JP2005031010A - Analytical method and analyzer for analyzing dissolution rate of photoresist - Google Patents

Analytical method and analyzer for analyzing dissolution rate of photoresist Download PDF

Info

Publication number
JP2005031010A
JP2005031010A JP2003272675A JP2003272675A JP2005031010A JP 2005031010 A JP2005031010 A JP 2005031010A JP 2003272675 A JP2003272675 A JP 2003272675A JP 2003272675 A JP2003272675 A JP 2003272675A JP 2005031010 A JP2005031010 A JP 2005031010A
Authority
JP
Japan
Prior art keywords
photoresist
substrate
dissolution rate
light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272675A
Other languages
Japanese (ja)
Other versions
JP4174015B2 (en
Inventor
Atsushi Sekiguchi
淳 関口
Yoichi Minami
洋一 南
Jinichi Hayashi
仁一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Litho Tech Japan Corp
Original Assignee
Litho Tech Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litho Tech Japan Corp filed Critical Litho Tech Japan Corp
Priority to JP2003272675A priority Critical patent/JP4174015B2/en
Publication of JP2005031010A publication Critical patent/JP2005031010A/en
Application granted granted Critical
Publication of JP4174015B2 publication Critical patent/JP4174015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring an accurate dissolution rate from development start time, and an analyzer therefor, as to a photoresist having a very high dissolution rate such as a chemically amplified resist. <P>SOLUTION: In this dissolution rate measuring method for the photoresist for irradiating a photoresist face of a substrate having a photoresist layer on its surface with light to detect the dissolution rate, by measuring a change of reflected interference light intensity accompanied to the dissolution of the photoresist, the dissolution of the photoresist is carried out by a dipping method, the substrate, a light irradiation part and a photoreception part are moved synchronizedly, starting from a point before the substrate contacts with a dissolving liquid up to a desired measuring end point, and the measurement is carried out as to the same portion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体集積回路装置、液晶表示装置などの作成に関して使用するフォトレジストの溶解速度の解析方法および装置に関する。   The present invention relates to a method and an apparatus for analyzing a dissolution rate of a photoresist used for producing a semiconductor integrated circuit device, a liquid crystal display device and the like.

半導体集積回路装置は400−600ミクロンの厚さのSi基板、ガラス基板又は金属基板の上に光により感光するフォトレジストを塗布、ベークし、ステッパと呼ばれる縮小投影装置またはマスクアライナーと呼ばれるコンタクト露光装置により、微細なパターンをマスクを介して露光し、現像することで、微細なパターンをSi基板、ガラス基板又は金属基板の上に形成する。さらに、このパターンをマスクとして下地の金属膜をエッチングして微細な電子回路を形成する。
フォトレジストは回転する基板の上に滴下され、遠心力で基板上に広げさらに高速回転を行い薄膜に塗布される。次ぎに、基板を熱板の上に乗せ,下から加熱してベークし溶媒を蒸発させるとともに膜を固め、緻密な膜を形成する(これを露光前ベークの意味でPre−exposure Bake:プリベークと呼ぶ)。また、最近は高い解像度が要求されるため、従来のノボラック樹脂を用いたレジストに替わり、解像性の高い化学増幅レジストが用いられる。化学増幅レジストは露光の後に、樹脂が現像液に溶解することを抑止するための保護基を外す反応、いわゆる脱保護反応が必要であり、露光後にベークを行う必要がある。このベークをPost Exposure Bake(P.E.B.)と言う。最後に現像を行いフォトレジストパターンが得られる。
より微細なパターンを形成するためにはフォトレジストが最終的に現像液にどのように溶解するのか、その現像の挙動を正確に把握しなければならない。
従来、露光を行った基板を現像液の中に入れ、基板のフォトレジスト面に光を照射し、フォトレジストの溶解にともなう干渉光強度の変化を測定することにより、現像中の膜厚変化としてのフォトレジストの溶解速度を検出していた。また、特定の箇所における正確な溶解速度を測定するためにはディップ現像法により現像を行いつつ、溶解速度を測定することが好ましい。しかし、ディップ現像法では光照射部および受光部を固定していたのでは、測定部位が光照射される場所に到達するまでに現像が始まってしまい、正確な測定をすることができなかった。
A semiconductor integrated circuit device coats and bakes a photoresist which is exposed to light on a Si substrate, glass substrate or metal substrate having a thickness of 400 to 600 microns, and is a reduction projection device called a stepper or a contact exposure device called a mask aligner. Thus, a fine pattern is exposed through a mask and developed to form a fine pattern on the Si substrate, glass substrate or metal substrate. Further, a fine electronic circuit is formed by etching the underlying metal film using this pattern as a mask.
The photoresist is dropped on the rotating substrate, spread on the substrate by centrifugal force, and further rotated at high speed and applied to the thin film. Next, the substrate is placed on a hot plate, heated from below and baked to evaporate the solvent and solidify the film to form a dense film (this is called Pre- exposure Bake : pre-baking in the meaning of pre- exposure baking) Call). In addition, since high resolution is recently required, a chemically amplified resist having high resolution is used in place of the conventional resist using novolak resin. A chemically amplified resist requires a reaction for removing a protecting group for inhibiting the resin from dissolving in a developer after exposure, a so-called deprotection reaction, and needs to be baked after exposure. This baking is referred to as Post Exposure Bake (PEB). Finally, development is performed to obtain a photoresist pattern.
In order to form a finer pattern, it is necessary to accurately grasp the development behavior of how the photoresist is finally dissolved in the developer.
Conventionally, the exposed substrate is placed in a developer, and the photoresist surface of the substrate is irradiated with light, and the change in the intensity of interference light accompanying the dissolution of the photoresist is measured. The dissolution rate of the photoresist was detected. Moreover, in order to measure the exact dissolution rate in a specific location, it is preferable to measure the dissolution rate while performing development by the dip development method. However, if the light irradiating part and the light receiving part are fixed in the dip development method, the development starts before the measurement site reaches the place where the light is irradiated, and accurate measurement cannot be performed.

フォトレジスト層を有する基板のフォトレジスト面に光を照射し、フォトレジストの溶解にともなう干渉光強度の変化を測定することにより現像終点を決定する方法は公知であり、たとえば、特許文献1に開示されている。また、同様の原理に基づいた溶解速度の測定方法が特許文献2に開示されている。
しかし、上記のいずれの特許においてもスプレー現像法やパドル現像法による現像が前提とされており、ディップ現像法に特有の本願発明により解決されるべき課題が存在しなかった。
特開平2−63031号 特開平4−50604号
A method for determining a development end point by irradiating light on a photoresist surface of a substrate having a photoresist layer and measuring a change in interference light intensity accompanying dissolution of the photoresist is known. For example, disclosed in Patent Document 1 Has been. Further, Patent Document 2 discloses a method for measuring a dissolution rate based on the same principle.
However, in any of the above-mentioned patents, development by spray development or paddle development is premised, and there is no problem to be solved by the present invention peculiar to dip development.
JP-A-2-63031 Japanese Patent Laid-Open No. 4-50604

本発明は化学増幅レジストのような非常に溶解速度の速いフォトレジストについて、正確な溶解速度を現像開始時から測定することを目的とする。発明者らは、正確なデータの採取のためにはディップ現像法を用いることが必要であるが、その際、受光部を固定しておくとデータが得られないと言う新規な課題を見いだし、かかる課題を解決するために本発明を為したものである。   An object of the present invention is to measure an accurate dissolution rate from the start of development for a photoresist having a very high dissolution rate such as a chemically amplified resist. The inventors need to use the dip development method for collecting accurate data, but at that time, they found a new problem that data cannot be obtained if the light receiving part is fixed, The present invention has been made to solve this problem.

本発明は、フォトレジスト層を表面に有する基板のフォトレジスト面に光を照射し、フォトレジストの溶解にともなう反射干渉光強度の変化を測定することにより溶解速度を検出するフォトレジストの溶解速度の測定方法において、フォトレジストの溶解をディップ法により行い、基板が溶解液と接触する前から所望の測定終点まで、基板と光照射部および受光部を同期して移動させ、同一箇所について測定を行う方法を提供する。
すなわち本発明においては、基板が溶解液と接触する前からフォトレジスト層からの反射光強度の測定を開始し、測定箇所が変化しないように基板と光照射部および受光部の動きを同期して移動させ、同一箇所について測定を続けることにより、基板と現像液が接触した時点から直ちに測定が行われる。
The present invention irradiates light to a photoresist surface of a substrate having a photoresist layer on the surface, and measures the change in reflected interference light intensity accompanying the dissolution of the photoresist to detect the dissolution rate. In the measurement method, the photoresist is dissolved by the dip method, and the substrate, the light irradiation unit, and the light receiving unit are moved synchronously from before the substrate comes into contact with the solution to a desired measurement end point, and measurement is performed on the same portion. Provide a method.
That is, in the present invention, the measurement of the reflected light intensity from the photoresist layer is started before the substrate comes into contact with the solution, and the movement of the substrate, the light irradiation unit and the light receiving unit is synchronized so that the measurement location does not change. The measurement is performed immediately after the substrate and the developer come into contact with each other by continuing the measurement at the same location.

本願発明において「ディップ法」とは、ウエハを溶解液中に浸漬させて処理する方法を言う。代表的には、ディップ法により露光されたフォトレジストを現像液で現像するディップ現像法があげられる。しかし、たとえば、浸漬された状態でのレジスト剥離のような、同様に浸漬された状態でフォトレジストを処理する類似の処理法も含まれる。
測定対象のフォトレジストとしてはたとえば、化学増幅レジストが挙げられるが、これに限定されるものではない。また、溶解速度の遅い樹脂について測定しても、より正確なデータを得ることができることは当然である。
「溶解液」とは、フォトレジストを溶解することのできる液をいい、公知の現像液の他、フォトレジストを溶解できる任意の溶剤(レジスト剥離液など)も包含する。
「溶解速度」とは、処理中におけるフォトレジストの膜厚の減少速度を言う。
本発明は、基板が溶解液と接触する前から所望の測定終点まで同一箇所について測定を行う点に特徴を有する。このようにすることにより、基板が溶解液と接触した瞬間からの必要なすべてのデータを採取することができる。
In the present invention, the “dip method” refers to a method in which a wafer is processed by being immersed in a solution. A typical example is a dip development method in which a photoresist exposed by a dip method is developed with a developer. However, similar processing methods are also included that treat the photoresist in a similarly immersed state, such as, for example, resist stripping in the immersed state.
Examples of the photoresist to be measured include chemically amplified resists, but are not limited thereto. Moreover, it is natural that more accurate data can be obtained even if measurement is performed on a resin having a low dissolution rate.
The “dissolving solution” refers to a solution capable of dissolving the photoresist, and includes any solvent (resist stripping solution, etc.) capable of dissolving the photoresist in addition to a known developer.
“Dissolution rate” refers to the rate of decrease in photoresist film thickness during processing.
The present invention is characterized in that the measurement is performed at the same position from before the substrate comes into contact with the solution until the desired measurement end point. In this way, all necessary data from the moment when the substrate comes into contact with the solution can be collected.

本発明はさらに、本発明方法において、フォトレジスト層を有しない基板についてのデータを予め採取し、かかるデータと測定データを比較することにより基板と溶解液とが接触する時刻を決定する方法を提供する。
かかる態様においては、フォトレジスト層を表面に有しないベアウエハについて、反射光強度を測定しつつ、ウエハを溶解液槽に浸漬させ、データを採取する。図1に測定例を示す。領域Bでは測定窓から基板が見えるが、このときはウエハは溶解液には浸かっておらず一定の信号が得られる。ウェハが溶解液に入ると一瞬空気を取り込み次いで溶解液が流れ込む。このため領域Cの様に強度が上がる。フォトレジスト層が表面に存在する場合には、その後現像が始まって干渉波形が得られることとなる。
かかるベアSiウエハに関するデータを規格化し、テンプレートデータとして使用する。実際に測定されたデータとテンプレートデータを比較し、その差の2乗の値が最小になる時の位置を現像開始点とする。
The present invention further provides a method for predetermining data on a substrate having no photoresist layer in the method of the present invention, and determining the time at which the substrate and the solution come into contact by comparing such data with measurement data. To do.
In such an embodiment, for a bare wafer that does not have a photoresist layer on the surface, while measuring the reflected light intensity, the wafer is immersed in a solution bath and data is collected. FIG. 1 shows an example of measurement. In region B, the substrate can be seen from the measurement window. At this time, the wafer is not immersed in the solution, and a constant signal is obtained. When the wafer enters the solution, air is taken in for a moment, and then the solution flows. For this reason, the strength increases as in the region C. If a photoresist layer is present on the surface, then development begins and an interference waveform is obtained.
Data relating to the bare Si wafer is standardized and used as template data. The actually measured data is compared with the template data, and the position at which the square of the difference is minimized is set as the development start point.

本発明はさらに本発明方法を実施するための好ましい装置を提供する。
すなわち、本発明は、ディップ法におけるフォトレジストの溶解速度の測定装置であって、基板と同期して移動可能である光照射部および受光部を有する装置を提供する。
基板と同期して移動可能である光照射部および受光部とは、ウエハの同じ位置に光を照射し、かつその反射光を測定しつつ、ウエハとともに移動できる光照射部および受光部をいう。移動方法としては各種の方法が考えられ、何ら限定するものではない。たとえば、機械的手段によりウエハを保持する治具と光照射部および受光部を結合し、ウエハの同じ位置を測定できるようにすることが挙げられる。また、たとえば、ウエハを保持する治具と光照射部および受光部とを同期させたモーターにより動かすこともできる。また、たとえば、ウエハを保持する治具の所定の位置にマークを付け、これを光学的手段により検出しつつ光照射部および受光部を移動させることにより同期させることもできる。
The present invention further provides a preferred apparatus for carrying out the method of the present invention.
That is, the present invention provides an apparatus for measuring a dissolution rate of a photoresist in a dip method, which has a light irradiation part and a light receiving part that are movable in synchronization with a substrate.
The light irradiation unit and the light receiving unit that are movable in synchronization with the substrate are a light irradiation unit and a light receiving unit that can move with the wafer while irradiating light at the same position on the wafer and measuring the reflected light. Various methods can be considered as the moving method, and the moving method is not limited at all. For example, the jig | tool which hold | maintains a wafer with a mechanical means, a light irradiation part, and a light-receiving part can be couple | bonded, and the same position of a wafer can be measured. For example, the jig | tool holding a wafer, and the light irradiation part and the light-receiving part can also be moved by the motor which synchronized. Further, for example, a mark can be placed at a predetermined position of a jig for holding the wafer, and the light irradiation unit and the light receiving unit can be synchronized with each other while detecting this by optical means.

装置の1例の概観を図2に示す。従来装置が左、本発明が右である。従来装置は光照射部および受光部を有するLED光源ユニットが固定されており、ウェハが現像液中に挿入され、所定のモニター位置になったところでモニターを開始する。一方、本発明ではウェハと光照射部および受光部を有するLED光源ユニットは同期して動く。光源ユニットはウェハが現像液に挿入される以前から開始する。そして、現像データ収集後、現像開始点を決定することで高速に溶解するレジストの現像挙動を観察することが可能である。
また、ウェハの挿入スピードは最も現像開始点が明瞭に検出できるように決定することができる。
An overview of one example of the device is shown in FIG. The conventional apparatus is on the left and the present invention is on the right. In the conventional apparatus, an LED light source unit having a light irradiation part and a light receiving part is fixed, and monitoring is started when the wafer is inserted into the developer and reaches a predetermined monitor position. On the other hand, in the present invention, the LED light source unit having the wafer, the light irradiation unit, and the light receiving unit moves synchronously. The light source unit starts before the wafer is inserted into the developer. Then, after collecting development data, it is possible to observe the development behavior of the resist that dissolves at high speed by determining the development start point.
Also, the wafer insertion speed can be determined so that the development start point can be detected most clearly.

本発明は溶解速度の非常に大きなフォトレジストについても、その溶解速度を正確に決定できるという効果を有する。   The present invention has an effect that the dissolution rate can be accurately determined even for a photoresist having a very high dissolution rate.

レジスト:KrFエキシマレーザー対応化学増幅レジスト(TOK社製)
プリベーク条件:90℃、90秒
P.E.B.:110℃、90秒
レジスト膜厚 :700nm
露光:248nmレーザー照射装置
現像:TMAH 2.38%(23℃) ディップ現像60秒
Resist: Chemical amplification resist for KrF excimer laser (manufactured by TOK)
Pre-baking conditions: 90 ° C., 90 seconds E. B. : 110 ° C., 90 seconds resist film thickness: 700 nm
Exposure: 248 nm laser irradiation device Development: TMAH 2.38% (23 ° C.) Dip development 60 seconds

上記の実験条件において、KrFエキシマレーザー対応化学増幅レジストをSi基板に700nm塗布、ベークして248nmのエキシマレーザー光を用いて50mJ/cm2のエネルギーで露光、PEBを行った。このサンプルを従来装置及び本発明にて現像し、干渉波形を観測した。
図3(a)に従来装置で観測した干渉波形を示す。従来装置ではウェハが現像のモニターを開始する地点に到達した時点ですでにレジストの溶解は終わっており、干渉波形が得られていない。
図3(b)は本発明により得られた干渉波形である。サンプリング時間は10msecとした。現像による干渉波形が得られた。図3(c)は本発明により得られた干渉波形である。サンプリング時間は1msecとした。現像による干渉波形が得られた。サンプリング時間が短い方が解像度の高いデータが得られた。
Under the above experimental conditions, a chemically amplified resist for KrF excimer laser was applied to a Si substrate at 700 nm, baked, exposed to 50 mJ / cm 2 with 248 nm excimer laser light, and subjected to PEB. This sample was developed with a conventional apparatus and the present invention, and the interference waveform was observed.
FIG. 3A shows an interference waveform observed with a conventional apparatus. In the conventional apparatus, the dissolution of the resist is already completed when the wafer reaches the point where development monitoring starts, and no interference waveform is obtained.
FIG. 3B is an interference waveform obtained by the present invention. The sampling time was 10 msec. An interference waveform due to development was obtained. FIG. 3C shows the interference waveform obtained by the present invention. The sampling time was 1 msec. An interference waveform due to development was obtained. Data with higher resolution was obtained when the sampling time was shorter.

実施例2
図4に従来装置及び、本発明により得られたレジストのディスクリミネーションカーブの比較を示す。図4(a)に示す従来装置による結果では現像モニターが開始された時点で、既にレジストの溶解が起こっており、結果として溶解速度が遅く測定される事が分かった。これに対して本発明では図4(b)に示す様にRmax=6000nm/sという高い溶解速度値が測定できる事が確認された。
Example 2
FIG. 4 shows a comparison of the discrimination curves of the conventional apparatus and the resist obtained by the present invention. In the result of the conventional apparatus shown in FIG. 4A, it was found that the dissolution of the resist had already occurred when the development monitoring was started, and as a result, the dissolution rate was measured slowly. In contrast, in the present invention, it was confirmed that a high dissolution rate value of Rmax = 6000 nm / s can be measured as shown in FIG.

実施例3
現像開始点の決定方法
図5に現像開始以前からモニターして得られた波形データを示す。サンプルが現像液に入る以前には、図5中A部のように反射光強度が一定の領域が現れ、現像液に挿入されると同時に信号は上昇し干渉波形が現れる。図5中Bは現像の開始点である。そこで、図1に示すようなテンプレートデータを実際のデータから作成し、かかるデータを規格化し、テンプレートデータとして使用する。実際に測定されたデータ(図5)とテンプレートデータを比較し、その差の2乗の値が最小になる時の位置を現像開始点とする。その結果、図5中のB点が現像開始点であると決定された。
図6に本方法により決定した現像開始点を現像時間0に調整したデータを示す。
Example 3
Method for Determining Development Start Point FIG. 5 shows waveform data obtained by monitoring before development start. Before the sample enters the developing solution, a region where the reflected light intensity is constant appears as indicated by A in FIG. 5, and when the sample is inserted into the developing solution, the signal rises and an interference waveform appears. B in FIG. 5 is the starting point of development. Therefore, template data as shown in FIG. 1 is created from actual data, and the data is normalized and used as template data. The actually measured data (FIG. 5) is compared with the template data, and the position at which the square value of the difference is minimized is set as the development start point. As a result, the point B in FIG. 5 was determined to be the development start point.
FIG. 6 shows data obtained by adjusting the development start point determined by this method to the development time 0.

実施例4
ウェハ挿入速度の決定
ウェハの挿入速度は現像開始点が明瞭に現れる様に決定することが出来る。図5はウェハ挿入速度200mm/sで挿入した場合に得られた干渉波型である。挿入速度が速すぎるとウェハ挿入時に挿入による現像液の巻き込みが起こり、ノイズ発生の原因となり、挿入速度が遅すぎると現像開始点が不明瞭になる。
このように、得られた実験結果に基づいて、最適なウエハの挿入速度を決定することができる。
Example 4
Determination of Wafer Insertion Speed The wafer insertion speed can be determined so that the development start point appears clearly. FIG. 5 shows an interference wave type obtained when the wafer is inserted at a wafer insertion speed of 200 mm / s. If the insertion speed is too fast, the developer will be caught by the insertion when the wafer is inserted, causing noise, and if the insertion speed is too slow, the development start point becomes unclear.
In this way, the optimum wafer insertion speed can be determined based on the obtained experimental results.

図1はベアシリコンウエハについて測定されたテンプレートデータを示す図である。FIG. 1 is a diagram showing template data measured for a bare silicon wafer. 図2は本発明の装置の1例を示す図である。FIG. 2 is a diagram showing an example of the apparatus of the present invention. 図3は実施例1の結果を示す図である。FIG. 3 is a diagram showing the results of Example 1. 図4は実施例2の結果を示す図である。FIG. 4 is a diagram showing the results of Example 2. 図5は実施例3および実施例4の結果を示す図である。FIG. 5 is a diagram showing the results of Example 3 and Example 4. 図6は実施例3の結果を示す図である。FIG. 6 shows the results of Example 3.

符号の説明Explanation of symbols

1:LED光源ユニット
2:測定窓
3:サンプルウェハ
4:現像液
1: LED light source unit
2: Measurement window
3: Sample wafer
4: Developer

Claims (3)

フォトレジスト層を表面に有する基板のフォトレジスト面に光を照射し、フォトレジストの溶解にともなう反射干渉光強度の変化を測定することにより溶解速度を検出するフォトレジストの溶解速度の測定方法において、フォトレジストの溶解をディップ法により行い、基板が溶解液と接触する前から所望の測定終点まで、基板と光照射部および受光部を同期して移動させ、同一箇所について測定を行う方法。 In the method for measuring the dissolution rate of a photoresist, which detects the dissolution rate by irradiating light to the photoresist surface of the substrate having a photoresist layer on the surface and measuring the change in reflected interference light intensity accompanying the dissolution of the photoresist, A method in which the photoresist is dissolved by a dip method, and the substrate, the light irradiation unit and the light receiving unit are moved synchronously from before the substrate contacts the solution to a desired measurement end point, and measurement is performed on the same portion. フォトレジスト層を有しない基板についてのデータを予め採取し、かかるデータと測定データを比較することにより基板と溶解液とが接触する時刻を決定する、請求項1記載の方法。 The method according to claim 1, wherein data on a substrate not having a photoresist layer is collected in advance, and the time at which the substrate and the solution come into contact is determined by comparing the measured data and the data. ディップ法におけるフォトレジストの溶解速度の測定装置であって、基板と同期して移動可能である光照射部および受光部を有する装置。
An apparatus for measuring a dissolution rate of a photoresist in a dip method, which has a light irradiation part and a light receiving part that are movable in synchronization with a substrate.
JP2003272675A 2003-07-10 2003-07-10 Method and apparatus for analyzing photoresist dissolution rate Expired - Lifetime JP4174015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272675A JP4174015B2 (en) 2003-07-10 2003-07-10 Method and apparatus for analyzing photoresist dissolution rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272675A JP4174015B2 (en) 2003-07-10 2003-07-10 Method and apparatus for analyzing photoresist dissolution rate

Publications (2)

Publication Number Publication Date
JP2005031010A true JP2005031010A (en) 2005-02-03
JP4174015B2 JP4174015B2 (en) 2008-10-29

Family

ID=34210158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272675A Expired - Lifetime JP4174015B2 (en) 2003-07-10 2003-07-10 Method and apparatus for analyzing photoresist dissolution rate

Country Status (1)

Country Link
JP (1) JP4174015B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190019212A (en) * 2016-07-15 2019-02-26 케이엘에이-텐코 코포레이션 Improved Method for Computer Modeling and Simulation of Negative Tone Developable Photoresist
CN111696881A (en) * 2020-06-17 2020-09-22 段玲玲 Observation device for silicon wafer photoresist dissolving process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190019212A (en) * 2016-07-15 2019-02-26 케이엘에이-텐코 코포레이션 Improved Method for Computer Modeling and Simulation of Negative Tone Developable Photoresist
KR102243006B1 (en) 2016-07-15 2021-04-20 케이엘에이 코포레이션 An improved method for computer modeling and simulation of negative tone developable photoresists
CN111696881A (en) * 2020-06-17 2020-09-22 段玲玲 Observation device for silicon wafer photoresist dissolving process
CN111696881B (en) * 2020-06-17 2023-12-26 段玲玲 Silicon wafer photoresistance dissolving process observation device

Also Published As

Publication number Publication date
JP4174015B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
CN108196434A (en) Exposure device, exposure method, device making method and label
JP2008300579A (en) Exposure apparatus and device manufacturing method
CN104620352A (en) Mark formation method and device manufacturing method
KR20020019978A (en) Exposure during rework for enhanced resist removal
JP4174015B2 (en) Method and apparatus for analyzing photoresist dissolution rate
TW200715361A (en) Substrate-processing apparatus, substrate-processing method, substrate-processing program, and computer-readable recording medium recorded with such program
Smith et al. Fabrication and measurement of test structures to monitor stress in SU-8 films
JP3244783B2 (en) Alignment apparatus and method, and exposure apparatus and semiconductor device manufacturing method using the same
US6800407B2 (en) Method for experimentally verifying imaging errors in photomasks
US4462856A (en) System for etching a metal film on a semiconductor wafer
CN109690419A (en) Detection device, detection method, patterning apparatus and article manufacturing method
JP2005217254A (en) Method and device for evaluation of resist development speed variation
JP3015021B1 (en) Method for evaluating swellable thin film and microbalance system for swellable thin film
WO2007034949A1 (en) Method for measuring liquid immersion lithography soluble fraction in organic film
KR100764374B1 (en) Composition for Removing Immersion Lithography solution and Manufacturing Method of Semiconductor Device Comprising Immersion Lithography Process Using the Same
CN113504711B (en) Method for detecting photoetching development
JP2538935B2 (en) Resist development method
JP2004273716A (en) Method for evaluating resist separation performance, semiconductor device and method for manufacturing the same
JP3115517B2 (en) Method of forming resist pattern
JP2003059818A (en) Method for detection of positioning of mask
KR20060103972A (en) Method for inspecting a profile of minute structures
KR0183731B1 (en) Evaluation method of hmds treatment facility used in the process of manufacturing semiconductor device
JPH1140491A (en) Detection of focusing position
JP2003318243A (en) Etching monitoring method
KR100290000B1 (en) Method for measuring the slope of a pattern on a semiconductor wafer chip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4174015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term