JP2005030813A - Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same - Google Patents

Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same Download PDF

Info

Publication number
JP2005030813A
JP2005030813A JP2003193978A JP2003193978A JP2005030813A JP 2005030813 A JP2005030813 A JP 2005030813A JP 2003193978 A JP2003193978 A JP 2003193978A JP 2003193978 A JP2003193978 A JP 2003193978A JP 2005030813 A JP2005030813 A JP 2005030813A
Authority
JP
Japan
Prior art keywords
axis
objective lens
optical microscope
ccd camera
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193978A
Other languages
Japanese (ja)
Inventor
Junichi Isono
純一 磯野
Yoshimi Sato
好美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2003193978A priority Critical patent/JP2005030813A/en
Publication of JP2005030813A publication Critical patent/JP2005030813A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a three-dimensional noncontact measuring apparatus, and to locate the three-dimensional noncontact measuring apparatus to the working field of a machine tool in-situ. <P>SOLUTION: XYZ position coordinates are displayed on a television display 32. The coordinates are synthesized and computed by an xyz position coordinates computation section, from an xy coordinates output signal outputted by a light reception means of a CCD camera 36 by allowing reflection light from an x-y plane in a subject 2 to directly impinge on the light axis (z axis) of an objective lens 54a of an optical microscope 50, and from a yz coordinates output signal outputted by a light reception means of the CCD camera 36 by allowing reflection light from the y-z plane of the subject to impinge on the light axis of an objective lens 54b of the optical microscope by refraction via a prism 56. A three-dimensional position can be measured by a single CCD camera and a single optical microscope. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、CNC精密研削装置、CNC精密切削装置、CNC精密導光板金型溝加工機等の工作機械において、該工作機械に取り付けられて加工されたワ−ク(被検体)の診断をするためにテレビジョン表示器に撮影画像を投映でき、および加工されたワ−クの3次元位置座標をテレビジョン表示器に表示可能な非接触3次元測定装置に関する。本発明の他の目的は、該非接触3次元測定装置を研削装置に取り付け、in−situでテレビジョン表示器に撮影画像を表示可能であり、加工されたワ−クの3次元位置座標(X,Y,Z)をテレビジョン表示器に表示できるCNC精密研削装置に関する。
【0002】
【従来の技術】
図7に示すNC成形研削装置1を用い、X軸テ−ブル4上のチャック6にワ−ク2を載置し、研削液を供給ノズル18よりワ−ク表面に供給しながらX軸テ−ブル4を左右方向に、該X軸テ−ブルに直交するサドル7に垂直な方向にコラム9を起立して設け、これに砥石軸頭10を設け、この砥石軸に備えた回転砥石3を用い、操作盤8より指示されるプログラミングソフトにより砥石車とワ−クを相対的に移動させてワ−ク2に溝を加工することは知られている(特許文献1参照)。
図8中、8は制御ユニット、8aはキ−ボ−ド、8bは主電源、8cはディスプレイ、19はベッド、20はタンク、21はフィルタ−、22はポンプ、23は砥石軸モ−タ−、25はX軸リニアスケ−ル、26はY軸リニアスケ−ル、28はZ軸リニアスケ−ルである。
【0003】
工作機械のワ−クの仕上がり寸法精度をより精密にするために、金属工作機械、導光板金型溝加工機、半導体製造装置などで加工されるワ−ク、導光板金型、ウエハおよびその加工工具(砥石、バイト、ダイヤモンドカッタ−)等の被検体の撮影画像を光学顕微鏡に結合したCCDカメラを用い、テレビジョン表示器に投影し、診断もしくはモニタ−することは行われている。
【0004】
例えば、バイト刃先を主軸ヘッドの進退方向であるZ軸方向(水平方向)に向けた状態でバイト刃先に光を照射してバイト刃先の映像を光学顕微鏡に結合したテレビカメラを介してテレビジョン表示器に拡大像映し、前記主軸ヘッドをZ軸方向に進退させてバイト刃先を前記テレビジョン表示器のモニタ画面における中心線に接する位置に合わせ、バイト刃先が中心線に接したZ軸方向の座標値Z1を読み取り、次に、バイト刃先を180度旋回させ、主軸ヘッドをZ軸方向に進退させ、この180度旋回させたときのバイト刃先を前記テレビジョン表示器のモニタ画面における中心線に接する位置に合わせ、バイト刃先が中心線に接したZ軸方向の座標値Z2を読み取り、読み取ったZ軸方向の座標値Z1,Z2より主軸回転軸回りに回転するバイト刃先のバイト刃先旋回半径R1を式R1=(Z1−Z2)/2より算出し、つぎに、バイト刃先旋回半径R1とバイト刃先曲率半径R2より半径誤差ΔRを式ΔR=(R1−R2)により算出し、バイト刃先位置微調整機構により前記半径誤差ΔRだけバイト刃先をZ軸方向に移動させてバイト刃先旋回半径R1とバイト刃先曲率半径R2とを一致させる局面切削装置が提案されている(特許文献2参照。)。
【0005】
また、棒状切削工具をその回転軸を軸線として該軸線回りに回転自在に保持するとともに、その回転角度位置を検知可能にされた工具保持手段と、
該工具保持手段を前記軸線回りに回転駆動するようにされた回転駆動手段と、
前記工具保持手段を載置し前記軸線の方向に動作可能にされるとともに、その変位量を検知可能にされたY軸テ−ブルと、
該Y軸テ−ブルを前記軸線の方向に直線駆動するようにされたY軸テ−ブル駆動手段と、
動作動作前記軸線の方向に前記回転手段とは対向して配置された対物レンズを備えるY軸顕微鏡およびY軸顕微鏡に搭載されたY軸テレビカメラと、
前記工具保持手段により保持された棒状切削工具を前記軸線の垂直方向から観察可能となるように前記Y軸テ−ブルに対して垂直な方向に配置された対物レンズを備えるZ軸顕微鏡およびY軸顕微鏡に搭載されたZ軸テレビカメラと、
該Z軸顕微鏡を保持し前記Y軸テ−ブルに対して垂直方向に動作可能にされるとともに、その変位量を検知可能にされたZ軸テ−ブルと、
該Z軸テ−ブルを前記Y軸テ−ブルに対して垂直な方向に直線駆動するようにされたZ軸テ−ブル駆動手段と、
前記2つのテレビカメラにより撮影された画像を処理することにより、前記棒状切削工具の寸法、形状精度に関する複数の測定項目を測定するようにされた画像処理装置と、を有する棒状切削工具の測定装置が提案されている(特許文献3参照。)。
【0006】
さらに、テレビジョン表示器の画面上に測定デ−タ点列と、解析範囲を特定する解析範囲特定図形とが表示され、解析範囲特定図形の位置をマウスで調整することにより解析範囲を指定し、指定が完了すると結果表示欄に測定結果が表示される表面性状解析プログラムも提案(特許文献4参照。)されており、そのソフトウエアも株式会社ミツトヨより画像ユニットデ−タ処理ソフトQSPAKの商品名で市販されている。
【0007】
【特許文献1】
特開2002−346879号公報(第2−3頁および図6)
【特許文献2】
特開平8−229721号公報(第3−7頁および図1、図4)
【特許文献3】
特開2000−74644号公報(第6−10頁および図1、図2、図6)
【特許文献4】
特開2003−14448号公報(第3−5頁および図1、図2、図4、図7)
【0008】
テレビカメラの光源として利用されるレ−ザ光は方向と波長と位相(1波長を360度で分割した途中の角度)が揃っており、その波長は短く(例えば、ヘリウムネオンレ−ザは1波長当たり0.6328μm)、1ナノメ−トル(nm)の計測ができるので、精密な観察およびワ−クの加工ができる。
【0009】
【発明が解決しようとする課題】
前記特許文献2および特許文献4で提案される2次元座標測定装置は2次元の平面状態で計測・補正等を行うので、1台の光学顕微鏡とこれに結合したテレビカメラを用いている。3次元測定装置は、特許文献3に記載されるようにX−Y平面を撮像するZ軸テレビカメラとZ軸光学顕微鏡の結合と、X−Z平面を撮像するY軸テレビカメラとY軸光学顕微鏡の結合を利用し、これら結合体をZ軸方向およびY軸方向にを動作することにより得られた画像の発信信号を画像処理演算部で演算することにより基準点に対する被検体の3次元の位置座標(X,Y,Z)が求められる。
【0010】
本発明は、被検体の3次元の位置座標(X,Y,Z)を測定するのに、特許文献3に記載されるような従来は各2台のテレビカメラと光学顕微鏡を用いていたのに対し、1台のテレビカメラと光学顕微鏡で被検体の3次元の位置座標を測定する装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
請求項1の発明は、左右方向(x軸方向)に移動可能な被検体を載置するX軸テ−ブル、
前後方向(y軸方向)に移動可能なサドル上に前記X軸テ−ブルに対し垂直の方向に設けたコラム、
該コラムに昇降可能に設けた支持軸
該支持軸に対物レンズの光軸(z軸)が平行となるように取り付けた光学顕微鏡であって、該光学顕微鏡の同焦レボルバには少なくとも2個の同倍率の対物レンズを設け、一方の対物レンズは被検体のx−y平面からの反射光を前記光軸に受け、他方の対物レンズには対物レンズ取付側とは反対側の受光部近傍にプリズムを配置して被検体のy−z平面からの反射光を屈折させて前記光軸に受けるようにし、この光学顕微鏡の結像レンズ側にCCDカメラを結合させた光学顕微鏡、
光源より被検体に照射された光が反射して光学顕微鏡の対物レンズに入光し、x軸テ−ブルに垂直な光軸(z軸)経てCCDカメラに結像し、この結像を撮影画像としてテレビジョン表示器に映し出す画像処理部およびxyz位置座標演算部、
x軸−、y軸−、z軸−リニアスケ−ル
および、
操作盤、プログラムソフト記憶部(ROM)、デ−タ記録部(RAM)および制御部(CPU)を備えるコンピュ−タ、
を備える非接触3次元測定装置を提供するものである。
【0012】
予め、CCDカメラを結合した光学顕微鏡の一方の対物レンズを使用して被検体のx−y平面の画像を撮像したのち、CCDカメラを結合した光学顕微鏡を左右方向(x軸方向)に移動させ、ついで同焦レボルバを回転してプリズムを備えた対物レンズの軸芯を光軸(z軸)に一致させ、さらにこのCCDカメラを結合した光学顕微鏡を昇降させて被検体のy−z平面の画像を撮像することができるので、1台の光学顕微鏡とCCDカメラを省略でき、非接触3次元測定装置をコンパクトにすることができる。
【0013】
請求項2の発明は、前記非接触3次元測定装置において、被検体のx−y平面からの反射光が前記光学顕微鏡の対物レンズの光軸に直接入射してCCDカメラの受光手段より出力されるxy座標出力信号と、被検体のy−z平面からの反射光がプリズムを介して屈折されて前記光学顕微鏡の対物レンズの光軸に入射してCCDカメラの受光手段より出力されるyz座標出力信号とからxyz位置座標演算部が合成・演算したxyz位置座標がテレビジョン表示器に表示可能であることを特徴とする。
【0014】
テレビジョン表示器にxyz位置座標を表示できるので、プログラミングされた所望の加工寸法と実際の加工されたワ−クの加工寸法を対比する欄をテレビジョン表示器に表示でき、加工ワ−クの診断が行える。
【0015】
請求項3の発明は、左右方向(X軸方向)にサ−ボドライブ移動可能なX軸テ−ブル、該X軸テ−ブル上に設けられたワ−クを載置するチャック、前後方向(Y軸方向)にサ−ボドライブ移動可能なサドル、該サドル上に垂直方向(Z軸方向)に設けたコラム、該コラムの前面に設けた砥石軸、該砥石軸に軸承された回転砥石、砥石軸昇降機構、砥石軸回転機構、X軸テ−ブルの左右方向に備えられたX軸リニアスケ−ル、サドルの前後方向に備えられたY軸リニアスケ−ル、コラムの垂直方向に設けられたZ軸リニアスケ−ル、操作盤、プログラムソフト記憶部、デ−タ記録部および制御部を備えるコンピュ−タを備えるCNC研削装置、
および
前記CNC研削装置のコラムに前後方向(y軸方向)および上下方向に移動可能に設けた支持軸をZ軸に平行に設け、この支持軸に対物レンズの光軸(z軸)が平行となるように取り付けた光学顕微鏡であって、該光学顕微鏡の同焦レボルバには少なくとも2個の同倍率の対物レンズを設け、一方の対物レンズは被検体のx−y平面からの反射光を前記光軸に受け、他方の対物レンズには対物レンズ取付側とは反対側の受光部近傍にプリズムを配置して被検体のy−z平面からの反射光を屈折させて前記光軸に受けるようにし、この光学顕微鏡の結像レンズ側にCCDカメラを結合させ、光源よりワ−クに照射された光が反射してCCDカメラ対物レンズに入光し、X軸テ−ブルに垂直な対物レンズの光軸(z軸)経てCCDカメラの受光手段に結像しこの結像を撮影画像としてテレビジョン表示器に映し出す非接触3次元測定装置、
を有するCNC精密研削装置を提供するものである。
【0016】
CNC精密研削装置に非接触3次元測定装置がin−situで設置されているので、CNC精密研削装置上で加工ワ−クの仕上がりの診断を行うことができる。テレビジョン表示器にxyz位置座標またはXYZ位置座標を表示できるので、プログラミングされた所望の加工寸法と実際の加工されたワ−クの加工寸法を対比し、加工不足の位置座標と補足加工する寸法を記載した欄をテレビジョン表示器に表示でき、該欄のデ−タを見ながら操作盤より再加工プログラムを選択し、加工条件を再入力し、ワ−クを再度加工すればナノ精度の加工ワ−クが得られる。。
【0017】
【発明の実施の形態】
【実施例】
以下、図面を用いて本発明を更に詳細に説明する。
図1はCNC精密研削装置の側面図、図2はCNC精密研削装置の平面図、図3はCNC精密研削装置の簡略正面図、図4はCNC精密研削装置のシステム図、図5はCCDカメラを結合した光学顕微鏡の正面図、および図6はCCDカメラを結合した光学顕微鏡の側面図である。
【0018】
図1、図2および図3に示すCNC精密研削装置1において、2はワ−ク(被検体)、3は砥石車、4は水平方向(X軸方向)に往復移動可能なX軸テ−ブル、5は作業台、6は電磁チャック、7はサ−ボモ−タ7a駆動により前後方向(Y軸方向)に移動可能なサドル、8は制御ユニット、9はコラム、10は砥石軸頭、11は砥石軸、12は砥石軸頭をサ−ボモ−タ13駆動により垂直方向(Z軸方向)に移動する昇降機構、14は砥石車を回転駆動させるサ−ボモ−タ、17は安全保護カバ−、25はX軸リニアスケ−ル、26はY軸リニアスケ−ル、28はZ軸リニアスケ−ル、30は非接触3次元測定装置、31はパ−ソナルコンピュ−タ、32はテレビジョン表示器、33はキィボ−ド、34はマウス、35は光源、36はCCDカメラ、37は支持軸、38はガイド、38aはレ−ル、39はスライダ−、40はy軸リニアスケ−ル、41は支持軸昇降機構、42はz軸リニアスケ−ル、50は光学顕微鏡である。
【0019】
前記X軸テ−ブル4は、ベッド19上に設けられた一対の案内面を滑べるサドル7に設けられたV字型軌道部により位置決めされ、X軸テ−ブル4はその係合部(スライダ)により案内レ−ルに摺動自在に支えられる。このX軸テ−ブル4は図示されていないサ−ボモ−タとボ−ルネジと螺合体よりなるドライブ機構により左右方向に往復移動可能である。X軸テ−ブル4は、X−Yステ−ジと言える。
【0020】
砥石軸の上下(Z軸方向)送りおよび前後(Y軸方向)送りが数値制御されるCNC成形研削装置1のX軸テ−ブル4上の電磁チャック6上にワ−ク2を固定し、前記砥石軸に備えられた砥石車3をモ−タ14で回転させつつ前記ワ−ク面に対し直角方向に切り込み速度5〜100mm/分、X軸テ−ブルの反転を50〜400ストロ−ク/分の反転速度、ストロ−ク幅10〜75mm幅で反転させてワ−ク2を成形(例えば溝研削)加工する。
【0021】
非接触3次元測定装置30の支持軸37は、支持軸昇降機構41の取付板43垂直方向(z軸方向)に固定され、この取付板43はコラム9の側壁に一対設けられたガイド38のレ−ル38a上にX軸方向と平行の左右方向(x軸方向)に移動可能なスライダ−39に取り付けられ、このスライダ−39は左右方向に平行に延びる一対の前記レ−ル38a上を図示されていないサ−ボモ−タの駆動を受けたボ−ルネジの回転を受けて前後方向(y軸方向)に移動可能である。
【0022】
光学顕微鏡50は、図5および図6に示すように図に示されてない結像レンズを内蔵する鏡筒本体51下部に接続されている照明鏡筒部52下部に内側に向けた調心・同焦マニュアルレボルバ53を取り付け、この調心・同焦マニュアルレボルバ53の下面に2個の同倍率の対物レンズ54a,54bを前記調心・同焦レボルバ53を回動させることにより同一の光軸(z軸)を共有することができるように設けられる。
【0023】
光軸(z軸)は、X−Yステ−ジであるX軸テ−ブル4のX−Y平面に対し垂直である。前記対物レンズの一方54aは光源35より照射された光(例えば、ハロゲン光、レ−ザ光)がワ−ク(被検体)のXY平面からの反射光を前記光軸に受ける。他方の対物レンズ54bには対物レンズ取付側(マウント側)54cとは反対側の受光部近傍にプリズム56をプリズム固定具57で配置して被検体2のY−Z平面からの反射光を屈折させて前記光軸(z軸)に受ける。この光学顕微鏡の結像レンズ側にアダプタ58を介してCCDカメラ36を結合し、前記光軸に入射した反射光をこのCCDカメラ上に結像(中間像)し、この結像の発信信号をA/Dコンバ−タを介してコンピュ−タ31の記憶部(RAM)に送信し、画像処理部で発信信号を処理して撮影画像としてテレビジョン表示器31aに映し出す。前記照明鏡筒部52にはファイバ照明機器が接続される光ファイバ取付具55が備え付けられている。
光源35は光源発生器を2基設けてもよいが、移動可能なマグネットスタンドに光源発生器を取り付け、移動可能としてもよい。
【0024】
非接触3次元測定装置30は、前述したパ−ソナルコンピュ−タ31、テレビジョン表示器32、キィボ−ド33、マウス34、光源35、CCDカメラ36、支持軸37、案内レ−ル38、スライダ−39、x軸リニアスケ−ル(X軸リニアスケ−ルと兼用)、y軸リニアスケ−ル40、支持軸昇降機構41、z軸リニアスケ−ル42、X−Yステ−ジであるX軸テ−ブル4および前記光学顕微鏡50よりなる。
【0025】
X軸、Y軸およびZ軸は直交3軸系であり、x軸、y軸、およびz軸も直交3軸系である。また、X軸とx軸、Y軸とy軸およびZ軸とz軸は平行である。
公知のように、CNC研削装置のxyz座標は、X軸テ−ブル4に対して基準点(X,Y,Z)=(0,0,0)となる位置を定めれば、X軸テ−ブルの左右方向に備えられたX軸リニアスケ−ル25、サドルの前後方向に備えられたY軸リニアスケ−ル26、コラムの垂直方向に設けられたZ軸リニアスケ−ル28および位置センサである各サ−ボモ−タのエンコ−ダ(あるいはアクチュエ−タ)でXYZ位置座標(X,Y,Z)が読み取れる。
【0026】
非接触3次元装置における位置座標は、y軸リニアスケ−ル40、z軸リニアスケ−ル42およびX軸テ−ブルの左右方向に備えられたX軸リニアスケ−ル60と位置センサである各サ−ボモ−タのエンコ−ダ(あるいはアクチュエ−タ)およびCCDカメラ36でxy座標(x,y)、yz座標(y,z)を読み取り、同一y座標yにおけるx座標およびz座標をコンピュ−タ31のxyz位置座標演算部(画像処理コントロ−ラ)で算出・合成して3次元位置座標(x,y,z)を求める。
【0027】
X軸とx軸、Y軸とy軸およびZ軸とz軸は平行であり、X−Yステ−ジであるX軸テ−ブル4はCNC精密成形研削装置1のX−Yステ−ジと非接触3次元測定装置30のx−yステ−ジを兼用としているので、座標(x,y,z)を平行に移動して演算すればCNC精密研削装置1の基準点に対する位置座標(X,Y,Z)を制御ユニット8のXYZ位置座標演算部で演算して求めることができる(図4のシステム図参照)。
【0028】
コンピュ−タ31の記憶部ROMには画像処理プログラムが記憶され、テレビジョン表示器32には画像処理プログラムに従って画像が映し出されたり、位置座標や加工ワ−クの寸法、溝深さ等を表示できる。
よって、プログラミングされた所望の加工寸法とテレビジョン表示器に表示された加工ワ−クの加工寸法を対比した欄をテレビジョン表示器32に表示し、加工不足の部分およびその量を制御ユニット24の操作盤8で入力し、補正の加工を行うこともでき、ワ−クの表面の仕上がりをナノ精度にすることができる。
【0029】
【発明の効果】
本発明の3次元測定装置は、CCDカメラおよび光学顕微鏡が1台であっても、プリズムを利用してワ−ク(被検体)のx−yステ−ジおよびy−zステ−ジの拡大画像をテレビジョン表示器32に表示し、ワ−クの診断を行うことができる。また、xy座標とyz座標よりxyz座標を演算・合成することができ、ワ−クの寸法を計算・表示することができる。また、2つの2次元画像の出力信号より3次元画像を合成することができる。
【図面の簡単な説明】
【図1】CNC精密研削装置の側面図である。
【図2】CNC精密研削装置の平面図である。
【図3】CNC精密研削装置の簡略正面図である。
【図4】CNC精密研削装置のシステム図でる。
【図5】CCDカメラを結合した光学顕微鏡の正面図である。
【図6】CCDカメラを結合した光学顕微鏡の側面図である。
【図7】NC研削装置の斜視図である。(公知)
【符号の説明】
1 CNC精密成形研削装置
2 ワ−ク(被検体)
3 砥石車
4 X軸テ−ブル
7 サドル
8 制御ユニット
9 コラム
30 非接触3次元測定装置
31 コンピュ−タ
36 CCDカメラ
50 光学顕微鏡
54 対物レンズ
56 プリズム
[0001]
BACKGROUND OF THE INVENTION
The present invention diagnoses a workpiece (subject) attached to a machine tool in a machine tool such as a CNC precision grinding apparatus, a CNC precision cutting apparatus, a CNC precision light guide plate die groove processing machine, and the like. Therefore, the present invention relates to a non-contact three-dimensional measuring apparatus capable of projecting a photographed image on a television display and capable of displaying the three-dimensional position coordinates of the processed workpiece on the television display. Another object of the present invention is to attach the non-contact three-dimensional measuring apparatus to a grinding apparatus and display a photographed image on a television display in-situ, and the three-dimensional position coordinates (X The present invention relates to a CNC precision grinding apparatus capable of displaying i , Y i , Z i ) on a television display.
[0002]
[Prior art]
7 is used to place the workpiece 2 on the chuck 6 on the X-axis table 4 and supply the grinding liquid to the workpiece surface from the supply nozzle 18 while the X-axis table is mounted. A column 9 is provided upright in a direction perpendicular to the saddle 7 orthogonal to the X-axis table, and the wheel 4 is provided with a grinding wheel head 10. It is known that a groove is formed in the workpiece 2 by relatively moving the grinding wheel and the workpiece by programming software instructed from the operation panel 8 (see Patent Document 1).
In FIG. 8, 8 is a control unit, 8a is a keyboard, 8b is a main power supply, 8c is a display, 19 is a bed, 20 is a tank, 21 is a filter, 22 is a pump, and 23 is a grindstone shaft motor. -And 25 are X-axis linear scales, 26 is a Y-axis linear scale, and 28 is a Z-axis linear scale.
[0003]
In order to make the finished dimensional accuracy of a work of a machine tool more precise, a work machined with a metal machine tool, a light guide plate die groove processing machine, a semiconductor manufacturing apparatus, a light guide plate die, a wafer and its A CCD camera coupled with an optical microscope is used to project a photographed image of a subject such as a processing tool (grinding stone, bite, diamond cutter), etc., and is projected or diagnosed or monitored.
[0004]
For example, when the cutting tool edge is directed in the Z-axis direction (horizontal direction), which is the forward / backward direction of the spindle head, light is applied to the cutting tool blade and the image of the cutting tool edge is displayed on a television via a television camera coupled to an optical microscope. The image is magnified on the instrument, and the spindle head is moved back and forth in the Z-axis direction so that the cutting tool edge is aligned with the center line on the monitor screen of the television display. The value Z1 is read, and then the cutting tool edge is rotated 180 degrees, the spindle head is advanced and retracted in the Z-axis direction, and the cutting tool edge when rotated 180 degrees is in contact with the center line on the monitor screen of the television display. The coordinate value Z2 in the Z-axis direction where the cutting tool edge is in contact with the center line is read in accordance with the position, and rotated around the main axis rotation axis from the read Z-axis direction coordinate values Z1 and Z2 The cutting edge turning radius R1 of the cutting edge is calculated from the equation R1 = (Z1-Z2) / 2, and then a radius error ΔR is calculated from the cutting edge turning radius R1 and the cutting edge curvature radius R2 by the equation ΔR = (R1-R2). ), And a cutting tool that moves the cutting tool edge in the Z-axis direction by the radius error ΔR by a tool cutting edge position fine adjustment mechanism to match the cutting tool edge turning radius R1 and the cutting tool curvature radius R2 has been proposed. (See Patent Document 2).
[0005]
Also, a tool holding means for holding the rod-shaped cutting tool so as to be rotatable about the rotation axis about the rotation axis, and capable of detecting the rotation angle position;
Rotational drive means adapted to rotationally drive the tool holding means about the axis;
A Y-axis table on which the tool holding means is placed and enabled to move in the direction of the axis, and the amount of displacement thereof can be detected;
Y-axis table driving means adapted to linearly drive the Y-axis table in the direction of the axis;
Y-axis microscope equipped with an objective lens arranged opposite to the rotating means in the direction of the axis and a Y-axis TV camera mounted on the Y-axis microscope;
Z-axis microscope and Y-axis comprising an objective lens arranged in a direction perpendicular to the Y-axis table so that the rod-shaped cutting tool held by the tool holding means can be observed from the direction perpendicular to the axis A Z-axis TV camera mounted on a microscope;
A Z-axis table that holds the Z-axis microscope and is operable in a direction perpendicular to the Y-axis table and capable of detecting the amount of displacement;
Z-axis table driving means adapted to linearly drive the Z-axis table in a direction perpendicular to the Y-axis table;
An image processing apparatus for measuring a plurality of measurement items related to the dimension and shape accuracy of the bar-shaped cutting tool by processing images taken by the two television cameras, and a measuring apparatus for the bar-shaped cutting tool Has been proposed (see Patent Document 3).
[0006]
In addition, a measurement data point sequence and an analysis range specifying figure for specifying the analysis range are displayed on the screen of the television display. The analysis range is designated by adjusting the position of the analysis range specifying figure with the mouse. A surface texture analysis program that displays the measurement result in the result display column when the specification is completed is also proposed (see Patent Document 4), and the software is also a product of image unit data processing software QSPAK from Mitutoyo Corporation. It is marketed by name.
[0007]
[Patent Document 1]
JP 2002-346879 A (page 2-3 and FIG. 6)
[Patent Document 2]
JP-A-8-229721 (page 3-7 and FIGS. 1 and 4)
[Patent Document 3]
JP 2000-74444 A (page 6-10 and FIGS. 1, 2 and 6)
[Patent Document 4]
JP 2003-14448 (page 3-5 and FIGS. 1, 2, 4, and 7)
[0008]
Laser light used as a light source of a television camera has a uniform direction, wavelength and phase (an angle in the middle of dividing one wavelength by 360 degrees), and the wavelength is short (for example, helium neon laser has 1 Since it can measure 1 nanometer (nm) per wavelength (0.6328 μm), precise observation and work processing are possible.
[0009]
[Problems to be solved by the invention]
Since the two-dimensional coordinate measuring apparatus proposed in Patent Document 2 and Patent Document 4 performs measurement and correction in a two-dimensional plane state, a single optical microscope and a television camera coupled thereto are used. As described in Patent Document 3, the three-dimensional measuring apparatus includes a combination of a Z-axis television camera that captures an XY plane and a Z-axis optical microscope, a Y-axis television camera that captures an X-Z plane, and Y-axis optics. Utilizing the coupling of the microscope, the image processing signals are used to calculate the transmission signals of the images obtained by operating these combinations in the Z-axis direction and the Y-axis direction, thereby providing a three-dimensional object of the subject relative to the reference point. Position coordinates (X i , Y i , Z i ) are obtained.
[0010]
In the present invention, two TV cameras and an optical microscope are conventionally used to measure the three-dimensional position coordinates (X i , Y i , Z i ) of a subject. In contrast, an object of the present invention is to provide an apparatus for measuring the three-dimensional position coordinates of a subject with one television camera and an optical microscope.
[0011]
[Means for Solving the Problems]
The invention of claim 1 is an X-axis table for placing a subject movable in the left-right direction (x-axis direction).
A column provided on a saddle movable in the front-rear direction (y-axis direction) in a direction perpendicular to the X-axis table;
A support shaft provided on the column so as to be movable up and down. An optical microscope attached to the support shaft so that the optical axis (z-axis) of the objective lens is parallel to the column. An objective lens having the same magnification is provided, one objective lens receives reflected light from the xy plane of the subject on the optical axis, and the other objective lens is near the light receiving portion on the side opposite to the objective lens mounting side. An optical microscope in which a prism is arranged to refract the reflected light from the yz plane of the subject so as to be received by the optical axis, and a CCD camera is coupled to the imaging lens side of the optical microscope;
The light irradiated to the subject from the light source is reflected and enters the objective lens of the optical microscope, and forms an image on the CCD camera through the optical axis (z-axis) perpendicular to the x-axis table. An image processing unit and an xyz position coordinate calculation unit which are displayed as an image on a television display;
x-axis, y-axis, z-axis, linear scale, and
A computer including an operation panel, a program software storage unit (ROM), a data recording unit (RAM), and a control unit (CPU);
The non-contact three-dimensional measuring apparatus provided with this is provided.
[0012]
After taking an image on the xy plane of the subject using one objective lens of an optical microscope coupled with a CCD camera in advance, the optical microscope coupled with the CCD camera is moved in the left-right direction (x-axis direction). Then, the confocal revolver is rotated so that the axis of the objective lens provided with the prism coincides with the optical axis (z-axis), and the optical microscope coupled with the CCD camera is moved up and down on the yz plane of the subject. Since an image can be taken, one optical microscope and a CCD camera can be omitted, and the non-contact three-dimensional measuring apparatus can be made compact.
[0013]
In the non-contact three-dimensional measuring apparatus, the reflected light from the xy plane of the subject directly enters the optical axis of the objective lens of the optical microscope and is output from the light receiving means of the CCD camera. Xy coordinate output signal and reflected light from the yz plane of the subject are refracted through the prism and incident on the optical axis of the objective lens of the optical microscope and output from the light receiving means of the CCD camera. The xyz position coordinates synthesized and calculated by the xyz position coordinate calculation unit from the output signal can be displayed on the television display.
[0014]
Since the xyz position coordinates can be displayed on the television display, a column for comparing the desired machining dimension programmed and the machining dimension of the actual machined workpiece can be displayed on the television display. Diagnosis can be made.
[0015]
According to a third aspect of the present invention, there is provided an X-axis table capable of servo drive movement in the left-right direction (X-axis direction), a chuck for placing a work provided on the X-axis table, A saddle movable in the servo drive in the Y-axis direction), a column provided vertically on the saddle (Z-axis direction), a grindstone shaft provided in front of the column, a rotating grindstone supported by the grindstone shaft, and a grindstone Axis lifting mechanism, grinding wheel axis rotation mechanism, X axis linear scale provided in the left and right direction of the X axis table, Y axis linear scale provided in the front and rear direction of the saddle, Z provided in the vertical direction of the column CNC grinding apparatus comprising a computer comprising an axis linear scale, an operation panel, a program software storage unit, a data recording unit and a control unit,
Further, a support shaft provided on the column of the CNC grinding apparatus so as to be movable in the front-rear direction (y-axis direction) and the vertical direction is provided in parallel to the Z-axis, and the optical axis (z-axis) of the objective lens is parallel to the support shaft. An optical microscope mounted so that at least two objective lenses having the same magnification are provided in a confocal revolver of the optical microscope, and one objective lens receives reflected light from the xy plane of the subject. The other objective lens is provided with a prism in the vicinity of the light receiving portion opposite to the objective lens mounting side so that the reflected light from the yz plane of the subject is refracted and received by the optical axis. The CCD camera is coupled to the imaging lens side of this optical microscope, the light irradiated to the work from the light source is reflected and enters the CCD camera objective lens, and the objective lens is perpendicular to the X-axis table. Of the CCD camera through the optical axis (z-axis) Non-contact three-dimensional measuring apparatus for projecting a television display the imaged image on the optical means as a photographed image,
The CNC precision grinding apparatus which has this.
[0016]
Since the non-contact three-dimensional measuring apparatus is installed in-situ in the CNC precision grinding apparatus, the finish of the work workpiece can be diagnosed on the CNC precision grinding apparatus. Since the xyz position coordinates or XYZ position coordinates can be displayed on the television display, the desired machining dimension programmed and the machining dimension of the actual machined workpiece are compared, and the position coordinates that are insufficiently machined and the dimensions to be supplemented. Can be displayed on the television display, and if the reprocessing program is selected from the operation panel while viewing the data in the column, the processing conditions are re-input, and the workpiece is processed again. A machining work is obtained. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
【Example】
Hereinafter, the present invention will be described in more detail with reference to the drawings.
1 is a side view of a CNC precision grinding apparatus, FIG. 2 is a plan view of the CNC precision grinding apparatus, FIG. 3 is a simplified front view of the CNC precision grinding apparatus, FIG. 4 is a system diagram of the CNC precision grinding apparatus, and FIG. And FIG. 6 is a side view of the optical microscope combined with a CCD camera.
[0018]
In the CNC precision grinding apparatus 1 shown in FIGS. 1, 2 and 3, 2 is a work (subject), 3 is a grinding wheel, 4 is an X-axis tape which can be reciprocated in the horizontal direction (X-axis direction). 5 is a work table, 6 is an electromagnetic chuck, 7 is a saddle that can be moved in the front-rear direction (Y-axis direction) by driving a servo motor 7a, 8 is a control unit, 9 is a column, 10 is a grinding wheel head, 11 is a grinding wheel shaft, 12 is a lifting mechanism that moves the wheel head in the vertical direction (Z-axis direction) by driving a servo motor 13, 14 is a servo motor that rotationally drives the grinding wheel, and 17 is safety protection. Cover, 25 is an X-axis linear scale, 26 is a Y-axis linear scale, 28 is a Z-axis linear scale, 30 is a non-contact three-dimensional measuring device, 31 is a personal computer, 32 is a television display , 33 keyboard, 34 mouse, 35 light source, 36 CC Camera 37, support shaft 38, guide 38, 38 a rail, 39 slider, 40 y-axis linear scale, 41 support shaft lifting mechanism, 42 z-axis linear scale, 50 optical microscope is there.
[0019]
The X-axis table 4 is positioned by a V-shaped track portion provided on the saddle 7 that slides on a pair of guide surfaces provided on the bed 19, and the X-axis table 4 has its engaging portion. (Slider) is slidably supported on the guide rail. The X-axis table 4 can be reciprocated in the left-right direction by a drive mechanism comprising a servo motor, a ball screw and a screw (not shown). The X-axis table 4 can be said to be an XY stage.
[0020]
The workpiece 2 is fixed on the electromagnetic chuck 6 on the X-axis table 4 of the CNC forming grinding device 1 in which the vertical (Z-axis direction) feed and the front-rear (Y-axis direction) feed of the grindstone axis are numerically controlled. While the grinding wheel 3 provided on the grinding wheel shaft is rotated by a motor 14, the cutting speed is 5 to 100 mm / min in the direction perpendicular to the work surface, and the reversal of the X axis table is 50 to 400 strokes. The workpiece 2 is formed (for example, groove grinding) by reversing at a reversal speed of 10 m / min and a stroke width of 10 to 75 mm.
[0021]
The support shaft 37 of the non-contact three-dimensional measuring apparatus 30 is fixed in the vertical direction (z-axis direction) of the mounting plate 43 of the support shaft lifting mechanism 41, and the mounting plate 43 is formed by a pair of guides 38 provided on the side wall of the column 9. The slider 39 is mounted on a rail 38a that is movable in the left-right direction (x-axis direction) parallel to the X-axis direction. The slider 39 extends on the pair of rails 38a extending in parallel in the left-right direction. It can move in the front-rear direction (y-axis direction) under the rotation of a ball screw that is driven by a servo motor (not shown).
[0022]
As shown in FIGS. 5 and 6, the optical microscope 50 has an inward alignment / alignment in the lower part of the illumination barrel part 52 connected to the lower part of the barrel body 51 containing the imaging lens not shown in the figure. An in-focus manual revolver 53 is attached, and the same optical axis is obtained by rotating the aligning / in-focus revolver 53 with two objective lenses 54a, 54b having the same magnification on the lower surface of the in-focus / in-focus manual revolver 53. (Z axis) is provided so that it can be shared.
[0023]
The optical axis (z-axis) is perpendicular to the XY plane of the X-axis table 4 which is an XY stage. One of the objective lenses 54a receives light (for example, halogen light, laser light) emitted from the light source 35 and receives reflected light from the XY plane of a work (subject) on the optical axis. In the other objective lens 54b, a prism 56 is arranged with a prism fixture 57 in the vicinity of the light receiving portion opposite to the objective lens mounting side (mount side) 54c, and the reflected light from the YZ plane of the subject 2 is refracted. And received by the optical axis (z-axis). A CCD camera 36 is coupled to the imaging lens side of the optical microscope via an adapter 58, and the reflected light incident on the optical axis is imaged (intermediate image) on the CCD camera. The data is transmitted to the storage unit (RAM) of the computer 31 via the A / D converter, the transmission signal is processed by the image processing unit, and the captured image is displayed on the television display 31a. The illumination barrel portion 52 is provided with an optical fiber fixture 55 to which a fiber illumination device is connected.
The light source 35 may be provided with two light source generators, but may be movable by attaching the light source generator to a movable magnet stand.
[0024]
The non-contact three-dimensional measuring apparatus 30 includes a personal computer 31, a television display 32, a keyboard 33, a mouse 34, a light source 35, a CCD camera 36, a support shaft 37, a guide rail 38, the above-described personal computer 31. Slider 39, x-axis linear scale (also used as X-axis linear scale), y-axis linear scale 40, support shaft lifting mechanism 41, z-axis linear scale 42, X-axis stage as XY stage -It consists of Bull 4 and the optical microscope 50.
[0025]
The X axis, Y axis, and Z axis are orthogonal triaxial systems, and the x axis, y axis, and z axes are also orthogonal triaxial systems. The X axis and x axis, the Y axis and y axis, and the Z axis and z axis are parallel.
As is well known, if the xyz coordinate of the CNC grinding apparatus is set to a position where the reference point (X 0 , Y 0 , Z 0 ) = (0, 0 , 0 ) with respect to the X-axis table 4, X-axis linear scale 25 provided in the left-right direction of the X-axis table, Y-axis linear scale 26 provided in the front-rear direction of the saddle, Z-axis linear scale 28 provided in the vertical direction of the column, and position The XYZ position coordinates (X i , Y i , Z i ) can be read by the encoder (or actuator) of each servo motor as a sensor.
[0026]
The position coordinates in the non-contact three-dimensional apparatus are the y-axis linear scale 40, the z-axis linear scale 42, the X-axis linear scale 60 provided in the left-right direction of the X-axis table, and each sensor which is a position sensor. The xy coordinates (x i , y i ) and the yz coordinates (y i , z i ) are read by the encoder (or actuator) of the motor and the CCD camera 36, and the x i coordinates at the same y coordinate y i and The z i coordinates are calculated and synthesized by the xyz position coordinate calculation unit (image processing controller) of the computer 31 to obtain the three-dimensional position coordinates (x i , y i , z i ).
[0027]
The X-axis and x-axis, the Y-axis and y-axis, and the Z-axis and z-axis are parallel, and the X-axis table 4 that is the XY stage is the XY stage of the CNC precision forming and grinding apparatus 1. And the xy stage of the non-contact three-dimensional measuring apparatus 30 are also used, so if the coordinates (x i , y i , z i ) are moved in parallel and calculated, the reference point of the CNC precision grinding apparatus 1 is calculated. The position coordinates (X i , Y i , Z i ) can be calculated by the XYZ position coordinate calculation unit of the control unit 8 (see the system diagram in FIG. 4).
[0028]
An image processing program is stored in the storage unit ROM of the computer 31, and an image is displayed on the television display 32 according to the image processing program, and position coordinates, dimensions of the work workpiece, groove depth, etc. are displayed. it can.
Therefore, a column in which the desired programmed machining dimension and the machining dimension of the machining workpiece displayed on the television display are compared is displayed on the television display 32, and the insufficient portion and the amount of machining are displayed on the control unit 24. It is also possible to perform correction processing by inputting on the operation panel 8 and to make the work surface finish nano-accurate.
[0029]
【The invention's effect】
The three-dimensional measuring apparatus of the present invention uses a prism to expand the xy stage and yz stage of a work (subject) even if there is only one CCD camera and one optical microscope. The image can be displayed on the television display 32 and the work can be diagnosed. Further, xyz coordinates can be calculated and synthesized from xy coordinates and yz coordinates, and the dimensions of the workpiece can be calculated and displayed. A three-dimensional image can be synthesized from the output signals of two two-dimensional images.
[Brief description of the drawings]
FIG. 1 is a side view of a CNC precision grinding apparatus.
FIG. 2 is a plan view of a CNC precision grinding apparatus.
FIG. 3 is a simplified front view of a CNC precision grinding apparatus.
FIG. 4 is a system diagram of a CNC precision grinding apparatus.
FIG. 5 is a front view of an optical microscope coupled with a CCD camera.
FIG. 6 is a side view of an optical microscope coupled with a CCD camera.
FIG. 7 is a perspective view of an NC grinding apparatus. (Known)
[Explanation of symbols]
1 CNC precision molding and grinding machine 2 Workpiece (subject)
3 Grinding wheel 4 X-axis table 7 Saddle 8 Control unit 9 Column 30 Non-contact 3D measuring device 31 Computer 36 CCD camera 50 Optical microscope 54 Objective lens 56 Prism

Claims (3)

左右方向(x軸方向)に移動可能な被検体を載置するX軸テ−ブル、
前後方向(y軸方向)に移動可能なサドル上に前記X軸テ−ブルに対し垂直の方向に設けたコラム、
該コラムに昇降可能に設けた支持軸
該支持軸に対物レンズの光軸(z軸)が平行となるように取り付けた光学顕微鏡であって、該光学顕微鏡の同焦レボルバには少なくとも2個の同倍率の対物レンズを設け、一方の対物レンズは被検体のx−y平面からの反射光を前記光軸に受け、他方の対物レンズには対物レンズ取付側とは反対側の受光部近傍にプリズムを配置して被検体のy−z平面からの反射光を屈折させて前記光軸に受けるようにし、この光学顕微鏡の結像レンズ側にCCDカメラを結合させた光学顕微鏡、
光源より被検体に照射された光が反射して光学顕微鏡の対物レンズに入光し、x軸テ−ブルに垂直な光軸(z軸)経てCCDカメラに結像し、この結像を撮影画像としてテレビジョン表示器に映し出す画像処理部およびxyz位置座標演算部、
x軸−、y軸−、z軸−リニアスケ−ル
および、
操作盤、プログラムソフト記憶部、デ−タ記録部および制御部を備えるコンピュ−タ、
を備える非接触3次元測定装置。
An X-axis table for placing an object movable in the left-right direction (x-axis direction);
A column provided on a saddle movable in the front-rear direction (y-axis direction) in a direction perpendicular to the X-axis table;
A support shaft provided on the column so as to be movable up and down. An optical microscope attached to the support shaft so that the optical axis (z-axis) of the objective lens is parallel to the column. An objective lens having the same magnification is provided, one objective lens receives reflected light from the xy plane of the subject on the optical axis, and the other objective lens is near the light receiving portion on the side opposite to the objective lens mounting side. An optical microscope in which a prism is arranged to refract the reflected light from the yz plane of the subject so as to be received by the optical axis, and a CCD camera is coupled to the imaging lens side of the optical microscope;
The light irradiated to the subject from the light source is reflected and enters the objective lens of the optical microscope, and forms an image on the CCD camera through the optical axis (z-axis) perpendicular to the x-axis table. An image processing unit and an xyz position coordinate calculation unit which are displayed as an image on a television display;
x-axis, y-axis, z-axis, linear scale, and
A computer having an operation panel, a program software storage unit, a data recording unit and a control unit;
A non-contact three-dimensional measuring apparatus comprising:
被検体のx−y平面からの反射光が前記光学顕微鏡の対物レンズの光軸に直接入射してCCDカメラの受光手段より出力されるxy座標出力信号と、被検体のy−z平面からの反射光がプリズムを介して屈折されて前記光学顕微鏡の対物レンズの光軸に入射してCCDカメラの受光手段より出力されるyz座標出力信号とからxyz位置座標演算部が合成・演算したxyz位置座標がテレビジョン表示器に表示可能であることを特徴とする、請求項1に記載の非接触3次元測定装置。The reflected light from the xy plane of the subject directly enters the optical axis of the objective lens of the optical microscope and is output from the light receiving means of the CCD camera, and from the yz plane of the subject. The xyz position, which is synthesized and computed by the xyz position coordinate computation unit, from the yz coordinate output signal which is refracted through the prism and incident on the optical axis of the objective lens of the optical microscope and output from the light receiving means of the CCD camera. The non-contact three-dimensional measuring apparatus according to claim 1, wherein the coordinates can be displayed on a television display. 左右方向(X軸方向)にサ−ボドライブ移動可能なX軸テ−ブル、該X軸テ−ブル上に設けられたワ−クを載置するチャック、前後方向(Y軸方向)にサ−ボドライブ移動可能なサドル、該サドル上に垂直方向(Z軸方向)に設けたコラム、該コラムの前面に設けた砥石軸、該砥石軸に軸承された回転砥石、砥石軸昇降機構、砥石軸回転機構、X軸テ−ブルの左右方向に備えられたX軸リニアスケ−ル、サドルの前後方向に備えられたY軸リニアスケ−ル、コラムの垂直方向に設けられたZ軸リニアスケ−ル、操作盤、プログラムソフト記憶部、デ−タ記録部および制御部を備えるコンピュ−タを備えるCNC研削装置、
および
前記CNC研削装置のコラムに前後方向(y軸方向)および上下方向に移動可能に設けた支持軸をZ軸に平行に設け、この支持軸に対物レンズの光軸(z軸)が平行となるように取り付けた光学顕微鏡であって、該光学顕微鏡の同焦レボルバには少なくとも2個の同倍率の対物レンズを設け、一方の対物レンズは被検体のx−y平面からの反射光を前記光軸に受け、他方の対物レンズには対物レンズ取付側とは反対側の受光部近傍にプリズムを配置して被検体のy−z平面からの反射光を屈折させて前記光軸に受けるようにし、この光学顕微鏡の結像レンズ側にCCDカメラを結合させ、光源よりワ−クに照射された光が反射してCCDカメラ対物レンズに入光し、X軸テ−ブルに垂直な対物レンズの光軸(z軸)経てCCDカメラの受光手段に結像しこの結像を撮影画像としてテレビジョン表示器に映し出す非接触3次元測定装置、
を有するCNC精密研削装置。
X-axis table movable in servo drive in the left-right direction (X-axis direction), chuck for placing a work provided on the X-axis table, and in the front-rear direction (Y-axis direction) Boddle movable saddle, column provided vertically on the saddle (Z-axis direction), grinding wheel shaft provided on the front surface of the column, rotary grinding wheel supported by the grinding wheel shaft, grinding wheel shaft lifting mechanism, grinding wheel shaft rotation Mechanism, X-axis linear scale provided in the left-right direction of the X-axis table, Y-axis linear scale provided in the front-rear direction of the saddle, Z-axis linear scale provided in the vertical direction of the column, operation panel A CNC grinding apparatus comprising a computer comprising a program software storage unit, a data recording unit and a control unit,
Further, a support shaft provided on the column of the CNC grinding apparatus so as to be movable in the front-rear direction (y-axis direction) and the vertical direction is provided in parallel to the Z-axis, and the optical axis (z-axis) of the objective lens is parallel to the support shaft. An optical microscope mounted so that at least two objective lenses having the same magnification are provided in a confocal revolver of the optical microscope, and one objective lens receives reflected light from the xy plane of the subject. The other objective lens is provided with a prism in the vicinity of the light receiving portion opposite to the objective lens mounting side so that the reflected light from the yz plane of the subject is refracted and received by the optical axis. The CCD camera is coupled to the imaging lens side of this optical microscope, the light irradiated to the work from the light source is reflected and enters the CCD camera objective lens, and the objective lens is perpendicular to the X-axis table. Of the CCD camera through the optical axis (z-axis) Non-contact three-dimensional measuring apparatus for projecting a television display the imaged image on the optical means as a photographed image,
CNC precision grinding equipment.
JP2003193978A 2003-07-09 2003-07-09 Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same Pending JP2005030813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193978A JP2005030813A (en) 2003-07-09 2003-07-09 Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193978A JP2005030813A (en) 2003-07-09 2003-07-09 Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same

Publications (1)

Publication Number Publication Date
JP2005030813A true JP2005030813A (en) 2005-02-03

Family

ID=34205265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193978A Pending JP2005030813A (en) 2003-07-09 2003-07-09 Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same

Country Status (1)

Country Link
JP (1) JP2005030813A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361783C (en) * 2005-04-07 2008-01-16 上海第三机床厂 Digital profile grinder
CN100361785C (en) * 2005-04-14 2008-01-16 上海交通大学 Digitized precise curve grinding integrated control system
CN100404201C (en) * 2005-04-14 2008-07-23 上海交通大学 Control method of digitized precise curved grinding
CN100410013C (en) * 2005-03-24 2008-08-13 安徽配天智能技术有限公司 Desktop CNC fabrication center
CN100465579C (en) * 2006-12-19 2009-03-04 中国航空工业第一集团公司北京长城计量测试技术研究所 Laser plane coordinate standard device
JP2015085397A (en) * 2013-10-28 2015-05-07 株式会社ディスコ Processing device
CN104647140A (en) * 2015-01-28 2015-05-27 中国工程物理研究院激光聚变研究中心 In-place detection and positioning device for diamond cutting tool
JP2015229232A (en) * 2014-06-06 2015-12-21 中村留精密工業株式会社 Processing method for peripheral edge of curved plate
JP2015229231A (en) * 2014-06-06 2015-12-21 中村留精密工業株式会社 Processing device for peripheral edge of plate material and processing method for peripheral edge of curved plate
CN105798927A (en) * 2016-05-23 2016-07-27 广东工业大学 Crucible defect grinding processing method based on image and processing system with crucible defect grinding processing method based on image
CN106004203A (en) * 2016-05-23 2016-10-12 广东工业大学 Hole decorating plate machining method based on gray levels and machining system applying hole decorating plate machining method based on gray levels
CN106041946A (en) * 2016-05-23 2016-10-26 广东工业大学 Image-processing-based robot polishing production method and production system applying same
CN109382924A (en) * 2018-11-30 2019-02-26 上海运韩光电科技有限公司 A kind of optical prism roller machine table of the long-range microscopic observation device of band
CN114750042A (en) * 2022-03-24 2022-07-15 大连理工大学 Tool setting method for measuring grinding multi-station device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410013C (en) * 2005-03-24 2008-08-13 安徽配天智能技术有限公司 Desktop CNC fabrication center
CN100361783C (en) * 2005-04-07 2008-01-16 上海第三机床厂 Digital profile grinder
CN100361785C (en) * 2005-04-14 2008-01-16 上海交通大学 Digitized precise curve grinding integrated control system
CN100404201C (en) * 2005-04-14 2008-07-23 上海交通大学 Control method of digitized precise curved grinding
CN100465579C (en) * 2006-12-19 2009-03-04 中国航空工业第一集团公司北京长城计量测试技术研究所 Laser plane coordinate standard device
JP2015085397A (en) * 2013-10-28 2015-05-07 株式会社ディスコ Processing device
JP2015229231A (en) * 2014-06-06 2015-12-21 中村留精密工業株式会社 Processing device for peripheral edge of plate material and processing method for peripheral edge of curved plate
JP2015229232A (en) * 2014-06-06 2015-12-21 中村留精密工業株式会社 Processing method for peripheral edge of curved plate
CN104647140A (en) * 2015-01-28 2015-05-27 中国工程物理研究院激光聚变研究中心 In-place detection and positioning device for diamond cutting tool
CN105798927A (en) * 2016-05-23 2016-07-27 广东工业大学 Crucible defect grinding processing method based on image and processing system with crucible defect grinding processing method based on image
CN106004203A (en) * 2016-05-23 2016-10-12 广东工业大学 Hole decorating plate machining method based on gray levels and machining system applying hole decorating plate machining method based on gray levels
CN106041946A (en) * 2016-05-23 2016-10-26 广东工业大学 Image-processing-based robot polishing production method and production system applying same
CN105798927B (en) * 2016-05-23 2017-02-08 广东工业大学 Crucible defect grinding processing method based on image and processing system with crucible defect grinding processing method based on image
CN106004203B (en) * 2016-05-23 2017-02-22 广东工业大学 Hole decorating plate machining method based on gray levels and machining system applying hole decorating plate machining method based on gray levels
CN109382924A (en) * 2018-11-30 2019-02-26 上海运韩光电科技有限公司 A kind of optical prism roller machine table of the long-range microscopic observation device of band
CN114750042A (en) * 2022-03-24 2022-07-15 大连理工大学 Tool setting method for measuring grinding multi-station device

Similar Documents

Publication Publication Date Title
CN104552625B (en) Processing unit (plant)
JP2005030813A (en) Three-dimensional noncontact measuring apparatus and cnc precision grinding apparatus using the same
JP5276488B2 (en) Workpiece measuring apparatus and method for machine tool
KR101161496B1 (en) Cutting edge detecting method and cutting edge detecting device
CN100404201C (en) Control method of digitized precise curved grinding
EP2251120A1 (en) Machining method and machining system
KR20100118560A (en) Dicing apparatus and dicing method
CN109059810B (en) Method and device for detecting surface landform of fixed abrasive grinding tool
CN105716547A (en) Rapid measurement device and method for planeness of mechanical workpiece
JP3215193B2 (en) Method and apparatus for measuring blade shape of rotary tool
JP5283563B2 (en) Workpiece measuring apparatus and method for machine tool
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP2000131032A (en) Method and device for measuring three-dimensional profile
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP2012088149A (en) Squareness error calculation method for front face property measurement machine, and calibration jig
JP2011093004A (en) Nc grinding device having on-board image measuring system
JP6224462B2 (en) Method for detecting operating characteristics of machining feed mechanism in laser machining apparatus and laser machining apparatus
JP2007271601A (en) Optical measuring device and method
JPH071294A (en) Optical type work shape measuring device in numerically controlled machine tool
JP6054134B2 (en) Ultra-precision shape measuring device
JP2006110661A (en) Image pickup device for loaded work in grinder
RU48164U1 (en) PRECISION STROGAL MACHINE OF AUTOMATED ENGRAVING COMPLEX
CN217930168U (en) Combined type imager
JP4401643B2 (en) Truing position calculation device and method, and truing method
US20240068798A1 (en) Measuring device and machining device