコンデンサ1の更なる低インピーダンス化に貢献する。また、隣接する異種の結合導体部15,19間でも同様の効果が生じている。   In addition, the first-type terminal 5a and the second-type terminal 5b in the thin film laminate-side array 5 are respectively in relation to the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 that are closest to the first main surface. Directly (in this embodiment, the first-type electrode conductor thin film 14 side) or auxiliary coupling conductor portion 19 ′ (in this embodiment, the second-type electrode conductor thin film 17 side) is coupled in the layer thickness direction. Yes. Further, the distance between the edges of the first type terminal 5a and the second type terminal 5b that are closest to each other is set to 20 μm or more and 300 μm or less. When used for the decoupling capacitor 1, one of these different terminals functions as a power supply terminal and the other functions as a ground terminal. The apparent inductance can be reduced by a canceling effect between the alternating current waveforms, which contributes to further lowering the impedance of the capacitor 1. In addition, the same effect is produced between adjacent different types of coupling conductor portions 15 and 19.

コンデンサ1は、薄膜コンデンサをなす薄膜積層体10の成膜ベースとなる板状基体50に、基体側端子7a,7b,7sと基体側結合導体部51a,51b,51sを作り込み、該板状基体50を中間基板の構成要素として取り込んでいる。したがって、特許文献1のごとき基体の剥離工程が不要となる上、中間基板の剛性が大幅に向上する。板状基体50は、具体的には薄膜積層体10よりも厚く形成され(例えば100μm以上2mm以下)、本実施形態では、アルミナ又はガラスセラミックがその構成材料として採用されている。該材質は、半導体集積回路素子2をなすシリコンと主基板3の主体をなす高分子材料との中間の線膨張係数を有し、誘電体薄膜13をなす高誘電率セラミックよりもヤング率が高い。   Capacitor 1 has base plate side terminals 7a, 7b, and 7s and base plate side coupling conductors 51a, 51b, and 51s formed in plate base plate 50 serving as a film formation base of thin film laminate 10 forming a thin film capacitor. The substrate 50 is incorporated as a component of the intermediate substrate. Therefore, the substrate peeling step as in Patent Document 1 is not required, and the rigidity of the intermediate substrate is greatly improved. Specifically, the plate-like substrate 50 is formed thicker than the thin film laminate 10 (for example, 100 μm or more and 2 mm or less), and in the present embodiment, alumina or glass ceramic is adopted as the constituent material. This material has an intermediate coefficient of linear expansion between the silicon forming the semiconductor integrated circuit element 2 and the polymer material forming the main substrate 3, and has a higher Young's modulus than the high dielectric constant ceramic forming the dielectric thin film 13. .

次に、本実施形態のコンデンサ(中間基板)1においては、基体側端子アレー7の端子配列間隔が、薄膜積層体側端子アレー5の端子配列間隔よりも広く設定されている。板状基体50の第一主表面には、第一種基体側端子7aに導通する第一種基体側結合導体部51aと、第二種基体側端子7bに導通する第二種基体側結合導体部51bとの各端部が、薄膜積層体側端子アレー5の端子間隔よりも(平均値にて)大間隔にて配列している。この場合、薄膜積層体側端子アレー5側の狭い端子間隔を、広い基体側端子アレー7の端子配列に合わせるために、コンデンサ1の内部で端子間隔の変換を行う必要がある。   Next, in the capacitor (intermediate substrate) 1 of the present embodiment, the terminal arrangement interval of the base-side terminal array 7 is set wider than the terminal arrangement interval of the thin film laminate-side terminal array 5. On the first main surface of the plate-like substrate 50, a first-type substrate-side coupling conductor portion 51a that conducts to the first-type substrate-side terminal 7a and a second-type substrate-side coupling conductor that conducts to the second-type substrate-side terminal 7b. Each end part with the part 51b is arranged at a larger interval (in average value) than the terminal interval of the thin film laminate side terminal array 5. In this case, in order to match the narrow terminal interval on the thin film laminate side terminal array 5 side with the terminal arrangement of the wide substrate side terminal array 7, it is necessary to convert the terminal interval inside the capacitor 1.

本実施形態では、薄膜積層体10の第二主表面(板状基体50の第一主表面)において、第一種基体側結合導体部51a及び第二種基体側結合導体部51bが、薄膜積層体側端子アレー5よりも大間隔にて配列しており、それぞれ、薄膜積層体10の該第二主表面に最も近い第一種電極薄膜導体14及び第二電極薄膜導体17に対し、直接(本実施形態では、第一種電極薄膜導体14側)又は補助結合導体部15”(本実施形態では第二電極薄膜導体17側)を介して積層方向に結合されてなる。上記構造では、薄膜積層体10との境界をなす薄膜積層体10の第二主表面(板状基体50の第一主表面)において、大間隔の基体側結合導体部51a,51bに第一端子結合導体部15及び第二端子結合導体部19の間隔が合わせ込まれるよう、端子間隔の変換が薄膜積層体10の内部にて行われる。   In the present embodiment, on the second main surface of the thin film laminate 10 (the first main surface of the plate-like substrate 50), the first-type substrate-side coupling conductor portion 51a and the second-type substrate-side coupling conductor portion 51b are thin-film laminated. It is arranged at a larger interval than the body-side terminal array 5, and is directly (in this case) directly to the first-type electrode thin film conductor 14 and the second electrode thin film conductor 17 closest to the second main surface of the thin film laminate 10 In the embodiment, the first type electrode thin film conductor 14 side) or the auxiliary coupling conductor portion 15 ″ (in this embodiment, the second electrode thin film conductor 17 side) is coupled in the laminating direction. On the second main surface of the thin film laminate 10 (the first main surface of the plate-like substrate 50) that forms the boundary with the body 10, the first terminal coupling conductor portion 15 and the first terminal coupling conductor portion 15a and the first terminal coupling conductor portion 15 The distance between the two-terminal coupling conductors 19 is adjusted. Conversion of the terminal interval is performed in the interior of the thin film stack 10.

具体的には、図4に示すように、電極導体薄膜14,17の少なくとも一層、ここでは、最上層を除く各々全ての電極導体薄膜14,17が間隔変換用薄膜LTとされている。間隔変換用薄膜LTにおいては当該電極導体薄膜14,17に対し、薄膜積層体側端子アレー5側からは結合導体部15(A)(19(A))が第一配列間隔d1にて接続し、基体側端子アレー7側からは、該第一配列間隔d1よりも広い第二配列間隔d2にて結合導体部15(B)(19(B))が接続する。つまり、間隔変換用薄膜LTは、その上下に接続する結合導体部15(19)の接続位置を互いに異ならせることで、端子間隔の変換を実現している。また、コンデンサ1を構成する電極導体薄膜14,17を間隔変換用薄膜LTとして利用することで、半導体集積回路素子が接続される薄膜積層体10の第一主表面側に、特許文献1のような端子間隔変換のための引き回し配線部を形成する必要がなくなり、コンデンサ端子部のインダクタンスを大幅に低減することができる。なお、間隔変換用薄膜LTの上下に接続する結合導体部15(A)(19(A))及び結合導体部15(B)(19(B))の配列間隔は、例えば等間隔配列を基本に設計できるが、異極性の結合導体部との干渉回避などのため局所的に間隔変更されることもあり、最終的な配列間隔は必ずしも等間隔になるとは限らない。上記の第一配列間隔d1及び第二配列間隔d2は、こうした場合も考慮して、複数の結合導体部の各縁間間隔の平均値にて表すものとしている。例えば、変換前の配列間隔が100μm以上200μm以下の範囲に分布し、変換後の配列間隔が150μm以上300μmの範囲に分布していて、両者の間で間隔範囲の重なりを生じていても、平均値にて表した第二配列間隔d2が同じく第一配列間隔d1よりも大きくなっていればよいのである。   Specifically, as shown in FIG. 4, at least one of the electrode conductor thin films 14 and 17, here, all the electrode conductor thin films 14 and 17 except for the uppermost layer are used as the distance converting thin film LT. In the distance conversion thin film LT, the electrode conductor thin films 14 and 17 are connected to the coupling conductor portions 15 (A) (19 (A)) from the thin film laminate side terminal array 5 side at the first arrangement interval d1. From the substrate side terminal array 7 side, the coupling conductor portions 15 (B) (19 (B)) are connected at a second arrangement interval d2 wider than the first arrangement interval d1. That is, the distance conversion thin film LT realizes the terminal distance conversion by making the connection positions of the coupling conductor portions 15 (19) connected to the upper and lower sides different from each other. Further, by using the electrode conductor thin films 14 and 17 constituting the capacitor 1 as the distance converting thin film LT, the first main surface side of the thin film laminate 10 to which the semiconductor integrated circuit element is connected is disclosed in Patent Document 1. It is no longer necessary to form a lead wiring portion for converting the terminal spacing, and the inductance of the capacitor terminal portion can be greatly reduced. The arrangement intervals of the coupling conductor portions 15 (A) (19 (A)) and the coupling conductor portions 15 (B) (19 (B)) connected to the upper and lower sides of the interval conversion thin film LT are basically, for example, an equal interval arrangement. However, the distance may be locally changed in order to avoid interference with the coupling conductors having different polarities, and the final arrangement interval is not necessarily equal. The first arrangement interval d1 and the second arrangement interval d2 are expressed by an average value of the intervals between the edges of the plurality of coupling conductor portions in consideration of such a case. For example, even if the array interval before conversion is distributed in the range of 100 μm or more and 200 μm or less, the array interval after conversion is distributed in the range of 150 μm or more and 300 μm, and there is an overlap of the interval range between them, the average It is only necessary that the second arrangement interval d2 expressed by the value is larger than the first arrangement interval d1.

図4においては、第一種電極導体薄膜14と第二種電極導体薄膜17との双方が、それぞれ間隔変換用薄膜LTとして利用されている。第一種電極導体薄膜14は第一種端子5aに導通する結合導体部15の間隔拡張に使用され、第二種電極導体薄膜17は第二種端子5bに導通する結合導体部19の間隔拡張に使用されている。   In FIG. 4, both the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 are used as the distance converting thin film LT, respectively. The first-type electrode conductor thin film 14 is used for expanding the interval of the coupling conductor portion 15 that conducts to the first-type terminal 5a, and the second-type electrode conductor thin film 17 is used to expand the interval of the coupling conductor portion 19 that conducts to the second-type terminal 5b. Is used.

例えば図10の変形例では、異なる種別の端子の間隔拡張を、薄膜積層体10内の積層方向の同じ位置、図10では最下層の第二種電極導体薄膜17の形成位置で一括して行なっている。この構成では、第一極性となる第二種電極導体薄膜17中に、誘電体13にて隔てられた大きな貫通孔18を穿ち、その貫通孔18内に第二極性(第一種電極導体薄膜14と同一極性である)の補助導体薄膜14sが、端子間隔拡張のため比較的大面積で配置されている。この補助導体薄膜14sは、誘電体薄膜13を隔てて隣接する第一種電極導体薄膜14と同極性になるため、静電容量形成にはほとんど寄与しない。その結果、静電容量形成の主体となる第二種電極導体薄膜17は、補助導体薄膜14sを配置するために貫通孔18により大きく切り欠かれ、電極実効面積が減少し、静電容量の低下につながる。   For example, in the modification of FIG. 10, the spacing between different types of terminals is expanded at the same position in the stacking direction in the thin film stack 10, that is, the formation position of the second-layer electrode conductor thin film 17 in the lowermost layer in FIG. ing. In this configuration, a large through hole 18 separated by a dielectric 13 is formed in the second type electrode conductor thin film 17 having the first polarity, and the second polarity (first type electrode conductor thin film is formed in the through hole 18. 14s) (which has the same polarity as that of No. 14) is arranged in a relatively large area for expanding the terminal interval. The auxiliary conductor thin film 14s has the same polarity as the first-type electrode conductor thin film 14 that is adjacent to the dielectric thin film 13, and therefore hardly contributes to the formation of capacitance. As a result, the second-type electrode conductor thin film 17 that is the main body for forming the capacitance is largely cut away by the through hole 18 to dispose the auxiliary conductor thin film 14s, the effective electrode area is reduced, and the capacitance is reduced. Leads to.

しかし、図4のごとく、各種別の端子に対応した結合導体部の間隔を、薄膜積層体10内の積層方向において互いに異なる位置で拡張変換すれば、積層方向の同一位置において、静電容量形成に寄与しない異極性の補助導体薄膜を混在させる必要がなくなり、静電容量の低下を防止することができる。図4において、例えば、間隔変換用薄膜LTに対し薄膜積層体側端子アレー5側に最も近い同種の電極導体薄膜14を変換前薄膜LBとし、同じく基体側端子アレー7側に最も近い同種の電極導体薄膜14を変換後薄膜LAとして定義すると、変換前薄膜LBと間隔変換用薄膜LTとの間、及び間隔変換用薄膜LTと変換後薄膜LAとの間では、各結合導体部15(19)の結合位置が面内方向にてそれぞれ互いに一致している。他方、各薄膜間に位置する2つの他種電極導体薄膜17,17には、間隔変換用薄膜LTを介した第一配列間隔d1から第二配列間隔d2への変換に伴い、結合導体部15(A),15(B)を通すための第二貫通孔16,16同士を互いにずれて形成してある。これにより、図10のごとき補助導体薄膜14sは全く不要となる。その結果、結合導体部の間隔変換を行なうにもかかわらず、第一種電極導体薄膜14及び第二種電極導体薄膜17に形成する貫通孔16,18は、結合導体部15,19を通す必要最小限の面積で済み、貫通孔形成による静電容量低下の影響を可及的に排除することができる。   However, as shown in FIG. 4, if the distance between the coupling conductors corresponding to various different terminals is extended and converted at different positions in the stacking direction in the thin film laminate 10, the capacitance is formed at the same position in the stacking direction. Therefore, it is not necessary to mix auxiliary conductor thin films having different polarities that do not contribute to the decrease in capacitance, and a reduction in capacitance can be prevented. In FIG. 4, for example, the same type of electrode conductor thin film 14 closest to the thin film laminate side terminal array 5 side with respect to the distance conversion thin film LT is defined as the pre-conversion thin film LB, and the same type of electrode conductor closest to the substrate side terminal array 7 side. When the thin film 14 is defined as the converted thin film LA, between the thin film LB before conversion and the distance converting thin film LT, and between the thin film for distance conversion LT and the converted thin film LA, each coupling conductor portion 15 (19) The coupling positions coincide with each other in the in-plane direction. On the other hand, the two other-type electrode conductor thin films 17 and 17 positioned between the thin films are coupled to the coupling conductor portion 15 in accordance with the conversion from the first arrangement interval d1 to the second arrangement interval d2 via the interval conversion thin film LT. The second through holes 16 and 16 for passing (A) and 15 (B) are formed so as to be shifted from each other. As a result, the auxiliary conductor thin film 14s as shown in FIG. As a result, the through-holes 16 and 18 formed in the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 need to pass through the coupling conductor portions 15 and 19, although the distance between the coupling conductor portions is changed. A minimum area is required, and the influence of the capacitance decrease due to the formation of the through hole can be eliminated as much as possible.

なお、補助導体薄膜を用いる場合であっても、図10のように、端子間隔変換を少数の層で一挙に行なおうとすれば、該層に形成する補助導体薄膜14sの面積が極端に大きくならざるを得ず、静電容量の低下が相当に顕著になる。そこで、図11に示すように、第一種電極導体薄膜14及び第二種電極導体薄膜17の双方において、補助導体薄膜14s,17sを各層に分散配置すれば、1つ1つの補助導体薄膜が担当すべき間隔変換量が少なくなり、貫通孔16,18内の結合導体薄膜部15,19との直流分離用のクリアランスをそれほど逸脱しない面積に留めることができるようになる。その結果、静電容量の低下を抑制することができる。なお、図4にて一部拡大例示した構造では、積層方向に隣接する一方の同種電極導体薄膜17(A)と、他方の同種電極導体薄膜17(B)との間において、第一の誘電体薄膜13(A)に形成された第一貫通孔13h(A)と、他種電極導体薄膜14に形成された第二貫通孔16とが面内投影にて重なりを有し、該第二貫通孔16と第二の誘電体薄膜13(B)に形成された第三貫通孔13h(B)とが面内投影にて重なりを有しているが、図10及び図11の構成においては、上記3つの貫通孔は必ずしも同軸的に配置されていない。   Even when the auxiliary conductor thin film is used, as shown in FIG. 10, if the terminal spacing conversion is performed at once with a small number of layers, the area of the auxiliary conductor thin film 14s formed on the layer is extremely large. In other words, the decrease in capacitance becomes considerably remarkable. Therefore, as shown in FIG. 11, in each of the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17, if the auxiliary conductor thin films 14s and 17s are dispersedly arranged in each layer, one auxiliary conductor thin film is obtained. The distance conversion amount to be handled is reduced, and the clearance for direct current separation from the coupling conductor thin film portions 15 and 19 in the through holes 16 and 18 can be kept in an area that does not deviate so much. As a result, a decrease in capacitance can be suppressed. In the structure illustrated in a partially enlarged manner in FIG. 4, the first dielectric between the one homogeneous electrode conductor thin film 17 (A) adjacent to the stacking direction and the other identical electrode conductor thin film 17 (B). The first through-hole 13h (A) formed in the body thin film 13 (A) and the second through-hole 16 formed in the other-type electrode conductor thin film 14 have an overlap by in-plane projection, and the second The through-hole 16 and the third through-hole 13h (B) formed in the second dielectric thin film 13 (B) are overlapped by in-plane projection, but in the configuration of FIGS. The three through holes are not necessarily arranged coaxially.

図4に戻り、本実施形態のコンデンサ1においては、上記のように端子間隔の拡張変換を行なっており、基体側端子アレー7の方が薄膜積層体側端子アレー5よりもアレー面積が大きくなっている。そこで、その面積差を利用して、薄膜積層体10の第二主表面側に配列する、第一種電極導体薄膜14と第二種電極導体薄膜17との組の一部のもの、ここでは最下層の2層14(W),17(W)を、第一主表面側に配列する第一種電極導体薄膜14と第二種電極導体薄膜17との組よりも大面積としている。これにより、コンデンサ1の静電容量を一層高めることができる。   Returning to FIG. 4, in the capacitor 1 of this embodiment, the terminal spacing is expanded as described above, and the base-side terminal array 7 has a larger array area than the thin-film laminate-side terminal array 5. Yes. Therefore, by utilizing the difference in area, a part of the set of the first type electrode conductor thin film 14 and the second type electrode conductor thin film 17 arranged on the second main surface side of the thin film laminate 10, here The lowermost two layers 14 (W) and 17 (W) have a larger area than the set of the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 arranged on the first main surface side. Thereby, the electrostatic capacitance of the capacitor 1 can be further increased.

なお、図7に示すように、第一種電極導体薄膜14と第二種電極導体薄膜17とは、それぞれ1層ずつのみを間隔変換用薄膜LTとすることもできる。この場合、間隔変換用薄膜LTにおいて上下の結合導体部15,15”及び19,51bの間隔変換量は増加するが、貫通孔16,18の形成位置が変わるだけなので、電極の実効面積にはほとんど影響が及ばず、従って、静電容量の減少もほとんど生じない。図7においては、間隔変換量を大きく確保できることから、他の膜よりも面積拡張された第一種電極導体薄膜14と第二種電極導体薄膜17との組(すなわち、最下層の2層14(W),17(W))を、間隔変換用薄膜LT,LTとして用いている。   As shown in FIG. 7, only one layer of each of the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 can be used as the distance converting thin film LT. In this case, the distance conversion amount of the upper and lower coupling conductors 15, 15 ″ and 19, 51b in the distance conversion thin film LT is increased, but only the formation positions of the through holes 16 and 18 are changed. 7 has almost no influence, and therefore, the capacitance is hardly reduced.In the case of FIG. 7, since the distance conversion amount can be secured large, the first-type electrode conductor thin film 14 and the first electrode conductor thin film 14 whose area is expanded as compared with the other films are obtained. A pair with the two-type electrode conductor thin film 17 (that is, the lowermost two layers 14 (W) and 17 (W)) is used as the distance conversion thin films LT and LT.

図4に戻り、薄膜積層体10の第一主表面には、第一種端子5a及び第二種端子5bの他に、薄膜積層体側端子アレー5の外周領域を割り当てる形で、前述の信号用端子5sが複数形成されている。ここれら信号用端子5sは、板状基体50の第二主表面に形成された信号用基体側端子7sに対し、薄膜積層体10内にて電極導体薄膜14,17に導通しない形で(本実施形態では、電極導体薄膜14,17を面内方向外側に迂回する形で)、薄膜積層体10内の信号用結合導体部22及び板状基体50内の信号用基体側結合導体部51sを介して接続されている。また、薄膜積層体10内において信号用結合導体部22を覆う誘電体層(以下、補助誘電体層と称する)12は、電極導体薄膜14,17を覆う誘電体層13よりも低誘電率の材料(本実施形態では、例えば二酸化珪素である)にて形成されている。   Returning to FIG. 4, in addition to the first type terminal 5a and the second type terminal 5b, the outer peripheral area of the thin film stack side terminal array 5 is allocated to the first main surface of the thin film stack 10 in the above-described signal use. A plurality of terminals 5s are formed. These signal terminals 5 s are not electrically connected to the electrode conductor thin films 14, 17 in the thin film laminate 10 with respect to the signal base-side terminals 7 s formed on the second main surface of the plate-like base 50 (this book In the embodiment, the electrode conductor thin films 14 and 17 are bypassed outward in the in-plane direction), and the signal coupling conductor portion 22 in the thin film laminate 10 and the signal substrate side coupling conductor portion 51s in the plate-like substrate 50 are provided. Connected through. In addition, the dielectric layer (hereinafter referred to as auxiliary dielectric layer) 12 covering the signal coupling conductor portion 22 in the thin film laminate 10 has a lower dielectric constant than the dielectric layer 13 covering the electrode conductor thin films 14 and 17. It is made of a material (in this embodiment, for example, silicon dioxide).

図4では、薄膜積層体側端子アレー5は基体側端子アレー7内に投影関係において包含されるように形成されており、アレーの外側に位置する端子ほど、配置間隔拡大に伴うアレー間の対応端子同士の位置ずれ量が大きい。従って、薄膜積層体側端子アレー5の外周領域に配置される信号用端子5sは、対応する信号用基体側端子7sに接続するために、薄膜積層体10内に形成される面内方向の引き回し配線部21も長く確保する必要がある。図4の実施形態では、薄膜積層体側端子アレー5から基体側端子アレー7への端子間隔変換量が比較的大きく設定されているため、内側に位置する信号用端子5sの引き回し配線部21が、外側の信号用端子5sの引き回し配線部21と面内方向に干渉することを避けるため、両配線部21,21を、互いに異なる層に作りこんでいる。   In FIG. 4, the thin film laminate-side terminal array 5 is formed so as to be included in the base-side terminal array 7 in a projection relationship, and the terminals located on the outer side of the array are the corresponding terminals between the arrays as the arrangement interval increases. The amount of positional deviation between each other is large. Accordingly, the signal terminals 5 s arranged in the outer peripheral region of the thin film laminate side terminal array 5 are connected to the corresponding signal base side terminals 7 s so as to be routed in the in-plane direction formed in the thin film laminate 10. The part 21 also needs to be secured long. In the embodiment of FIG. 4, since the terminal interval conversion amount from the thin film laminate side terminal array 5 to the base side terminal array 7 is set to be relatively large, the routing wiring portion 21 of the signal terminal 5s located inside is In order to avoid interference in the in-plane direction with the routing wiring portion 21 of the outer signal terminal 5s, both wiring portions 21 and 21 are formed in different layers.

他方、端子間隔変換量がそれほど大きくない場合は、図8及び図9に示すように、内外の信号用端子5sの引き回し配線部21を同一層内に形成することも可能である。なお、図8及び図9では、端子間隔変換量が比較的小さいため、全ての電極導体薄膜14,17を同一面積にて形成している。また、第一種電極導体薄膜14と第二種電極導体薄膜17との一部だけを間隔変換用薄膜LT,LTとして用いる場合、どの薄膜を間隔変換用薄膜LT,LTとして設定するかは自由であり、例えば図8においては、最下層の1組を間隔変換用薄膜LT,LTとして用いており、図9においては、最下層の第一種電極導体薄膜14と最上層の第二種電極導体薄膜17とを間隔変換用薄膜LT,LTとして用いている。なお、上記の実施形態では、薄膜積層体側端子アレー5の外周領域を割り当てる形で、信号用端子5sが形成されているが、信号ラインのシールド性を高めクロストーク抑制を図るために、信号用端子5s(及びこれに導通する信号ライン)を、グランド端子(及びこれに導通するグランドライン)にて包囲することも可能である。   On the other hand, when the terminal interval conversion amount is not so large, as shown in FIGS. 8 and 9, it is also possible to form the routing wiring portion 21 of the inner and outer signal terminals 5s in the same layer. In FIG. 8 and FIG. 9, since the terminal interval conversion amount is relatively small, all the electrode conductor thin films 14 and 17 are formed in the same area. Further, when only a part of the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 is used as the distance conversion thin films LT and LT, which thin film is set as the distance conversion thin films LT and LT is free. For example, in FIG. 8, one set of the lowermost layer is used as the thin film LT, LT for interval conversion, and in FIG. 9, the lowermost first-type electrode conductor thin film 14 and the uppermost-layer second-type electrode are used. The conductor thin film 17 is used as the distance converting thin films LT and LT. In the above-described embodiment, the signal terminal 5s is formed so as to allocate the outer peripheral region of the thin film laminate-side terminal array 5. However, in order to improve the signal line shielding property and suppress crosstalk, It is also possible to surround the terminal 5s (and the signal line conducting therewith) with the ground terminal (and the ground line conducting therethrough).

また、図12に示すように、薄膜積層体側端子アレー5と基体側端子アレー7との端子配列間隔を同一に設定することも可能である。この場合、図13に示すように、間隔変換用薄膜LT,LTは形成されない。この場合、薄膜積層体10を通る信号線の長さは薄膜積層体の厚さに等しく、信号波長よりも十分に短い。この程度であれば、薄膜積層体10の誘電体層を(信号ラインを覆う部分も含めて)、全て高誘電率セラミックで形成しても信号品質への影響は小さく、製造コストの低減にも寄与する。また、図4においては、該第一種端子5aが第一種電極導体薄膜14に直接接続され、第二種端子5bが第二種電極導体薄膜17に対し補助結合導体部19’を介して接続されていたが、図13では、該第一種端子5aが第一種電極導体薄膜14に対し補助結合導体部15’を介して接続され、第二種端子5bが第二種電極導体薄膜17に対し直接接続された構造となっている。   Moreover, as shown in FIG. 12, it is also possible to set the same terminal arrangement interval between the thin film laminate side terminal array 5 and the base side terminal array 7. In this case, as shown in FIG. 13, the distance converting thin films LT and LT are not formed. In this case, the length of the signal line passing through the thin film stack 10 is equal to the thickness of the thin film stack and is sufficiently shorter than the signal wavelength. At this level, even if the dielectric layer of the thin film laminate 10 (including the portion covering the signal line) is entirely formed of a high dielectric constant ceramic, the influence on the signal quality is small, and the manufacturing cost can be reduced. Contribute. In FIG. 4, the first type terminal 5 a is directly connected to the first type electrode conductor thin film 14, and the second type terminal 5 b is connected to the second type electrode conductor thin film 17 via the auxiliary coupling conductor portion 19 ′. In FIG. 13, the first type terminal 5a is connected to the first type electrode conductor thin film 14 via the auxiliary coupling conductor portion 15 ', and the second type terminal 5b is connected to the second type electrode conductor thin film. 17 is directly connected to the structure.

上記コンデンサ10は、例えば図6のような工程に従い製造することができる。まず、基体の構成セラミックの原料粉末を含有した周知のセラミックグリーンシートと、パンチングあるいはレーザー穿孔等により形成したビアホールに、金属粉末ペーストを充填したものを積層して焼成することにより、前述の基体側結合導体部51を積層ビアとして形成した板状基体50を用意する。なお、各基体側結合導体部51において板状基体50の第二主表面側には、メッキ等により基体側端子7a,7b,7s(図4参照)を予め形成しておく。   The capacitor 10 can be manufactured, for example, according to a process as shown in FIG. First, the above-mentioned substrate side is obtained by laminating and firing a known ceramic green sheet containing the raw material powder of the constituent ceramic of the substrate and a via hole formed by punching or laser drilling and filling a metal powder paste. A plate-like substrate 50 in which the coupling conductor portion 51 is formed as a laminated via is prepared. In each base-side coupling conductor portion 51, base-side terminals 7a, 7b, 7s (see FIG. 4) are formed in advance on the second main surface side of the plate-like base 50 by plating or the like.

次に、工程1に示すように、板状基体50の第一主表面上に金属薄膜20を成膜する。そして、工程2に進み、形成した金属薄膜20は、第一種電極導体薄膜14と第二種電極導体薄膜17とを直流的に分離するため、不要な結合導体薄膜部との結合を、フォトリソグラフィー工程を用いたエッチングにより解消する。例えば金属薄膜20を第二種電極導体薄膜17とする場合は、第一種電極導体薄膜14と導通することになる結合導体薄膜部(図6の工程2では第一結合導体薄膜部15a)の周囲をドーナツ状にエッチングして貫通孔18を形成し、内側に残った金属薄膜20を第一種電極導体薄膜14用の第一結合導体薄膜部15aとする(A工程)。換言すると、基体側結合導体部と導通する為の結合導体薄膜部15aを残してドーナツ状にエッチングして貫通孔18を形成する。他方、金属薄膜20を第一種電極導体薄膜14とする場合は、第二種電極導体薄膜17と導通することになる結合導体薄膜部の周囲をドーナツ状にエッチングして貫通孔16を形成し、内側に残った金属薄膜20を第二種電極導体薄膜17用の第一結合導体薄膜部19aとする(B工程)。換言すると、電極導体薄膜と導通する為の結合導体薄膜部19aを残してドーナツ状にエッチングして貫通孔16を形成する。図6の工程2では、A工程を実施している。   Next, as shown in step 1, the metal thin film 20 is formed on the first main surface of the plate-like substrate 50. Then, the process proceeds to step 2, and the formed metal thin film 20 separates the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 in a direct current manner. The problem is solved by etching using a lithography process. For example, when the metal thin film 20 is the second type electrode conductor thin film 17, the coupled conductor thin film portion (first coupled conductor thin film portion 15 a in Step 2 in FIG. 6) that is electrically connected to the first type electrode conductor thin film 14. The periphery is etched in a donut shape to form a through hole 18, and the metal thin film 20 remaining on the inside is used as a first coupled conductor thin film portion 15 a for the first-type electrode conductor thin film 14 (step A). In other words, the through-hole 18 is formed by etching in a donut shape, leaving the coupling conductor thin film portion 15a for electrical connection with the base-side coupling conductor portion. On the other hand, when the metal thin film 20 is the first type electrode conductor thin film 14, the through hole 16 is formed by etching the periphery of the coupled conductor thin film portion that will be electrically connected to the second type electrode conductor thin film 17 into a donut shape. The metal thin film 20 remaining on the inner side is used as a first coupled conductor thin film portion 19a for the second-type electrode conductor thin film 17 (step B). In other words, the through-hole 16 is formed by etching in a donut shape, leaving the coupled conductor thin film portion 19a for conducting with the electrode conductor thin film. In step 2 of FIG. 6, step A is performed.

続いて、工程3に進み、エッチング終了後の第二種電極導体薄膜17(B工程では第一種電極導体薄膜14)の全面を覆うように誘電体薄膜13を成膜する。ゾルゲル法を用いる場合は、例えば次のような工程を採用できる。まず、誘電体薄膜を形成する高誘電率酸化物の原料となるアルコキシド、例えばチタン酸バリウムを主たる誘電体材料として用いる場合はチタンイソプロポキシドを、金属バリウムとともにアルコール系の有機溶媒に溶解させる。このとき、金属バリウムはアルコール系の有機溶媒と反応して、バリウムアルコキシドの形で溶解する。なお、誘電率特性等の調整のため、チタン酸ストロンチウムやチタン酸鉛を配合したい場合は、溶液中にストロンチウムノルマルブトキシドや酢酸鉛などを溶解させるとよい。なお、溶媒となるアルコール系有機溶媒は、キレート形成性を有するもの、例えばエタノールとアセチルアセトンとの混合溶媒や、2−エトキシエタノールなどを使用することが望ましい。また、得られる溶液の粘性調整などのために、少量(アルコール系有機溶媒と等量以下)の水を溶液に配合し、各金属源を適度に重合させてもよい。上記のようにして得られた溶液は、加熱等により均質化した後、スピンコート法などの周知の塗付方法により膜状塗布される。そして、これを乾燥後、500℃以上1000℃以下にて焼成し、結晶質の高誘電率薄膜を得ることができる。なお、ゾルゲル法に代えてスパッタリングやCVD法を用いてもよい。   Then, it progresses to the process 3, and forms the dielectric thin film 13 so that the whole surface of the 2nd type electrode conductor thin film 17 (B process 1st type electrode conductor thin film 14) after completion | finish of an etching may be covered. When using the sol-gel method, for example, the following steps can be employed. First, when using an alkoxide as a raw material for a high dielectric constant oxide for forming a dielectric thin film, for example, barium titanate as a main dielectric material, titanium isopropoxide is dissolved in an alcohol-based organic solvent together with barium metal. At this time, barium metal reacts with an alcohol-based organic solvent and dissolves in the form of barium alkoxide. In addition, when adjusting strontium titanate or lead titanate for adjustment of dielectric constant characteristics, etc., strontium normal butoxide or lead acetate may be dissolved in the solution. In addition, as for the alcohol type organic solvent used as a solvent, it is desirable to use what has chelate formation property, for example, the mixed solvent of ethanol and acetylacetone, 2-ethoxyethanol, etc. In addition, in order to adjust the viscosity of the obtained solution, a small amount of water (equal to or less than that of the alcohol organic solvent) may be added to the solution, and each metal source may be appropriately polymerized. The solution obtained as described above is homogenized by heating or the like and then applied in a film form by a known application method such as a spin coating method. And after drying this, it baked at 500 degreeC or more and 1000 degrees C or less, and can obtain a crystalline high dielectric constant thin film. Note that sputtering or a CVD method may be used instead of the sol-gel method.

このとき、貫通孔18(B工程では貫通孔16)と第一結合導体薄膜部19a(B工程では第一結合導体薄膜部15a)との間のドーナツ状の隙間は誘電体薄膜13の材料にて埋められ、誘電体孔内充填部13vが形成される。このとき、誘電体孔内充填部13vの内側の結合導体薄膜部19a(15a)は誘電体薄膜13により一旦覆われるが、フォトリソグラフィー工程により貫通孔13hを形成して露出させる(エッチング液としては、例えはフッ酸系水溶液を使用できる)。また、第二種電極導体薄膜17(B工程では第一種電極導体薄膜14)用の第一結合導体薄膜部19a(B工程では結合導体薄膜部15a)を形成するために、これに対応する位置にも貫通孔13hを形成する。なお、第二種電極導体薄膜17(B工程では第一種電極導体薄膜14)を前述の間隔変換用薄膜LTとする場合は、間隔変更量に合わせて貫通孔13hの形成位置をずらせばよい。   At this time, the doughnut-shaped gap between the through hole 18 (the through hole 16 in the B process) and the first coupling conductor thin film portion 19a (the first coupling conductor thin film portion 15a in the B process) is a material of the dielectric thin film 13. The dielectric hole filling portion 13v is formed. At this time, the coupling conductor thin film portion 19a (15a) inside the dielectric hole filling portion 13v is once covered with the dielectric thin film 13, but is exposed by forming a through hole 13h by a photolithography process (as an etchant). For example, a hydrofluoric acid aqueous solution can be used). Moreover, in order to form the 1st coupling conductor thin film part 19a (The coupling conductor thin film part 15a in B process) for the 2nd kind electrode conductor thin film 17 (B process 1st class electrode conductor thin film 14), it respond | corresponds to this. A through hole 13h is also formed at the position. When the second-type electrode conductor thin film 17 (first-type electrode conductor thin film 14 in the process B) is the above-described distance conversion thin film LT, the formation position of the through hole 13h may be shifted in accordance with the distance change amount. .

そして、工程4に示すように、工程1と同様の金属薄膜20を形成する。工程3で形成された貫通孔13h内は、金属で埋まって第二結合導体薄膜部19b(15b)が形成され、誘電体孔内充填部13v内部の第一結合導体薄膜部19a(15a)と一体化して結合導体部19(15)となる。以下、工程2に戻って以降の工程を繰り返すことにより、工程5に示すように、第一種電極導体薄膜14と第二種電極導体薄膜17とを直流的に分離した形で順次積層形成できる(なお、工程4はA工程とB工程とを交互に繰り返す)。なお、図4においては、第一種電極導体薄膜14と第二種電極導体薄膜17との積層形成が完了した後に、信号用結合導体22及び引き回し配線部21と、補助誘電体層12との積層形成を一括して行うようにしている。そして、さらにメッキ等により端子5s,5b,5aを形成した後、ソルダーレジスト層を兼ねた保護セラミック層11を、二酸化珪素等を用いて形成することにより、コンデンサ1が完成する。ここで説明した製造工程は基体52主面上に形成される電極導体薄膜を第二種電極導体薄膜17としており、絶縁して対向している電極導体薄膜を第一種電極導体薄膜14としているが、第一種、第二種には特に区別はない。つまり、基体52主面上に形成される電極導体薄膜を第一種電極導体薄膜と称し、絶縁して対向している電極導体薄膜を第二種電極導体薄膜と称してもよい。   Then, as shown in step 4, a metal thin film 20 similar to that in step 1 is formed. The through-hole 13h formed in step 3 is filled with metal to form the second coupled conductor thin film portion 19b (15b), and the first coupled conductor thin film portion 19a (15a) inside the dielectric hole filling portion 13v The integrated conductor part 19 (15) is obtained. Thereafter, by returning to Step 2 and repeating the subsequent steps, as shown in Step 5, the first-type electrode conductor thin film 14 and the second-type electrode conductor thin film 17 can be sequentially stacked and formed in a DC separated form. (Step 4 repeats step A and step B alternately). In FIG. 4, after the formation of the first type electrode conductor thin film 14 and the second type electrode conductor thin film 17 is completed, the signal coupling conductor 22, the routing wiring portion 21, and the auxiliary dielectric layer 12 are connected. Layer formation is performed at once. Further, after the terminals 5s, 5b, and 5a are formed by plating or the like, the capacitor 1 is completed by forming the protective ceramic layer 11 that also serves as the solder resist layer using silicon dioxide or the like. In the manufacturing process described here, the electrode conductor thin film formed on the main surface of the substrate 52 is the second-type electrode conductor thin film 17, and the electrode conductor thin film that is insulated and opposed is the first-type electrode conductor thin film 14. However, there is no particular distinction between the first type and the second type. That is, the electrode conductor thin film formed on the main surface of the substrate 52 may be referred to as a first type electrode conductor thin film, and the electrode conductor thin film that is insulated and opposed may be referred to as a second type electrode conductor thin film.

なお、図14に示すコンデンサ(中間基板)200のごとく、板状基体は、焼成セラミック誘電体層52と、該焼成セラミック誘電体層52と同時焼成された電極導体層54,57とを交互に積層した積層セラミックコンデンサ基体60として構成することもできる。このような積層セラミックコンデンサ基体60は、図4の板状基体50と同様のセラミックグリーンシートを用いて製造でき、電極導体層54,57は、金属ペーストの印刷塗布により形成することができる。同極性となる電極導体層54同士あるいは57同士は、ビアをなす基体側結合導体部55,59により積層方向に連結され、極性の異なる電極導体層54,57と基体側結合導体部59,55同士は、金属ペーストの印刷パターンニング時において各電極導体層54,57に形成された貫通孔56,58により直流的に分離される。   Note that, as in the capacitor (intermediate substrate) 200 shown in FIG. 14, the plate-like substrate has alternately a fired ceramic dielectric layer 52 and electrode conductor layers 54 and 57 fired simultaneously with the fired ceramic dielectric layer 52. It can also be configured as a laminated multilayer ceramic capacitor substrate 60. Such a multilayer ceramic capacitor substrate 60 can be manufactured using a ceramic green sheet similar to the plate-like substrate 50 of FIG. 4, and the electrode conductor layers 54 and 57 can be formed by printing and applying a metal paste. The electrode conductor layers 54 or 57 having the same polarity are connected in the stacking direction by base-side coupling conductor portions 55 and 59 forming vias, and the electrode conductor layers 54 and 57 and base-side coupling conductor portions 59 and 55 having different polarities are connected. They are separated from each other in a direct current manner by the through holes 56 and 58 formed in the electrode conductor layers 54 and 57 at the time of printing patterning of the metal paste.

大容量化という観点では、積層セラミックコンデンサ60に使用する誘電体層52を、高誘電率セラミック(前述のペロブスカイト型酸化物層)にて構成することが望ましい。他方、低インピーダンス化を望む帯域をより高周波側に拡張するために、積層セラミックコンデンサ60側の静電容量を積極的に小さく設定したい場合は、積層セラミックコンデンサ60に使用する誘電体層52を、アルミナやガラスセラミックなど、常誘電性のセラミックで構成することも可能である。   From the viewpoint of increasing the capacity, it is desirable that the dielectric layer 52 used in the multilayer ceramic capacitor 60 is composed of a high dielectric constant ceramic (the above-described perovskite oxide layer). On the other hand, when it is desired to positively set the capacitance on the monolithic ceramic capacitor 60 side in order to expand the band where low impedance is desired to the higher frequency side, the dielectric layer 52 used for the monolithic ceramic capacitor 60 is It can also be composed of a paraelectric ceramic such as alumina or glass ceramic.

また、図15のコンデンサ(中間基板)300のように、積層セラミックコンデンサ基体60内の電極導体層54,57を、薄膜積層体10における間隔変換用薄膜LTと同様に、上下の基体側結合導体部55,59の連結位置が異なる端子間隔変換層LT’とし、該積層セラミックコンデンサ基体60にて端子間隔変換を行なうようにしてもよい。図15においては、薄膜積層体10内にも間隔変換用薄膜LTを設けて適当な間隔まで結合導体部15,19の配列間隔を広げ、さらに、積層セラミックコンデンサ基体60内の端子間隔変換層LT’により、基体側結合導体部59,55の配列間隔を広げることにより、端子間隔変換を2段階にて行なっている。また、図16に示すコンデンサ400のように、コンデンサを内蔵しない板状基体50’を用いる場合においても、一端が第一主表面、他端が第二主表面に露出する基体側結合導体部51a,51b(上の基体側結合導体部51a,51b、下の基体側結合導体部51a,51b)の中間に引き回し配線部53を設けて端子間隔変換を行なうようにすることも可能である。板状基体50’は、いわゆる配線基板(パッケージ基板)である。図16においては、薄膜積層体10の第二主表面における第一端子結合導体部15及び第二端子結合導体部19の配列間隔が、板状基体50’の第二主表面における第一種基体側結合導体部51a及び第二種基体側結合導体部51bの配列間隔よりも小となっている。 Further, like the capacitor (intermediate substrate) 300 in FIG. 15, the electrode conductor layers 54 and 57 in the multilayer ceramic capacitor substrate 60 are connected to the upper and lower substrate-side coupling conductors in the same manner as the distance conversion thin film LT in the thin film laminate 10. A terminal interval conversion layer LT ′ having different connection positions of the portions 55 and 59 may be used, and the terminal interval conversion may be performed by the multilayer ceramic capacitor substrate 60. In FIG. 15, an interval converting thin film LT is also provided in the thin film laminate 10 to widen the arrangement interval of the coupling conductors 15 and 19 to an appropriate interval, and further, the terminal interval converting layer LT in the multilayer ceramic capacitor substrate 60. The terminal interval conversion is performed in two stages by increasing the arrangement interval of the base-side coupling conductor portions 59 and 55 by '. Further, even in the case of using a plate-like base body 50 ′ that does not incorporate a capacitor, such as the capacitor 400 shown in FIG. , 51b (upper substrate-side coupling conductors 51a 1 , 51b 1 , lower substrate-side coupling conductors 51a 0 , 51b 0 ) may be provided with a lead wiring part 53 to perform terminal interval conversion. It is. The plate-like substrate 50 ′ is a so-called wiring substrate (package substrate). In FIG. 16, the arrangement interval of the first terminal coupling conductor portion 15 and the second terminal coupling conductor portion 19 on the second main surface of the thin film laminate 10 is the first type substrate on the second main surface of the plate-like substrate 50 ′. It is smaller than the arrangement interval of the side coupling conductor portion 51a and the second type substrate side coupling conductor portion 51b.

本発明のコンデンサ1,1A,1B,1C,1D,1E,200,300,400の製造方法を図6で説明したが、それとは別態様の製造方法を以下において説明する。すなわち、図17から図19は、本発明にかかるコンデンサの製造方法の第二実施例を示す工程説明図である。まず、第一種基体側結合導体部51a及び第二種基体側結合導体部51bが第一主表面CPに露出した板状基体50を作製する。板状基体50の製造方法については、既に説明した通りである。   Although the manufacturing method of the capacitor | condenser 1,1A, 1B, 1C, 1D, 1E, 200,300,400 of this invention was demonstrated in FIG. 6, the manufacturing method of an aspect different from it is demonstrated below. That is, FIGS. 17 to 19 are process explanatory views showing a second embodiment of the capacitor manufacturing method according to the present invention. First, the plate-like substrate 50 in which the first-type substrate-side coupling conductor portion 51a and the second-type substrate-side coupling conductor portion 51b are exposed on the first main surface CP is produced. The manufacturing method of the plate-like substrate 50 is as already described.

まず、図17の上から一番目の説明図に示すごとく、板状基体50の第一主表面CPに露出した第一種基体側結合導体部51aが覆われるように、板状基体50にレジスト70を側面が逆テーパ状になるようにパターニングする。レジスト70の厚さは、例えば1μm以上5μm以下に調整される。次に、図17の上から二番目の説明図に示すごとく、板状基体50の第一主表面CP及びレジスト70を被覆する第一種電極導体薄膜71を、スパッタ等の方法により形成する。この第一種電極導体薄膜71の厚さ等については、図6等で既に説明した通りである。ここで、第一種電極導体薄膜71は極薄であって、レジスト70の厚さはその第一種電極導体薄膜71の厚さよりも大に調整される。   First, as shown in the first explanatory view from the top of FIG. 17, a resist is applied to the plate-like substrate 50 so that the first-type substrate-side coupled conductor portion 51 a exposed on the first main surface CP of the plate-like substrate 50 is covered. 70 is patterned so that the side surface is inversely tapered. The thickness of the resist 70 is adjusted to, for example, 1 μm or more and 5 μm or less. Next, as shown in the second explanatory view from the top in FIG. 17, a first-type electrode conductor thin film 71 that covers the first main surface CP of the plate-like substrate 50 and the resist 70 is formed by a method such as sputtering. The thickness and the like of the first type electrode conductor thin film 71 are as already described with reference to FIG. Here, the first-type electrode conductor thin film 71 is extremely thin, and the thickness of the resist 70 is adjusted to be larger than the thickness of the first-type electrode conductor thin film 71.

第一種電極導体薄膜71を形成した後、レジスト70に剥離液を接触させる。このとき、レジスト70の側面部辺りから剥離液が染み込んで、該レジスト70とともにそのレジスト70上の第一種電極導体薄膜71が除去される。こうした技術は、リフトオフプロセスと呼ばれるものである。リフトオフプロセスによれば、導体薄膜自体をエッチングしないので、簡単かつ低コスト、パターニング対象の材質に依存しない等のメリットがある。LSIほどの微細パターニングを要しない薄膜コンデンサを作製する場合には、生産性に優れるリフトオフプロセスの採用が好適である。   After forming the first kind electrode conductor thin film 71, the resist 70 is brought into contact with a stripping solution. At this time, the stripping solution permeates from the side of the resist 70 and the first-type electrode conductor thin film 71 on the resist 70 is removed together with the resist 70. Such a technique is called a lift-off process. According to the lift-off process, since the conductive thin film itself is not etched, there are advantages that it is simple and low cost and does not depend on the material to be patterned. When producing a thin film capacitor that does not require as fine patterning as LSI, it is preferable to employ a lift-off process with excellent productivity.

もちろん、フォトリソグラフィー技術としては、いわゆるエッチバックプロセスを採用してもよい。すなわち、板状基体50の第一主表面CPの全部を被覆するように第一種電極導体薄膜71を形成した後、レジストをパターニングして第一種電極導体薄膜71の一部を化学エッチング等の方法で除去し、これにより第二種基体側結合導体部51bを露出するようにしてもよい。以上の操作を行なうことにより、図17の上から三番目の説明図に示すごとく、第二種基体側結合導体部51bを露出させるための第一貫通孔71pを有する第一種電極導体薄膜71が、板状基体50の第一主表面CP上に形成される。なお、第一貫通孔71pは、第二種基体側結合導体部51bよりも径大であって、その内側領域に第二種基体側結合導体部51bの露出面が収まる位置関係で設けられる。こうした第一貫通孔71pにより、第一種電極導体薄膜71は、第二種基体側結合導体部51bとは直流的に分離されることとなる。   Of course, a so-called etch back process may be employed as the photolithography technique. That is, after forming the first type electrode conductor thin film 71 so as to cover the entire first main surface CP of the plate-like substrate 50, the resist is patterned to partially etch the first type electrode conductor thin film 71, etc. The second-type substrate-side coupling conductor portion 51b may be exposed by this method. By performing the above operation, as shown in the third explanatory view from the top of FIG. 17, the first-type electrode conductor thin film 71 having the first through-hole 71p for exposing the second-type substrate-side coupling conductor portion 51b. Is formed on the first main surface CP of the plate-like substrate 50. The first through hole 71p is larger in diameter than the second type substrate-side coupling conductor portion 51b, and is provided in a positional relationship such that the exposed surface of the second type substrate-side coupling conductor portion 51b is accommodated in the inner region. By such first through-holes 71p, the first type electrode conductor thin film 71 is separated from the second type substrate-side coupling conductor portion 51b in a direct current manner.

次に、図17の上から四番目の説明図に示すごとく、第一種電極導体薄膜71の主表面及び該第一種電極導体薄膜71に設けた第一貫通孔71pの内側に露出する部分が被覆されるように、第一の誘電体薄膜72を形成する。この時点では、第二種基体側結合導体部51bが第一の誘電体薄膜72に被覆されたままである。次に、図18の上から一番目の説明図に示すごとく、第一の誘電体薄膜72に貫通孔72pを設ける。貫通孔72pを設けることにより、第二種基体側結合導体部51bが露出する。貫通孔72pは、第一の誘電体薄膜72をドライエッチング法や化学エッチングにてパターニングすることにより形成できる。また、貫通孔72pは、第二種基体側結合導体部51bと略同径であるから、第一種電極導体薄膜71及び該第一種電極導体薄膜71に設けた第一貫通孔71pの内周面は、第一の誘電体薄膜72に被覆されたままとなる。このように、図17から
図18にまたがって説明する工程は、第一種電極導体薄膜71の主表面及び該第一種電極導体薄膜71に設けた第一貫通孔71pの内周面が被覆されるように第一の誘電体薄膜72を形成する工程である。なお、誘電体薄膜の成膜方法については、既に説明した方法を採用することができる。
Next, as shown in the fourth explanatory view from the top of FIG. 17, the main surface of the first type electrode conductor thin film 71 and the portion exposed to the inside of the first through hole 71 p provided in the first type electrode conductor thin film 71. The first dielectric thin film 72 is formed so as to be covered. At this time, the second-type substrate-side coupling conductor portion 51b remains covered with the first dielectric thin film 72. Next, as shown in the first explanatory view from the top of FIG. 18, a through-hole 72 p is provided in the first dielectric thin film 72. By providing the through hole 72p, the second-type substrate-side coupling conductor portion 51b is exposed. The through hole 72p can be formed by patterning the first dielectric thin film 72 by dry etching or chemical etching. Further, since the through hole 72p has substantially the same diameter as the second type substrate-side coupling conductor portion 51b, the first type electrode conductor thin film 71 and the first through hole 71p provided in the first type electrode conductor thin film 71 The peripheral surface remains covered with the first dielectric thin film 72. As described above, the steps described from FIG. 17 to FIG. 18 cover the main surface of the first type electrode conductor thin film 71 and the inner peripheral surface of the first through hole 71p provided in the first type electrode conductor thin film 71. In this step, the first dielectric thin film 72 is formed. Note that the method described above can be employed as the method for forming the dielectric thin film.

次に、図18の上から二番目の説明図に示すごとく、第一の誘電体薄膜72に形成した貫通孔72p(誘電体薄膜72の切れ目)にて第二種基体側結合導体部51bに導通するとともに、第一種基体側結合導体部51aとは直流的に分離した第二種電極導体薄膜73を形成する。ただし、第二種電極導体薄膜73を形成するに先立って、レジスト74を第一の誘電体薄膜72の主表面上にパターニングしておく。このレジスト74は、図18の上から三番目の説明図に示すごとく、第二種電極導体薄膜73に第二貫通孔73pを形成するためのものである。このように、被パターニング材(ここでは第二種電極導体薄膜73)よりも先にレジストを形成しておくリフトオフプロセスは、既に図17のところで説明したとおりである。   Next, as shown in the second explanatory view from the top of FIG. 18, the second-type substrate-side coupling conductor portion 51b is formed through the through-hole 72p (cut of the dielectric thin film 72) formed in the first dielectric thin film 72. A second-type electrode conductor thin film 73 is formed which is conductive and separated from the first-type base-side coupled conductor portion 51a in a direct current manner. However, the resist 74 is patterned on the main surface of the first dielectric thin film 72 prior to forming the second-type electrode conductive thin film 73. This resist 74 is for forming the second through-hole 73p in the second-type electrode conductor thin film 73 as shown in the third explanatory view from the top in FIG. As described above, the lift-off process in which the resist is formed before the material to be patterned (here, the second-type electrode conductor thin film 73) has already been described with reference to FIG.

レジスト74を剥離液で除去すると、該レジスト74とともに第二種電極導体薄膜73が部分的に除去され、これにより第二種電極導体薄膜73に第二貫通孔73pが形成される。第二貫通孔73pは、ごく浅い円筒状形態を有するように形成するとよい。この第二貫通孔73pは、第一の誘電体薄膜72に通ずる孔の意であるから、第二貫通孔73p内には、第一の誘電体薄膜72が露出する。また、第二貫通孔73pは、該第二貫通孔73pを積層方向に投影したときの内側領域HLが、第一の誘電体薄膜72の下に隣接する第一種電極導体薄膜71と、面内で重なりを有するように形成される。正確には、第二貫通孔73pの内側領域HLの全部が第一種電極導体薄膜71と重なる位置関係となっている。   When the resist 74 is removed with a stripping solution, the second type electrode conductor thin film 73 is partially removed together with the resist 74, thereby forming a second through hole 73 p in the second type electrode conductor thin film 73. The second through hole 73p may be formed so as to have a very shallow cylindrical shape. Since the second through hole 73p is a hole that communicates with the first dielectric thin film 72, the first dielectric thin film 72 is exposed in the second through hole 73p. Further, the second through hole 73p has a surface in which the inner region HL when the second through hole 73p is projected in the stacking direction is adjacent to the first type electrode conductor thin film 71 adjacent to the lower side of the first dielectric thin film 72. Are formed so as to have an overlap. Precisely, the entire inner region HL of the second through-hole 73p is in a positional relationship where it overlaps with the first-type electrode conductor thin film 71.

次に、図18の上から四番目の説明図に示すごとく、第二貫通孔73pの内側領域HLにて第一の誘電体薄膜72と一体化するとともに、第二種電極導体薄膜73及び該第二種電極導体薄膜73に設けた第二貫通孔73pの内周面を被覆する第二の誘電体薄膜75を形成する。もっとも、スパッタやスピンコートで第二の誘電体薄膜75を成膜すれば、第二貫通孔73pの中にも第二の誘電体薄膜75が自然に形成されるわけだから、第一の誘電体薄膜72と第二の誘電体薄膜75とを一体化するための特別な操作は必要としない。一体化した第一の誘電体薄膜72及び第二の誘電体薄膜75は、誘電体孔内充填部76kを構成する。   Next, as shown in the fourth explanatory view from the top in FIG. 18, the first dielectric thin film 72 is integrated in the inner region HL of the second through-hole 73p, and the second-type electrode conductor thin film 73 and the A second dielectric thin film 75 that covers the inner peripheral surface of the second through hole 73p provided in the second type electrode conductor thin film 73 is formed. However, if the second dielectric thin film 75 is formed by sputtering or spin coating, the second dielectric thin film 75 is naturally formed in the second through hole 73p. No special operation for integrating the thin film 72 and the second dielectric thin film 75 is required. The integrated first dielectric thin film 72 and second dielectric thin film 75 constitute a dielectric hole filling portion 76k.

次に、図19の上から一番目の説明図に示すごとく、第二種電極導体薄膜73に設けた第二貫通孔73pの内側領域HLにて一体化した第一の誘電体薄膜72及び第二の誘電体薄膜75からなる誘電体孔内充填部76kをドーナツ状にくり貫き、第一種電極導体薄膜71に通ずる誘電体薄膜側貫通孔76pを設ける。ただし、上記第二貫通孔73pの内周面は、ドーナツ状となった誘電体孔内充填部76kによって被覆されたままである。誘電体薄膜側貫通孔76pは、第一種電極導体薄膜71を露出させるためのものである。図19の上から二番目の説明図に示すごとく、適切な厚さの金属をスパッタ・蒸着等すれば、誘電体薄膜側貫通孔76p内もしくは第二貫通孔73pの内側領域HLの結合導体部77kにて、下層の第一種電極導体薄膜71と導通する上層の第一種電極導体薄膜77が積層形成される。   Next, as shown in the first explanatory view from the top of FIG. 19, the first dielectric thin film 72 integrated in the inner region HL of the second through hole 73 p provided in the second type electrode conductor thin film 73 and the first A dielectric thin film side through-hole 76p that penetrates the dielectric hole filling portion 76k made of the second dielectric thin film 75 in a donut shape and communicates with the first-type electrode conductor thin film 71 is provided. However, the inner peripheral surface of the second through hole 73p is still covered with the dielectric hole filling portion 76k having a donut shape. The dielectric thin film side through hole 76p is for exposing the first type electrode conductor thin film 71. As shown in the second explanatory diagram from the top of FIG. 19, if a metal having an appropriate thickness is sputtered / deposited, the coupling conductor portion in the dielectric thin film side through hole 76p or the inner region HL of the second through hole 73p. At 77k, an upper-layer first-type electrode conductor thin film 77 that conducts with the lower-layer first-type electrode conductor thin film 71 is laminated.

このように、同極性(例えば電源)を持つ第一種電極導体薄膜71,77を結合する結合導体部77kと、それらとは異極性(例えばグランド)を持つ第二種電極導体薄膜73との間には、第一の誘電体薄膜72及び第二の誘電体薄膜75とが一体化してなる誘電体孔内充填部76kが介在している。そして、この誘電体孔内充填部76kが、第二種電極導体薄膜73の第二貫通孔73pの内側領域HL内において、結合導体部77kを周方向全域にわたって取り囲むことにより、該結合導体部77kの外周面と、第二種電極導体薄膜73の第二貫通孔73pの内周面とが直流的に分離される。   Thus, the coupling conductor portion 77k that couples the first-type electrode conductor thin films 71 and 77 having the same polarity (for example, power source) and the second-type electrode conductor thin film 73 having a different polarity (for example, ground) from them. A dielectric hole filling portion 76k formed by integrating the first dielectric thin film 72 and the second dielectric thin film 75 is interposed therebetween. The dielectric hole filling portion 76k surrounds the coupling conductor portion 77k over the entire circumferential direction in the inner region HL of the second through-hole 73p of the second type electrode conductor thin film 73, whereby the coupling conductor portion 77k. Are separated from the inner peripheral surface of the second through-hole 73p of the second-type electrode conductor thin film 73 in a direct current manner.

本実施形態においては、第二種電極導体薄膜73の第二貫通孔73pに比して、誘電体薄膜側貫通孔76pが径小とされる。また、両貫通孔73p,76pが同軸状となる配置としている。したがって、誘電体薄膜側貫通孔76pを形成した後にも、誘電体孔内充填部76kが第二貫通孔73pの内周面を被覆した状態が維持される。こうした方法によれば、第一種電極導体薄膜71,77と、第二種電極導体薄膜73との直流的な分離を確実に取れるとともに、同極性の電極導体薄膜同士の接続工程を極めて簡単に行なうことができる。   In the present embodiment, the dielectric thin film side through hole 76p has a smaller diameter than the second through hole 73p of the second type electrode conductor thin film 73. Moreover, both the through holes 73p and 76p are arranged coaxially. Therefore, even after the dielectric thin film side through hole 76p is formed, the state in which the dielectric hole filling portion 76k covers the inner peripheral surface of the second through hole 73p is maintained. According to such a method, it is possible to reliably separate the first-type electrode conductor thin films 71 and 77 and the second-type electrode conductor thin film 73 from each other in a direct current manner, and it is very easy to connect the electrode conductor thin films having the same polarity. Can be done.

また、第二貫通孔73pの軸線が、第一種基体側結合導体部51aの軸線に対して、面内方向にずれた位置関係となっている。すなわち、電源の極性を持つ電極導体薄膜と、グランドの極性を持つ電極導体薄膜との直流的な分離状態を維持しつつ、基体側端子アレー7の端子間隔を、薄膜積層体側端子アレー5の端子間隔に合わせ込むための構造(いわゆるファンアウト構造)の要部が示されている。こうした点については、既に説明したとおりである。   In addition, the axial line of the second through hole 73p is in a positional relationship shifted in the in-plane direction with respect to the axial line of the first-type substrate-side coupling conductor portion 51a. That is, while maintaining a direct current separation state between the electrode conductor thin film having the polarity of the power supply and the electrode conductor thin film having the polarity of the ground, the terminal interval of the base-side terminal array 7 is set to the terminals of the thin-film laminate-side terminal array 5. The main part of the structure (what is called a fanout structure) for adjusting to a space | interval is shown. These points are as described above.

さらに、図19の上から三番目の説明図に示すごとく、これまで説明した各工程を援用して、第一種電極導体薄膜77の上に第三の誘電体薄膜78を形成する。この第三の誘電体薄膜78は、第一種電極導体薄膜77に設けた貫通孔77pを通じて一層下の第二の誘電体薄膜75に一体化し、誘電体孔内充填部78kを形成する。そして、図19の上から四番目の説明図に示すごとく、既述した方法と同様にして、誘電体孔内充填部78kの中心部をくり貫いて誘電体薄膜側貫通孔78pを形成し、誘電体薄膜側貫通孔78pを介して、上下の第二種電極導体薄膜73,79同士を接続する。このように、電源側の電極導体薄膜71,77を積層しパターニングする工程と、誘電体薄膜72,75,78を積層しパターニングする工程と、グランド側の電極導体薄膜73,79を積層しパターニングする工程とを、順番に繰り返し行なっていく。そして、電極導体薄膜及び誘電体薄膜の積層が終了した後、信号用結合導体22及び引き回し配線部21と、補助誘電体層12との積層形成を一括して行なう。さらに、メッキ等により端子5s,5b,5aを形成した後、ソルダーレジスト層を兼ねた保護層11を、二酸化珪素等を用いて形成することにより、本発明にかかるコンデンサが完成する。   Further, as shown in the third explanatory view from the top of FIG. 19, the third dielectric thin film 78 is formed on the first-type electrode conductor thin film 77 by using the steps described so far. The third dielectric thin film 78 is integrated with the second dielectric thin film 75 below through the through-hole 77p provided in the first kind electrode conductor thin film 77 to form a dielectric hole filling portion 78k. Then, as shown in the fourth explanatory diagram from the top of FIG. 19, in the same manner as described above, the dielectric thin film side through-hole 78p is formed through the center of the dielectric hole filling portion 78k, The upper and lower second-type electrode conductor thin films 73 and 79 are connected to each other through the dielectric thin film side through hole 78p. Thus, the step of laminating and patterning the electrode conductor thin films 71 and 77 on the power source side, the step of laminating and patterning the dielectric thin films 72, 75 and 78, and the layering and patterning of the electrode conductor thin films 73 and 79 on the ground side. The process to perform is repeated in order. Then, after the lamination of the electrode conductor thin film and the dielectric thin film is completed, the signal coupling conductor 22, the routing wiring portion 21, and the auxiliary dielectric layer 12 are collectively formed. Furthermore, after forming the terminals 5s, 5b, and 5a by plating or the like, the protective layer 11 that also serves as a solder resist layer is formed using silicon dioxide or the like, whereby the capacitor according to the present invention is completed.

なお、図17から図19の製造方法を採用して作製されるコンデンサにおいては、図19の上から四番目の説明図に示すごとく、上下の電極導体薄膜を接続する部分が擂り鉢状にやや窪んだ形を呈することとなる。ただし、電極導体薄膜の厚さや誘電体薄膜の厚さは1μm程度あるいはそれ以下なので、実際には然程大きな凹凸は生じない。それに、誘電体薄膜の成膜方法としてスピンコート法など、膜の表面の凹凸を解消しつつ成膜できる方法を適宜選択することもできる。   In addition, in the capacitor manufactured by adopting the manufacturing method of FIGS. 17 to 19, as shown in the fourth explanatory view from the top of FIG. 19, the portions connecting the upper and lower electrode conductor thin films are somewhat in a bowl shape. It will have a concave shape. However, since the thickness of the electrode conductor thin film and the thickness of the dielectric thin film are about 1 μm or less, in practice, there is not so much unevenness. In addition, as a method for forming the dielectric thin film, a method capable of forming a film while eliminating irregularities on the surface of the film, such as a spin coating method, can be appropriately selected.

次に、図20から図22は、本発明にかかるコンデンサの製造方法の第三実施例を示す工程説明図である。各工程の説明は、第二実施例の説明を大部分援用できるので、相違点を中心に説明する。まず、図20の上から一番目の説明図に示すごとく、板状基体50の第一主表面CPに露出した第二種基体側結合導体部51bの周囲に、レジスト81をドーナツ状にパターニングする。そして、図20の上から二番目及び三番目の説明図に示すごとく、金属をスパッタ等の方法で堆積した後、レジスト81を除去することにより、リング状の貫通孔82pを有する第一種電極導体薄膜82が形成される。第二種基体側結合導体部51bの真上に隣接して電極導体薄膜部83が形成されるが、この電極導体薄膜部83は、第一種電極導体薄膜部82とは直流的に分離されている。このように、電極導体薄膜部83を形成しておくことで、複数の電極導体薄膜及び複数の誘電体薄膜を積層していくにつれて凹凸が大きくなっていくことを防止できる。この点、図6で説明した第一実施例と同じである。   Next, FIG. 20 to FIG. 22 are process explanatory views showing a third embodiment of the capacitor manufacturing method according to the present invention. Since the description of each process can mostly be used for the description of the second embodiment, the description will focus on the differences. First, as shown in the first explanatory view from the top of FIG. 20, a resist 81 is patterned in a donut shape around the second-type substrate-side coupling conductor portion 51b exposed on the first main surface CP of the plate-like substrate 50. . Then, as shown in the second and third explanatory diagrams from the top of FIG. 20, after depositing the metal by a method such as sputtering, the resist 81 is removed to thereby provide a first type electrode having a ring-shaped through hole 82p. A conductive thin film 82 is formed. An electrode conductor thin film portion 83 is formed adjacent to and directly above the second type substrate side coupling conductor portion 51b. This electrode conductor thin film portion 83 is separated from the first type electrode conductor thin film portion 82 in a direct current manner. ing. Thus, by forming the electrode conductor thin film portion 83, it is possible to prevent the unevenness from increasing as the plurality of electrode conductor thin films and the plurality of dielectric thin films are laminated. This is the same as the first embodiment described in FIG.

次に、図20の上から四番目の説明図に示すごとく、第一の誘電体薄膜84を形成する。ドーナツ状貫通孔82pの内周面が第一の誘電体薄膜84で被覆されることとなるので、これにより、第一種電極導体薄膜部82と第二種基体側結合導体部51bとは確実に分離される。次に、図21の上から一番目の説明図に示すごとく、第二種基体側結合導体部51bを被覆する電極導体薄膜部83が露出するように、第一の誘電体薄膜84の一部をフォトリソグラフィー技術により除去する。また、このときに、第一種電極導体薄膜部82の一部を露出させるための貫通孔84pも形成する。   Next, as shown in the fourth explanatory view from the top of FIG. 20, a first dielectric thin film 84 is formed. Since the inner peripheral surface of the donut-shaped through hole 82p is covered with the first dielectric thin film 84, the first-type electrode conductor thin film portion 82 and the second-type substrate-side coupling conductor portion 51b are surely connected. Separated. Next, as shown in the first explanatory view from the top of FIG. 21, a part of the first dielectric thin film 84 is so exposed that the electrode conductor thin film portion 83 covering the second-type substrate-side coupling conductor portion 51b is exposed. Are removed by photolithography. At this time, a through hole 84p for exposing a part of the first type electrode conductor thin film portion 82 is also formed.

次に、図21の上から二番目の説明図に示すごとく、第一の誘電体薄膜84に形成した貫通孔84pの開口周縁部にドーナツ状にレジスト85をパターニングし、第二種電極導体薄膜部86を形成する。そして、図21の上から三番目の説明図に示すごとく、レジスト84を除去することにより、第二種電極導体薄膜部86には、中心に第一種電極導体薄膜部82に結合する結合導体部87kが位置する形で、ドーナツ状の貫通孔86pが形成される。また、第二種電極導体薄膜部86は、電極導体薄膜部83を介して第二種基体側結合導体部51bに導通する。すなわち、電極導体薄膜部83は、第二種基体側結合導体部51bと第二種電極導体薄膜部86とを接続する結合導体部として機能している。   Next, as shown in the second explanatory view from the top of FIG. 21, a resist 85 is patterned in a donut shape on the opening peripheral edge of the through hole 84p formed in the first dielectric thin film 84, and the second type electrode conductor thin film A portion 86 is formed. Then, as shown in the third explanatory view from the top of FIG. 21, by removing the resist 84, the second-type electrode conductor thin film portion 86 is coupled to the first-type electrode conductor thin film portion 82 at the center. A donut-shaped through hole 86p is formed in a form in which the portion 87k is located. The second-type electrode conductor thin film portion 86 is electrically connected to the second-type substrate-side coupled conductor portion 51b through the electrode conductor thin film portion 83. That is, the electrode conductor thin film portion 83 functions as a coupling conductor portion that connects the second type substrate-side coupling conductor portion 51 b and the second type electrode conductor thin film portion 86.

そして、図21の上から四番目の説明図に示すごとく、第二の誘電体薄膜89を形成することにより、ドーナツ状の貫通孔86p内において、第一の誘電体薄膜84と第二の誘電体薄膜89とが一体化して誘電体孔内充填部89kが形成される。誘電体孔内充填部89kは、第一種電極導体薄膜部82に隣接して形成されている結合導体部87kと、第二種電極導体薄膜部86の貫通孔86pの内周面とに介在している。これにより、第一種電極導体薄膜部82と、第二種電極導体薄膜部86とは直流的に分離される。そして、図22に示すごとく、同様の手順を繰り返していき、電極導体薄膜及び誘電体薄膜の積層工程を終了する。   Then, as shown in the fourth explanatory diagram from the top in FIG. 21, by forming the second dielectric thin film 89, the first dielectric thin film 84 and the second dielectric thin film are formed in the donut-shaped through hole 86p. The dielectric thin film 89 is integrated to form a dielectric hole filling portion 89k. The dielectric hole filling portion 89k is interposed between the coupling conductor portion 87k formed adjacent to the first type electrode conductor thin film portion 82 and the inner peripheral surface of the through hole 86p of the second type electrode conductor thin film portion 86. is doing. As a result, the first-type electrode conductor thin film portion 82 and the second-type electrode conductor thin film portion 86 are separated in a direct current manner. And as shown in FIG. 22, the same procedure is repeated and the lamination process of an electrode conductor thin film and a dielectric thin film is complete | finished.

以上、本明細書中にはいくつかのコンデンサの実施形態と、いくつかのコンデンサの製造方法の実施形態を示したが、各実施形態の説明は相互に援用できるものであることに言及しおく。また、発明の要旨を逸脱しない範囲内において、各実施形態を種々組み合わせることができることはもちろんである。   As mentioned above, although several embodiment of the capacitor | condenser and several embodiment of the manufacturing method of the capacitor | condenser were shown in this specification, it mentions that description of each embodiment can mutually be used. . Further, it goes without saying that various embodiments can be combined in various ways without departing from the scope of the invention.

本発明のコンデンサを中間基板として構成した一例を示す側面模式図。The side surface schematic diagram which shows an example which comprised the capacitor | condenser of this invention as an intermediate | middle board | substrate. 集積回路用のデカップリングコンデンサの使用形態の一例を示す等価回路図。The equivalent circuit diagram which shows an example of the usage condition of the decoupling capacitor for integrated circuits. 図1の本発明のコンデンサを取り出して示す平面図及び側面断面模式図。The top view and side cross-sectional schematic diagram which take out and show the capacitor | condenser of this invention of FIG. 図3のコンデンサの詳細構造を示す断面図。Sectional drawing which shows the detailed structure of the capacitor | condenser of FIG. 電極導体薄膜の平面形態を例示して示す模式図。The schematic diagram which illustrates and illustrates the planar form of an electrode conductor thin film. 図4のコンデンサの製造方法の一例を示す工程説明図。Process explanatory drawing which shows an example of the manufacturing method of the capacitor | condenser of FIG. 図4のコンデンサの第一変形例を示す断面図。Sectional drawing which shows the 1st modification of the capacitor | condenser of FIG. 同じく第二変形例を示す断面図。Sectional drawing which similarly shows a 2nd modification. 同じく第三変形例を示す断面図。Sectional drawing which shows a 3rd modification similarly. 同じく第四変形例を示す断面図。Sectional drawing which shows a 4th modification similarly. 同じく第五変形例を示す断面図。Sectional drawing which shows a 5th modification similarly. 同じく第六変形例を示す平面図及び側面断面模式図。The top view and side surface schematic diagram which show a 6th modification similarly. 図12の要部拡大断面模式図。The principal part expanded sectional schematic diagram of FIG. 図4のコンデンサの第七変形例を示す断面図。Sectional drawing which shows the 7th modification of the capacitor | condenser of FIG. 同じく第八変形例を示す断面図。Sectional drawing which similarly shows the 8th modification. 同じく第九変形例を示す断面図。Sectional drawing which shows a 9th modification similarly. 本発明にかかるコンデンサの製造方法の第二実施例を示す工程説明図。Process explanatory drawing which shows the 2nd Example of the manufacturing method of the capacitor | condenser concerning this invention. 図17に続く工程説明図。Process explanatory drawing following FIG. 図18に続く工程説明図。Process explanatory drawing following FIG. 本発明にかかるコンデンサの製造方法の第三実施例を示す工程説明図。Process explanatory drawing which shows the 3rd Example of the manufacturing method of the capacitor | condenser concerning this invention. 図20に続く工程説明図。Process explanatory drawing following FIG. 図21に続く工程説明図。Process explanatory drawing following FIG.

符号の説明Explanation of symbols

1,1A,1B,1C,1D,1E,200,300,400 コンデンサ(中間基板)
5 薄膜積層体側端子アレー
5a 第一種端子
5b 第二種端子
5s 信号用端子
7 基体側端子アレー
7a 第一種基体側端子
7b 第二種基体側端子
7s 信号用基体側端子
10 薄膜積層体
12 補助誘電体層
13 誘電体薄膜
13h 貫通孔
13v,76k,78k,89k 誘電体孔内充填部
14,71,77 第一種電極導体薄膜
15,19,77k,87k 結合導体部
15’,15’’,19’ 補助結合導体部
17,73,79,86 第二種電極導体薄膜
16,18 貫通孔
22 信号用結合導体部
50 板状基体
51a 第一種基体側結合導体部
51b 第二種基体側結合導体部
51s 信号用基体側結合導体部
52 焼成セラミック誘電体層
54,57 電極導体層
LT 間隔変換用薄膜
1, 1A, 1B, 1C, 1D, 1E, 200, 300, 400 Capacitor (intermediate substrate)
5 thin film laminate side terminal array 5a first type terminal 5b second type terminal 5s signal terminal 7 base side terminal array 7a first type base side terminal 7b second type base side terminal 7s signal base side terminal 10 thin film stack 12 Auxiliary dielectric layer 13 Dielectric thin film 13h Through hole 13v, 76k, 78k, 89k Dielectric hole filling portion 14, 71, 77 First type electrode conductor thin film 15, 19, 77k, 87k Coupling conductor portion 15 ', 15'',19' Auxiliary coupling conductor portion 17, 73, 79, 86 Second-type electrode conductor thin film 16, 18 Through hole 22 Signal coupling conductor portion 50 Plate-like substrate 51a First-type substrate-side coupling conductor portion 51b Second-type substrate Side coupling conductor portion 51s Signal substrate side coupling conductor portion 52 Sintered ceramic dielectric layer 54, 57 Electrode conductor layer LT Thin film for interval conversion

Claims (20)

コンデンサを形成する複数の誘電体薄膜と複数の電極導体薄膜とが交互に積層された薄膜積層体を有し、該薄膜積層体の第一主表面に、直流的に互いに分離された第一種端子と第二種端子とが形成されるとともに、
前記電極導体薄膜は、前記第一種端子に導通する第一種電極導体薄膜と、前記第二種端子に導通する第二種電極導体薄膜とが、前記誘電体薄膜により隔てられた形で積層方向に交互に配列するとともに、該積層方向に隣接する一方の同種電極導体薄膜と他方の同種電極導体薄膜との間に第一の誘電体薄膜と、他種電極導体薄膜と、第二の誘電体薄膜とがこの順序で配列してなり、
前記第一の誘電体薄膜に形成された第一貫通孔と、前記他種電極導体薄膜に形成された第二貫通孔とが面内投影にて重なりを有し、該第二貫通孔と前記第二の誘電体薄膜に形成された第三貫通孔とが面内投影にて重なりを有し、
前記一方の同種電極導体薄膜と前記他方の同種電極導体薄膜とを結合する結合導体部が、前記第一貫通孔と前記第三貫通孔とをそれぞれ充填する形で、前記2つの同種電極導体薄膜の少なくともいずれかと共成膜される薄膜部として形成され、前記第二貫通孔内において、前記第一の誘電体薄膜及び前記第二の誘電体薄膜と一体化された誘電体孔内充填部により、該結合導体部の外周面と該第二貫通孔の内周面とが直流的に分離されてなることを特徴とするコンデンサ。
A first type having a thin film laminate in which a plurality of dielectric thin films and a plurality of electrode conductor thin films forming a capacitor are alternately laminated, and separated from each other in a direct current manner on the first main surface of the thin film laminate A terminal and a second type terminal are formed,
The electrode conductor thin film is laminated in such a manner that a first type electrode conductor thin film conducting to the first type terminal and a second type electrode conductor thin film conducting to the second type terminal are separated by the dielectric thin film. The first dielectric thin film, the other kind of electrode conductor thin film, and the second dielectric between the same kind of electrode conductor thin film and the other of the same kind of electrode conductor thin film adjacent to each other in the stacking direction. The body thin film is arranged in this order,
The first through hole formed in the first dielectric thin film and the second through hole formed in the other-type electrode conductor thin film have an overlap by in-plane projection, and the second through hole and the The third through hole formed in the second dielectric thin film has an overlap by in-plane projection,
The two same-type electrode conductor thin films are formed in such a manner that a coupling conductor portion that connects the one same-type electrode conductor thin film and the other same-type electrode conductor thin film fills the first through-hole and the third through-hole, respectively. And a dielectric hole filling portion integrated with the first dielectric thin film and the second dielectric thin film in the second through hole. The capacitor is characterized in that the outer peripheral surface of the coupling conductor portion and the inner peripheral surface of the second through hole are separated in a direct current manner.
前記貫通孔は、前記電極導体薄膜及び前記誘電体薄膜に対し、フォトリソグラフィーにより形成されたものである請求項1記載のコンデンサ。   The capacitor according to claim 1, wherein the through hole is formed by photolithography on the electrode conductor thin film and the dielectric thin film. 前記誘電体薄膜の厚さが10nm以上1000nm以下である請求項1又は請求項2に記載のコンデンサ。   The capacitor according to claim 1 or 2, wherein a thickness of the dielectric thin film is 10 nm or more and 1000 nm or less. 前記電極導体薄膜毎に、同じ主表面側にて該電極導体薄膜に導通する前記結合導体部が複数個形成され、かつそれら複数個の結合導体部のうち、異種であってかつ最も近接するもの同士の縁間間隔が20μm以上300μm以下である請求項3記載のコンデンサ。   For each of the electrode conductor thin films, a plurality of the coupling conductor portions that are electrically connected to the electrode conductor thin film are formed on the same main surface side, and the plurality of coupling conductor portions are different and closest to each other The capacitor according to claim 3, wherein an interval between edges is 20 μm or more and 300 μm or less. 前記薄膜積層体の前記第一主表面に、前記第一種端子と前記第二種端子とが予め定められた間隔にて各々複数個配置され、それら第一種端子及び第二種端子が、前記第一主表面に最も近い前記第一種電極導体薄膜及び前記第二種電極導体薄膜に対し、直接又は補助結合導体部を介してそれぞれ積層方向に結合されてなり、
前記薄膜積層体の前記第一主表面には、それら複数の第一種端子と第二種端子とが混在した端子アレーが形成され、該端子アレー内にて最も隣接する異種端子同士の縁間間隔が20μm以上300μm以下である請求項4記載のコンデンサ。
A plurality of the first type terminals and the second type terminals are respectively arranged at predetermined intervals on the first main surface of the thin film laminate, and the first type terminals and the second type terminals are, For the first-type electrode conductor thin film and the second-type electrode conductor thin film closest to the first main surface, each bonded directly or via an auxiliary coupling conductor portion in the stacking direction,
On the first main surface of the thin film laminate, a terminal array in which the plurality of first-type terminals and second-type terminals are mixed is formed, and between adjacent edges of the adjacent terminals in the terminal array. The capacitor according to claim 4, wherein the interval is 20 μm or more and 300 μm or less.
前記電極導体薄膜及び前記結合導体部が気相成膜法にて形成され、前記誘電体薄膜及び前記誘電体孔内充填部が気相成膜法又は化学溶液成膜法にて形成されてなる請求項1ないし請求項5のいずれか1項に記載のコンデンサ。   The electrode conductor thin film and the coupling conductor portion are formed by a vapor deposition method, and the dielectric thin film and the dielectric hole filling portion are formed by a vapor deposition method or a chemical solution deposition method. The capacitor according to any one of claims 1 to 5. 前記誘電体薄膜及び前記誘電体孔内充填部が高誘電率セラミックにて構成されてなる請求項1ないし請求項6のいずれか1項に記載のコンデンサ。   The capacitor according to any one of claims 1 to 6, wherein the dielectric thin film and the dielectric hole filling portion are formed of a high dielectric constant ceramic. 前記高誘電率セラミックはチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上からなる請求項7記載のコンデンサ。   The capacitor according to claim 7, wherein the high dielectric constant ceramic comprises one or more of barium titanate, strontium titanate, and lead titanate. 前記薄膜積層体の第二主表面が板状基体の第一主表面に結合され、該板状基体の第二主表面に、直流的に互いに分離された第一種基体側端子と第二種基体側端子とが形成され、それら第一種基体側端子と第二種基体側端子とが、前記板状基体を厚さ方向に貫通する基体側結合導体部を介して、前記薄膜積層体の第二主表面に最も近い前記第一種電極導体薄膜及び前記第二種電極導体薄膜にそれぞれ接続されてなる請求項1ないし請求項8のいずれか1項に記載のコンデンサ。   The second main surface of the thin film laminate is bonded to the first main surface of the plate-like substrate, and the first type substrate-side terminal and the second type separated from each other in a direct current manner on the second main surface of the plate-like substrate. A base-side terminal is formed, and the first-type base-side terminal and the second-type base-side terminal are connected to the thin film laminate through a base-side coupling conductor portion that penetrates the plate-like base in the thickness direction. The capacitor according to any one of claims 1 to 8, wherein the capacitor is connected to the first-type electrode conductor thin film and the second-type electrode conductor thin film closest to the second main surface. 前記薄膜積層体の前記第一主表面に、複数の前記第一種端子と複数の前記第二種端子とが混在した薄膜積層体側端子アレーが形成され、
前記板状基体の第二主表面に、複数の前記第一種基体側端子と複数の前記第二種基体側端子とが混在した基体側端子アレーが形成され、
前記基体側端子アレーの端子配列間隔が前記薄膜積層体側端子アレーの端子配列間隔よりも広く設定されてなる請求項9記載のコンデンサ。
On the first main surface of the thin film laminate, a thin film laminate side terminal array in which a plurality of the first type terminals and a plurality of the second type terminals are mixed is formed,
A base-side terminal array in which a plurality of the first-type base-side terminals and a plurality of the second-type base-side terminals are mixed is formed on the second main surface of the plate-like base,
The capacitor according to claim 9, wherein a terminal arrangement interval of the substrate-side terminal array is set wider than a terminal arrangement interval of the thin film laminate-side terminal array.
前記薄膜積層体上の前記薄膜積層体側端子アレーにおいて、前記第一種端子及び第二種端子が、前記第一主表面に最も近い前記第一種電極導体薄膜及び前記第二種電極導体薄膜に対し、直接又は補助結合導体部を介してそれぞれ積層方向に結合されてなり、
前記板状基体の第一主表面において、前記第一種基体側端子に導通する第一種基体側結合導体部と、前記第二種基体側端子に導通する第二種基体側結合導体部との各端部が、前記薄膜積層体側端子アレーの端子間隔よりも大間隔にて配列してなり、それぞれ、前記薄膜積層体の第二主表面に最も近い前記第一種電極薄膜導体及び前記第二電極薄膜導体に対し、直接又は補助結合導体部を介して積層方向に結合されてなる請求項10記載のコンデンサ。
In the thin film laminate side terminal array on the thin film laminate, the first type terminal and the second type terminal are the first type electrode conductor thin film and the second type electrode conductor thin film closest to the first main surface. On the other hand, it is coupled in the stacking direction directly or via an auxiliary coupling conductor part,
On the first main surface of the plate-like substrate, a first-type substrate-side coupling conductor portion conducting to the first-type substrate-side terminal, and a second-type substrate-side coupling conductor portion conducting to the second-type substrate-side terminal; Are arranged at a larger interval than the terminal interval of the thin film laminate-side terminal array, and each of the first type electrode thin film conductor and the first electrode closest to the second main surface of the thin film laminate, respectively. The capacitor according to claim 10, wherein the capacitor is coupled to the two-electrode thin film conductor in the stacking direction directly or via an auxiliary coupling conductor portion.
前記薄膜積層体において、前記電極導体薄膜の少なくとも一層が、前記薄膜積層体側端子アレー側から当該電極導体薄膜に前記結合導体部が第一配列間隔にて接続する一方、前記基体側端子アレー側から当該電極導体薄膜に前記第一配列間隔よりも広い第二配列間隔にて前記結合導体部が接続する間隔変換用薄膜とされている請求項10又は請求項11に記載のコンデンサ。   In the thin film laminate, at least one layer of the electrode conductor thin film is connected to the electrode conductor thin film from the thin film laminate side terminal array side at the first array interval, while the base conductor side terminal array side is connected. The capacitor according to claim 10 or 11, wherein the thin film for distance conversion is formed such that the coupling conductor portion is connected to the electrode conductor thin film at a second arrangement interval wider than the first arrangement interval. 前記薄膜積層体は、前記第一種電極導体薄膜の少なくとも一層と、前記第二種電極導体薄膜の少なくとも一層とが、それぞれ前記間隔変換用薄膜とされている請求項12記載のコンデンサ。   13. The capacitor according to claim 12, wherein in the thin film laminate, at least one layer of the first-type electrode conductor thin film and at least one layer of the second-type electrode conductor thin film are respectively used as the interval conversion thin film. 前記第一種電極導体薄膜及び前記第二種電極導体薄膜は、前記間隔変換用薄膜に対し前記薄膜積層体側端子アレー側にて最も近い同種の電極導体薄膜を変換前薄膜とし、同じく前記基体側端子アレー側にて最も近い同種の電極導体薄膜を変換後薄膜として定義したとき、前記変換前薄膜と前記間隔変換用薄膜との間、及び前記間隔変換用薄膜と前記変換後薄膜との間で、各前記結合導体部の結合位置が面内方向にてそれぞれ互いに一致してなり、かつ、前記変換前薄膜と前記間隔変換用薄膜との間、及び前記間隔変換用薄膜と前記変換後薄膜との間にそれぞれ位置する他種の電極導体薄膜には、前記結合導体部を通すための前記第二貫通孔が互いにずれた位置関係で形成されてなる請求項13記載のコンデンサ。   The first-type electrode conductor thin film and the second-type electrode conductor thin film are the same type of electrode conductor thin film closest to the gap converting thin film on the thin film laminate side terminal array side as the pre-conversion thin film, and also on the base side When the same type of electrode conductor thin film closest to the terminal array side is defined as a thin film after conversion, between the thin film before conversion and the thin film for interval conversion, and between the thin film for interval conversion and the thin film after conversion In addition, the coupling positions of the coupling conductor portions coincide with each other in the in-plane direction, and between the pre-conversion thin film and the interval conversion thin film, and the interval conversion thin film and the post-conversion thin film. The capacitor according to claim 13, wherein the second through holes for passing the coupling conductor portion are formed in a positional relationship shifted from each other in the other types of electrode conductor thin films positioned between each other. 前記薄膜積層体の第二主表面が板状基体の第一主表面に結合され、該板状基体の第二主表面に、直流的に互いに分離された第一種基体側端子と第二種基体側端子とが形成され、それら第一種基体側端子と第二種基体側端子とが、前記薄膜積層体の第二主表面に最も近い前記第一種電極導体薄膜及び前記第二種電極導体薄膜にそれぞれ接続されてなる請求項1ないし請求項8のいずれか1項に記載のコンデンサ。   The second main surface of the thin film laminate is bonded to the first main surface of the plate-like substrate, and the first type substrate-side terminal and the second type separated from each other in a direct current manner on the second main surface of the plate-like substrate. The first-type electrode conductor thin film and the second-type electrode closest to the second main surface of the thin-film laminate are formed with a base-side terminal. The capacitor according to any one of claims 1 to 8, wherein the capacitor is connected to each conductor thin film. 前記第一貫通孔及び前記第三貫通孔が、前記第二貫通孔を前記積層方向に投影して定められる内側領域に収まって位置し、
前記第一の誘電体薄膜が前記第二貫通孔内に沈み込む形で成膜されることにより、前記積層方向における前記第一貫通孔の高さ位置が前記第二貫通孔と略一致する高さ位置、又は前記第二貫通孔よりも前記板状基体側に引き下がった高さ位置に調整されてなる請求項1ないし請求項15のいずれか1項に記載のコンデンサ。
The first through hole and the third through hole are located within an inner region determined by projecting the second through hole in the stacking direction;
By forming the first dielectric thin film into a form that sinks into the second through hole, the height position of the first through hole in the stacking direction is substantially equal to the second through hole. The capacitor according to any one of claims 1 to 15, wherein the capacitor is adjusted to a vertical position or a height position pulled down toward the plate-like substrate with respect to the second through hole.
コンデンサを形成する複数の誘電体薄膜と複数の電極導体薄膜とが交互に積層された薄膜積層体を有し、該薄膜積層体の第一主表面に、直流的に互いに分離された第一種端子と第二種端子とが形成されるとともに、
前記電極導体薄膜は、前記第一種端子に導通する第一種電極導体薄膜と、前記第二種端子に導通する第二種電極導体薄膜とが、前記誘電体薄膜により隔てられた形で積層方向に交互に配列するとともに、該積層方向に隣接する一方の同種電極導体薄膜と他方の同種電極導体薄膜との間に第一の誘電体薄膜と、他種電極導体薄膜と、第二の誘電体薄膜とがこの順序で配列してなり、
前記他種電極導体薄膜に形成された貫通孔を前記積層方向に投影して定められる内側領域には、前記一方の同種電極導体薄膜と前記他方の同種電極導体薄膜とが結合されてなる結合導体部が位置し、
その結合導体部と前記他種電極導体薄膜との間には、前記第一の誘電体薄膜及び前記第二の誘電体薄膜とが一体化してなる誘電体孔内充填部が介在し、
その誘電体孔内充填部が、前記貫通孔の前記内側領域内において前記結合導体部を取り囲むことにより、該結合導体部の外周面と前記他種電極導体薄膜の前記貫通孔の内周面とが直流的に分離されてなることを特徴とするコンデンサ。
A first type having a thin film laminate in which a plurality of dielectric thin films and a plurality of electrode conductor thin films forming a capacitor are alternately laminated, and separated from each other in a direct current manner on the first main surface of the thin film laminate A terminal and a second type terminal are formed,
The electrode conductor thin film is laminated in such a manner that a first type electrode conductor thin film conducting to the first type terminal and a second type electrode conductor thin film conducting to the second type terminal are separated by the dielectric thin film. The first dielectric thin film, the other kind of electrode conductor thin film, and the second dielectric between the same kind of electrode conductor thin film and the other of the same kind of electrode conductor thin film adjacent to each other in the stacking direction. The body thin film is arranged in this order,
A coupling conductor in which the one same-type electrode conductor thin film and the other same-type electrode conductor thin film are coupled to an inner region defined by projecting through holes formed in the other-type electrode conductor thin film in the stacking direction. Part is located,
Between the coupling conductor portion and the other-type electrode conductor thin film, a dielectric hole filling portion formed by integrating the first dielectric thin film and the second dielectric thin film is interposed,
The dielectric hole filling portion surrounds the coupling conductor portion in the inner region of the through hole, whereby the outer circumferential surface of the coupling conductor portion and the inner circumferential surface of the through hole of the other electrode conductor thin film Is a capacitor separated from each other in a direct current manner.
直流的に互いに分離された第一種基体側結合導体部と第二種基体側結合導体部とが第一主表面に露出した板状基体を作製する基体作製工程と、コンデンサを形成する複数の誘電体薄膜と複数の電極導体薄膜とが交互に積層された薄膜積層体を前記板状基体上に形成する薄膜積層体形成工程とを備え、その薄膜積層体形成工程は、
a.前記第一種基体側結合導体部と導通し、前記第二種基体側結合導体部とは直流的に分離した第一種電極導体薄膜を、前記板状基体の前記第一主表面上に形成する工程と、
b.前記第一種電極導体薄膜を被覆する第一の誘電体薄膜を形成する工程と、
c.前記第一の誘電体薄膜に切れ目を形成し、その切れ目にて前記第二種基体側結合導体部に導通するとともに、前記第一種基体側結合導体部とは直流的に分離した第二種電極導体薄膜を形成することと、前記第一の誘電体薄膜を露出させるための貫通孔を前記第二種電極導体薄膜に設けることとを行なう工程と、
d.前記第二種電極導体薄膜に設けた前記貫通孔を積層方向に投影して定められる内側領域にて前記第一の誘電体薄膜と一体化するとともに、前記第二種電極導体薄膜及び該第二種電極導体薄膜に設けた前記貫通孔の内周面を被覆する第二の誘電体薄膜を形成する工程と、
e.前記第二の誘電体薄膜に切れ目を形成し、その切れ目にて前記第一種電極導体薄膜に導通するとともに前記第二種電極導体薄膜とは直流的に分離した電極導体薄膜を形成する工程と、
を含むことを特徴とするコンデンサの製造方法。
A substrate manufacturing step for manufacturing a plate-like substrate in which the first-type substrate-side coupling conductor portion and the second-type substrate-side coupling conductor portion separated from each other in a direct current are exposed on the first main surface; A thin film laminate forming step in which a thin film laminate in which dielectric thin films and a plurality of electrode conductor thin films are alternately laminated is formed on the plate-like substrate, the thin film laminate forming step,
a. Forming on the first main surface of the plate-like substrate a first-type electrode conductor thin film that is electrically connected to the first-type substrate-side coupling conductor and is DC-isolated from the second-type substrate-side coupling conductor. And a process of
b. Forming a first dielectric thin film covering the first-type electrode conductor thin film;
c. A cut is formed in the first dielectric thin film, and the second type separated from the first type substrate side coupling conductor portion in a DC manner while being electrically connected to the second type substrate side coupling conductor portion at the cut. Forming an electrode conductor thin film and providing a through hole in the second type electrode conductor thin film for exposing the first dielectric thin film; and
d. The second type electrode conductor thin film and the second type electrode conductor thin film are integrated with the first dielectric thin film in an inner region determined by projecting the through hole provided in the second type electrode conductor thin film in the stacking direction. Forming a second dielectric thin film covering the inner peripheral surface of the through hole provided in the seed electrode conductor thin film;
e. Forming a slit in the second dielectric thin film, and forming an electrode conductor thin film that is electrically connected to the first type electrode conductor thin film at the cut and separated from the second type electrode conductor thin film in a direct current manner; ,
A method for producing a capacitor, comprising:
前記工程a.は、前記第二種基体側結合導体部を露出させるための第一貫通孔を有する前記第一種電極導体薄膜を形成する工程であり、
前記工程b.は、前記第一種電極導体薄膜の表面及び該第一種電極導体薄膜に設けた第一貫通孔の内周面が被覆されるように前記第一の誘電体薄膜を形成する工程とされる請求項18記載のコンデンサの製造方法。
Step a. Is a step of forming the first-type electrode conductor thin film having a first through hole for exposing the second-type substrate-side coupling conductor portion,
Step b. Is a step of forming the first dielectric thin film so that the surface of the first type electrode conductor thin film and the inner peripheral surface of the first through hole provided in the first type electrode conductor thin film are covered. The method for manufacturing a capacitor according to claim 18.
前記工程d.は、
前記第二種電極導体薄膜の表面及び該第二種電極導体薄膜に設けた前記貫通孔の内周面が被覆されるように前記第二の誘電体薄膜を形成する工程と、
前記第二種電極導体薄膜に設けた前記貫通孔の前記内側領域にて一体化した前記第一の誘電体薄膜及び前記第二の誘電体薄膜からなる誘電体孔内充填部の一部を、該誘電体孔内充填部によって前記第二種電極導体薄膜の前記貫通孔の内周面が被覆された状態を維持しつつくり貫いて、前記第一種電極導体薄膜に通ずる誘電体薄膜側貫通孔を設ける工程とを含み、
前記工程e.は、
前記誘電体薄膜側貫通孔内に露出した前記第一種電極導体薄膜に直接接するように、前記第二種電極導体薄膜とは直流的に分離した前記電極導体薄膜を形成する工程とされる請求項18又は請求項19記載のコンデンサの製造方法。
Step d. Is
Forming the second dielectric thin film so that the surface of the second type electrode conductor thin film and the inner peripheral surface of the through hole provided in the second type electrode conductor thin film are covered;
A portion of the dielectric hole filling portion made of the first dielectric thin film and the second dielectric thin film integrated in the inner region of the through hole provided in the second type electrode conductor thin film, Dielectric thin film side penetration that penetrates the first type electrode conductor thin film while maintaining the state where the inner peripheral surface of the through hole of the second type electrode conductor thin film is covered by the filling portion in the dielectric hole. Providing a hole,
Said step e. Is
The step of forming the electrode conductor thin film DC-separated from the second type electrode conductor thin film so as to directly contact the first type electrode conductor thin film exposed in the dielectric thin film side through-hole. Item 20. A method for manufacturing a capacitor according to Item 18 or Item 19.
JP2004130788A 2003-06-20 2004-04-27 Capacitor and method of manufacturing capacitor Pending JP2005033176A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004130788A JP2005033176A (en) 2003-06-20 2004-04-27 Capacitor and method of manufacturing capacitor
US10/870,037 US6885541B2 (en) 2003-06-20 2004-06-18 Capacitor, and capacitor manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003176897 2003-06-20
JP2004130788A JP2005033176A (en) 2003-06-20 2004-04-27 Capacitor and method of manufacturing capacitor

Publications (1)

Publication Number Publication Date
JP2005033176A true JP2005033176A (en) 2005-02-03

Family

ID=34220081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130788A Pending JP2005033176A (en) 2003-06-20 2004-04-27 Capacitor and method of manufacturing capacitor

Country Status (1)

Country Link
JP (1) JP2005033176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916752B (en) * 2005-12-27 2012-08-22 揖斐电株式会社 Multilayer printed wiring board

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211191A (en) * 1990-02-09 1992-08-03 Hitachi Ltd Substrate with built-in capacitor
JPH05175353A (en) * 1991-12-25 1993-07-13 Hitachi Ltd Semiconductor chip carrier and manufacture thereof
JPH0641123U (en) * 1992-10-29 1994-05-31 京セラ株式会社 Stacked parts
JPH07235632A (en) * 1994-02-21 1995-09-05 Hitachi Ltd Capacitor unit and capacitor unit built-in electronic circuit device
JPH10189388A (en) * 1996-12-26 1998-07-21 Kyocera Corp Lamination-type thin-film capacitor
JP2000244129A (en) * 1998-12-25 2000-09-08 Ngk Spark Plug Co Ltd Wiring board, core board, and their manufacture
JP2001148324A (en) * 1999-11-19 2001-05-29 Murata Mfg Co Ltd Layered capacitor, wiring board, decoupling circuit and high frequency circuit
JP2002008942A (en) * 2000-06-16 2002-01-11 Fujitsu Ltd Capacitor device, method of manufacturing the same, and module mounted with the device
JP2002075784A (en) * 2000-08-31 2002-03-15 Kyocera Corp Thin-film capacitor, its manufacturing method and its mounting structure
JP2003051427A (en) * 2001-05-30 2003-02-21 Matsushita Electric Ind Co Ltd Capacitor sheet and manufacturing method therefor, board having built-in capacitor and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211191A (en) * 1990-02-09 1992-08-03 Hitachi Ltd Substrate with built-in capacitor
JPH05175353A (en) * 1991-12-25 1993-07-13 Hitachi Ltd Semiconductor chip carrier and manufacture thereof
JPH0641123U (en) * 1992-10-29 1994-05-31 京セラ株式会社 Stacked parts
JPH07235632A (en) * 1994-02-21 1995-09-05 Hitachi Ltd Capacitor unit and capacitor unit built-in electronic circuit device
JPH10189388A (en) * 1996-12-26 1998-07-21 Kyocera Corp Lamination-type thin-film capacitor
JP2000244129A (en) * 1998-12-25 2000-09-08 Ngk Spark Plug Co Ltd Wiring board, core board, and their manufacture
JP2001148324A (en) * 1999-11-19 2001-05-29 Murata Mfg Co Ltd Layered capacitor, wiring board, decoupling circuit and high frequency circuit
JP2002008942A (en) * 2000-06-16 2002-01-11 Fujitsu Ltd Capacitor device, method of manufacturing the same, and module mounted with the device
JP2002075784A (en) * 2000-08-31 2002-03-15 Kyocera Corp Thin-film capacitor, its manufacturing method and its mounting structure
JP2003051427A (en) * 2001-05-30 2003-02-21 Matsushita Electric Ind Co Ltd Capacitor sheet and manufacturing method therefor, board having built-in capacitor and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916752B (en) * 2005-12-27 2012-08-22 揖斐电株式会社 Multilayer printed wiring board

Similar Documents

Publication Publication Date Title
US6885541B2 (en) Capacitor, and capacitor manufacturing process
JP4166013B2 (en) Thin film capacitor manufacturing method
US6757178B2 (en) Electronic circuit equipment using multilayer circuit board
US7314780B2 (en) Semiconductor package, method of production of same, and semiconductor device
US7298050B2 (en) Semiconductor device, method of manufacturing the same, capacitor structure, and method of manufacturing the same
US7536780B2 (en) Method of manufacturing wiring substrate to which semiconductor chip is mounted
KR20230156179A (en) Bonded structures with integrated passive component
US20020102768A1 (en) Capacitor and semiconductor device and method for fabricating the semiconductor device
US20180040422A1 (en) Thin-film ceramic capacitor
JP2004502315A (en) Ceramic multilayer capacitor array
JP2008227177A (en) Interposer, semiconductor module, and manufacturing method thereof
WO2017134761A1 (en) Capacitor-incorporated multilayer wiring board and method for manufacturing same
JP2002008942A (en) Capacitor device, method of manufacturing the same, and module mounted with the device
JP4499548B2 (en) Capacitor parts
US20180226391A1 (en) Thin film lc component and mounting structure of same
US10720280B2 (en) Thin-film ceramic capacitor having capacitance forming portions separated by separation slit
JPWO2009028596A1 (en) Passive element embedded substrate, manufacturing method, and semiconductor device
JP4160863B2 (en) Intermediate board
JP2005327932A (en) Multilayer wiring board and its manufacturing method
JP2005033195A (en) Capacitor and method of manufacturing capacitor
JP2004146748A (en) Thin film capacitor element
JP4628520B2 (en) Manufacturing method of electronic device mounting substrate
JP2005012106A (en) Capacitor
JP2005033176A (en) Capacitor and method of manufacturing capacitor
JP2010135453A (en) Semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406