JP2005032564A - Temperature elevation control method in starting of fuel cell generator - Google Patents

Temperature elevation control method in starting of fuel cell generator Download PDF

Info

Publication number
JP2005032564A
JP2005032564A JP2003196619A JP2003196619A JP2005032564A JP 2005032564 A JP2005032564 A JP 2005032564A JP 2003196619 A JP2003196619 A JP 2003196619A JP 2003196619 A JP2003196619 A JP 2003196619A JP 2005032564 A JP2005032564 A JP 2005032564A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
electric heater
control method
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003196619A
Other languages
Japanese (ja)
Inventor
Makoto Mikami
誠 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003196619A priority Critical patent/JP2005032564A/en
Publication of JP2005032564A publication Critical patent/JP2005032564A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature elevation control method at starting in which heat loss reduction at the starting of a power generator and reduction of electric power consumption are realized. <P>SOLUTION: In the temperature elevation control method at the starting provided with a fuel cell, a fuel reformer, a CO converter, and a CO remover, wherein the fuel cell, the CO converter, and the CO remover are respectively provided with electric heaters for the temperature elevation at the starting in order to elevate the temperatures up to respectively prescribed setting temperatures at the starting, and wherein temperature elevation controls of the respective equipments in the starting are carried out, based on temperature deviations between the respective setting temperatures and temperature measurement values in the starting process, and based on time deviations between respective arrival times until the temperatures reach the respective setting temperatures experimentally obtained beforehand, PID calculation is carried out so that arrival times until temperatures reach respective setting temperatures become substantially equal, control outputs of the respective electric heaters are obtained, and the output controls of the respective electric heaters are carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、原燃料を水蒸気改質して得られた燃料ガスと酸化剤ガスとを燃料電池に供給して発電を行なう燃料電池発電装置の起動時昇温制御方法に関する。
【0002】
【従来の技術】
燃料電池発電装置に組み込まれる燃料電池としては、電解質の種類、改質原料の種類等によって異なる種々のタイプがあるが、例えば、固体高分子膜を電解質として用い、その運転温度が約80℃と比較的低いタイプの燃料電池として、固体高分子電解質型燃料電池がよく知られている。
【0003】
この固体高分子電解質型燃料電池は、リン酸型燃料電池と同様に、例えばメタンガス等の炭化水素系原燃料を水蒸気改質して得られた燃料ガス中の水素と空気中の酸素とを、燃料電池の燃料極および空気極にそれぞれ供給し、電気化学反応に基づいて発電を行うものである。
【0004】
また、原燃料を燃料ガスへ改質するに際しては、原燃料に水蒸気を加え燃料改質器で触媒により改質を促進する方法が採られているが、改質を定常的に行なうには所要の水蒸気量を定常的に補給する必要があり、水蒸気の供給装置には、これに対応した水を常時補給する必要がある。なお、使用する水は高純度の水であることが必要であり、イオン交換式の水処理装置で不純物を除去したイオン交換水が用いられるのが通例である。
【0005】
一方、燃料電池の電気化学反応では発電生成水が生じ、また燃料改質器では吸熱反応である水蒸気改質反応を定常的に行なうための触媒加熱用の燃焼に伴い燃焼生成水が生じるが、これらの生成水は通常の水道水に比べて不純物が少なく、これらの生成水を原水として用いれば、水処理装置の負荷を軽減することができるため、回収水タンクおよび排ガス冷却器を付加して、これらの生成水を回収して改質水蒸気発生用の供給水とする方法が、通常採用されている。
【0006】
図5は、都市ガスを原燃料とする従来の固体高分子電解質型燃料電池発電装置の一例であって、主に燃料改質系に着目した基本的な系統図である(例えば、特許文献1参照)。
【0007】
図5において、模式的に示した燃料電池1は、燃料極1aと空気極1bとを有する単位セルを複数個重ねる毎に冷却管または冷却溝を有する図示しない冷却板を配設,積層することにより構成されている。
【0008】
原燃料はまず改質用水蒸気とともに改質器11に供給され、以下の反応により、水素と一酸化炭素に改質される。
【0009】
CH+HO→3H+CO (吸熱反応)
その後、この改質ガスは、CO変成器12に供給され、以下の反応により、改質ガス中の―酸化炭素は1%程度まで低減される。
【0010】
CO+HO→H+CO (発熱反応)
その後、さらにCO除去器13に供給され、以下の反応により、改質ガス中の一酸化炭素は100ppm程度まで低減された後、燃料電池の燃料極1aに供給される。
【0011】
CO+1/2O→CO (発熱反応)
上記の如く、改質器11において改質反応を行う場合、水蒸気を供給する必要があり、固体高分子型燃料電池発電装置では、その熱源として改質器11の燃焼排ガスの顕熱,CO変成器12及びCO除去器13の反応熱を利用するのが一般的である。そのため、ポンプにて供給される改質用水を、CO変成器12,CO除去器13,水蒸気発生器14の各反応器を直列に順次流すための改質用水蒸気供給ライン15を設け、前記各反応器から熱を受けて水蒸気とし、この水蒸気と原燃料とを混合して、改質用水蒸気供給ライン15から改質器11へ導入する構成としている。
【0012】
又、上記の各反応器は触媒による化学反応を行うため、燃料電池発電装置の起動時には、適正な温度に予め昇温する必要がある。
各反応器の適正な温度は以下のとおりである。改質器:500〜700℃、CO変成器:200〜300℃、CO除去器:100〜250゜Cである。
【0013】
このため、改質器11は、原燃料を改質器内に設置されているバーナで燃焼させることで昇温しており、その燃焼排ガスにより水蒸気発生器14も昇温されている。一方、CO変成器12とCO除去器13とは、それぞれが個々に備える電気ヒータ12aおよび13aにより昇温している。
【0014】
次に、図6の従来システム例について述べる。図6に示すシステムは、図5に示したシステムにおいて、電池冷却水の温度調節に着目したシステム例を示し、説明の便宜上、一部の部材を追加または省略して示す。なお、図6において、図2に示した部材と同一機能部材には、同一番号を付してその詳細説明を省略する。
【0015】
図6において20で示した一点鎖線の範囲内は、固体高分子型燃料電池発電装置のパッケージの内部を示す。パッケージ20の内部には、図示以外にも多数の機器が存在するが、ここでは省略している。
【0016】
1は燃料電池を示し、発生した熱は電池冷却水冷却器51により外部の貯湯槽70に供給される。このとき、三方調節弁67により、電池冷却水温度検出器66による検出温度を燃料電池1が安定して運転できる温度になるように、電池冷却水冷却器51を通過する電池冷却水流量を適宜調節している。電池冷却水冷却器51により外部に供給された熱は、貯湯槽循環水ポンプ69により送出される貯湯槽循環水により、貯湯槽70に蓄熱される。
【0017】
貯湯槽70の温度レベルが一定値以上に達したことを貯湯槽循環水温度検出器68が検知すると、貯湯槽循環水冷却器71が作動し、燃料電池発電装置の電池冷却水温度制御が正常に行えるよう制御される。なお、貯湯槽循環水は、貯湯槽70の下部より導出され、電池冷却水冷却器51により加熱された後、貯湯槽上部に供給される配管構成となっている。これは、貯湯槽70内部の自然対流による温水の温度分布、すなわち貯湯槽70内の上層部の温度レベルが高いことを考慮し、貯湯槽の温水を使用するユーザ給湯口76に可能な限り高いレベルの温度を供給するためである。
【0018】
一方、燃料電池発電装置が発電に至るまでの起動工程時においては、発電開始に備え、燃料電池1の温度を所定の温度まで昇温するために、電池冷却水系タンク55に設けられた電池冷却水昇温ヒータ64により、電池冷却水が加熱される。このとき、昇温された電池冷却水の熱を逃さないように、電池冷却水の流路は、三方調節弁67によって、電池冷却水冷却器51をバイパスするよう設定される。
【0019】
なお、図6において、60は電池冷却水循環回路、54は電池冷却水循環用ポンプ、60aは電池冷却水バイパスライン、80は貯湯槽内温水循環回路、77は貯湯槽70の液面レベルを所定の範囲内に維持するために、ユーザ給湯口76での温水使用量に応じて供給される市水の開閉弁を示す。
【0020】
【特許文献1】
特開2002−124288(第2−3頁、図2)
【0021】
【発明が解決しようとする課題】
ところで、前述のように、従来の燃料電池発電装置においては、燃料電池,CO変成器およびCO除去器は、それぞれ、起動時に所定の各設定温度まで昇温するための起動時昇温用電気ヒータを備え、前記各電気ヒータにより、前記各機器の起動時の昇温制御を行っているが、その起動時昇温制御方法においては、下記のような問題があった。
【0022】
図4は、従来の各機器の温度上昇経過と各電気ヒータのオンオフタイミングの模式的説明図である。図4(a)は各機器の温度上昇経過の一例を示し、前記図5における燃料電池1,CO変成器12およびCO除去器13の所定位置における温度上昇経過を示し、起動時の電気ヒータの電力投入により、前記各機器が、それぞれ代表的な設定温度80℃,250℃および180℃まで上昇する過程の一例を示す。
【0023】
また、図4(b)は各電気ヒータのオンオフタイミングチャートの一例を示し、前記燃料電池,CO変成器およびCO除去器を、それぞれ、起動時に所定の各設定温度まで昇温するための起動時昇温用電気ヒータ(ヒータH01,ヒータH02,ヒータH03)のステップ状電力投入の各チャートと、前記3種類のヒータ合計のチャートとを示す。前記ヒータH01およびヒータH02,H03は、それぞれ、図6および図5における部番64および12a,13aを示す。
【0024】
従来装置においては、ヒータH01,ヒータH02,ヒータH03の出力は、各機器の熱容量に応じて、例えば500W,300W,200Wとし、それぞれ独立的に昇温制御されており、各設定温度まで到達する時間もまちまちであって、図4の例によれば、熱容量の一番大きい燃料電池の到達時間が一番長く、CO除去器のそれが一番短いのが現状である。
【0025】
上記のように、各設定温度までの到達時間が異なる場合、例えば先に設定温度まで到達したCO除去器は、燃料電池がその設定温度に到達するまでの間、設定温度でのスタンバイ状態が続くこととなるので、その間、自然放熱に伴う無駄な熱ロスが発生することとなる。また、前記のように、各電気ヒータのヒータ容量が異なる点も、熱効率を低下させる要因となる。
【0026】
この発明は、上記問題点に鑑みてなされたもので、この発明の課題は、発電装置の起動時における熱ロスの低減、ひいては消費電力の低減を図った燃料電池発電装置の起動時昇温制御方法を提供することにある。
【0027】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、炭化水素系原燃料を改質して得られた燃料ガスと酸化剤ガスとしての空気との電気化学反応に基づいて電気を発生する燃料電池と、燃料改質器と、CO変成器と、CO除去器とを備え、かつ前記燃料電池,CO変成器およびCO除去器は、それぞれ、起動時に所定の各設定温度まで昇温するための起動時昇温用電気ヒータを備え、前記各電気ヒータにより、前記各機器の起動時の昇温制御を行う燃料電池発電装置の起動時昇温制御方法において、前記各設定温度と起動過程における温度測定値との温度偏差と、所定のヒータ投入電力によって予め実験的に求めた前記各設定温度に到達するまでの各到達時間の機器間の時間偏差とに基づいて、前記燃料電池,CO変成器およびCO除去器の起動時における各設定温度までの到達時間が実質的に同一となるようにPID演算を行って、前記各電気ヒータの制御出力を求め、各電気ヒータの出力制御を行うこととする(請求項1の発明)。
【0028】
上記方法によれば、燃料電池発電装置の起動昇温時に、ヒータの制御出力に重み付けを行なって、各設定温度までの到達時間を実質的に同一に制御できるので、熱ロス低減、ひいては消費電力の低減を図ることが可能となる。
【0029】
また、前記請求項1の発明の実施態様としては、下記請求項2ないし3の発明が好ましい。即ち、前記請求項1記載の燃料電池発電装置の起動時昇温制御方法において、前記各電気ヒータへの投入電力は、それぞれピーク値が等しいステップ状の電力とし、前記各電気ヒータのPID制御出力値は、各電気ヒータのオン時間とする(請求項2の発明)。
【0030】
さらに、前記請求項2記載の燃料電池発電装置の起動時昇温制御方法において、前記各電気ヒータの内、一つの電気ヒータがオンの際は、他の電気ヒータはオフとなるように制御する(請求項3の発明)。
【0031】
上記のように、各電気ヒータの投入電力のピーク値を同一とし、各電気ヒータのオン時間の調節により、シンプルかつリーズナブルな制御が可能となる。
【0032】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0033】
図1は、この発明のPID制御の説明図である。図1において、PID1,PID2およびPID3は、それぞれ、燃料電池,CO変成器およびCO除去器昇温用電気ヒータ制御用のPID演算器を示す。この演算器には、前記各機器の温度の目標値(SV)と測定値(PV)とが入力され、前述のようなPID制御出力値(MV)を出力する。
【0034】
図1において、PID制御出力値の矢印の先端に示すA,B,Cは、後述する図2と関係する各電気ヒータの瞬時の制御出力値を示す。また、燃料電池,CO変成器およびCO除去器の目標値(SV)および測定値(PV)は、それぞれ、T−H01(SV),T−H02(SV),T−H03(SV)およびT−H01(PV),T−H02(PV),T−H03(PV)で示す。
【0035】
上記構成において、PID演算器の調節要素は、前記燃料電池,CO変成器およびCO除去器の各設定温度目標値(SV)と起動過程における温度測定値(PV)との温度偏差と、所定のヒータ投入電力によって予め実験的に求めた前記各設定温度に到達するまでの各到達時間の機器間の時間偏差とに基づいて、前記燃料電池,CO変成器およびCO除去器の起動時における各設定温度までの到達時間が実質的に同一となるように設定され、これに基づいてPID演算を行って、各電気ヒータの制御出力を各電気ヒータのオン時間として求め、各電気ヒータの出力制御を行う。
【0036】
図2は、本発明の各電気ヒータのオンオフタイミングの模式的説明図である。図2に示すように、各電気ヒータへの投入電力は、それぞれピーク値が等しいステップ状の電力とし、各電気ヒータのPID制御出力値は、各電気ヒータのオン時間としている。また、一つの電気ヒータがオンの際は、他の電気ヒータはオフとなるように制御する。
【0037】
図2において、最下段のステップ図は、ヒータ3個の合計を示し、時間T1はオン時間、時間T2はオフ時間を示す。その上段のステップ図は、順次、ヒータH01,ヒータH02,ヒータH03の出力値(オン時間)を示し、各ヒータのオン時間は、それぞれ、図1の制御出力値A,B,Cに基づき、T1×A/(A+B+C),T1×B/(A+B+C),T1×C/(A+B+C)となる。
【0038】
次に、図3について述べる。図3は、本発明の燃料電池発電装置の起動時昇温制御方法を実施した場合の各機器の温度上昇経過と各電気ヒータのオンオフタイミングの一例を示す模式図である。従来の図3の場合と異なり、燃料電池1,CO変成器12およびCO除去器13の起動時の各設定温度までの到達時間が略同一となるように、各電気ヒータはPID制御され、各電気ヒータのオン時間は異なるものの、3種類のヒータは、前記到達時間に至るまで万遍なくオンオフを繰り返すように制御されている。このような制御により、起動時における熱ロスの低減、ひいては消費電力の低減を図ることができる。
【0039】
【発明の効果】
上記のとおり、この発明によれば、炭化水素系原燃料を改質して得られた燃料ガスと酸化剤ガスとしての空気との電気化学反応に基づいて電気を発生する燃料電池と、燃料改質器と、CO変成器と、CO除去器とを備え、かつ前記燃料電池,CO変成器およびCO除去器は、それぞれ、起動時に所定の各設定温度まで昇温するための起動時昇温用電気ヒータを備え、前記各電気ヒータにより、前記各機器の起動時の昇温制御を行う燃料電池発電装置の起動時昇温制御方法において、前記各設定温度と起動過程における温度測定値との温度偏差と、所定のヒータ投入電力によって予め実験的に求めた前記各設定温度に到達するまでの各到達時間の機器間の時間偏差とに基づいて、前記燃料電池,CO変成器およびCO除去器の起動時における各設定温度までの到達時間が実質的に同一となるようにPID演算を行って、前記各電気ヒータの制御出力を求め、各電気ヒータの出力制御を行うことにより、
発電装置の起動時における熱ロスの低減、ひいては消費電力の低減を図った燃料電池発電装置の起動時昇温制御方法を提供することができる。
【図面の簡単な説明】
【図1】この発明のPID制御の説明図
【図2】この発明の各電気ヒータのオンオフタイミングの模式的説明図
【図3】この発明の燃料電池発電装置の起動時昇温制御方法を実施した場合の各機器の温度上昇経過と各電気ヒータのオンオフタイミングの一例の模式図
【図4】従来の燃料電池発電装置における各機器の温度上昇経過と各電気ヒータのオンオフタイミングの模式的説明図
【図5】従来の燃料電池発電装置の一例を示す系統図
【図6】従来の図5とは異なる燃料電池発電装置の一例を示す系統図
【符号の説明】
1:燃料電池、11:改質器、12:CO変成器、12a:ヒータH02、13:CO除去器、13a:ヒータH03、64:ヒータH01。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a start-up temperature rise control method for a fuel cell power generator that generates power by supplying a fuel cell and an oxidant gas obtained by steam reforming raw fuel to a fuel cell.
[0002]
[Prior art]
There are various types of fuel cells incorporated in the fuel cell power generator, depending on the type of electrolyte, the type of reforming raw material, and the like. For example, a solid polymer membrane is used as the electrolyte, and the operating temperature is about 80 ° C. A solid polymer electrolyte fuel cell is well known as a relatively low type fuel cell.
[0003]
This solid polymer electrolyte fuel cell, like the phosphoric acid fuel cell, for example, hydrogen in the fuel gas obtained by steam reforming a hydrocarbon-based raw fuel such as methane gas and oxygen in the air, The fuel cell is supplied to a fuel electrode and an air electrode, respectively, and generates power based on an electrochemical reaction.
[0004]
In addition, when reforming raw fuel into fuel gas, a method is adopted in which steam is added to the raw fuel and reforming is promoted by a catalyst in a fuel reformer. It is necessary to constantly replenish the amount of water vapor, and it is necessary to constantly replenish the water vapor supply device with water corresponding thereto. The water to be used needs to be high-purity water, and ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment device is usually used.
[0005]
On the other hand, in the electrochemical reaction of the fuel cell, power generation product water is generated, and in the fuel reformer, combustion product water is generated with combustion for catalyst heating for performing a steam reforming reaction which is an endothermic reaction constantly. These generated waters have fewer impurities than normal tap water, and if these generated waters are used as raw water, the load on the water treatment device can be reduced. Therefore, a recovery water tank and an exhaust gas cooler are added. A method of recovering these generated waters to obtain supply water for generating reformed steam is usually employed.
[0006]
FIG. 5 is an example of a conventional solid polymer electrolyte fuel cell power generator using city gas as a raw fuel, and is a basic system diagram mainly focusing on a fuel reforming system (for example, Patent Document 1). reference).
[0007]
In the fuel cell 1 schematically shown in FIG. 5, a cooling plate (not shown) having a cooling pipe or a cooling groove is provided and stacked each time a plurality of unit cells each having a fuel electrode 1a and an air electrode 1b are stacked. It is comprised by.
[0008]
The raw fuel is first supplied to the reformer 11 together with the reforming steam, and is reformed into hydrogen and carbon monoxide by the following reaction.
[0009]
CH 4 + H 2 O → 3H 2 + CO (endothermic reaction)
Thereafter, this reformed gas is supplied to the CO converter 12, and the following reaction reduces the carbon dioxide in the reformed gas to about 1%.
[0010]
CO + H 2 O → H 2 + CO 2 (exothermic reaction)
Thereafter, the carbon monoxide in the reformed gas is further reduced to about 100 ppm by the following reaction, and then supplied to the fuel electrode 1a of the fuel cell.
[0011]
CO + 1 / 2O 2 → CO 2 (exothermic reaction)
As described above, when the reforming reaction is performed in the reformer 11, it is necessary to supply water vapor. In the polymer electrolyte fuel cell power generator, the sensible heat of the combustion exhaust gas from the reformer 11 and CO conversion are used as the heat source. In general, the heat of reaction of the vessel 12 and the CO remover 13 is used. Therefore, a reforming steam supply line 15 is provided to sequentially flow the reforming water supplied by the pump through each reactor of the CO converter 12, the CO remover 13, and the steam generator 14 in series. Heat is received from the reactor to form steam, and the steam and raw fuel are mixed and introduced into the reformer 11 from the reforming steam supply line 15.
[0012]
In addition, since each of the reactors performs a chemical reaction using a catalyst, it is necessary to raise the temperature to an appropriate temperature in advance when the fuel cell power generator is started.
Appropriate temperatures for each reactor are as follows. Reformer: 500-700 ° C, CO converter: 200-300 ° C, CO remover: 100-250 ° C.
[0013]
For this reason, the reformer 11 is heated by burning the raw fuel with a burner installed in the reformer, and the steam generator 14 is also heated by the combustion exhaust gas. On the other hand, the CO transformer 12 and the CO remover 13 are heated by electric heaters 12a and 13a provided individually.
[0014]
Next, an example of the conventional system shown in FIG. 6 will be described. The system shown in FIG. 6 shows an example of the system shown in FIG. 5 focusing on the temperature adjustment of the battery cooling water, and some members are added or omitted for convenience of explanation. In FIG. 6, members having the same functions as those shown in FIG.
[0015]
In FIG. 6, the range indicated by the alternate long and short dash line 20 indicates the inside of the package of the polymer electrolyte fuel cell power generation device. There are many devices inside the package 20 other than those shown in the figure, but they are omitted here.
[0016]
Reference numeral 1 denotes a fuel cell, and the generated heat is supplied to an external hot water storage tank 70 by a battery cooling water cooler 51. At this time, the flow rate of the battery cooling water passing through the battery cooling water cooler 51 is appropriately adjusted so that the temperature detected by the battery cooling water temperature detector 66 becomes a temperature at which the fuel cell 1 can be stably operated by the three-way control valve 67. It is adjusting. The heat supplied to the outside by the battery coolant cooler 51 is stored in the hot water tank 70 by the hot water tank circulating water sent out by the hot water tank circulating water pump 69.
[0017]
When the hot water tank circulating water temperature detector 68 detects that the temperature level of the hot water tank 70 has reached a certain value or more, the hot water tank circulating water cooler 71 is activated and the battery cooling water temperature control of the fuel cell power generator is normal. It is controlled so that it can be performed. Note that the hot water tank circulating water is led out from the lower part of the hot water tank 70, heated by the battery cooling water cooler 51, and then supplied to the upper part of the hot water tank. This is considered as high as possible in the user hot water supply 76 using the hot water in the hot water tank, considering the temperature distribution of the hot water in the hot water tank 70 due to natural convection, that is, the temperature level of the upper layer in the hot water tank 70 is high. This is to supply a level of temperature.
[0018]
On the other hand, during the startup process until the fuel cell power generation device generates power, the battery cooling provided in the battery cooling water system tank 55 is used to raise the temperature of the fuel cell 1 to a predetermined temperature in preparation for the start of power generation. The battery cooling water is heated by the water heating heater 64. At this time, the flow path of the battery cooling water is set so as to bypass the battery cooling water cooler 51 by the three-way control valve 67 so as not to miss the heat of the battery cooling water that has been heated.
[0019]
In FIG. 6, 60 is a battery cooling water circulation circuit, 54 is a battery cooling water circulation pump, 60a is a battery cooling water bypass line, 80 is a hot water tank internal hot water circulation circuit, and 77 is a predetermined liquid level of the hot water tank 70. In order to maintain within the range, the on-off valve of the city water supplied according to the amount of hot water used at the user hot water outlet 76 is shown.
[0020]
[Patent Document 1]
JP 2002-124288 A (page 2-3, FIG. 2)
[0021]
[Problems to be solved by the invention]
By the way, as described above, in the conventional fuel cell power generator, the fuel cell, the CO transformer, and the CO remover are each an electric heater for temperature increase at start-up for increasing the temperature to a predetermined set temperature at start-up. The temperature rise control at the time of startup of each device is performed by the electric heaters. However, the startup temperature rise control method has the following problems.
[0022]
FIG. 4 is a schematic explanatory diagram of the temperature rise progress of each conventional device and the on / off timing of each electric heater. FIG. 4 (a) shows an example of the temperature rise process of each device, shows the temperature rise process at a predetermined position of the fuel cell 1, the CO transformer 12 and the CO remover 13 in FIG. An example of a process in which each device rises to a typical set temperature of 80 ° C., 250 ° C., and 180 ° C. when power is turned on will be shown.
[0023]
FIG. 4B shows an example of an on / off timing chart of each electric heater. At the time of start-up, the fuel cell, the CO transformer and the CO remover are heated to respective predetermined set temperatures at the time of start-up. Each chart of stepped power input of the electric heaters for heating (heater H01, heater H02, heater H03) and a chart of the total of the three types of heaters are shown. The heater H01 and the heaters H02 and H03 indicate part numbers 64 and 12a and 13a in FIGS. 6 and 5, respectively.
[0024]
In the conventional apparatus, the outputs of the heater H01, the heater H02, and the heater H03 are, for example, 500 W, 300 W, and 200 W according to the heat capacities of the respective devices, and are individually controlled in temperature rise, and reach the respective set temperatures. The time varies, and according to the example of FIG. 4, the arrival time of the fuel cell with the largest heat capacity is the longest and that of the CO remover is the shortest.
[0025]
As described above, when the time to reach each set temperature is different, for example, the CO remover that has reached the set temperature first continues the standby state at the set temperature until the fuel cell reaches the set temperature. Therefore, in the meantime, useless heat loss due to natural heat dissipation occurs. In addition, as described above, the difference in the heater capacity of each electric heater is also a factor for reducing the thermal efficiency.
[0026]
The present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the heat loss at the time of starting the power generation device, and thus to reduce the power consumption. It is to provide a method.
[0027]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a fuel cell that generates electricity based on an electrochemical reaction between a fuel gas obtained by reforming a hydrocarbon-based raw fuel and air as an oxidant gas. A fuel reformer, a CO converter, and a CO remover, and each of the fuel cell, the CO transformer, and the CO remover is started up to raise the temperature to a predetermined set temperature. In the start-up temperature rise control method of the fuel cell power generator, which includes an electric heater for temperature rise, and the temperature rise control at the time of start-up of each device is performed by the electric heater, the set temperature and the temperature measurement value in the start-up process And the fuel cell, CO transformer and CO based on the temperature deviation between the devices and the time deviation between the arrival times until the set temperatures are obtained experimentally in advance by a predetermined heater input power. When starting the remover The PID calculation is performed so that the time to reach each set temperature is substantially the same, the control output of each electric heater is obtained, and the output control of each electric heater is performed. ).
[0028]
According to the above method, when starting up the temperature of the fuel cell power generation device, the control output of the heater is weighted so that the time to reach each set temperature can be controlled to be substantially the same, thereby reducing heat loss and thus power consumption. Can be reduced.
[0029]
As an embodiment of the invention of claim 1, the inventions of claims 2 to 3 below are preferable. That is, in the start-up temperature rise control method for a fuel cell power generator according to claim 1, the input power to each electric heater is stepped power having the same peak value, and the PID control output of each electric heater. The value is the on time of each electric heater (invention of claim 2).
[0030]
Furthermore, in the start-up temperature rise control method for a fuel cell power generator according to claim 2, when one of the electric heaters is turned on, the other electric heater is turned off. (Invention of Claim 3).
[0031]
As described above, simple and reasonable control is possible by making the peak value of the input power of each electric heater the same and adjusting the ON time of each electric heater.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below with reference to the drawings.
[0033]
FIG. 1 is an explanatory diagram of PID control according to the present invention. In FIG. 1, PID1, PID2, and PID3 indicate a PID computing unit for controlling an electric heater for heating a fuel cell, a CO transformer, and a CO remover, respectively. The arithmetic unit receives the target value (SV) and measured value (PV) of the temperature of each device, and outputs the PID control output value (MV) as described above.
[0034]
In FIG. 1, A, B, and C shown at the tips of arrows of PID control output values indicate instantaneous control output values of the electric heaters related to FIG. Further, the target value (SV) and measured value (PV) of the fuel cell, CO transformer and CO remover are T-H01 (SV), T-H02 (SV), T-H03 (SV) and T, respectively. -H01 (PV), T-H02 (PV), T-H03 (PV).
[0035]
In the above configuration, the adjustment element of the PID computing unit includes a temperature deviation between each set temperature target value (SV) of the fuel cell, the CO transformer, and the CO remover and a temperature measurement value (PV) in the startup process, and a predetermined value. Each setting at the time of start-up of the fuel cell, the CO transformer and the CO remover based on the time deviation between devices at each reaching time until reaching each setting temperature experimentally obtained in advance by the heater input power The time to reach the temperature is set to be substantially the same. Based on this, the PID calculation is performed to obtain the control output of each electric heater as the on-time of each electric heater, and the output control of each electric heater is controlled. Do.
[0036]
FIG. 2 is a schematic explanatory diagram of the on / off timing of each electric heater according to the present invention. As shown in FIG. 2, the electric power supplied to each electric heater is step-like electric power having the same peak value, and the PID control output value of each electric heater is the on-time of each electric heater. Further, when one electric heater is on, the other electric heaters are controlled to be off.
[0037]
In FIG. 2, the lowermost step diagram shows the total of the three heaters, time T1 is the on time, and time T2 is the off time. The upper step diagram sequentially shows the output values (on-time) of the heaters H01, H02, and H03, and the on-time of each heater is based on the control output values A, B, and C of FIG. T1 × A / (A + B + C), T1 × B / (A + B + C), and T1 × C / (A + B + C).
[0038]
Next, FIG. 3 will be described. FIG. 3 is a schematic diagram showing an example of a temperature rise process of each device and an on / off timing of each electric heater when the start-up temperature rising control method of the fuel cell power generator of the present invention is implemented. Unlike the conventional case of FIG. 3, each electric heater is PID-controlled so that the arrival time to each set temperature at the start of the fuel cell 1, the CO transformer 12 and the CO remover 13 is substantially the same. Although the on-time of the electric heater is different, the three types of heaters are controlled so as to be repeatedly turned on and off uniformly until the arrival time. By such control, it is possible to reduce the heat loss at the time of start-up and consequently reduce the power consumption.
[0039]
【The invention's effect】
As described above, according to the present invention, a fuel cell that generates electricity based on an electrochemical reaction between a fuel gas obtained by reforming a hydrocarbon-based raw fuel and air as an oxidant gas, and a fuel modification A fuel cell, a CO converter, and a CO remover, and each of the fuel cell, the CO converter, and the CO remover is used for raising temperature at startup for raising the temperature to a predetermined set temperature at startup. In the start-up temperature rise control method of the fuel cell power generation apparatus, which includes an electric heater, and performs temperature rise control at the time of start-up of each device by the electric heater, the temperature between the set temperature and the temperature measurement value in the start-up process Based on the deviation and the time deviation between the devices at each arrival time until reaching each set temperature obtained experimentally in advance by a predetermined heater input power, the fuel cell, the CO transformer and the CO remover Each at startup Time to reach a constant temperature by performing PID calculation to be substantially identical, obtains the control output of the respective electric heaters, by performing the output control of the electric heater,
It is possible to provide a start-up temperature rise control method for a fuel cell power generation device that reduces heat loss at the time of start-up of the power generation device, and thus reduces power consumption.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of PID control according to the present invention. FIG. 2 is a schematic explanatory diagram of on / off timing of each electric heater according to the present invention. FIG. 4 is a schematic illustration of an example of the temperature rise process of each device and the on / off timing of each electric heater in the case of the above. FIG. 5 is a system diagram showing an example of a conventional fuel cell power generator. FIG. 6 is a system diagram showing an example of a fuel cell power generator different from the conventional FIG.
1: fuel cell, 11: reformer, 12: CO converter, 12a: heater H02, 13: CO remover, 13a: heater H03, 64: heater H01.

Claims (3)

炭化水素系原燃料を改質して得られた燃料ガスと酸化剤ガスとしての空気との電気化学反応に基づいて電気を発生する燃料電池と、燃料改質器と、CO変成器と、CO除去器とを備え、かつ前記燃料電池,CO変成器およびCO除去器は、それぞれ、起動時に所定の各設定温度まで昇温するための起動時昇温用電気ヒータを備え、前記各電気ヒータにより、前記各機器の起動時の昇温制御を行う燃料電池発電装置の起動時昇温制御方法において、
前記各設定温度と起動過程における温度測定値との温度偏差と、所定のヒータ投入電力によって予め実験的に求めた前記各設定温度に到達するまでの各到達時間の機器間の時間偏差とに基づいて、前記燃料電池,CO変成器およびCO除去器の起動時における各設定温度までの到達時間が実質的に同一となるようにPID演算を行って、前記各電気ヒータの制御出力を求め、各電気ヒータの出力制御を行うことを特徴とする燃料電池発電装置の起動時昇温制御方法。
A fuel cell that generates electricity based on an electrochemical reaction between a fuel gas obtained by reforming a hydrocarbon-based raw fuel and air as an oxidant gas, a fuel reformer, a CO converter, a CO Each of the fuel cell, the CO converter, and the CO remover includes a start-up temperature raising electric heater for raising the temperature to a predetermined set temperature at the time of activation. In the start-up temperature rise control method of the fuel cell power generation device that performs the temperature rise control at the time of start-up of each device,
Based on the temperature deviation between each set temperature and the measured temperature value in the start-up process, and the time deviation between devices at each arrival time until reaching each set temperature obtained experimentally in advance by a predetermined heater input power PID calculation is performed so that the time to reach each set temperature at the start of the fuel cell, the CO transformer and the CO remover is substantially the same, and the control output of each electric heater is obtained, An output control method for starting up a fuel cell power generation apparatus, wherein output control of an electric heater is performed.
請求項1記載の燃料電池発電装置の起動時昇温制御方法において、前記各電気ヒータへの投入電力は、それぞれピーク値が等しいステップ状の電力とし、前記各電気ヒータのPID制御出力値は、各電気ヒータのオン時間とすることを特徴とする燃料電池発電装置の起動時昇温制御方法。2. The start-up temperature rise control method for a fuel cell power generator according to claim 1, wherein the electric power supplied to each electric heater is stepped electric power having the same peak value, and the PID control output value of each electric heater is: A start-up temperature rise control method for a fuel cell power generator, characterized in that each electric heater is turned on. 請求項2記載の燃料電池発電装置の起動時昇温制御方法において、前記各電気ヒータの内、一つの電気ヒータがオンの際は、他の電気ヒータはオフとなるように制御することを特徴とする燃料電池発電装置の起動時昇温制御方法。3. The start-up temperature rise control method for a fuel cell power generator according to claim 2, wherein when one electric heater is turned on among the electric heaters, the other electric heater is turned off. A temperature increase control method at startup of the fuel cell power generator.
JP2003196619A 2003-07-14 2003-07-14 Temperature elevation control method in starting of fuel cell generator Pending JP2005032564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196619A JP2005032564A (en) 2003-07-14 2003-07-14 Temperature elevation control method in starting of fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196619A JP2005032564A (en) 2003-07-14 2003-07-14 Temperature elevation control method in starting of fuel cell generator

Publications (1)

Publication Number Publication Date
JP2005032564A true JP2005032564A (en) 2005-02-03

Family

ID=34207053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196619A Pending JP2005032564A (en) 2003-07-14 2003-07-14 Temperature elevation control method in starting of fuel cell generator

Country Status (1)

Country Link
JP (1) JP2005032564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094393A1 (en) * 2005-03-07 2006-09-14 Hyteon Inc. Combined heat and power system
WO2013054496A1 (en) * 2011-10-14 2013-04-18 パナソニック株式会社 Hydrogen producing device and control method therefor, and fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094393A1 (en) * 2005-03-07 2006-09-14 Hyteon Inc. Combined heat and power system
JP2008532252A (en) * 2005-03-07 2008-08-14 ハイテオン インコーポレイテッド Thermoelectric combined use system
WO2013054496A1 (en) * 2011-10-14 2013-04-18 パナソニック株式会社 Hydrogen producing device and control method therefor, and fuel cell system

Similar Documents

Publication Publication Date Title
JP2009123488A (en) Fuel cell system
EP2461407B1 (en) Fuel cell device
JP2010212141A (en) Fuel cell generator
JP2006273619A (en) Reformer
KR20190015308A (en) Fuel cell system
JP2006219328A (en) Hydrogen generation apparatus and fuel cell system using the same
JP2008159463A (en) Fuel cell device and its operation method
JP2002042840A (en) Fuel cell type cogeneration system
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2001313053A (en) Fuel cell system
JP5855955B2 (en) Energy management equipment
JP2005032564A (en) Temperature elevation control method in starting of fuel cell generator
JP7323065B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM
WO2008091500A1 (en) Structure and method for optimizing system efficiency when operating an sofc system with alcohol fuels
JP2005093127A (en) Fuel cell cogeneration system and its operation method
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP5371842B2 (en) Fuel cell system
JP3994324B2 (en) Fuel cell power generator
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP2004213985A (en) Fuel cell system
JP4660910B2 (en) Fuel cell power generation apparatus and starting method thereof
JP2003288936A (en) Fuel cell power generating system and its operation method
JP4161264B2 (en) Fuel cell power generator
JP6115230B2 (en) Fuel cell system
JP2018137094A (en) Fuel cell device